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In this paper, we report on results for the s-wave scattering length of the π-K system in the I ¼ 3=2
channel from Nf ¼ 2þ 1þ 1 lattice QCD. The calculation is based on gauge configurations generated by
the European Twisted Mass Collaboration with pion masses ranging from about 230 to 450 MeV at three

values of the lattice spacing. Our main result reads Mπa
3=2;phys
0 ¼ −0.059ð2Þ. Using chiral perturbation

theory we are also able to estimate Mπa
1=2;phys
0 ¼ 0.163ð3Þ. The error includes statistical and systematic

uncertainties, and for the latter in particular errors from the extrapolation to the physical point.
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I. INTRODUCTION

For understanding the strong interaction sector of the
standard model (SM), it is not sufficient to compute masses
of stable particles. Gaining insight into interactions of two
or more hadrons and resonances is a must. Due to the
nonperturbative nature of low-energy quantum chromody-
namics (QCD), computations of interaction properties from
lattice QCD are highly desirable. While ultimately the
phase shift in a given partial wave is to be computed, also
the scattering length is in many cases a useful quantity, in
particular when the two-particle interaction is weak.
Due to the importance of chiral symmetry in QCD the

investigation of systems with two pseudoscalar mesons is
of particular interest. Here, chiral perturbation theory
(ChPT) is able to provide a description of the pion mass
dependence, and any nonperturbative computation, in turn,
allows us to check this dependence. Naturally, ChPTworks
best for two pion systems, while convergence is unclear for
pion-kaon or two kaon systems.
The two pion system is studied well experimentally, also

in the different isospin channels. However, as soon as one
or both pions are replaced by kaons, experimental results
become sparse. On the other hand, this gap starts to be filled

by lattice QCD calculations. For the pion-kaon system with
isospin I ¼ 3=2, there are by now a few lattice results
available focusing on the scattering length [1–5]. The most
recent computation in Ref. [4] uses one lattice at physical
pion and kaon masses and lattice spacing a ≈ 0.114 fm. For
the sea and valence sector, they use Nf ¼ 2þ 1 Möbius
domain wall fermions and an Iwasaki gauge action.
In Ref. [2], a systematic study of the elastic scattering
lengths for the light pseudoscalar mesons was carried out
with Nf ¼ 2þ 1 OðaÞ-improved Wilson quarks at pion
masses ranging from 170 to 710 MeVand a lattice spacing
a ≈ 0.09 fm. Furthermore, Refs. [1,3] use Nf ¼ 2þ 1

flavors on the MILC configurations with a rooted staggered
sea quark action. Where Ref. [3] calculates the scattering
length at a lattice spacing a ≈ 0.15 fm, a slightly smaller
lattice spacing a ≈ 0.125 fm has been used in Ref. [1]. The
pion masses in Ref. [1] range from 290 to 600 MeV, using
domain wall valence quarks with a chiral extrapolation
done in mixed-action chiral perturbation theory (MAChPT)
[6,7]. The range of pion masses, 330 to 466 MeV, for the
Asqtad improved staggered fermions of Ref. [3] is a bit
smaller compared to Ref. [1]. In Ref. [5], the phase shifts
and scattering lengths for π-K-scattering in I ¼ 3=2 and
I ¼ 1=2 in the s-wave and the p-wave has been deter-
mined. The gauge action is a Nf ¼ 2 tree-level improved
Wilson-Clover action. The authors include the strange
quark as a valence quark only which then corresponds
to pion and kaon masses of Mπ ¼ 266 MeV and MK ¼
522 MeV, respectively.
In this paper, we are going to present results for the

s-wave scattering length of the pion-kaon system in the
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elastic region with isospin I ¼ 3=2. The investigation is
based on gauge configurations produced by the European
Twisted Mass Collaboration (ETMC) with Nf ¼ 2þ 1þ 1

dynamical quark flavors [8]. In contrast to previous
computations, we are able to investigate discretization
effects and to extrapolate to physical quark masses owing
to 11 ensembles with Mπ ranging from 230 to 450 MeV
distributed over three different lattice spacing values. We
employ, in total, four different extrapolation methods to
also estimate systematic uncertainties associated with our
computation.
Finally, since this paper is the fourth in a series of

publications [9–11] concerning elastic scattering of two
pions in different channels and kaon-kaon with I ¼ 1, we
are able to compare results of two pseudoscalar mesons at
maximal isospin involving different amounts of strange-
ness. The leading-order ChPT predictions for the depend-
ence on the reduced mass divided by the relevant decay
constant are identical for the three systems and differences
appear only at NLO.
This paper is organized as follows: We first introduce the

lattice details of our calculation. After the discussion of the
analysis methods we present the main result, followed by a
detailed discussion of the analysis details. We close with a
discussion and summary. Technical details can be found in
the Appendix.

II. LATTICE ACTION AND OPERATORS

A. Action

The lattice details for the investigation presented here
are very similar to the ones we used to study the kaon-
kaon scattering length [11]. We use Nf ¼ 2þ 1þ 1

flavor lattice QCD ensembles generated by the ETM
Collaboration, for which details can be found in
Refs. [8,12,13]. The parameters relevant for this paper

are compiled in Table I: we give for each ensemble the
inverse gauge coupling β ¼ 6=g20, the bare quark mass
parameters μl, μσ and μδ, the lattice volume and the number
of configurations on which we estimated the relevant
quantities.
The ensembles were generated using the Iwasaki gauge

action and employ the Nf ¼ 2þ 1þ 1 twisted mass
fermion action [14–16]. For orientation, the β-values
1.90, 1.95 and 2.10 correspond to lattice spacing values
of a ∼ 0.089 fm, 0.082 fm, and 0.062 fm, respectively; see
also Table II. The ensembles were generated at so-called
maximal twist, which guarantees automatic OðaÞ improve-
ment for almost all physical quantities [14]. The renor-
malized light quark mass ml is directly proportional to the
light twisted quark mass via

ml ¼ 1

ZP
μl; ð1Þ

with ZP the pseudoscalar renormalization constant. The
relation of the bare parameters μσ and μδ to the renormal-
ized charm and strange quark masses reads

mc;s ¼
1

ZP
μσ �

1

ZS
μδ; ð2Þ

with ZS the nonsinglet scalar renormalization constant.
As noted in Refs. [13,17], the renormalized sea strange

quark masses across the “A”, “B” and “D” ensembles vary
by up to about 20% and in a few cases differ from the
physical strange quark mass to the same extent. For D30.48
and D45.32sc at the finest lattice spacing, the sea strange
quark mass on the former ensemble overshoots the physical
strange quark mass while it is consistent on the latter
ensemble. In order to correct for these mistunings and to
avoid the complicated flavor-parity mixing in the unitary
nondegenerate strange-charm sector [8], we adopt a mixed
action ansatz with so-called Osterwalder-Seiler (OS) [16]
valence quarks, while keeping OðaÞ improvement intact.
We denote the OS bare strange quark parameter with μs. It
is related to the renormalized strange quark mass by

ms ¼
1

ZP
μs: ð3Þ

For each ensemble, we investigate three values of μs which
are compiled in Table III. More details on the mixed action
approach can be found in Ref. [11].

TABLE I. The gauge ensembles used in this study. For the
labeling of the ensembles, we adopted the notation in Ref. [13]. In
addition to the relevant input parameters, we give the lattice
volume and the number of evaluated configurations, Nconf .

Ensemble β aμl aμσ aμδ ðL=aÞ3 × T=a Nconf

A30.32 1.90 0.0030 0.150 0.190 323 × 64 259
A40.24 1.90 0.0040 0.150 0.190 243 × 48 376
A40.32 1.90 0.0040 0.150 0.190 323 × 64 246
A60.24 1.90 0.0060 0.150 0.190 243 × 48 303
A80.24 1.90 0.0080 0.150 0.190 243 × 48 300
A100.24 1.90 0.0100 0.150 0.190 243 × 48 304

B35.32 1.95 0.0035 0.135 0.170 323 × 64 241
B55.32 1.95 0.0055 0.135 0.170 323 × 64 251
B85.24 1.95 0.0085 0.135 0.170 323 × 64 288

D30.48 2.10 0.0030 0.120 0.1385 483 × 96 364
D45.32sc 2.10 0.0045 0.0937 0.1077 323 × 64 289

TABLE II. Values of the Sommer parameter r0=a and the lattice
spacing a at the three values of β. See Ref. [17] for details.

β a [fm] r0=a

1.90 0.0885(36) 5.31(8)
1.95 0.0815(30) 5.77(6)
2.10 0.0619(18) 7.60(8)
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As a smearing and contraction scheme we employ the
stochastic Laplacian-Heaviside approach, described in
Ref. [18]. Details of our parameter choices can be found
in Refs. [9,11].

