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In this paper, we report on results for the s-wave scattering length of the z-K system in the I = 3/2
channel from Ny =2 + 1 + 1 lattice QCD. The calculation is based on gauge configurations generated by

the European Twisted Mass Collaboration with pion masses ranging from about 230 to 450 MeV at three

values of the lattice spacing. Our main result reads M ,a

3/2:phys — _(.059(2). Using chiral perturbation

theory we are also able to estimate M,,a(l)/ 2phys 0.163(3). The error includes statistical and systematic
uncertainties, and for the latter in particular errors from the extrapolation to the physical point.

DOI: 10.1103/PhysRevD.98.114511

I. INTRODUCTION

For understanding the strong interaction sector of the
standard model (SM), it is not sufficient to compute masses
of stable particles. Gaining insight into interactions of two
or more hadrons and resonances is a must. Due to the
nonperturbative nature of low-energy quantum chromody-
namics (QCD), computations of interaction properties from
lattice QCD are highly desirable. While ultimately the
phase shift in a given partial wave is to be computed, also
the scattering length is in many cases a useful quantity, in
particular when the two-particle interaction is weak.

Due to the importance of chiral symmetry in QCD the
investigation of systems with two pseudoscalar mesons is
of particular interest. Here, chiral perturbation theory
(ChPT) is able to provide a description of the pion mass
dependence, and any nonperturbative computation, in turn,
allows us to check this dependence. Naturally, ChPT works
best for two pion systems, while convergence is unclear for
pion-kaon or two kaon systems.

The two pion system is studied well experimentally, also
in the different isospin channels. However, as soon as one
or both pions are replaced by kaons, experimental results
become sparse. On the other hand, this gap starts to be filled
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by lattice QCD calculations. For the pion-kaon system with
isospin I = 3/2, there are by now a few lattice results
available focusing on the scattering length [1-5]. The most
recent computation in Ref. [4] uses one lattice at physical
pion and kaon masses and lattice spacing a ~ 0.114 fm. For
the sea and valence sector, they use Ny =2 + 1 Mdbius
domain wall fermions and an Iwasaki gauge action.
In Ref. [2], a systematic study of the elastic scattering
lengths for the light pseudoscalar mesons was carried out
with Ny =2+ 1 O(a)-improved Wilson quarks at pion
masses ranging from 170 to 710 MeV and a lattice spacing
a=0.09 fm. Furthermore, Refs. [1,3] use Ny =2+1
flavors on the MILC configurations with a rooted staggered
sea quark action. Where Ref. [3] calculates the scattering
length at a lattice spacing a = 0.15 fm, a slightly smaller
lattice spacing a =~ 0.125 fm has been used in Ref. [1]. The
pion masses in Ref. [1] range from 290 to 600 MeV, using
domain wall valence quarks with a chiral extrapolation
done in mixed-action chiral perturbation theory (MAChPT)
[6,7]. The range of pion masses, 330 to 466 MeV, for the
Asqtad improved staggered fermions of Ref. [3] is a bit
smaller compared to Ref. [1]. In Ref. [5], the phase shifts
and scattering lengths for z-K-scattering in / = 3/2 and
I =1/2 in the s-wave and the p-wave has been deter-
mined. The gauge action is a Ny = 2 tree-level improved
Wilson-Clover action. The authors include the strange
quark as a valence quark only which then corresponds
to pion and kaon masses of M, = 266 MeV and My =
522 MeV, respectively.

In this paper, we are going to present results for the
s-wave scattering length of the pion-kaon system in the
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elastic region with isospin I = 3/2. The investigation is
based on gauge configurations produced by the European
Twisted Mass Collaboration (ETMC) with Ny =2 + 1 + 1
dynamical quark flavors [8]. In contrast to previous
computations, we are able to investigate discretization
effects and to extrapolate to physical quark masses owing
to 11 ensembles with M, ranging from 230 to 450 MeV
distributed over three different lattice spacing values. We
employ, in total, four different extrapolation methods to
also estimate systematic uncertainties associated with our
computation.

Finally, since this paper is the fourth in a series of
publications [9-11] concerning elastic scattering of two
pions in different channels and kaon-kaon with / = 1, we
are able to compare results of two pseudoscalar mesons at
maximal isospin involving different amounts of strange-
ness. The leading-order ChPT predictions for the depend-
ence on the reduced mass divided by the relevant decay
constant are identical for the three systems and differences
appear only at NLO.

This paper is organized as follows: We first introduce the
lattice details of our calculation. After the discussion of the
analysis methods we present the main result, followed by a
detailed discussion of the analysis details. We close with a
discussion and summary. Technical details can be found in
the Appendix.

II. LATTICE ACTION AND OPERATORS
A. Action

The lattice details for the investigation presented here
are very similar to the ones we used to study the kaon-
kaon scattering length [11]. We use Ny=2+1+1
flavor lattice QCD ensembles generated by the ETM
Collaboration, for which details can be found in
Refs. [8,12,13]. The parameters relevant for this paper

TABLE 1. The gauge ensembles used in this study. For the
labeling of the ensembles, we adopted the notation in Ref. [13]. In
addition to the relevant input parameters, we give the lattice
volume and the number of evaluated configurations, N y,¢-

Ensemble f  au, au, aus (L/a)*xT/a N

A30.32  1.90 0.0030 0.150 0.190 323 x 64 259
A40.24 190 0.0040 0.150 0.190 243 x 48 376
A40.32 190 0.0040 0.150 0.190 323 x 64 246
A60.24 190 0.0060 0.150 0.190 243 x 48 303
A80.24  1.90 0.0080 0.150 0.190 243 x 48 300
A100.24 1.90 0.0100 0.150 0.190 243 x 48 304
B3532 1.95 0.0035 0.135 0.170 323 x 64 241
B55.32 195 0.0055 0.135 0.170 323 x 64 251
B85.24 195 0.0085 0.135 0.170 323 x 64 288
D30.48  2.10 0.0030 0.120 0.1385 48 x 96 364

D45.32sc 2.10 0.0045 0.0937 0.1077  32° x 64 289

TABLEIIL.  Values of the Sommer parameter ry/a and the lattice
spacing a at the three values of f. See Ref. [17] for details.

p a [fm] ro/a
1.90 0.0885(36) 5.31(8)
1.95 0.0815(30) 5.77(6)
2.10 0.0619(18) 7.60(8)

are compiled in Table I: we give for each ensemble the
inverse gauge coupling = 6/g3, the bare quark mass
parameters y,, u, and pg, the lattice volume and the number
of configurations on which we estimated the relevant
quantities.

The ensembles were generated using the Iwasaki gauge
action and employ the N;=2+1+1 twisted mass
fermion action [14-16]. For orientation, the p-values
1.90, 1.95 and 2.10 correspond to lattice spacing values
of a ~0.089 fm, 0.082 fm, and 0.062 fm, respectively; see
also Table II. The ensembles were generated at so-called
maximal twist, which guarantees automatic O(a) improve-
ment for almost all physical quantities [14]. The renor-
malized light quark mass m, is directly proportional to the
light twisted quark mass via

1
My = ——He¢, (1)

Zp
with Zp the pseudoscalar renormalization constant. The
relation of the bare parameters u, and p; to the renormal-
ized charm and strange quark masses reads

1 1
Mmes = Z_Pﬂa + Z_S/"év (2)
with Zg the nonsinglet scalar renormalization constant.
As noted in Refs. [13,17], the renormalized sea strange
quark masses across the “A”, “B” and “D” ensembles vary
by up to about 20% and in a few cases differ from the
physical strange quark mass to the same extent. For D30.48
and D45.32sc at the finest lattice spacing, the sea strange
quark mass on the former ensemble overshoots the physical
strange quark mass while it is consistent on the latter
ensemble. In order to correct for these mistunings and to
avoid the complicated flavor-parity mixing in the unitary
nondegenerate strange-charm sector [8], we adopt a mixed
action ansatz with so-called Osterwalder-Seiler (OS) [16]
valence quarks, while keeping O(a) improvement intact.
We denote the OS bare strange quark parameter with ;. It
is related to the renormalized strange quark mass by

For each ensemble, we investigate three values of y, which
are compiled in Table III. More details on the mixed action
approach can be found in Ref. [11].
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TABLE III.  Values of the bare strange quark mass ay, used for
the three pf-values. The lightest strange quark mass on the
ensemble D30.48 is au, = 0.0115 instead of au, = 0.013.

