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We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly
conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories
near the conformal window, which have shown that the lightest flavor-singlet scalar state in the spectrum
(σ) can be much lighter than the vector state (ρ) and nearly degenerate with the PNGBs (π) over a large
range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms
in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a
limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled
in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular,
they relax the inequality M2

σ ≥ 3M2
π, allowing for consistency with current lattice data.
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I. INTRODUCTION

In this paper we explore a linear sigma model as an
effective field theory (EFT) description of gauge theories
with approximate infrared conformal invariance.
Asymptotically free gauge theories exhibit conformal
behavior in the IR when the number of fermions Nf
exceeds a critical value Nc

f. When Nf is taken just below
Nc

f the theory confines, but the low-energy physics below
the confinement scale may be markedly different from
QCD. The EFT is motivated by recent work [1–10] in

which various nearly conformal gauge theories have been
studied using lattice methods [11,12]. These theories,
unlike QCD [13–16], have been shown to possess a light
flavor-singlet scalar state (σ) with mass similar to the
pseudo-Nambu–Goldstone bosons (PNGBs or π), well
separated from the vector meson (ρ) and other heavier
resonances.1

Light composite scalars have been reported in SU(3)
gauge theory with eight flavors of fermions in the funda-
mental representation of the gauge group [1–4], SU(3)
gauge theory with two flavors in the symmetric (sextet)
representation [5–7], SU(3) gauge theory with four light
and eight heavy fundamental flavors [8], and an SU(2)
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1Throughout this work, we borrow the language of QCD to
label hadron states. For the lightest resonance in each channel, we
denote the flavor-singlet scalar by σ, the flavor-singlet pseudo-
scalar by η0, the flavor-adjoint scalar by a0, the flavor-adjoint
pseudoscalar by π, the flavor-adjoint vector by ρ, and spin-1=2
baryon by N or “nucleon”.
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gauge theory with one adjoint flavor [9]. This has moti-
vated us to consider an EFT in which the flavor-singlet
scalar is included as a dynamical degree of freedom.
Non-QCD-like confining gauge theories are interesting

in their own right, and in addition these nearly conformal
theories could be useful for constructing phenomenological
models. In particular, the light σ could be a viable candidate
for a composite Higgs boson with dynamical electroweak
symmetry breaking. An important step towards developing
such a model is to show that a confining gauge theory can
generate a composite scalar state which is sufficiently light
in the chiral limit. Currently, lattice calculations cannot be
carried out close enough to the chiral limit to answer this
question, but EFT techniques could shed light on this
important issue. When the continuum EFT developed here
is employed to fit lattice data, it must also be the case that
any discretization effects are small.
Recent work indicates that chiral perturbation theory

does not describe lattice data of SU(3) gauge theory with
Nf ¼ 8 fundamental flavors at currently accessible dis-
tances from the chiral limit [10,17,18]. This is not surpris-
ing since the σ is similar in mass to the pions in the quark
mass regime studied, and so a perturbatively implemented
EFT which omits the σ resonance will not be an accurate
description. One can extend chiral perturbation theory to
include the σ by coupling a flavor-singlet scalar into the
chiral Lagrangian in the most general way [19,20].
However, these models have a large number of low-energy
constants and are difficult to constrain with limited lattice
data. There has been another effort to develop an EFT based
on a hypothesis of spontaneously broken scale symmetry
[21,22], which has been shown to provide encouraging fits
to the lattice data [23–25].
The linear sigma EFT considered here has attractive