B. Lattice operators and correlation functions

For reasons that will become clear later, we need to
estimate the masses of the pion, the kaon and the η meson
on our ensembles. The masses for the pion and kaon are
obtained from the large Euclidean time dependence of two
point functions of the form

CXðt − t0Þ ¼ hOðXÞðtÞOðXÞ†ðt0Þi; ð4Þ

where X ∈ fπ; Kg. The operators for the charged pion and
kaon projected to zero momentum read

OðXÞðtÞ ¼
X
x

OXðx; tÞ ð5Þ

with

Oπðx; tÞ ¼ id̄ðx; tÞγ5uðx; tÞ; ð6Þ

OKðx; tÞ ¼ is̄ðx; tÞγ5uðx; tÞ: ð7Þ

For the η (and η0) meson, we use the two operators

Olðx; tÞ ¼
iffiffiffi
2

p ðūðx; tÞγ5uðx; tÞ þ d̄ðx; tÞγ5dðx; tÞÞ; ð8Þ

Osðx; tÞ ¼ is̄ðx; tÞγ5sðx; tÞ: ð9Þ

From these we build a two-by-two correlator matrix by
taking the disconnected diagrams into account. The η
(principal) correlator is determined by solving a general-
ized eigenvalue problem as described in detail in Ref. [19].
A complete discussion of the analysis of the η (and η0)
meson is beyond the scope of this paper and the full
analysis will be presented in a future publication [20]. In
addition to the aforementioned meson masses, we also need
to estimate the energy EπK of the interacting pion-kaon two
particle system. For the case of maximal isospin, i.e.,
I ¼ 3=2, the corresponding two particle operator reads

OðπKÞðtÞ ¼ −
X
x;x0

d̄ðx; tÞγ5uðx; tÞs̄ðx0; tÞγ5uðx0; tÞ: ð10Þ

It is used to construct the two-particle correlation function

CπKðt − t0Þ ¼ hOðπKÞðtÞOðπKÞ†ðt0Þi: ð11Þ

EπK can then be determined from the large Euclidean time
dependence of CπK .

III. ANALYSIS METHODS

We focus in this work on pion-kaon scattering in the
elastic region. For small enough squared scattering momen-
tum p2, one can perform the effective range expansion for
partial wave l

p2lþ1cotðδlÞ ¼ −
1

al
þOðp2Þ ð12Þ

with phase shift δl and scattering length al. For the pion-
kaon system, it is, to a very good approximation, sufficient
to study the s-wave, i.e., l ¼ 0.
In lattice QCD, the phase shift or the scattering length

can only be computed from finite volume induced energy
shifts. The relevant energy shift here is given by

δE ¼ EπK −Mπ −MK: ð13Þ

Using again the effective range expansion, one arrives at
the Lüscher formula [21]

δE ¼ −
2πa0
μπKL3

�
1þ c1

a0
L

þ c2
a20
L2

�
þOðL−6Þ ð14Þ

relating δE directly to the scattering length a0, the reduced
mass of the pion-kaon system,

μπK ¼ MπMK

Mπ þMK
; ð15Þ

and the spatial extent of the finite volume L. The coef-
ficients read [21]

c1 ¼ −2.837297; c2 ¼ 6.375183:

Given δE, μπK and L, Lüscher’s formula allows one to
determine the scattering length a0 by solving Eq. (14) for
a0. In what follows, wewill describe how we extract δE and
the other relevant bare quantities from correlation func-
tions. Then we will give details on our approach to
interpolate or extrapolate the results to physical conditions
and the investigation of discretization artifacts.
In order to gain some understanding of systematic

uncertainties, we perform the analysis in two different
ways once the bare data has been extracted. Combined

TABLE III. Values of the bare strange quark mass aμs used for
the three β-values. The lightest strange quark mass on the
ensemble D30.48 is aμs ¼ 0.0115 instead of aμs ¼ 0.013.

β 1.90 1.95 2.10

aμs 0.0185 0.0160 0.013/0.0115
0.0225 0.0186 0.015
0.0246 0.0210 0.018
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chiral and continuum extrapolations are performed at fixed
strange quark mass using next-to-leading-order ChPT
(NLO ChPT) and a variant thereof referred to as the
Γ method, as described in Ref. [1]. In addition, we explore
possible discretization effects of Oða2Þ.

A. Physical inputs

For the analysis presented below, we require physical
inputs for the pion, the kaon and η-meson masses as well as
the pion decay constant. To this end, we employ the values
in the isospin symmetric limit, M̄π and M̄K , as determined
in chiral perturbation theory [22] and given in Ref. [23] as

M̄π ¼ 134.8ð3Þ MeV;

M̄K ¼ 494.2ð3Þ MeV: ð16Þ

For the η meson mass, we use the average obtained by the
Particle Data Group [24]:

M̄η ¼ 547.86ð2Þ MeV: ð17Þ

For the decay constant, we use the phenomenological
average determined by the Particle Data Group given in
Ref. [25] as

fðPDGÞπ− ¼ 130.50ð13Þ MeV: ð18Þ

As an intermediate lattice scale, we employ the Sommer
parameter r0 [26]. It was determined in Ref. [17] from the
ensembles we use here to be

r0 ¼ 0.474ð11Þ fm: ð19Þ

In the parts of the analysis which require r0, we use
parametric bootstrap samples with central value and width
given in Eq. (19). Where r0=a values enter as fit param-
eters, we constrain the corresponding fit parameters using
Gaussian priors in the augmented χ2 function given as

χ2aug ¼ χ2 þ
X
β

�ðr0=aÞðβÞ − PrðβÞ
Δr0=aðβÞ

�
2

: ð20Þ

B. Energy values from correlation functions

The energies of the two point correlation functions as
given in Eq. (4) are extracted from fits of the form

CXðtÞ ¼ A2
0ðe−EXt þ e−EXðT−tÞÞ; ð21Þ

to the data. While for MK and Mπ the signal extends up to
T=2, for the ηwe have to face more noise. We deal with this
by applying the excited state subtraction method used and
described in Refs. [19,27].

In the determination of the energy shift δE, the total
energy EπK of the interacting π-K system must be com-
puted. However, in the spectral decomposition of the two-
particle correlation function, unwanted time dependent
contributions, so-called thermal pollution, appear. Taking
into account that our π-K correlation function is symmetric
around the T=2 point, the leading contributions in the
spectral decomposition can be cast into the form

CπKðtÞ ¼ A2
0ðe−EπKt þ e−EπKðT−tÞÞ

þ A1ðe−EπTeðEπ−EKÞt þ e−EKTeðEK−EπÞtÞ; ð22Þ

where

A2
0 ¼ hΩjπþKþjπKihπKjðπþKþÞ†jΩi; ð23Þ

is the overlap of the two particle operator OðπKÞ of
Eq. (10) with the vacuum Ω and only the first line
corresponds to the energy level we are interested in.
However, at finite T-values, the second contribution might
be sizable, in particular at times close to T=2. Moreover, the
thermal pollution cannot be separated easily from the signal
we are interested in. We have studied two different
methods, labeled E1 and E2, to extract EπK from
CπKðtÞ, where E1 has already been discussed in Ref. [28].

(i) E1: weighting and shifting: To render one of the
polluting terms in Eq. (22) time independent, the
correlation function first gets weighted by a factor
expððEK − EπÞtÞ. We chose this factor, because
expð−EπTÞ is significantly larger than expð−EKTÞ.
The resulting constant term can then be removed by
the shifting procedure, which thus replacesCπKðtÞ by

Cw
πKðtÞ ¼ eðEK−EπÞtCπKðtÞ;

C̃w
πKðtÞ ¼ Cw

πKðtÞ − Cw
πKðtþ δtÞ; ð24Þ

where δt is a fixed number of time slices.
Subsequently, we multiply C̃w

πKðtÞ by expð−ðEK−
EπÞtÞ, which (mostly) recovers the original time
dependence in the contribution of interest

CE1
πKðtÞ ¼ e−ðEK−EπÞtC̃w

πKðtÞ: ð25Þ

We now extract the total energy of the π-K system,
EπK . To this end, we apply Eqs. (24) and (25) to the
data at hand and then fit

CE1
πKðtÞ ¼ A2

0ðe−EπKt þ e−EπKðT−tÞ

− eðEK−EπÞδtðe−EπKðtþδtÞ þ e−EπKðT−ðtþδtÞÞÞÞ
þ Ã1eðEK−EπÞt: ð26Þ

Note that in contrast to Ref. [28], where correlator
matriceswith various sources of thermal pollution are
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considered, we are able to take Ã1 as an additional fit
parameter in order to account for this subleading
term.

(ii) E2: dividing out the pollution: To improve on
method E1, we assume that the decomposition
given in Eq. (22) allows one to neglect any further
thermal pollution. This leads to dividing out the time
dependent part

pðtÞ ¼ eðEK−EπÞte−EKT þ e−ðEK−EπÞte−EπT; ð27Þ
explicitly. With

C0
πKðtÞ ¼

CπKðtÞ
pðtÞ ð28Þ

we then proceed to calculate

C̃πKðtÞ ¼ C0
πKðtÞ − C0

πKðtþ δtÞ; ð29Þ

CE2
πKðtÞ ¼ pðtÞC̃πKðtÞ; ð30Þ

from which we extract EπK through fitting

CE2
πKðtÞ ¼ A2

0

�
e−EπKt þ e−EπKðT−tÞ −

pðtÞ
pðtþ 1Þ

· ðe−EπKðtþ1Þ þ e−EπKðT−ðtþ1ÞÞÞ
�
: ð31Þ

We remark that for both methods E1 and E2 the energies
Eπ and EK, i.e., Mπ and MK for zero momentum, are
required as an input. They are determined from the
corresponding two-point correlation functions. Please note
that in method E2 we need to fit one amplitude, A0, while
method E1 requires to take care of two amplitudes, A0 and
Ã1. For the error analysis, bootstrap samples are used to
fully preserve all correlations.
After solving Eq. (14) for a0 up to OðL−5Þ on every

ensemble for each strange quark mass of Table III, we have
three parameters in which we want to extra- or interpolate:
the lattice spacing a, the strange quark mass ms and the
light quark massml. To evaluate a0 at the physical point we
follow a two-step procedure. We first fix the strange quark
mass to its physical value and subsequently perform a
combined chiral and continuum extrapolation, investigating
different possible types of discretization artifacts.