B 1.90 1.95 2.10

ajp 0.0185 0.0160 0.013/0.0115
0.0225 0.0186 0.015
0.0246 0.0210 0.018

As a smearing and contraction scheme we employ the
stochastic Laplacian-Heaviside approach, described in
Ref. [18]. Details of our parameter choices can be found
in Refs. [9,11].

B. Lattice operators and correlation functions

For reasons that will become clear later, we need to
estimate the masses of the pion, the kaon and the # meson
on our ensembles. The masses for the pion and kaon are
obtained from the large Euclidean time dependence of two
point functions of the form

Cx(t=1) = (OX)(NOX)*(1)), 4)

where X € {x, K}. The operators for the charged pion and
kaon projected to zero momentum read

OX)(1) = Z:Ox(& t) (5)

with
Ox(x. 1) = id(x. t)ysu(x.1), (6)
Ok (x, 1) = i5(x, t)ysu(x, 1). (7)

For the 7 (and #') meson, we use the two operators

0 (x.1) = = (a(x. Dysu(x. 1) + A(x. Osd(x. 1), (8)

O, (x,1) = i5(x, 1)yss(X, 1). 9)

From these we build a two-by-two correlator matrix by
taking the disconnected diagrams into account. The #
(principal) correlator is determined by solving a general-
ized eigenvalue problem as described in detail in Ref. [19].
A complete discussion of the analysis of the # (and 7’)
meson is beyond the scope of this paper and the full
analysis will be presented in a future publication [20]. In
addition to the aforementioned meson masses, we also need
to estimate the energy E g of the interacting pion-kaon two
particle system. For the case of maximal isospin, i.e.,
I = 3/2, the corresponding two particle operator reads

O(zK) (1) = —Z A(x. O)ysu(x. )3(x", ysu(x’ 7). (10)

It is used to construct the two-particle correlation function
Cox(t = 1) = (O(zK) () O(zK)" (). (11)

E,x can then be determined from the large Euclidean time
dependence of C .

III. ANALYSIS METHODS

We focus in this work on pion-kaon scattering in the
elastic region. For small enough squared scattering momen-
tum p?, one can perform the effective range expansion for
partial wave ¢

1
P rieody) = = -+ 0(p?) (12)

with phase shift 6, and scattering length a,. For the pion-
kaon system, it is, to a very good approximation, sufficient
to study the s-wave, i.e., £ = 0.

In lattice QCD, the phase shift or the scattering length
can only be computed from finite volume induced energy
shifts. The relevant energy shift here is given by

5E:EﬂK—Mﬂ—MK. (13)

Using again the effective range expansion, one arrives at
the Liischer formula [21]

2ray ag a(z)

SE = 1+ ;24 ¢y 20
ﬂﬂKL3< +Cl L +C2L2

> +O(L7%)  (14)

relating OF directly to the scattering length a, the reduced
mass of the pion-kaon system,

MJTMK

=8 1
M, + Mg’ (15)

Hrk

and the spatial extent of the finite volume L. The coef-
ficients read [21]
c; = —2.837297, ¢, = 6.375183.
Given OF, p,x and L, Liischer’s formula allows one to
determine the scattering length a, by solving Eq. (14) for
ag. In what follows, we will describe how we extract 0F and
the other relevant bare quantities from correlation func-
tions. Then we will give details on our approach to
interpolate or extrapolate the results to physical conditions
and the investigation of discretization artifacts.
In order to gain some understanding of systematic
uncertainties, we perform the analysis in two different
ways once the bare data has been extracted. Combined
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chiral and continuum extrapolations are performed at fixed
strange quark mass using next-to-leading-order ChPT
(NLO ChPT) and a variant thereof referred to as the
I" method, as described in Ref. [1]. In addition, we explore
possible discretization effects of O(a?).

A. Physical inputs

For the analysis presented below, we require physical
inputs for the pion, the kaon and #-meson masses as well as
the pion decay constant. To this end, we employ the values
in the isospin symmetric limit, M, and M, as determined
in chiral perturbation theory [22] and given in Ref. [23] as

M, = 134.8(3) MeV,
My = 494.2(3) MeV. (16)

For the # meson mass, we use the average obtained by the
Particle Data Group [24]:

M, = 547.86(2) MeV. (17)

For the decay constant, we use the phenomenological
average determined by the Particle Data Group given in
Ref. [25] as

FEP9 = 130.50(13) MeV. (18)

As an intermediate lattice scale, we employ the Sommer
parameter r( [26]. It was determined in Ref. [17] from the
ensembles we use here to be

ro = 0.474(11) fm. (19)

In the parts of the analysis which require ry, we use
parametric bootstrap samples with central value and width
given in Eq. (19). Where r(/a values enter as fit param-
eters, we constrain the corresponding fit parameters using
Gaussian priors in the augmented y* function given as

){aug P +Z<r0/aAr0/a )(ﬂ)) . (20)

B. Energy values from correlation functions

The energies of the two point correlation functions as
given in Eq. (4) are extracted from fits of the form

Cx(1)

to the data. While for My and M, the signal extends up to
T/2, for the 7 we have to face more noise. We deal with this
by applying the excited state subtraction method used and
described in Refs. [19,27].

= AZ(e7Ext + e Ex(T-1), (21)

In the determination of the energy shift SF, the total
energy E,r of the interacting z-K system must be com-
puted. However, in the spectral decomposition of the two-
particle correlation function, unwanted time dependent
contributions, so-called thermal pollution, appear. Taking
into account that our z-K correlation function is symmetric
around the 7/2 point, the leading contributions in the
spectral decomposition can be cast into the form

Cox (1) = A3(emEns + & Eer(11)

+A1(e_EnTe(En_EK)[ + e_EKTe(EK_En)t), (22)
where
A3 = (Q|a" KT |zK) (zK|(xT KT)T|Q), (23)

is the overlap of the two particle operator O(zK) of
Eq. (10) with the vacuum Q and only the first line
corresponds to the energy level we are interested in.
However, at finite T-values, the second contribution might
be sizable, in particular at times close to 7/2. Moreover, the
thermal pollution cannot be separated easily from the signal
we are interested in. We have studied two different
methods, labeled E1 and E2, to extract E,x from
C,x(1), where E1 has already been discussed in Ref. [28].
(i) E1: weighting and shifting: To render one of the
polluting terms in Eq. (22) time independent, the
correlation function first gets weighted by a factor
exp((Ex — E,)t). We chose this factor, because
exp(—E,T) is significantly larger than exp(—EgT).

The resulting constant term can then be removed by

the shifting procedure, which thus replaces C,x () by

Cry (1) = BB Coye (1),
Cric (1) = Cr(1) = (1 +-61), (24)

where of is a fixed number of time slices.
Subsequently, we multiply C¥ () by exp(—(Ex—

E.)t), which (mostly) recovers the original time

dependence in the contribution of interest

Crk (1) = e BB T (1) (25)

We now extract the total energy of the z-K system,
E k. To this end, we apply Eqgs. (24) and (25) to the
data at hand and then fit

CEL(1) = A} (e Eext e~ Enx(T1)
_ e(E,(—E,,)ﬁt(e—E,,,((H&) 4 e—E,,K(T—(t+5t))))
+ A e Ex=E)t, (26)

Note that in contrast to Ref. [28], where correlator
matrices with various sources of thermal pollution are
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considered, we are able to take Al as an additional fit
parameter in order to account for this subleading
term.

(i) E2: dividing out the pollution: To improve on
method E1, we assume that the decomposition
given in Eq. (22) allows one to neglect any further
thermal pollution. This leads to dividing out the time
dependent part

p([) — e(EK_En)te_EKT + e_<EK_En)te_E7tT’ (27)

explicitly. With

/ . Cﬂ.’K(t)
CIL'K([) - p(t) (28)
we then proceed to calculate
Cor () = Cog(1) = Cr(t+61). (29)
Crz(1) = p(t)Crk (1), (30)

from which we extract E x through fitting

J)

CEZ 1) = A2 —Eqt ~Erx(T-1) _L

ik (1) O<e Te p(t+1)
(i) 4 e-EnK”“’“))))- (31)

We remark that for both methods E1 and E2 the energies
E, and Eg, ie., M, and My for zero momentum, are
required as an input. They are determined from the
corresponding two-point correlation functions. Please note
that in method E2 we need to fit one amplitude, A, while
method E1 requires to take care of two amplitudes, A, and
A,. For the error analysis, bootstrap samples are used to
fully preserve all correlations.

After solving Eq. (14) for ay up to O(L™>) on every
ensemble for each strange quark mass of Table III, we have
three parameters in which we want to extra- or interpolate:
the lattice spacing a, the strange quark mass m, and the
light quark mass m,. To evaluate a at the physical point we
follow a two-step procedure. We first fix the strange quark
mass to its physical value and subsequently perform a
combined chiral and continuum extrapolation, investigating
different possible types of discretization artifacts.

C. Fixing the strange quark mass

In order to fix the strange quark mass, we adopt the
following procedure: we match the quantity

M? = M% —0.5M2, (32)

which is proportional to the strange quark mass at the
leading order of ChPT, to its physical value

(ME™*)2 = 12 — 0.5M2, (33)

using our determinations of M% at three valence strange
quark masses on a per-ensemble basis. For each ensemble,
we then interpolate all valence strange quark mass depen-
dent observables, i.e., uﬂkag/z, My, M, and pg, in M? to
this reference value.

D. Chiral extrapolation

With the strange quark mass fixed, the extrapolation to the
physical point can be carried out using ChPT. The first NLO
calculation of the scattering amplitude and scattering lengths
was done in Ref. [29]. From the continuum ChPT formulae for
the isospin even (odd) scattering lengths a™ (a™) in Ref. [30],
the NLO ChPT formulae for p,gal, I € {1/2,3/2}, can be
derived as sketched in Appendix A, giving

32 Hag [32M M

16M>
a = - - = I
Hako = a2 | 2

f

! 3/2
T Tomzga Mo (Ae Ma Mic My)| +¢ - ().

Ln:K(A;() -1- LS (A)()

(34)

Equation (34) depends on the masses of the pion and the kaon,
their reduced mass as defined in Eq. (15), the # mass and the
pion decay constant. In addition, the equation depends on the

low-energy constants (LECs) Ls and L x while ;(13\1/50 is a
known function; see Appendix A 2.

We express Eq. (34) in terms of the meson masses and
decay constants as they are determined on the lattice, which
has the benefit that their ratios can be computed with high
statistical precision without the need for explicit factors of
the lattice scale. Hence we fit all lattice data simultaneously.
Formally, we fix the scale-dependent LECs at the renorm-

o PDG . .
alization scale A, = fff ), However, in practice we

employ aA, = af(f3,us)/K}>" in all chiral logarithms,
where the values for the finite-size correction factor K>
are given in Sec. V B. Doing so should only induce higher-
order corrections in the chiral expansion.

Automatic O(a) improvement of Wilson twisted mass
fermions at maximal twist guarantees that the leading
lattice artifacts are of O(a?) or better. For instance, for
the I = 2 nzs-wave scattering length, discretization effects
start only at O(a*M2) [31]. A corresponding theoretical
result for zK is missing so far. However, our numerical data
suggest that also for zK lattice artifacts are very small. Still,
we include a term ¢ - f(a?) accounting for possible dis-
cretization effects, with fit parameter ¢ and f(a?) either
equal to a*/r3 or to a?M%, with M% one of the masses or
mass combinations M2, M%, M% + 0.5M2, u2. In the
following analysis, we will include the term ¢ - f(a?) into
our fit for every choice of f(a?) and thus investigate a
possible dependence of our data on the lattice spacing.
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To summarize, our fit parameters are the LECs L5 and
L.k, and ¢, where Lk is the combination of renormalized
LECs

L
L.x=2L,+2L,+L;—2L, —?5+ 2L¢+Lg.  (35)

Let us mention already here that the fits to the data
described in the next section turn out to be not sensitive
to Ls. Therefore, we include it as a prior in the fit with the
value taken from Ref. [23]. In a slight abuse of the
language, we will denote this extrapolation method as
NLO ChPT.

E. Extrapolations using the I' method at fixed m;,

Next, we describe an alternative way to extrapolate our
data, first applied in Ref. [1]. In what follows, we just
shortly introduce the derivation of the fit formula and refer
to Appendix A 2 for a more detailed discussion. To derive
the relevant formulae we first plug the expressions for a™
and a~ (cf. Appendix A 2) into Eq. (A4) and reorder such
that LECs appear on one side of the equation. The result
reads

Mg flzr 4”f72r 3/2
L:-2 Ly =—"—— 1
5 M,[ K 16M,2, /",%-K ﬂKaO ]+
+;(§LO(AX,M”,MK,M,,)
MM
-2 Kz ”ZﬁLo(Ax’MmMKan))

(36)

with 3 o(A,. M,. Mg, M,) given in Appendix A2. We
label the right-hand side of Eq. (36) T(M,/f .. Mg/ fy)
which comprises only measurable quantities:

M, M M
r(fe ) -2 L o)
fr Sx M

Having calculated T'(M,/f,, Mx/f,) using the interpo-
lated data of ,u,,Kag/z, My, M, and p,, and the data of M,
and f, we fit Eq. (37) via L5 and L, to the data obtained in

this way. Please note that also I is still dimensionless which
enables a fit to all lattice data simultaneously. Given L5 and

y

L,k from the fit one can compute ,u,,Kag/ 2 at the physical
point using Eq. (34). Again, it turns out we are not sensitive
to Ls in our fits. Therefore, we use a prior as discussed
before. This extrapolation method we denote as I" method.

IV. RESULTS

. . . 3/2
In this section, we present our main result for ,u,[,(ao/

extrapolated to the physical point.

We use two thermal state pollution removal methods, E1
and E2, for E . Next, we employ the two (related) ChPT
extrapolations, I" method and NLO ChPT, as discussed

TABLE IV. Fit ranges used for extrapolations I" and NLO
ChPT. The index column refers to Fig. 1.

Method Index Begin End

r 1 1.2 2.0
2 1.4 2.0
3 1.5 2.0

NLO 1 1.2 1.6
2 1.2 1.41
3 1.2 1.35

before. For reasons that will be detailed in Sec. VD 1, we
state the NLO ChPT results with ¢ = 0. For each of the two
ChPT extrapolation methods, we use three fit ranges as
compiled in Table I'V. Hence, we have 12 estimates for each
quantity at the physical point available, which we use to
estimate systematic uncertainties. We remark that the fit for
the I method is in terms of My /M, and for NLO ChPT in
terms of u,x/f,. Thus, we vary the fit range at the lower
end for the I method and at the upper end for NLO ChPT.

For ,uﬂKag/ %, the 12 estimates are shown in Fig. 1. The
final result is obtained as the weighted average over all of
these, as shown in the figure as the horizontal bold line. The
weight is computed according to

W:(1—2.|§2_1/2|) 68)

with p the p-value of the corresponding ChPT fit and A the
statistical uncertainty obtained from the fit.
The statistical uncertainty of the final results is deter-

mined from the bootstrap procedure. For ,u,,Kag/ ?, this is
shown in Fig. 1 as the inner error band. In addition, we
determine three systematic uncertainties: The first is
obtained from the difference between using only E1 or
only E2 results. The second from the difference between

I IEl i I E2

¥ NLO ChPT, El ¥ NLO ChPT, E2

—0.044
—0.045

—0.0464 T l l l
70.047.T I '

—0.048 4

3/2

HrK Qg

—0.049 A

1 2 3 1 2 3 1 2 3 1 2 3
fit range index

FIG. 1. Comparison of values for ,u,,Kag/ % at the physical point
obtained with the different methods used in this paper. The fit
ranges decrease with increasing index as described in Table IV.
The inner error band represents the statistical error only, while the
outer error band represents the statistical and systematic errors
added in quadrature.
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TABLE V. Fit results of the chiral exptrapolation using the I
method. The fits shown in Fig. 5 correspond to the largest fit
range in the table.