C. Fixing the strange quark mass

In order to fix the strange quark mass, we adopt the
following procedure: we match the quantity

M2
s ¼ M2

K − 0.5M2
π; ð32Þ

which is proportional to the strange quark mass at the
leading order of ChPT, to its physical value

ðMphys
s Þ2 ¼ M̄2

K − 0.5M̄2
π; ð33Þ

using our determinations of M2
K at three valence strange

quark masses on a per-ensemble basis. For each ensemble,
we then interpolate all valence strange quark mass depen-
dent observables, i.e., μπKa

3=2
0 , MK , Mη and μπK , in M2

s to
this reference value.

D. Chiral extrapolation

With the strange quark mass fixed, the extrapolation to the
physical point can be carried out using ChPT. The first NLO
calculation of the scattering amplitude and scattering lengths
was done inRef. [29]. From the continuumChPT formulae for
the isospin even (odd) scattering lengths aþ (a−) in Ref. [30],
the NLO ChPT formulae for μπKaI0, I ∈ f1=2; 3=2g, can be
derived as sketched in Appendix A, giving

μπKa
3=2
0 ¼ μ2πK

4πf2π

�
32MπMK

f2π
LπKðΛχÞ − 1 −

16M2
π

f2π
L5ðΛχÞ

þ 1

16π2f2π
χ3=2NLOðΛχ ;Mπ;MK;MηÞ

�
þ c · fða2Þ:

ð34Þ
Equation (34) depends on themasses of the pion and the kaon,
their reduced mass as defined in Eq. (15), the η mass and the
pion decay constant. In addition, the equation depends on the
low-energy constants (LECs) L5 and LπK while χ3=2NLO is a
known function; see Appendix A 2.
We express Eq. (34) in terms of the meson masses and

decay constants as they are determined on the lattice, which
has the benefit that their ratios can be computed with high
statistical precision without the need for explicit factors of
the lattice scale. Hence we fit all lattice data simultaneously.
Formally, we fix the scale-dependent LECs at the renorm-

alization scale Λχ ¼ fðPDGÞπ− . However, in practice we
employ aΛχ ¼ afπðβ; μlÞ=KFSE

fπ
in all chiral logarithms,

where the values for the finite-size correction factor KFSE
fπ

are given in Sec. V B. Doing so should only induce higher-
order corrections in the chiral expansion.
Automatic OðaÞ improvement of Wilson twisted mass

fermions at maximal twist guarantees that the leading
lattice artifacts are of Oða2Þ or better. For instance, for
the I ¼ 2 ππs-wave scattering length, discretization effects
start only at Oða2M2

πÞ [31]. A corresponding theoretical
result for πK is missing so far. However, our numerical data
suggest that also for πK lattice artifacts are very small. Still,
we include a term c · fða2Þ accounting for possible dis-
cretization effects, with fit parameter c and fða2Þ either
equal to a2=r20 or to a2M2

X, with M2
X one of the masses or

mass combinations M2
π , M2

K , M
2
K þ 0.5M2

π , μ2πK . In the
following analysis, we will include the term c · fða2Þ into
our fit for every choice of fða2Þ and thus investigate a
possible dependence of our data on the lattice spacing.
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To summarize, our fit parameters are the LECs L5 and
LπK , and c, where LπK is the combination of renormalized
LECs

LπK ¼ 2L1 þ 2L2 þ L3 − 2L4 −
L5

2
þ 2L6 þ L8: ð35Þ

Let us mention already here that the fits to the data
described in the next section turn out to be not sensitive
to L5. Therefore, we include it as a prior in the fit with the
value taken from Ref. [23]. In a slight abuse of the
language, we will denote this extrapolation method as
NLO ChPT.

E. Extrapolations using the Γ method at fixed ms

Next, we describe an alternative way to extrapolate our
data, first applied in Ref. [1]. In what follows, we just
shortly introduce the derivation of the fit formula and refer
to Appendix A 2 for a more detailed discussion. To derive
the relevant formulae we first plug the expressions for aþ
and a− (cf. Appendix A 2) into Eq. (A4) and reorder such
that LECs appear on one side of the equation. The result
reads

L5 − 2
MK

Mπ
LπK ¼ f2π

16M2
π

�
4πf2π
μ2πK

½μπKa3=20 � þ 1

þ χ−NLOðΛχ ;Mπ;MK;MηÞ

− 2
MKMπ

f2π
χþNLOðΛχ ;Mπ;MK;MηÞ

�
;

ð36Þ
with χ�NLOðΛχ ;Mπ;MK;MηÞ given in Appendix A 2. We
label the right-hand side of Eq. (36) ΓðMπ=fπ;MK=fπÞ
which comprises only measurable quantities:

Γ
�
Mπ

fπ
;
MK

fπ

�
¼ L5 − 2

MK

Mπ
LπK: ð37Þ

Having calculated ΓðMπ=fπ;MK=fπÞ using the interpo-
lated data of μπKa

3=2
0 ,MK ,Mη and μπK , and the data of Mπ

and fπ we fit Eq. (37) via L5 and LπK to the data obtained in
this way. Please note that also Γ is still dimensionless which
enables a fit to all lattice data simultaneously. Given L5 and
LπK from the fit one can compute μπKa

3=2
0 at the physical

point using Eq. (34). Again, it turns out we are not sensitive
to L5 in our fits. Therefore, we use a prior as discussed
before. This extrapolation method we denote as Γ method.

IV. RESULTS

In this section, we present our main result for μπKa
3=2
0

extrapolated to the physical point.
We use two thermal state pollution removal methods,E1

and E2, for EπK. Next, we employ the two (related) ChPT
extrapolations, Γ method and NLO ChPT, as discussed

before. For reasons that will be detailed in Sec. V D 1, we
state the NLO ChPT results with c ¼ 0. For each of the two
ChPT extrapolation methods, we use three fit ranges as
compiled in Table IV. Hence, we have 12 estimates for each
quantity at the physical point available, which we use to
estimate systematic uncertainties. We remark that the fit for
the Γ method is in terms of MK=Mπ and for NLO ChPT in
terms of μπK=fπ . Thus, we vary the fit range at the lower
end for the Γ method and at the upper end for NLO ChPT.
For μπKa

3=2
0 , the 12 estimates are shown in Fig. 1. The

final result is obtained as the weighted average over all of
these, as shown in the figure as the horizontal bold line. The
weight is computed according to

w ¼ ð1 − 2 · jp − 1=2jÞ2
Δ2

ð38Þ

with p the p-value of the corresponding ChPT fit and Δ the
statistical uncertainty obtained from the fit.
The statistical uncertainty of the final results is deter-

mined from the bootstrap procedure. For μπKa
3=2
0 , this is

shown in Fig. 1 as the inner error band. In addition, we
determine three systematic uncertainties: The first is
obtained from the difference between using only E1 or
only E2 results. The second from the difference between

TABLE IV. Fit ranges used for extrapolations Γ and NLO
ChPT. The index column refers to Fig. 1.

Method Index Begin End

Γ 1 1.2 2.0
2 1.4 2.0
3 1.5 2.0

NLO 1 1.2 1.6
2 1.2 1.41
3 1.2 1.35

FIG. 1. Comparison of values for μπKa
3=2
0 at the physical point

obtained with the different methods used in this paper. The fit
ranges decrease with increasing index as described in Table IV.
The inner error band represents the statistical error only, while the
outer error band represents the statistical and systematic errors
added in quadrature.
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using only the Γ method or only NLO ChPT. Finally, we
use the maximal difference of the weighted average to the
12 estimates as a systematic uncertainty coming from the
choice of fit ranges.
The results of all twelve fits can be found in Table V for

the Γ method and Table VII for NLO ChPT fits. The fit
range indices used in Fig. 1 are resolved in Table IV. The
results for all approaches after averaging over the fit ranges
are listed in Table IX, in Appendix B.
With this procedure and all errors added in quadrature we

quote

μπKa
3=2;phys
0 ¼ −0.0463ð17Þ; LπK ¼ 0.0038ð3Þ: ð39Þ

This translates to

Mπa
3=2;phys
0 ¼ −0.059ð2Þ; Mπa

1=2;phys
0 ¼ 0.163ð3Þ

ð40Þ
as our final results. The error budget is compiled in
Table VIII. While the dominating contribution to the error
for both μπKa

3=2
0 and LπK summed in quadrature is coming

from the fit range and the statistical uncertainty, also the
choice of the thermal state removal method contributes
significantly. The contribution from the different chiral
extrapolation methods is negligible. If the errors were
added (not in quadrature), the total error would become
a factor ∼1.7 larger.
We remark that these results have been obtained with L5

as an input, because the fits are not sufficiently sensitive to
determine L5 directly. We use the most recent determi-
nation from a Nf ¼ 2þ 1þ 1 lattice calculation by
HPQCD [23], which is extrapolated to the continuum
limit. At our renormalization scale, it reads