Removal ~ Fitrange  p-value L,x x 103 pygar/> x 107

El 0.0 to 2.0 0.8 3.7(2) —4.68(9)
141020 07 3.7(2) —47(1)
1.5 to 2.0 0.6 3.6(3) —4.7(2)

E2 0.0 to 2.0 0.3 3.7(1) —4.65(7)
1.4 to 2.0 0.5 3.8(2) —4.57(9)
151020 04 40(2) —4.5(1)

using only the I" method or only NLO ChPT. Finally, we
use the maximal difference of the weighted average to the
12 estimates as a systematic uncertainty coming from the
choice of fit ranges.

The results of all twelve fits can be found in Table V for
the I method and Table VII for NLO ChPT fits. The fit
range indices used in Fig. 1 are resolved in Table IV. The
results for all approaches after averaging over the fit ranges
are listed in Table IX, in Appendix B.

With this procedure and all errors added in quadrature we
quote
pagad P = —0.0463(17),  L.x = 0.0038(3). (39)
This translates to

M/ — M ,al*™ = 0.163(3)

(40)

—0.059(2).

as our final results. The error budget is compiled in
Table VIII. While the dominating contribution to the error

for both /4,,[(618/ % and L ,x summed in quadrature is coming
from the fit range and the statistical uncertainty, also the
choice of the thermal state removal method contributes
significantly. The contribution from the different chiral
extrapolation methods is negligible. If the errors were
added (not in quadrature), the total error would become
a factor ~1.7 larger.

We remark that these results have been obtained with L5
as an input, because the fits are not sufficiently sensitive to
determine Ls directly. We use the most recent determi-
nation from a N;=2+1+1 lattice calculation by
HPQCD [23], which is extrapolated to the continuum
limit. At our renormalization scale, it reads

Ls =5.4(3) x 1073, (41)

V. ANALYSIS DETAILS AND DISCUSSION

A. Error analysis, thermal pollution
and choice of fit ranges

The error analysis is performed using the stationary
blocked bootstrap procedure [32]. In order to determine an

appropriate average block length, we compute the inte-
grated autocorrelation time 7;, for the correlation functions
Cx (1) at all source-sink separations, with X being z, K, 5 or
7K. In the case of 7K, Cx(¢) is of course first suitably
transformed for the extraction of the interaction energy as
discussed in Sec. III B. The computation of z;,, is detailed
in Ref. [33]. The average block length is then chosen to be
the ceiling of the maximum integrated autocorrelation time
observed over all correlation functions at all source-sink
separations

)]

b = [max(zjy,

on a per-ensemble basis. We have confirmed explicitly that
this method produces a block length at which the estimate
of the statistical error plateaus and are thus confident that
we properly take into account the effect of autocorrelations
on our quoted statistical errors. Using the so-determined
block length on a per-ensemble basis, we generate N =
1500 samples from which we estimate statistical errors
throughout our analysis.

As discussed in Sec. III B, we employ methods E1 and
E2 to remove unwanted thermal pollution from the 7K two
particle correlation function. Both methods allow us to
describe the data rather well, but the choice of best fit range
depends on the method used to remove the thermal
pollution. This, in turn, affects the value of the extracted

E . and, subsequently, the value of ,u,,Kag/ ? obtained from
the energy difference.
To demonstrate the quality of our fits, we look at the ratio

Ch )
f[El,EZ] (t) ’

where CE'E2] are defined in Eqgs. (25) and (30), respec-
tively, and the fit functions fF1-F2(¢) are given in Egs. (26)
and (31), respectively. The ratio is shown in Fig. 2 for the
two ensembles A40.24 and A40.32 for two fit ranges for
which both methods describe the data well.

The choice of the fit ranges to determine energy levels is
always difficult. In the past, we have used many fit ranges
and weighted them according to their fit qualities [9,11].
However, this procedure relies on properly estimated vari-
ance-covariance matrices, which is notoriously difficult. For
the pion-kaon correlation functions needed in this paper, we
have observed several cases where the fit including the
variance-covariance matrix did not properly describe the
data after visual inspection. Therefore, we use fits here
assuming independent data points with the correlation still
taken into account by the bootstrap procedure.

As a consequence, we cannot apply the weighting
procedure used in Refs. [9,11] any longer and have to
choose fit ranges. The procedure is as follows: Due to
exponential error growth of C ¢ we fix t, = T/2 — 4a and
vary t;, beginning from a region where excited states do not
contribute significantly anymore. From these fits we choose

(42)
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(a) Fit range: [14,20]
aFrx = {0.389(1)F1,0.389(1)F2}

>—
—
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—_—O
—
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(b) Fit range: [20, 28]
aErx = {0.3793(6)"",0.3789(5)?}

FIG. 2. Plot of Eq. (42) for ensembles A40.24 and A40.32 for the lightest strange quark mass for the fit ranges used for the analysis,
comparing the quality of the data description by methods E1 and E2.

one fit range where the ratio of Eq. (42) is best compatible
with 1. The statistical error is calculated from the bootstrap
samples as discussed before. We then estimate the system-
atic uncertainty from the remaining fit ranges. To this end,
we determine the difference of the mean value to the upper
and lower bound of values for E . This procedure results
in an asymmetric estimate of the systematic uncertainty of
E k. The results are compiled in Table X, in Appendix B.
Since Cx and C, do not suffer from exponential error
growth at late times we set ¢, = 7//2. Table VI gives an
overview of our chosen values of #; and 7 for all ensembles.

Itis always difficult to include systematic uncertainties in
the analysis chain. Since we see systematic uncertainties on
extracted energies on the same level as the statistical one, we
adopt the following procedure to include this uncertainty:
Because ﬂﬂKag/ % is derived from E_x, we chose to scale the
statistical error for ,u,,Kag/ % on each ensemble after the data
have been interpolated in the strange quark mass. To this

TABLE VI. Typical minimal and maximal values of the starting
and end points of fit ranges for the Correlation functions under
investigation.

aM aM g akE x
Ensemble ti tr t; tr 7 ty
A30.32 13 32 13 32 21 28
A40.24 11 24 11 24 14 20
A40.32 13 32 13 32 20 28
A60.24 11 24 11 24 16 20
A80.24 11 24 11 24 16 20
A100.24 11 24 11 24 15 20
B35.32 13 32 13 32 22 28
B55.32 13 32 13 32 19 28
B85.24 11 24 11 24 15 20
D45.32sc 14 32 14 32 22 28
D30.48 22 48 22 48 35 44

end, we define a scaling factor s via the standard error AX
and the average of the systematic uncertainties Qx over the
three strange quark masses for each ensemble,

(AX)? 4+ 0%

(AX)> (43)

where the average Qy is the simple mean over the six
systematic errors.

B. Meson masses, energy shift 6F
and scattering length y,,Kag/ 2

In order to extract 6F, we first determine Mg and M,
from fitting Eq. (21) to our data for C,(¢) and Ck(t). We
then calculate the reduced mass yu,r via Eq. (15) for all
combinations of fit ranges. M,, Mg and p,x are listed in
Table XI, in Appendix B.

The two methods E1 and E2 give us two estimates of
E .k as outlined in Sec. III B, from which we determine 0E
and hence the scattering length using Eq. (14). The values
for E x and 6E are collected in Tables X, in Appendix B
and XII, in Appendix B.

TABLE VII.  Fitresults for the NLO ChPT fit. The fits shown in
Fig. 4 correspond to the largest fit range in the table.

Removal ~ Fitrange  p-value L.x x 10° g pal? x 102

El 00t 135 0.6 3.603) —47(2)
00t 141 07 3.6(2) —47(1)
00t 1.60 0.7 3.7(2) —47(1)

E2 0.0 to 1.35 0.5 3.9(2) —4.5(1)
0.0 to 1.41 0.5 3.8(2) —4.6(1)
0.0 to 1.60 0.4 3.7(1) —4.64(7)
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TABLE VIIL. Error budget for the final results of p,gay”
and LnK'

paxas* x 109 L. % 10°
Statistical 82 (28%) 15 (32%)
Fit range 139 (47%) 19 (41%)
E1 vs. E2 64 (22%) 12 (24%)
NLO ChPT vs. T 9 (3%) 1 3%)

294 (100%) 47 (100%)

sqrt 'y in quadrature 173 27

We introduce factors K'°F for X € {Mg,M,, f,} to
correct our lattice data for finite-size effects. They have
already been calculated in Ref. [17] and are listed in
Table XIII, in Appendix B. We apply these factors for
e.g., M, as

M
We correct every quantity of the set named above and drop
the asterisk in what follows to improve legibility. For M,,
statistical uncertainties are too big to resolve finite volume
effects; see also Ref. [34].

For the two methods E1 and E2, we solve Eq. (14) for q,
up to O(L~>) numerically. The values for a; and its product

with the reduced mass, y, Kag/ % are collected in Table XIV, in
Appendix B. Since the finite-size behavior of the scattering
length is unknown, we do not apply finite-size corrections to

3/

the reduced mass appearing in p,xa; 2, either.

C. Strange quark mass fixing

Before we perform a combined continuum and chiral
extrapolation, we interpolate all data to reference strange
quark masses as discussed before. The data for the three

—0.10
—0.12 14
=)
6 ———
<
&
=
—0.14 1
lin. fit
%+ data
+ (LZ(]W/?( - (].5]”2) —= (a‘q/[;'ef)Q
—0.16

0.035 0.040 0.045

QM2 — 0.5M2)

(a) B55.32 for E1

strange quark masses are strongly correlated because
the same stochastic light perambulators were used for all
light-strange observables. As a consequence, the variance-
covariance matrix was sometimes not sufficiently well
estimated such that its inverse was unreliable. As a result,
we resort to performing these fits using uncorrelated y?
which results in best fit parameters which describe the data
much better. It should be noted that all statistical covariance
is still fully taken into account by the bootstrap procedure
and our final statistical errors on all fit parameters are
correctly estimated.

As an example, we show in Fig. 3 the interpolation of

,u,,Kag/z in M% — 0.5M? for ensemble B55.32 comparing
methods E1 and E2. The large uncertainty in the
interpolation variable stems mainly from the uncertainty
in the scaling quantity r,. Furthermore the errors of the
three data points are highly correlated. The interpolation
to the reference point is shown as a red diamond. In
general, the strange quark mass dependence of ,u,,Kag/ 2
is mild and stems mainly from the reduced mass pu,g.
The values thus determined are compiled in Table XV,
in Appendix B. They serve as input data for the
subsequent chiral extrapolations.

D. Chiral extrapolations and discretization effects

Having interpolated all our lattice data to a fixed
reference strange quark mass corresponding to the physical
strange quark mass at leading chiral order, we will describe
below the results and possible systematic errors in our
chiral extrapolations.

1. Chiral perturbation theory at NLO

To investigate possible discretization effects we first let ¢
in Eq. (34) vary freely and fit Eq. (34) for the different

—0.10
lin. fit
% data
4 a*(MF = 0.5M2) = (aM)?
—0.12 A
(=]
3
<
&
3
—0.14 1
—0.16

0.035 0.040 0.045

QM2 — 0.5M2)

(b) B55.32 for E2

FIG. 3. Interpolations of ,u,,KaS/ 2 for the two different methods E1 and E2.
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with LO ChPT formula.
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(b) El:Relative deviation between the
measured and the fitted values of prx ag/ 2,

D30.48 A o
D45.32 A —o—
B55.32 A =
B35.32 A s
B85.24 ~ ¥
A40.32 A A
A30.32 A =
A100.24 A A
A80.24 A i
A60.24 A .
A40.24 A . . A . .
-04 -0.2 0.0 0.2 0.4

67“ (/’L‘II'K ag/2)
(d) E2:Relative deviation between the
measured and the fitted values of prx ag/ 2,

FIG. 4. Chiral extrapolation of ynkag/ % for E1 and E2. Different colors and symbols denote different values of . In black, we plot the
LO ChPT formula. The golden diamond gives our final result using the given method at the physical point.

choices of f(a?). We are neither able to obtain a statistically
significant result for the fit parameter ¢, nor do we see
significant differences in the extracted values of L, and

,uﬂKag/ 2. We conclude that within our statistical uncertain-
ties we are not able to resolve lattice artifacts in this
quantity. Consequently we are justfied to fit all of our data
simultaneously with the continuum ChPT formula Eq. (34)
and to claim that at this order in the chiral expansion, our
results correspond to the physical point in the continuum
limit.

In the right column of the plots in Fig. 4, we show
the lattice data for M”Kag/ 2 interpolated to the reference
strange quark mass as a function of pu,x/f, for the
two thermal pollution removal methods E1 and E2.
The solid line corresponds to the leading order,

parameter-free ChPT prediction. Plotting our best fit

curve with NLO ChPT together with the data is difficult,
b 3/2
ecause ji xa, depends on meson masses and f,
besides pu,x/f,. Therefore, in order to demonstrate that
the fit is able to describe our data, we indicate the
relative deviation 5r(/¢,,Ka(3)/ 2)

and the original data

between the fitted points

(ﬂﬂKag/z)meas - (ﬂﬂKa?)/z)ﬁt
5, (u a3/2) = . (44)
R ()

in Figs. 4(b) and 4(d). The indicated error bars are
statistical only and it is clear that within these uncer-
tainties, our data is reasonably well described by the fit.
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FIG. 5.
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0.000 A
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—0.010 | *
g B=195 +
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Chiral extrapolation using the I' method with data interpolated to the reference strange quark mass. The data for different lattice

spacings are color encoded. In addition, we show the linear fit (solid curve, gray error band).

As in Sec. V D 2, to investigate the validity of Eq. (34)
across our entire range of pion masses, we studied three
different fit intervals for u,x/f,, namely

P% € {(0:135), (0;1.41),(0; 1.60)},  (45)

T

where now the first range corresponds to only using our
lightest pion masses and the third range includes all of our
ensembles. The resulting trend in the extracted values of

L,k and u, Kag/ % is shown in Table VII. Just as in the study
of the I'-method, including heavier pion masses leads to

smaller values of L, x and correspondingly smaller values

3/2
of y,,,(ao/ .

2. T Method

In this section, we present results employing the
determination of L, x using the linear fit introduced
in Sec. I E. Figure 5 shows the chiral extrapolations in
terms of Myg/M, for pollution removal E1 and E2.
Since we work at fixed strange quark mass, the light
quark mass decreases from left to right in the figure. In
order to check how our extraction of Lk is affected by
the range of included pion masses, we employ three
different fit ranges

AAZ € {(0:2.0). (1.5:2.0). (1.4:2.0)}.

(46)
In Table V, we compile the results for the fits corre-
sponding to the data points of Fig. 5 for all three fit
ranges. As the fit range is restricted to our lightest
ensembles, the value extracted for L,x tends up, while

the absolute value of the extracted ,u,,Kag/ ? decreases. It

is worth noting that this behavior is only observed for
the pollution removal E2, whereas for E1 the values for

3/2
LHK and ,uﬂKao/

€ITors.

stay constant within their statistical

VI. DISCUSSION

Let us first discuss the main systematics of our
computation: In contrast to the pion-pion or kaon-kaon
systems, there is time dependent thermal pollution in
the correlation functions relevant for the extraction of
the pion-kaon s-wave scattering length. This very fact
turns out to represent one of the major systematic
uncertainties in the present computation. We have
investigated two methods to remove the leading thermal
pollution, denoted as E1 and E2. With both we are able
to describe the data for the correlation functions.
However, there is uncertainty left, because we remove
only the leading pollution and the removal procedure
requires input estimated from other two point functions.
Thus, we eventually decided to use both methods E1
and E2 and include the differences in the systematic
uncertainty.

Second, we perform a mixed action simulation for
the strange quark. We use this to correct for small
mistuning in the sea strange quark mass value used for
the gauge configuration generation. This leads—at least
in principle—to a small mismatch in the renormalization
condition used for the continuum extrapolation. We
cannot resolve the corresponding effect on our results
quantitatively given our statistical uncertainties. But,
since we study quantities which mainly depend on the
valence quark properties we expect them to be small.