L5 ¼ 5.4ð3Þ × 10−3: ð41Þ

V. ANALYSIS DETAILS AND DISCUSSION

A. Error analysis, thermal pollution
and choice of fit ranges

The error analysis is performed using the stationary
blocked bootstrap procedure [32]. In order to determine an

appropriate average block length, we compute the inte-
grated autocorrelation time τint for the correlation functions
CXðtÞ at all source-sink separations, with X being π, K, η or
πK. In the case of πK, CXðtÞ is of course first suitably
transformed for the extraction of the interaction energy as
discussed in Sec. III B. The computation of τint is detailed
in Ref. [33]. The average block length is then chosen to be
the ceiling of the maximum integrated autocorrelation time
observed over all correlation functions at all source-sink
separations

b ¼ ⌈max
X;t

ðτðX;tÞint Þ⌉

on a per-ensemble basis. We have confirmed explicitly that
this method produces a block length at which the estimate
of the statistical error plateaus and are thus confident that
we properly take into account the effect of autocorrelations
on our quoted statistical errors. Using the so-determined
block length on a per-ensemble basis, we generate N ¼
1500 samples from which we estimate statistical errors
throughout our analysis.
As discussed in Sec. III B, we employ methods E1 and

E2 to remove unwanted thermal pollution from the πK two
particle correlation function. Both methods allow us to
describe the data rather well, but the choice of best fit range
depends on the method used to remove the thermal
pollution. This, in turn, affects the value of the extracted
EπK and, subsequently, the value of μπKa

3=2
0 obtained from

the energy difference.
To demonstrate the quality of our fits, we look at the ratio

C½E1;E2�
πK ðtÞ

f½E1;E2�ðtÞ ; ð42Þ

where C½E1;E2� are defined in Eqs. (25) and (30), respec-
tively, and the fit functions f½E1;E2�ðtÞ are given in Eqs. (26)
and (31), respectively. The ratio is shown in Fig. 2 for the
two ensembles A40.24 and A40.32 for two fit ranges for
which both methods describe the data well.
The choice of the fit ranges to determine energy levels is

always difficult. In the past, we have used many fit ranges
and weighted them according to their fit qualities [9,11].
However, this procedure relies on properly estimated vari-
ance-covariancematrices, which is notoriously difficult. For
the pion-kaon correlation functions needed in this paper, we
have observed several cases where the fit including the
variance-covariance matrix did not properly describe the
data after visual inspection. Therefore, we use fits here
assuming independent data points with the correlation still
taken into account by the bootstrap procedure.
As a consequence, we cannot apply the weighting

procedure used in Refs. [9,11] any longer and have to
choose fit ranges. The procedure is as follows: Due to
exponential error growth of CπK we fix tf ¼ T=2 − 4a and
vary ti, beginning from a region where excited states do not
contribute significantly anymore. From these fits we choose

TABLE V. Fit results of the chiral exptrapolation using the Γ
method. The fits shown in Fig. 5 correspond to the largest fit
range in the table.

Removal Fit range p-value LπK × 103 μπKa
3=2
0 × 102

E1 0.0 to 2.0 0.8 3.7(2) −4.68ð9Þ
1.4 to 2.0 0.7 3.7(2) −4.7ð1Þ
1.5 to 2.0 0.6 3.6(3) −4.7ð2Þ

E2 0.0 to 2.0 0.3 3.7(1) −4.65ð7Þ
1.4 to 2.0 0.5 3.8(2) −4.57ð9Þ
1.5 to 2.0 0.4 4.0(2) −4.5ð1Þ
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one fit range where the ratio of Eq. (42) is best compatible
with 1. The statistical error is calculated from the bootstrap
samples as discussed before. We then estimate the system-
atic uncertainty from the remaining fit ranges. To this end,
we determine the difference of the mean value to the upper
and lower bound of values for EπK. This procedure results
in an asymmetric estimate of the systematic uncertainty of
EπK . The results are compiled in Table X, in Appendix B.
Since CK and Cπ do not suffer from exponential error
growth at late times we set tf ¼ T=2. Table VI gives an
overview of our chosen values of ti and tf for all ensembles.
It is always difficult to include systematic uncertainties in

the analysis chain. Since we see systematic uncertainties on
extracted energies on the same level as the statistical one, we
adopt the following procedure to include this uncertainty:
Because μπKa

3=2
0 is derived from EπK, we chose to scale the

statistical error for μπKa
3=2
0 on each ensemble after the data

have been interpolated in the strange quark mass. To this

end, we define a scaling factor s via the standard error ΔX
and the average of the systematic uncertainties Q̄X over the
three strange quark masses for each ensemble,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔXÞ2 þ Q̄2

X

ðΔXÞ2

s
; ð43Þ

where the average Q̄X is the simple mean over the six
systematic errors.

B. Meson masses, energy shift δE
and scattering length μπKa

3=2
0

In order to extract δE, we first determine MK and Mπ

from fitting Eq. (21) to our data for CπðtÞ and CKðtÞ. We
then calculate the reduced mass μπK via Eq. (15) for all
combinations of fit ranges. Mπ , MK and μπK are listed in
Table XI, in Appendix B.
The two methods E1 and E2 give us two estimates of

EπK as outlined in Sec. III B, from which we determine δE
and hence the scattering length using Eq. (14). The values
for EπK and δE are collected in Tables X, in Appendix B
and XII, in Appendix B.

(a) (b)

FIG. 2. Plot of Eq. (42) for ensembles A40.24 and A40.32 for the lightest strange quark mass for the fit ranges used for the analysis,
comparing the quality of the data description by methods E1 and E2.

TABLE VI. Typical minimal and maximal values of the starting
and end points of fit ranges for the Correlation functions under
investigation.

aMπ aMK aEπK

Ensemble ti tf ti tf ti tf

A30.32 13 32 13 32 21 28
A40.24 11 24 11 24 14 20
A40.32 13 32 13 32 20 28
A60.24 11 24 11 24 16 20
A80.24 11 24 11 24 16 20
A100.24 11 24 11 24 15 20
B35.32 13 32 13 32 22 28
B55.32 13 32 13 32 19 28
B85.24 11 24 11 24 15 20
D45.32sc 14 32 14 32 22 28
D30.48 22 48 22 48 35 44

TABLE VII. Fit results for the NLO ChPT fit. The fits shown in
Fig. 4 correspond to the largest fit range in the table.

Removal Fit range p-value LπK × 103 μπKa
3=2
0 × 102

E1 0.0 to 1.35 0.6 3.6(3) −4.7ð2Þ
0.0 to 1.41 0.7 3.6(2) −4.7ð1Þ
0.0 to 1.60 0.7 3.7(2) −4.7ð1Þ

E2 0.0 to 1.35 0.5 3.9(2) −4.5ð1Þ
0.0 to 1.41 0.5 3.8(2) −4.6ð1Þ
0.0 to 1.60 0.4 3.7(1) −4.64ð7Þ
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We introduce factors KFSE
X for X ∈ fMK;Mπ; fπg to

correct our lattice data for finite-size effects. They have
already been calculated in Ref. [17] and are listed in
Table XIII, in Appendix B. We apply these factors for
e.g., Mπ as

M�
π ¼

Mπ

KFSE
Mπ

:

We correct every quantity of the set named above and drop
the asterisk in what follows to improve legibility. For Mη,
statistical uncertainties are too big to resolve finite volume
effects; see also Ref. [34].
For the two methodsE1 andE2, we solve Eq. (14) for a0

up toOðL−5Þ numerically. The values for a0 and its product
with the reducedmass,μπKa

3=2
0 are collected in TableXIV, in

Appendix B. Since the finite-size behavior of the scattering
length is unknown, we do not apply finite-size corrections to
the reduced mass appearing in μπKa

3=2
0 , either.

C. Strange quark mass fixing

Before we perform a combined continuum and chiral
extrapolation, we interpolate all data to reference strange
quark masses as discussed before. The data for the three

strange quark masses are strongly correlated because
the same stochastic light perambulators were used for all
light-strange observables. As a consequence, the variance-
covariance matrix was sometimes not sufficiently well
estimated such that its inverse was unreliable. As a result,
we resort to performing these fits using uncorrelated χ2

which results in best fit parameters which describe the data
much better. It should be noted that all statistical covariance
is still fully taken into account by the bootstrap procedure
and our final statistical errors on all fit parameters are
correctly estimated.
As an example, we show in Fig. 3 the interpolation of

μπKa
3=2
0 in M2

K − 0.5M2
π for ensemble B55.32 comparing

methods E1 and E2. The large uncertainty in the
interpolation variable stems mainly from the uncertainty
in the scaling quantity r0. Furthermore the errors of the
three data points are highly correlated. The interpolation
to the reference point is shown as a red diamond. In
general, the strange quark mass dependence of μπKa

3=2
0

is mild and stems mainly from the reduced mass μπK .
The values thus determined are compiled in Table XV,
in Appendix B. They serve as input data for the
subsequent chiral extrapolations.

D. Chiral extrapolations and discretization effects

Having interpolated all our lattice data to a fixed
reference strange quark mass corresponding to the physical
strange quark mass at leading chiral order, we will describe
below the results and possible systematic errors in our
chiral extrapolations.

1. Chiral perturbation theory at NLO

To investigate possible discretization effects we first let c
in Eq. (34) vary freely and fit Eq. (34) for the different

TABLE VIII. Error budget for the final results of μπKa
3=2
0

and LπK .