Third, in the ChPT determination of L g the remaining
LEC, Ls, entered as a prior to numerically stabilize our fits.
The HPQCD value of Ref. [35] stems from an independent
lattice simulation, but is extrapolated to the continuum
limit. In Ref. [35], Ls is given at scale M,, which we
translated to our renormalization scale given by the pion
decay constant.
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from various lattice computations [1-5]. The unfilled point denotes the LO

extrapolation to the physical point using the data of Ref. [5]. Right: s-wave scattering lengths for the pion-pion, pion-kaon and kaon-
kaon maximum isospin channels as a function of the squared reduced mass u> of the system divided by f2 for pion-pion and pion-kaon

and by f% for kaon-kaon.

In addition, the extrapolation from our data to the physical
pointis quite long. Here, a computation directly with physical
pion mass would improve our confidence in the result. The
final error on our determination is only as small as it is due to
the highly constraining ChPT description of ,u,,,(ag/ 2

Finally, although we are not able to resolve lattice
artifacts in our determination of y, Kag/ 2 our statistical
errors and limited set of gauge ensembles especially at the
finest lattice spacing might make us unable to resolve
possible lattice artifacts.

VII. SUMMARY

In this paper, we have presented a first lattice compu-
tation of the pion-kaon s-wave scattering length for isospin
I = 3/2 extrapolated to the continuum limit. By varying
our methodology we estimate the systematic uncertainties
in our results. Our errors cover statistical uncertainties,
continuum and chiral extrapolations as well as the removal
of thermal pollution.

In the left panel of Fig. 6, we compare the results
presented in this paper with previous lattice determi-
nations. The inner (darker) error bars show the purely
statistical errors whereas the outer (lighter) ones corre-
spond to the statistical and systematic errors added in
quadrature. Even though the four other determinations
lack the extrapolation to the continuum limit, overall
agreement within errors is observed. However, concern-
ing the final uncertainty, our determination improves
significantly on the previous determinations by control-
ling more sources of uncertainty.

As mentioned in the introduction, the three two particle
systems pion-pion, pion-kaon and kaon-kaon are very
similar. Therefore, it is interesting to compare the data
for pion-pion [9], kaon-kaon [11] and pion-kaon in a single

plot. This is done in the right panel of Fig. 6 where we show
W - ag as a function of (u/f)?. Here y is the reduced mass of
the corresponding two particle system and f is the pion
decay constant f, for the pion-pion and pion-kaon and f
for the kaon-kaon system. The dashed line in the right panel
of Fig. 6 is the leading-order, parameter-free ChPT pre-
diction all three systems share. The three symbols (and
colors) represent our data for the three different systems,
respectively.

It can be seen that for all three systems, the deviations
from LO ChPT are small. For the pion-kaon system, a
parametrization in terms of f - f, would bring the points
even closer to the LO line, while increasing the deviation
of the final result from the LO estimate. For the kaon-
kaon system, instead, a parametrization in terms of f,
rather than fx (which is perfectly valid at this order of
ChPT) would render the deviation from the LO line more
severe.

It is somewhat surprising that ChPT appears to work so
well for all three systems, especially for the heavier points
in our simulations and even more for the kaon-kaon system,
where the expansion parameter becomes large. A possible
reason for this finding might be the fact that all three
systems are only weakly interacting.
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APPENDIX A: 7-K SCATTERING IN ChPT

1. Isospin even/odd scattering amplitudes

For completeness, we reproduce here the derivation of
the I" method [1] described in Sec. III E. The scattering
amplitudes for all isospin channels of 7z-K scattering can be
noted down using basis elements that are even (odd) under
exchange of the Mandelstam variables s and u

A* %(AI/Z(S ) + 2432(s, 1, )
A %(AI/Z(S bu)— AP nu). (AD)
From Eq. (Al), it follows that
A2 = AT 424 (A2)
A= AT - A7, (A3)
which immediately carries over to the scattering lengths
a'’? and a*? yielding
faxdy” = pog(at +2a7) (A4)
ﬂnxaé/z = pax(a™ —a”). (AS)

The scattering lengths a™ and a~ can be derived from
the amplitudes of Eq. (Al), as was done in Ref. [30].
For convenience, we reproduce them here,

e M3 1 _
a = K{1+—{8L5 2)(NLO(A)(,M,,,MK,M,7)]}

8xf2 Ve
(A6)
HaxMgM
at= 1;;4 6Lk +anio(Ay . M My M,)], (A7)

with the renormalization scale A, and the abbreviations
25 (A,.M,, Mg, M,) denoted in Appendix A 2. Please note
that a* only depends on L5 while a~ only depends on L .
Inserting the ChPT formulae for ¢ and a~ into Eq. (A4)
one arrives at Eq. (36).

2. Next-to-leading-order functions

For convenience, we list the chiral functions xi o
derived in Ref. [30],

XﬁLO(Aw’A4ﬂ’A4K’A1W)

1 [ M, K 0
= vy, In—"+vgln—+v, In—"
1677 A, A, A,
2Mg+M Mg —-M
+ Uy, arctan ( K+ ﬂ) K L4
Mg —2M, \|2Myx + M,
© U arctan 2Mg—-M,) [Mg+ M, +43
1Z A |
n Mg +2M, \|2My —M, 9
(A8)
ano(Nys My My, M,)
M /.1 M, * 4 utgIn—= + Iyl M,
= n— n—- n_
Y o A VL VIR
MK Z(MK_MH) MK+M75
—l t .
o, Ve A an( My +2M, \|2My - M,
(A9)
The functions 1/5(/) are given by
11M2 (A10)
Up = ——5——5+
2(Mg - M3)
67M% — 8M>
e (A1)
9(MK _Mﬂ)
24M% — 5M2
V)= +——" (A12)
T I8(ME — M3
4/2M% — MM, — M?
Vian = — = (A13)
9 Mg+ M,
8MZ — 5M>
Vp=———F5——~ (A14)
2(MK _Mﬂ)
, 23M% (Al5)
Vg = ——5————
Fo(My - M3)
28M% — 9M>
/ K n
=—- = Al6
= 183 - ) (410
’o_ 4\/2M%(_MKM7[_M721:
Ugn = —= : (A17)
9 Mg +M,

From these isospin even/odd functions the definite isospin

. 3/2 1/2 o
functions )(N/Lo and ZN/Lo can be derived in the same way as

the scattering lengths of Eqgs. (A4) and (AS),
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Mz My M 86 2My—M,) [Mg+M
3/2 " «
Aaio(y Mr: M) = In 33 Az PRI > tK A2 >+ g MMy K arctan ( My + 20, \| 20y —M>
Mz My M; 86 3 2My-M,) [Mg+M
1/2 K ©
){N/LO(A My M) =, In—5 A2 + kg In—=- A2 >+ &, Az + o 9 MM, + 5 Kan arctan ( My +2M’; e —Mﬂ”>

2(M M Mg —M 2(M M Mg —M
+ K, arctan (M + M) K =) + ki, arctan (M + M) K = ). (A13)
Mg —2M, \|2Mg+ M, My —2M, \|2M; + M,

Here the functions K§Q are given by

1IM M3} + 8M2M?% — 5M%

K; = (A19)
2(M — M3)
6TM3M, — 8M>M 23M2M>
kg = — KM 272 K;‘ K" (AZO)
9(MK - Mﬂ')
24M M3y — SM M3 + 28M3 M2 — OM}
Ky = " K K2n+ > K" 4 (A21)
18(MK - er)
16M M, \/2M% + MM, — M2
Kin = = ——- = VV2Mj + MM, — M (A22)
9 Mg —M,
IMgM3 — 16M%3M2 + 10M}
K;r _ K" r - K 27r+ n (A23)
2<MK - MJT)
,  6TMyM, —8M3iMy — A6M3 M7
Ky = — 5 5 (A24)
9(MK - Mﬂ)
24M, M3 — SMgM?> — 56M% M2 + 18M*
K = 2K Xz 2’(”+ z (A25)
18(MK - Mﬂ)
8MyM,\/2M% — MxM, — M2
;Em — K™"n \/ K KMz n (A26)
9 Mg+ M,
APPENDIX B: DATA TABLES
1. Interpolated data
TABLE IX. Physical values of the scattering length and L ,x after averaging over the fit ranges.
ChPT E.x poxay* x 102 L x 103 paxay? M,a}/* x 10? M,al?
r E1l —4.7(1) 3.7(2) 0.128(2) —-6.0(1) 0.162(2)
E2 —4.59(8) 3.8(1) 0.129(2) —5.8(1) 0.164(2)
NLO E1l —4.7(1) 3.6(2) 0.127(2) —-6.0(1) 0.162(2)
E2 —4.61(9) 3.8(2) 0.129(2) -5.9(1) 0.164(2)
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TABLE X. Comparison of E g for methods E1 and E2.

Ensemble apy aE,x(E1) aE.x(E2)
A30.32 0.0185 0.3558(9)(*]) 0.3558(7)(7)
0.0225 0.3758(9)( 1) 0.3758(7)(7)
0.0246 0.3870(9)(12) 0.3867(6)(3)
A40.24 0.0185 0.3892(12)(%9) 0.3887(11)(73)
0.0225 0.4081(12)( +10) 0.4082(11)(13)
0.0246 0.4184(12)( %) 0.4182(11)( 1)
A40.32 0.0185 0.3793(6)( *3) 0.3789(5)( %)
0.0225 0.3988(6)( t;:) 0.3983(5)( j%)
0.0246 0.4081(6)(*2) 0.4083(5)( ;)
A60.24 0.0185 0.4250(9)(+11) 0.4247(7)(*§)
0.0225 0.4447(7)(2) 0.4440(6)( 3)
0.0246 0.4537(7)( 1) 0.4536(6)(7)
A80.24 0.0185 0.4613(6)( 1) 0.4606(5)(3)
0.0225 0.4789(6)(13) 0.4787(5)( %))
0.0246 0.4894(6)(*2) 0.4882(5)( %))
A100.24 0.0185 0.4921(5)(%9) 0.4922(4)(%3)
0.0225 0.5102(5)(3) 0.5102(4)( %)
0.0246 0.5193(5)(13) 0.5193(4)( 1)
B35.32 0.0160 0.3333(9)( 1) 0.3336(6)(20)
0.0186 0.3474(7)( 13 0.3472(6)(17)
0.0210 0.3595(9)( ) 0.3584(7)( %)
B55.32 0.0160 0.3743(5)(+4) 0.3747(4)(3)
0.0186 0.3866(5)( 1) 0.3869(4)( 1)
0.0210 0.3977(5)(+4) 0.3981(4)(73)
B85.24 0.0160 0.4322(7)(+15) 0.4325(6)( %)
0.0186 0.4442(7)(+15) 0.4441(6)(1})
0.0210 0.4548(7)(+13) 0.4544(6)(})
D45.32 0.0130 0.2925(12)(*3) 0.2922(9)( ")
0.0150 0.3028(11)(+3) 0.3010(9)( %)
0.0180 0.3145(10)(+16) 0.3142(8)(5%)
D30.48 0.0115 0.2506(8)( 3) 0.2508(5)(*4)
0.0150 0.2677(8)( %) 0.2679(6)( 4)
0.0180 0.2811(8)( %) 0.2814(6)(17)
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TABLE XI. Comparison of the meson masses, M, and M together with the reduced mass y,x. The systematic uncertainties for u g
turn out to be negligible and thus are not shown.

Ensemble ap aM g aM, g
A30.32 0.0185 0.2294(3)( ) 0.1239(2)( ) 0.08046(12)( 19)
0.0225 0.2495(2)( %} 0.1239(2)( ) 0.08280(12)( 19)
0.0246 0.2597(2)( %) 0.1239(2)( 1)) 0.08388(12)( 1)
A40.24 0.0185 0.2365(5)(*7) 0.1453(5)( ) 0.08999(22)( 19)
0.0225 0.2561(4)( ) 0.1453(5)( ) 0.09269(22)( 19)
0.0246 0.2662(5)( 1)) 0.1453(5)( %) 0.09398(22)( 19)
A40.32 0.0185 0.2343(2)(*) 0.1415(2)( 1)) 0.08822(10)( 1)
0.0225 0.2538(2)( %)) 0.1415(2) (%) 0.09086(11)( 19)
0.0246 0.2638(2)( 1) 0.1415(2)( %) 0.09210(11)( 1)
A60.24 0.0185 0.2448(3)( 1) 0.1729(3)( 0.10134(16)( 19)
0.0225 0.2637(3)( %) 0.1729(3)( ) 0.10445(16)( 19)
0.0246 0.2735(3)( %)) 0.1729(3)( ) 0.10594(17)( 1)
AR0.24 0.0185 0.2548(2)( ) 0.1993(2)( 1) 0.11184(11)())
0.0225 0.2731(2)( 1) 0.1993(2)( ) 0.11523(11)(19)
0.0246 0.2824(2)( 3) 0.1993(2)( ) 0.11685(11)(19)
A100.24 0.0185 0.2642(2)( 1Y) 0.2223(2)( 1)) 0.12073(11)( 1)
0.0225 0.2822(2)( 1) 0.2223(2)( ) 0.12436(11)( 1)
0.0246 0.2913(2)( ) 0.2223(2)( ) 0.12609(11)( )
B35.32 0.0160 0.2053(2)( ) 0.1249(2)(*1) 0.07765(11)( 19)
0.0186 0.2186(2)(1?) 0.1249(2)( ) 0.07948(12)(19)
0.0210 0.2298(2)( 1Y) 0.1249(2)( 1)) 0.08091(12)( 1)
B55.32 0.0160 0.2155(2)(55) 0.1554(2)( 1)) 0.09030(10)( )
0.0186 0.2282(2)( 1)) 0.1554(2)( 7)) 0.09245(10)( 19)
0.0210 0.2390(2)( ) 0.1554(2)( 7)) 0.09418(10)( 19)
B85.24 0.0160 0.2313(3)(*9) 0.1933(3)( 1) 0.10530(15)( *9)
0.0186 0.2429(3)(*) 0.1933(3)( %)) 0.10763(16)( 19)
0.0210 0.2535(3)(*2) 0.1933(3)( %)) 0.10967(15)( 19)
D45.32 0.0130 0.1658(3)(*} 0.1205(4)( 1) 0.06979(17)( 19)
0.0150 0.1747(4)( 0.1205(4)( 1) 0.07132(17)( 1)
0.0180 0.1876(3)( 1Y) 0.1205(4)( 1 0.07339(17)( 19)
D30.48 0.0115 0.1503(1)( ) 0.0976(1)( ) 0.05917(6)( 1)
0.0150 0.1673(1)( 1Y 0.0976(1)( ) 0.06163(6)( )
0.0180 0.1807(1)( ] 0.0976(1)( ) 0.06336(6)( 1)

114511-16



HADRON-HADRON INTERACTIONS FROM N, =2+ 1+1 ...