μπKa
3=2
0 × 105 LπK × 105

Statistical 82 (28%) 15 (32%)
Fit range 139 (47%) 19 (41%)
E1 vs. E2 64 (22%) 12 (24%)
NLO ChPT vs. Γ 9 (3%) 1 (3%)P

294 (100%) 47 (100%)
sqrt

P
in quadrature 173 27

(a) (b)

FIG. 3. Interpolations of μπKa
3=2
0 for the two different methods E1 and E2.
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choices of fða2Þ. We are neither able to obtain a statistically
significant result for the fit parameter c, nor do we see
significant differences in the extracted values of LπK and
μπKa

3=2
0 . We conclude that within our statistical uncertain-

ties we are not able to resolve lattice artifacts in this
quantity. Consequently we are justfied to fit all of our data
simultaneously with the continuum ChPT formula Eq. (34)
and to claim that at this order in the chiral expansion, our
results correspond to the physical point in the continuum
limit.
In the right column of the plots in Fig. 4, we show

the lattice data for μπKa
3=2
0 interpolated to the reference

strange quark mass as a function of μπK=fπ for the
two thermal pollution removal methods E1 and E2.
The solid line corresponds to the leading order,

parameter-free ChPT prediction. Plotting our best fit
curve with NLO ChPT together with the data is difficult,
because μπKa

3=2
0 depends on meson masses and fπ

besides μπK=fπ . Therefore, in order to demonstrate that
the fit is able to describe our data, we indicate the
relative deviation δrðμπKa3=20 Þ between the fitted points
and the original data

δrðμπKa3=20 Þ ¼ ðμπKa3=20 Þmeas − ðμπKa3=20 Þfit
ðμπKa3=20 Þmeas

; ð44Þ

in Figs. 4(b) and 4(d). The indicated error bars are
statistical only and it is clear that within these uncer-
tainties, our data is reasonably well described by the fit.

FIG. 4. Chiral extrapolation of μπKa
3=2
0 for E1 and E2. Different colors and symbols denote different values of β. In black, we plot the

LO ChPT formula. The golden diamond gives our final result using the given method at the physical point.
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As in Sec. V D 2, to investigate the validity of Eq. (34)
across our entire range of pion masses, we studied three
different fit intervals for μπK=fπ, namely

μπK
fπ

∈ fð0; 1.35Þ; ð0; 1.41Þ; ð0; 1.60Þg; ð45Þ

where now the first range corresponds to only using our
lightest pion masses and the third range includes all of our
ensembles. The resulting trend in the extracted values of
LπK and μπKa

3=2
0 is shown in Table VII. Just as in the study

of the Γ-method, including heavier pion masses leads to
smaller values of LπK and correspondingly smaller values
of μπKa

3=2
0 .

2. Γ Method

In this section, we present results employing the
determination of LπK using the linear fit introduced
in Sec. III E. Figure 5 shows the chiral extrapolations in
terms of MK=Mπ for pollution removal E1 and E2.
Since we work at fixed strange quark mass, the light
quark mass decreases from left to right in the figure. In
order to check how our extraction of LπK is affected by
the range of included pion masses, we employ three
different fit ranges

MK

Mπ
∈ fð0; 2.0Þ; ð1.5; 2.0Þ; ð1.4; 2.0Þg: ð46Þ

In Table V, we compile the results for the fits corre-
sponding to the data points of Fig. 5 for all three fit
ranges. As the fit range is restricted to our lightest
ensembles, the value extracted for LπK tends up, while
the absolute value of the extracted μπKa

3=2
0 decreases. It

is worth noting that this behavior is only observed for
the pollution removal E2, whereas for E1 the values for

LπK and μπKa
3=2
0 stay constant within their statistical

errors.

VI. DISCUSSION

Let us first discuss the main systematics of our
computation: In contrast to the pion-pion or kaon-kaon
systems, there is time dependent thermal pollution in
the correlation functions relevant for the extraction of
the pion-kaon s-wave scattering length. This very fact
turns out to represent one of the major systematic
uncertainties in the present computation. We have
investigated two methods to remove the leading thermal
pollution, denoted as E1 and E2. With both we are able
to describe the data for the correlation functions.
However, there is uncertainty left, because we remove
only the leading pollution and the removal procedure
requires input estimated from other two point functions.
Thus, we eventually decided to use both methods E1
and E2 and include the differences in the systematic
uncertainty.
Second, we perform a mixed action simulation for

the strange quark. We use this to correct for small
mistuning in the sea strange quark mass value used for
the gauge configuration generation. This leads—at least
in principle—to a small mismatch in the renormalization
condition used for the continuum extrapolation. We
cannot resolve the corresponding effect on our results
quantitatively given our statistical uncertainties. But,
since we study quantities which mainly depend on the
valence quark properties we expect them to be small.
Third, in the ChPT determination of LπK the remaining

LEC, L5, entered as a prior to numerically stabilize our fits.
The HPQCD value of Ref. [35] stems from an independent
lattice simulation, but is extrapolated to the continuum
limit. In Ref. [35], L5 is given at scale Mη, which we
translated to our renormalization scale given by the pion
decay constant.

(a) (b)

FIG. 5. Chiral extrapolation using the Γmethod with data interpolated to the reference strange quark mass. The data for different lattice
spacings are color encoded. In addition, we show the linear fit (solid curve, gray error band).
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In addition, the extrapolation from our data to the physical
point is quite long. Here, a computation directlywith physical
pion mass would improve our confidence in the result. The
final error on our determination is only as small as it is due to
the highly constraining ChPT description of μπKa

3=2
0 .

Finally, although we are not able to resolve lattice
artifacts in our determination of μπKa

3=2
0 our statistical

errors and limited set of gauge ensembles especially at the
finest lattice spacing might make us unable to resolve
possible lattice artifacts.

VII. SUMMARY

In this paper, we have presented a first lattice compu-
tation of the pion-kaon s-wave scattering length for isospin
I ¼ 3=2 extrapolated to the continuum limit. By varying
our methodology we estimate the systematic uncertainties
in our results. Our errors cover statistical uncertainties,
continuum and chiral extrapolations as well as the removal
of thermal pollution.
In the left panel of Fig. 6, we compare the results

presented in this paper with previous lattice determi-
nations. The inner (darker) error bars show the purely
statistical errors whereas the outer (lighter) ones corre-
spond to the statistical and systematic errors added in
quadrature. Even though the four other determinations
lack the extrapolation to the continuum limit, overall
agreement within errors is observed. However, concern-
ing the final uncertainty, our determination improves
significantly on the previous determinations by control-
ling more sources of uncertainty.
As mentioned in the introduction, the three two particle

systems pion-pion, pion-kaon and kaon-kaon are very
similar. Therefore, it is interesting to compare the data
for pion-pion [9], kaon-kaon [11] and pion-kaon in a single

plot. This is done in the right panel of Fig. 6 where we show
μ · a0 as a function of ðμ=fÞ2. Here μ is the reduced mass of
the corresponding two particle system and f is the pion
decay constant fπ for the pion-pion and pion-kaon and fK
for the kaon-kaon system. The dashed line in the right panel
of Fig. 6 is the leading-order, parameter-free ChPT pre-
diction all three systems share. The three symbols (and
colors) represent our data for the three different systems,
respectively.
It can be seen that for all three systems, the deviations

from LO ChPT are small. For the pion-kaon system, a
parametrization in terms of fK · fπ would bring the points
even closer to the LO line, while increasing the deviation
of the final result from the LO estimate. For the kaon-
kaon system, instead, a parametrization in terms of fπ
rather than fK (which is perfectly valid at this order of
ChPT) would render the deviation from the LO line more
severe.
It is somewhat surprising that ChPT appears to work so

well for all three systems, especially for the heavier points
in our simulations and even more for the kaon-kaon system,
where the expansion parameter becomes large. A possible
reason for this finding might be the fact that all three
systems are only weakly interacting.
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[37], QUDA [38–40], R [41], PYTHON [42] and SCIPY [43]
have been used.

APPENDIX A: π-K SCATTERING IN ChPT

1. Isospin even/odd scattering amplitudes

For completeness, we reproduce here the derivation of
the Γ method [1] described in Sec. III E. The scattering
amplitudes for all isospin channels of π-K scattering can be
noted down using basis elements that are even (odd) under
exchange of the Mandelstam variables s and u

Aþ ¼ 1

3
ðA1=2ðs; t; uÞ þ 2A3=2ðs; t; uÞÞ

A− ¼ 1

3
ðA1=2ðs; t; uÞ −A3=2ðs; t; uÞÞ: ðA1Þ

From Eq. (A1), it follows that

A1=2 ¼ Aþ þ 2A− ðA2Þ

A3=2 ¼ Aþ −A−; ðA3Þ

which immediately carries over to the scattering lengths
a1=2 and a3=2 yielding

μπKa
1=2
0 ¼ μπKðaþ þ 2a−Þ ðA4Þ

μπKa
3=2
0 ¼ μπKðaþ − a−Þ: ðA5Þ

The scattering lengths aþ and a− can be derived from
the amplitudes of Eq. (A1), as was done in Ref. [30].
For convenience, we reproduce them here,

a− ¼ μπK
8πf2π

�
1þM2

π

f2π

�
8L5 −

1

2
χ−NLOðΛχ ;Mπ;MK;MηÞ

��
ðA6Þ

aþ¼μπKMKMπ

8πf4π
½16LπKþχþNLOðΛχ ;Mπ;MK;MηÞ�; ðA7Þ

with the renormalization scale Λχ and the abbreviations
χ�ðΛχ ;Mπ;MK;MηÞ denoted in Appendix A 2. Please note
that aþ only depends on L5 while a− only depends on LπK .
Inserting the ChPT formulae for aþ and a− into Eq. (A4)
one arrives at Eq. (36).

2. Next-to-leading-order functions

For convenience, we list the chiral functions χ�NLO
derived in Ref. [30],

χþNLOðΛχ ;Mπ;MK;MηÞ

¼ 1

16π2

�
νπ ln

Mπ

Λχ
þ νK ln

MK

Λχ
þ νη ln

Mη

Λχ

þ νtan arctan

�
2ðMK þMπÞ
MK − 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK −Mπ

2MK þMπ

s �

þ ν0tan arctan
�
2ðMK −MπÞ
MK þ 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK þMπ

2MK −Mπ

s �
þ 43

9

�
;

ðA8Þ

χ−NLOðΛχ ;Mπ;MK;MηÞ

¼ M2
π

8f2ππ2

�
ν0π ln

Mπ

Λχ
þ ν0K ln

MK

Λχ
þ ν0η ln

Mη

Λχ

þMK

Mπ
ν0tan arctan

�
2ðMK −MπÞ
MK þ 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK þMπ

2MK −Mπ

s ��
:

ðA9Þ

The functions νð0ÞX are given by

νπ ¼
11M2

π

2ðM2
K −M2

πÞ
ðA10Þ

νK ¼ −
67M2

K − 8M2
π

9ðM2
K −M2

πÞ
ðA11Þ

νη ¼ þ 24M2
K − 5M2

π

18ðM2
K −M2

πÞ
ðA12Þ

νtan ¼ −
4

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K −MKMπ −M2
π

p
MK þMπ

ðA13Þ

ν0π ¼ −
8M2

π − 5M2
π

2ðM2
K −M2

πÞ
ðA14Þ

ν0K ¼ 23M2
K

9ðM2
K −M2

πÞ
ðA15Þ

ν0η ¼
28M2

K − 9M2
π

18ðM2
K −M2

πÞ
ðA16Þ

ν0tan ¼ −
4

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K −MKMπ −M2
π

p
MK þMπ

: ðA17Þ

From these isospin even/odd functions the definite isospin
functions χ3=2NLO and χ1=2NLO can be derived in the same way as
the scattering lengths of Eqs. (A4) and (A5),
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χ3=2NLOðΛχ ;Mπ;MKÞ ¼κπ ln
M2

π

Λ2
χ
þ κK ln

M2
K

Λ2
χ
þ κη ln

M2
η

Λ2
χ
þ 86

9
MKMπ þ κtan arctan

�
2ðMK −MπÞ
MK þ 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK þMπ

2MK −Mπ

s �
;

χ1=2NLOðΛχ ;Mπ;MKÞ ¼κ0π ln
M2

π

Λ2
χ
þ κ0K ln

M2
K

Λ2
χ
þ κ0η ln

M2
η

Λ2
χ
þ 86

9
MKMπ þ

3

2
κtan arctan

�
2ðMK −MπÞ
MK þ 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK þMπ

2MK −Mπ

s �

þ κ0tan arctan
�
2ðMK þMπÞ
MK − 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK −Mπ

2MK þMπ

s �
þ κ0tan arctan

�
2ðMK þMπÞ
MK − 2Mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MK −Mπ

2MK þMπ

s �
: ðA18Þ

Here the functions κð0ÞX are given by

κπ ¼
11MKM3

π þ 8M2
πM2

K − 5M4
π

2ðM2
K −M2

πÞ
ðA19Þ

κK ¼ −
67M3

KMπ − 8M3
πMK þ 23M2

KM
2
π

9ðM2
K −M2

πÞ
ðA20Þ

κη ¼
24MπM3

K − 5MKM3
π þ 28M2

KM
2
π − 9M4

π

18ðM2
K −M2

πÞ
ðA21Þ

κtan ¼ −
16MKMπ

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K þMKMπ −M2
π

p
MK −Mπ

ðA22Þ

κ0π ¼
11MKM3

π − 16M2
KM

2
π þ 10M4

π

2ðM2
K −M2

πÞ
ðA23Þ

κ0K ¼ −
67M3

KMπ − 8M3
πMK − 46M2

KM
2
π

9ðM2
K −M2

πÞ
ðA24Þ

κ0η ¼
24MπM3

K − 5MKM3
π − 56M2

KM
2
π þ 18M4

π

18ðM2
K −M2

πÞ
ðA25Þ

κ0tan ¼
8MKMπ

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K −MKMπ −M2
π

p
MK þMπ

: ðA26Þ

APPENDIX B: DATA TABLES

1. Interpolated data

TABLE IX. Physical values of the scattering length and LπK after averaging over the fit ranges.

ChPT EπK μπKa
3=2
0 × 102 LπK × 103 μπKa

1=2
0 Mπa

3=2
0 × 102 Mπa

1=2
0

Γ E1 −4.7ð1Þ 3.7(2) 0.128(2) −6.0ð1Þ 0.162(2)
E2 −4.59ð8Þ 3.8(1) 0.129(2) −5.8ð1Þ 0.164(2)

NLO E1 −4.7ð1Þ 3.6(2) 0.127(2) −6.0ð1Þ 0.162(2)
E2 −4.61ð9Þ 3.8(2) 0.129(2) −5.9ð1Þ 0.164(2)
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TABLE X. Comparison of EπK for methods E1 and E2.

Ensemble aμs aEπKðE1Þ aEπKðE2Þ
A30.32 0.0185 0.3558ð9Þð þ7

−2 Þ 0.3558ð7Þð þ5
−1 Þ

0.0225 0.3758ð9Þð þ8
−2 Þ 0.3758ð7Þð þ6

−1 Þ
0.0246 0.3870ð9Þð þ9

−5 Þ 0.3867ð6Þð þ2
−2 Þ

A40.24 0.0185 0.3892ð12Þð þ6
−0 Þ 0.3887ð11Þð þ4

−2 Þ
0.0225 0.4081ð12Þð þ10

−2 Þ 0.4082ð11Þð þ5
−0 Þ

0.0246 0.4184ð12Þð þ7
−0 Þ 0.4182ð11Þð þ5

−0 Þ
A40.32 0.0185 0.3793ð6Þð þ3

−8 Þ 0.3789ð5Þð þ0
−4 Þ

0.0225 0.3988ð6Þð þ9
−7 Þ 0.3983ð5Þð þ1

−3 Þ
0.0246 0.4081ð6Þð þ2

−4 Þ 0.4083ð5Þð þ1
−4 Þ

A60.24 0.0185 0.4250ð9Þð þ11
−0 Þ 0.4247ð7Þð þ8

−0 Þ
0.0225 0.4447ð7Þð þ2

−0 Þ 0.4440ð6Þð þ3
−4 Þ

0.0246 0.4537ð7Þð þ8
−4 Þ 0.4536ð6Þð þ5

−1 Þ
A80.24 0.0185 0.4613ð6Þð þ0

−2 Þ 0.4606ð5Þð þ3
−0 Þ

0.0225 0.4789ð6Þð þ5
−0 Þ 0.4787ð5Þð þ4

−0 Þ
0.0246 0.4894ð6Þð þ0

−6 Þ 0.4882ð5Þð þ3
−0 Þ

A100.24 0.0185 0.4921ð5Þð þ6
−3 Þ 0.4922ð4Þð þ3

−0 Þ
0.0225 0.5102ð5Þð þ5

−0 Þ 0.5102ð4Þð þ3
−0 Þ

0.0246 0.5193ð5Þð þ3
−3 Þ 0.5193ð4Þð þ2

−1 Þ
B35.32 0.0160 0.3333ð9Þð þ11

−0 Þ 0.3336ð6Þð þ6
−0 Þ

0.0186 0.3474ð7Þð þ2
−1 Þ 0.3472ð6Þð þ3

−1 Þ
0.0210 0.3595ð9Þð þ0

−3 Þ 0.3584ð7Þð þ5
−0 Þ

B55.32 0.0160 0.3743ð5Þð þ4
−1 Þ 0.3747ð4Þð þ3

−0 Þ
0.0186 0.3866ð5Þð þ6

−7 Þ 0.3869ð4Þð þ3
−1 Þ

0.0210 0.3977ð5Þð þ4
−1 Þ 0.3981ð4Þð þ3

−0 Þ
B85.24 0.0160 0.4322ð7Þð þ15

−2 Þ 0.4325ð6Þð þ7
−0 Þ

0.0186 0.4442ð7Þð þ15
−1 Þ 0.4441ð6Þð þ8

−1 Þ
0.0210 0.4548ð7Þð þ13

−0 Þ 0.4544ð6Þð þ8
−1 Þ

D45.32 0.0130 0.2925ð12Þð þ23
−0 Þ 0.2922ð9Þð þ18

−0 Þ
0.0150 0.3028ð11Þð þ5

−1 Þ 0.3010ð9Þð þ14
−0 Þ

0.0180 0.3145ð10Þð þ16
−0 Þ 0.3142ð8Þð þ12

−0 Þ
D30.48 0.0115 0.2506ð8Þð þ3

−5 Þ 0.2508ð5Þð þ1
−5 Þ

0.0150 0.2677ð8Þð þ3
−6 Þ 0.2679ð6Þð þ1

−6 Þ
0.0180 0.2811ð8Þð þ3

−6 Þ 0.2814ð6Þð þ1
−7 Þ
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TABLE XI. Comparison of the meson masses, Mπ and MK together with the reduced mass μπK . The systematic uncertainties for μπK
turn out to be negligible and thus are not shown.