PHYS. REV. D 98, 114511 (2018)

TABLE XII. Comparison of 6E, x for methods E1 and E2.
Ensemble apg adE(E1) x 10° adE(E2) x 10°
A30.32 0.0185 2.48(96)(5%) 2.4481) (Y
00225 2.41(97)(*%) 2.34(77)( ")
0.0246  3.45(93)( %) 3.14(74)(5)9)
A40.24 0.0185  7.46(84)( %) 6.93(56)( 155
00225  6.70(85)( %) 6.84(67)(1}")
0.0246  6.94(88)( %) 6.69(61)( ")
A40.32 0.0185  3.52(47)(*3) 3.15(32)(1%)
0.0225  3.42(45)( %) 2.96(29)(3,)
0.0246  2.79(44)(*13) 2.99(31)(1%)
A60.24 0.0185  7.25(69)(H1)  7.02(39)(8)
00225  8.05(46)(*2) 7.37(35)(13¢)
0.0246  7.28(45)(*1%) 7.22(30)( 1)
A80.24 0.0185  7.19(48)(*3,) 6.45(21)(53")
00225  6.47(47)( ) 6.19(23)(%3°)
0.0246  7.61(48)(*0) 6.40(21)(3*)
A100.24 0.0185  5.58(32)( %) 5.70(17)(357)
0.0225  5.68(32)( %) 5.67(17)(13%)
0.0246  5.74(24)( 34 5.69(14)(%7%)
B35.32 00160 3.12(85)(H®)  3.38(45)( %)
0.0186  3.94(54)(*2) 3.67(34)( 1Y)
0.0210  479(85)(7%,) 3.72(56)(73°)
B55.32 0.0160  3.33(42)(*4) 3.71(30)( 3%
0.0186  3.02(45)( ¢ 327(33)(%")
0.0210  3.28(41)(*¥) 3.65(30)( 1)
B85.24 0.0160  7.61(41)(+13 7.88(23)(16%)
0.0186  8.05(36)(+13 7.97(23)( 8
0.0210  7.99(38)( 177 7.64(25)( 15"
D45.32 00130 6.18(88)(12?)  5.87(53)(H7)
00150  7.62(86)(%)  5.82(43)(11%)
0.0180  6.38(71)(1}®)  6.05(45)( 1)
D30.48 00115 2.70(77)(*%) 2.90(50)( *5'5) )
0.0150 2.79(79)( *29) 3.05(51)(Z, 63
0.0180 2.86(82)(12) 3.17(54) (L6

TABLE XIII. External data used via parametric bootstrapping.
The error on K} is only estimated.

Ensemble fr KSF K" KFSE
A30.32  0.06452(21) 0.9757(61) 1.0081(52) 1.002327(1)
A40.24  0.06577(24) 0.9406(84) 1.0206(95) 1.009 874(1)
A40.32  0.06839(18) 0.9874(24) 1.0039(28) 1.001299(1)
A60.24  0.07209(20) 0.9716(37) 1.0099(49) 1.004 681(1)
A80.24  0.07581(13) 0.9839(22) 1.0057(29) 1.002518(1)
A100.24 0.07936(14) 0.9900(15) 1.0037(19) 1.001 480(1)
B35.32  0.06105(17) 0.9794(27) 1.0069(32) 1.002466(1)
B55.32  0.06545(11) 0.9920(10) 1.0027(14) 1.000879(1)
B85.24  0.07039(26) 0.9795(24) 1.0083(28) 1.003 178(1)
D30.48  0.04735(15) 0.9938(5) 1.0021(7) 1.000714(1)
D45.32  0.04825(14) 0.9860(13) 1.0047(14) 1.000 000(1)
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TABLE XIV. Comparison of @, and y,,Ka?)/ % for methods E1 and E2.

Ensemble auy ag/a(E1) ag/a(E2) ﬂ”KaS/Z(El) u,,Kaf)/z(EZ)
A30.32 0.0185 -0.96(34)(17,) —0.94(29)( ;) —0.077(27)( *%) -0.076(23)(*2,)
0.0225 ~0.95(35)(15,) —0.93(28)(3,) ~0.079(29)( 13,) —0.077(23)(12)
0.0246  —1.33(32)(*) ~1.23(26)( %) —0.112(27)( 1 ~0.103(22)(*9)
A40.24 0.0185 -1.27(12)( %) —1.19(8)( ) —0.114(11)(19) -0.107(8)(3)
0.0225 —1.18(13)( 1) ~1.20(10)(*9) ~0.110(12)( 33, ~0.112(9)(19)
0.0246  —123(14)(19) ~1.20(10)(19) ~0.116(13)(£9) —0.112(9)( 1)
A40.32 00185  —142(17)(F3)  —129(12)()  —0.126(15)(*F)  —0.114(10)( 1)
0.0225 —1.42(17) (73 —1.25(11)( 3% —0.129(15)(133) —0.114(10)(13)
0.0246 -1.20(17)( £ —1.28(12)( %) —0.111(16)( 1) —0.118(11)( 1%
A60.24 8.8; gg —1.37( (1 1 )) (( f%) —1.33((6)) ((j?g)) —0.139(é 1)) (( f%) —0.135((6))((f?63))
: —1.53(7)( . —1.42(6)( 7, -0.160(8)( " ~0.149(6)( 7,
0.0246 _1.43(7)(5;;) —1.41(5)(t§) —0.151(8)(f?3) —0.150(5)(j§2)
A80.24 0.0185 ~1.48(8)(1)) ~1.35(4)(%9) ~0.165(9) (1} ~0.150(4)(1§)
0.0225 ~1.39(9)( 1) —1.33(4)(*9) ~0.160(10)( %) —0.154(5)(*9)
0.0246 —-1.61(8)( 149 -1.39(4)( 1) —0.188(10)( 14?) -0.162(5)(9)
A100.24 8822 —1.27(6)(f16()2) —1.29(3)(%1)) —0.153(8)(f%7)4) —0.156(4)(%
. —-1.32(6)(1)) -1.32(3)(1)) —0.165(8)( 1) —0.164(4)(
0.0246 _1.35(5)(f36) —1.34(3)(:5{) —0.170(6)(f1§2) —0.169(4)(jz2
B35.32 00160 —1.14(28)(*35)  —1.22(15)(1y)  —0.088(22)(%3;)  —0.095(11)(1})
0.0186 —1.43(17)(3) —1.34(11)( ) —0.114(14)(13) -0.107(9)(3)
0.0210 —-1.73(26)( %) -1.38(19)(*,) -0.140(21)(19) —0.112(15)(9,)
B55.32 0.0160 —1.38(15)( 1) —1.52(11) () —0.125(14)( 1) -0.137(10)( %)
0.0186 —1.29(17)( %) -1.39(12)( 1) —0.120(16)( +27) —0.128(11)(53,)
00210  —1.42(16)(13,) ~1.55(11)(*9) ~0.133(15)( ¥, —0.146(10)(*9)
B85.24 0.0160 ~1.47(7)(55,) ~1.52(4)(1)) ~0.155(7)( %55 ~0.160(4) (1))
0.0186 -1.57(6)( 13,) -1.56(4)(1}5) —0.169(6)(135) —0.168(4)(*,)
0.0210 —1.59(6)(%) ~1.53(4)( 1) ~0.174(7)(133) ~0.167(5)( %)
D45.32 00130 —1.89(23)(*%) —1.81(14)(*%) ~0.132(16)( +%)) ~0.126(10)( %))
0.0150 —-2.29(21)(*3) -1.83(12)(*%,) -0.163(15)(2) -0.130(8)( %)
0.0180 —-2.02(19)(*9) —-1.94(12)(*5,) —0.149(14)( %)) —0.142(9)( %)
D30.48 00115 —243(60)(153)  —2.58(38)(F#)  —0.144(36)(*% ~0.152(23)(12)
0.0150 —2.59(63)(159) —2.79(40)( 3% —0.159(39)( 39 —0.172(25)( 31
0.0180 -2.71(66)( 3;) —2.95(42)( 39) —0.171(42)( 53 —0.187(27)(13)
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TABLE XV. Input data for the chiral analysis.

Ensemble i/ fr aM aM, ﬂ”Ka?)/z(El) yﬂKaé/z(EZ)
A40.24 1.28(2) 0.241(6) 0.317(6) —0.12(1) —0.106(8)
A60.24 1.37(1) 0.251(6) 0.323(6) —0.15(1) —0.139(9)
A80.24 1.46(1) 0.260(6) 0.327(5) —-0.16(1) —0.153(6)
A100.24 1.52(1) 0.269(6) 0.332(4) —0.15(1) —0.158(6)
A30.32 1.22(1) 0.236(6) 0.314(9) —0.08(3) —0.08(2)
A40.32 1.28(1) 0.241(6) 0.314(9) —-0.14(2) —0.11(1)
B85.24 1.49(1) 0.243(5) 0.296(5) -0.17(2) —0.178(9)
B35.32 1.27(1) 0.220(6) 0.284(8) —0.12(2) —0.11(1)
B55.32 1.40(1) 0.230(5) 0.283(5) —-0.12(3) —0.14(1)
D45.32 1.45(1) 0.175(4) 0.200(4) —0.15(2) —0.15(2)
D30.48 1.29(1) 0.168(4) 0.196(4) —0.15(3) —-0.15(2)
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