Ensemble aμs aMK aMπ aμπK

A30.32 0.0185 0.2294ð3Þð þ0
−0 Þ 0.1239ð2Þð þ1

−0 Þ 0.08046ð12Þð þ0
−0 Þ

0.0225 0.2495ð2Þð þ1
−0 Þ 0.1239ð2Þð þ1

−0 Þ 0.08280ð12Þð þ0
−0 Þ

0.0246 0.2597ð2Þð þ1
−0 Þ 0.1239ð2Þð þ1

−0 Þ 0.08388ð12Þð þ0
−0 Þ

A40.24 0.0185 0.2365ð5Þð þ2
−1 Þ 0.1453ð5Þð þ2

−1 Þ 0.08999ð22Þð þ0
−0 Þ

0.0225 0.2561ð4Þð þ4
−1 Þ 0.1453ð5Þð þ2

−1 Þ 0.09269ð22Þð þ0
−0 Þ

0.0246 0.2662ð5Þð þ1
−2 Þ 0.1453ð5Þð þ2

−1 Þ 0.09398ð22Þð þ0
−0 Þ

A40.32 0.0185 0.2343ð2Þð þ0
−0 Þ 0.1415ð2Þð þ1

−0 Þ 0.08822ð10Þð þ0
−0 Þ

0.0225 0.2538ð2Þð þ1
−0 Þ 0.1415ð2Þð þ1

−0 Þ 0.09086ð11Þð þ0
−0 Þ

0.0246 0.2638ð2Þð þ1
−1 Þ 0.1415ð2Þð þ1

−0 Þ 0.09210ð11Þð þ0
−0 Þ

A60.24 0.0185 0.2448ð3Þð þ1
−0 Þ 0.1729ð3Þð þ4

−1 Þ 0.10134ð16Þð þ0
−0 Þ

0.0225 0.2637ð3Þð þ1
−0 Þ 0.1729ð3Þð þ4

−1 Þ 0.10445ð16Þð þ0
−0 Þ

0.0246 0.2735ð3Þð þ1
−0 Þ 0.1729ð3Þð þ4

−1 Þ 0.10594ð17Þð þ0
−0 Þ

A80.24 0.0185 0.2548ð2Þð þ0
−1 Þ 0.1993ð2Þð þ0

−1 Þ 0.11184ð11Þð þ0
−0 Þ

0.0225 0.2731ð2Þð þ1
−1 Þ 0.1993ð2Þð þ0

−1 Þ 0.11523ð11Þð þ0
−0 Þ

0.0246 0.2824ð2Þð þ2
−2 Þ 0.1993ð2Þð þ0

−1 Þ 0.11685ð11Þð þ0
−0 Þ

A100.24 0.0185 0.2642ð2Þð þ0
−1 Þ 0.2223ð2Þð þ1

−1 Þ 0.12073ð11Þð þ0
−0 Þ

0.0225 0.2822ð2Þð þ0
−0 Þ 0.2223ð2Þð þ1

−1 Þ 0.12436ð11Þð þ0
−0 Þ

0.0246 0.2913ð2Þð þ1
−1 Þ 0.2223ð2Þð þ1

−1 Þ 0.12609ð11Þð þ0
−0 Þ

B35.32 0.0160 0.2053ð2Þð þ1
−1 Þ 0.1249ð2Þð þ1

−1 Þ 0.07765ð11Þð þ0
−0 Þ

0.0186 0.2186ð2Þð þ2
−1 Þ 0.1249ð2Þð þ1

−1 Þ 0.07948ð12Þð þ0
−0 Þ

0.0210 0.2298ð2Þð þ0
−1 Þ 0.1249ð2Þð þ1

−1 Þ 0.08091ð12Þð þ0
−0 Þ

B55.32 0.0160 0.2155ð2Þð þ1
−2 Þ 0.1554ð2Þð þ0

−0 Þ 0.09030ð10Þð þ0
−0 Þ

0.0186 0.2282ð2Þð þ1
−2 Þ 0.1554ð2Þð þ0

−0 Þ 0.09245ð10Þð þ0
−0 Þ

0.0210 0.2390ð2Þð þ1
−2 Þ 0.1554ð2Þð þ0

−0 Þ 0.09418ð10Þð þ0
−0 Þ

B85.24 0.0160 0.2313ð3Þð þ0
−3 Þ 0.1933ð3Þð þ1

−0 Þ 0.10530ð15Þð þ0
−0 Þ

0.0186 0.2429ð3Þð þ0
−0 Þ 0.1933ð3Þð þ1

−0 Þ 0.10763ð16Þð þ0
−0 Þ

0.0210 0.2535ð3Þð þ2
−0 Þ 0.1933ð3Þð þ1

−0 Þ 0.10967ð15Þð þ0
−0 Þ

D45.32 0.0130 0.1658ð3Þð þ1
−1 Þ 0.1205ð4Þð þ1

−1 Þ 0.06979ð17Þð þ0
−0 Þ

0.0150 0.1747ð4Þð þ4
−1 Þ 0.1205ð4Þð þ1

−1 Þ 0.07132ð17Þð þ0
−0 Þ

0.0180 0.1876ð3Þð þ0
−1 Þ 0.1205ð4Þð þ1

−1 Þ 0.07339ð17Þð þ0
−0 Þ

D30.48 0.0115 0.1503ð1Þð þ0
−0 Þ 0.0976ð1Þð þ0

−0 Þ 0.05917ð6Þð þ0
−0 Þ

0.0150 0.1673ð1Þð þ0
−1 Þ 0.0976ð1Þð þ0

−0 Þ 0.06163ð6Þð þ0
−0 Þ

0.0180 0.1807ð1Þð þ1
−1 Þ 0.0976ð1Þð þ0

−0 Þ 0.06336ð6Þð þ0
−0 Þ

C. HELMES et al. PHYS. REV. D 98, 114511 (2018)

114511-16



TABLE XII. Comparison of δEπK for methods E1 and E2.

Ensemble aμs aδEðE1Þ × 103 aδEðE2Þ × 103

A30.32 0.0185 2.48ð96Þð þ68
−20 Þ 2.44ð81Þð þ51

−8 Þ
0.0225 2.41ð97Þð þ81

−17 Þ 2.34ð77Þð þ57
−8 Þ

0.0246 3.45ð93Þð þ89
−49 Þ 3.14ð74Þð þ19

−22 Þ
A40.24 0.0185 7.46ð84Þð þ56

−0 Þ 6.93ð56Þð þ43
−20 Þ

0.0225 6.70ð85Þð þ97
−19 Þ 6.84ð67Þð þ47

−1 Þ
0.0246 6.94ð88Þð þ74

−0 Þ 6.69ð61Þð þ50
−1 Þ

A40.32 0.0185 3.52ð47Þð þ34
−83 Þ 3.15ð32Þð þ0

−38Þ
0.0225 3.42ð45Þð þ85

−73 Þ 2.96ð29Þð þ8
−27Þ

0.0246 2.79ð44Þð þ15
−42 Þ 2.99ð31Þð þ13

−39 Þ
A60.24 0.0185 7.25ð69Þð þ111

−0 Þ 7.02ð39Þð þ80
−0 Þ

0.0225 8.05ð46Þð þ24
−3 Þ 7.37ð35Þð þ34

−36 Þ
0.0246 7.28ð45Þð þ78

−43 Þ 7.22ð30Þð þ46
−12 Þ

A80.24 0.0185 7.19ð48Þð þ3
−22Þ 6.45ð21Þð þ30

−0 Þ
0.0225 6.47ð47Þð þ48

−0 Þ 6.19ð23Þð þ39
−0 Þ

0.0246 7.61ð48Þð þ0
−57Þ 6.40ð21Þð þ34

−0 Þ
A100.24 0.0185 5.58ð32Þð þ61

−30 Þ 5.70ð17Þð þ27
−3 Þ

0.0225 5.68ð32Þð þ48
−0 Þ 5.67ð17Þð þ26

−0 Þ
0.0246 5.74ð24Þð þ34

−30 Þ 5.69ð14Þð þ19
−7 Þ

B35.32 0.0160 3.12ð85Þð þ109
−0 Þ 3.38ð45Þð þ62

−0 Þ
0.0186 3.94ð54Þð þ23

−8 Þ 3.67ð34Þð þ30
−13 Þ

0.0210 4.79ð85Þð þ0
−33Þ 3.72ð56Þð þ53

−0 Þ
B55.32 0.0160 3.33ð42Þð þ44

−12 Þ 3.71ð30Þð þ28
−2 Þ

0.0186 3.02ð45Þð þ64
−74 Þ 3.27ð33Þð þ30

−8 Þ
0.0210 3.28ð41Þð þ43

−12 Þ 3.65ð30Þð þ27
−1 Þ

B85.24 0.0160 7.61ð41Þð þ153
−16 Þ 7.88ð23Þð þ66

−0 Þ
0.0186 8.05ð36Þð þ150

−14 Þ 7.97ð23Þð þ81
−5 Þ

0.0210 7.99ð38Þð þ127
−3 Þ 7.64ð25Þð þ81

−9 Þ
D45.32 0.0130 6.18ð88Þð þ232

−0 Þ 5.87ð53Þð þ177
−0 Þ

0.0150 7.62ð86Þð þ54
−12 Þ 5.82ð43Þð þ143

−0 Þ
0.0180 6.38ð71Þð þ158

−0 Þ 6.05ð45Þð þ120
−0 Þ

D30.48 0.0115 2.70ð77Þð þ26
−53 Þ 2.90ð50Þð þ10

−53 Þ
0.0150 2.79ð79Þð þ26

−60 Þ 3.05ð51Þð þ9
−63Þ

0.0180 2.86ð82Þð þ25
−65 Þ 3.17ð54Þð þ9

−69Þ

TABLE XIII. External data used via parametric bootstrapping.
The error on KFSE

MK
is only estimated.

Ensemble fπ KFSE
fπ

KFSE
Mπ

KFSE
MK

A30.32 0.064 52(21) 0.9757(61) 1.0081(52) 1.002 327(1)
A40.24 0.065 77(24) 0.9406(84) 1.0206(95) 1.009 874(1)
A40.32 0.068 39(18) 0.9874(24) 1.0039(28) 1.001 299(1)
A60.24 0.072 09(20) 0.9716(37) 1.0099(49) 1.004 681(1)
A80.24 0.075 81(13) 0.9839(22) 1.0057(29) 1.002 518(1)
A100.24 0.079 36(14) 0.9900(15) 1.0037(19) 1.001 480(1)
B35.32 0.061 05(17) 0.9794(27) 1.0069(32) 1.002 466(1)
B55.32 0.065 45(11) 0.9920(10) 1.0027(14) 1.000 879(1)
B85.24 0.070 39(26) 0.9795(24) 1.0083(28) 1.003 178(1)
D30.48 0.047 35(15) 0.9938(5) 1.0021(7) 1.000 714(1)
D45.32 0.048 25(14) 0.9860(13) 1.0047(14) 1.000 000(1)
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TABLE XIV. Comparison of a0 and μπKa
3=2
0 for methods E1 and E2.

Ensemble aμs a0=aðE1Þ a0=aðE2Þ μπKa
3=2
0 ðE1Þ μπKa

3=2
0 ðE2Þ

A30.32 0.0185 −0.96ð34Þð þ7
−24Þ −0.94ð29Þð þ3

−18Þ −0.077ð27Þð þ6
−19Þ −0.076ð23Þð þ2

−14Þ
0.0225 −0.95ð35Þð þ6

−29Þ −0.93ð28Þð þ3
−20Þ −0.079ð29Þð þ5

−24Þ −0.077ð23Þð þ2
−17Þ

0.0246 −1.33ð32Þð þ17
−30 Þ −1.23ð26Þð þ8

−7 Þ −0.112ð27Þð þ14
−25 Þ −0.103ð22Þð þ6

−6 Þ
A40.24 0.0185 −1.27ð12Þð þ0

−8 Þ −1.19ð8Þð þ3
−6 Þ −0.114ð11Þð þ0

−7 Þ −0.107ð8Þð þ3
−6 Þ

0.0225 −1.18ð13Þð þ3
−15Þ −1.20ð10Þð þ0

−7 Þ −0.110ð12Þð þ3
−14Þ −0.112ð9Þð þ0

−7 Þ
0.0246 −1.23ð14Þð þ0

−11Þ −1.20ð10Þð þ0
−8 Þ −0.116ð13Þð þ0

−11Þ −0.112ð9Þð þ0
−7 Þ

A40.32 0.0185 −1.42ð17Þð þ31
−12 Þ −1.29ð12Þð þ14

−0 Þ −0.126ð15Þð þ27
−11 Þ −0.114ð10Þð þ12

−0 Þ
0.0225 −1.42ð17Þð þ27

−31 Þ −1.25ð11Þð þ10
−3 Þ −0.129ð15Þð þ25

−28 Þ −0.114ð10Þð þ9
−3 Þ

0.0246 −1.20ð17Þð þ17
−6 Þ −1.28ð12Þð þ15

−5 Þ −0.111ð16Þð þ15
−5 Þ −0.118ð11Þð þ14

−5 Þ
A60.24 0.0185 −1.37ð11Þð þ0

−18Þ −1.33ð6Þð þ0
−13Þ −0.139ð11Þð þ0

−18Þ −0.135ð6Þð þ0
−13Þ

0.0225 −1.53ð7Þð þ1
−4 Þ −1.42ð6Þð þ6

−6 Þ −0.160ð8Þð þ1
−4 Þ −0.149ð6Þð þ6

−6 Þ
0.0246 −1.43ð7Þð þ7

−13Þ −1.41ð5Þð þ2
−8 Þ −0.151ð8Þð þ8

−13Þ −0.150ð5Þð þ2
−8 Þ

A80.24 0.0185 −1.48ð8Þð þ4
−1 Þ −1.35ð4Þð þ0

−5 Þ −0.165ð9Þð þ4
−1 Þ −0.150ð4Þð þ0

−6 Þ
0.0225 −1.39ð9Þð þ0

−9 Þ −1.33ð4Þð þ0
−7 Þ −0.160ð10Þð þ0

−10Þ −0.154ð5Þð þ0
−8 Þ

0.0246 −1.61ð8Þð þ10
−0 Þ −1.39ð4Þð þ0

−6 Þ −0.188ð10Þð þ12
−0 Þ −0.162ð5Þð þ0

−7 Þ
A100.24 0.0185 −1.27ð6Þð þ6

−12Þ −1.29ð3Þð þ1
−5 Þ −0.153ð8Þð þ7

−14Þ −0.156ð4Þð þ1
−6 Þ

0.0225 −1.32ð6Þð þ0
−9 Þ −1.32ð3Þð þ0

−5 Þ −0.165ð8Þð þ0
−12Þ −0.164ð4Þð þ0

−7 Þ
0.0246 −1.35ð5Þð þ6

−7 Þ −1.34ð3Þð þ1
−4 Þ −0.170ð6Þð þ8

−9 Þ −0.169ð4Þð þ2
−5 Þ

B35.32 0.0160 −1.14ð28Þð þ0
−35Þ −1.22ð15Þð þ0

−20Þ −0.088ð22Þð þ0
−27Þ −0.095ð11Þð þ0

−15Þ
0.0186 −1.43ð17Þð þ3

−7 Þ −1.34ð11Þð þ4
−10Þ −0.114ð14Þð þ2

−6 Þ −0.107ð9Þð þ3
−8 Þ

0.0210 −1.73ð26Þð þ10
−0 Þ −1.38ð19Þð þ0

−17Þ −0.140ð21Þð þ8
−0 Þ −0.112ð15Þð þ0

−14Þ
B55.32 0.0160 −1.38ð15Þð þ4

−16Þ −1.52ð11Þð þ1
−10Þ −0.125ð14Þð þ4

−15Þ −0.137ð10Þð þ1
−9 Þ

0.0186 −1.29ð17Þð þ29
−24 Þ −1.39ð12Þð þ3

−11Þ −0.120ð16Þð þ27
−22 Þ −0.128ð11Þð þ3

−10Þ
0.0210 −1.42ð16Þð þ5

−16Þ −1.55ð11Þð þ0
−10Þ −0.133ð15Þð þ4

−15Þ −0.146ð10Þð þ0
−9 Þ

B85.24 0.0160 −1.47ð7Þð þ3
−24Þ −1.52ð4Þð þ0

−11Þ −0.155ð7Þð þ3
−26Þ −0.160ð4Þð þ0

−11Þ
0.0186 −1.57ð6Þð þ2

−24Þ −1.56ð4Þð þ1
−13Þ −0.169ð6Þð þ3

−26Þ −0.168ð4Þð þ1
−14Þ

0.0210 −1.59ð6Þð þ1
−21Þ −1.53ð4Þð þ2

−13Þ −0.174ð7Þð þ1
−23Þ −0.167ð5Þð þ2

−15Þ
D45.32 0.0130 −1.89ð23Þð þ0

−57Þ −1.81ð14Þð þ0
−45Þ −0.132ð16Þð þ0

−40Þ −0.126ð10Þð þ0
−31Þ

0.0150 −2.29ð21Þð þ3
−13Þ −1.83ð12Þð þ0

−37Þ −0.163ð15Þð þ2
−9 Þ −0.130ð8Þð þ0

−26Þ
0.0180 −2.02ð19Þð þ0

−41Þ −1.94ð12Þð þ0
−32Þ −0.149ð14Þð þ0

−30Þ −0.142ð9Þð þ0
−23Þ

D30.48 0.0115 −2.43ð60Þð þ43
−20 Þ −2.58ð38Þð þ42

−8 Þ −0.144ð36Þð þ25
−12 Þ −0.152ð23Þð þ25

−5 Þ
0.0150 −2.59ð63Þð þ49

−20 Þ −2.79ð40Þð þ50
−7 Þ −0.159ð39Þð þ30

−12 Þ −0.172ð25Þð þ31
−4 Þ

0.0180 −2.71ð66Þð þ54
−20 Þ −2.95ð42Þð þ56

−7 Þ −0.171ð42Þð þ34
−13 Þ −0.187ð27Þð þ36

−4 Þ
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