features in addition to accommodating a light flavor-singlet
scalar. For example, lattice calculations of SU(3) gauge
theory with eight fundamental flavors [4] indicate that the
pion decay constant varies significantly with the bare quark
mass. In the linear sigma model, where the scalar potential
breaks chiral symmetry spontaneously, the pion decay
constant has strong, tree-level dependence on the quark
mass. Lattice calculations of the spectrum of SU(3) gauge
theory with two sextet flavors [7] indicate that a multiplet of
flavored scalar mesons (a0) may become lighter than the
vector mesons as the chiral limit is approached. Light
flavored scalars are also predicted in Ref. [26]. We include
a multiplet of flavored scalars in the linear sigma EFT, but
alternatively they can be removed from the spectrum by
taking an appropriate limit.
In Sec. II we introduce the linear sigma field, its trans-

formation properties, and the leading order terms in the
Lagrangian. Since we are interested in applying the EFT to
lattice computations necessarily carried out at nonzero quark
mass, we include explicit chiral symmetry breaking terms in
the Lagrangian. In Sec. III we analyze the terms in the

Lagrangian, ordering themdependingon the size of the chiral
symmetry breaking. We develop an operator ordering rule to
aid the analysis. We conclude that the chiral breaking can be
large enough so that a limited set of terms in the potential
becomes comparable to the one term that dominates in the
small-quark-mass limit, with the EFT remaining weakly
coupled in this new range. The additional terms contribute
importantly to the scalar and pion masses, relaxing the
inequality M2

σ ≥ 3M2
π [27], allowing for consistency with

current lattice data. We summarize our results in Sec. IVand
discuss open questions. InAppendixA, we describe the limit
that allows the flavored scalars to be removed from the
spectrum, and in Appendix B we discuss special consid-
erations that apply to the case Nf ≤ 4.

II. THE LINEAR SIGMA EFT

An EFT is determined by the global symmetries of the
system, a specification of the fields which transform accord-
ing to some representation of theglobal symmetry group, and
an ordering rule designating the relative importance of
operators allowed by the symmetries. For our case, the
global symmetry of the EFT is determined by the underlying
gauge theory, whose symmetry breaking pattern is
SULðNfÞ × SURðNfÞ × UVð1Þ → UVðNfÞ after the UAð1Þ
symmetry is broken explicitly at the quantum level.
We begin the construction of our EFT by taking the fields

to transform in a linear multiplet of the flavor group. The
linear sigma model for Nf > 2 was originally introduced
by Lévy [28] and further developed in much subsequent
work in the context of three-flavor QCD, cf. [29,30]. Since
the global symmetry group is a direct product group, the
dynamical fields carry two indices,Mb̄

a, where the unbarred
subscript (barred superscript) transforms via linear action of
a matrix in the fundamental (antifundamental) representa-
tion of SULðNfÞ (SURðNfÞ).

Mb̄
a → Lc

aMd̄
cðR†Þb̄

d̄
ð1Þ

where L;R ∈ SUL;RðNfÞ. The field MðxÞ transforms as a
singlet under the UVð1Þ symmetry, which we will disregard
from here on. Group indices will be suppressed in the
remainder of the discussion.
When Nf ¼ 2, the isometry SULð2Þ × SURð2Þ ∼ Oð4Þ

allows one to choose the linear multiplet to be real. The four
real degrees of freedom may be identified with three
pseudoscalar pions and one scalar σ which transform
irreducibly in the adjoint and singlet representations of
the unbroken SUVð2Þ, respectively. However, here we will
work with a complex linear multiplet of scalars. When
Nf > 2, the linear representation of SULðNfÞ × SURðNfÞ
is necessarily complex. The 2N2

f real degrees of freedom
may be identified with N2

f − 1 pseudoscalar pions and
N2

f − 1 scalar a0 states, each set transforming irreducibly in
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the adjoint representation of SUVðNfÞ, as well as one
pseudoscalar η0 and one scalar σ, each transforming as
singlets under SUVðNfÞ.
It is possible to express the complexmatrix fieldMðxÞ as a

linear function of 2N2
f real component fields. However, we

choose to use a nonlinear decomposition of MðxÞ instead.
This has advantages that we will make use of shortly.

MðxÞ¼exp

�
i

ffiffiffiffiffiffi
Nf

p
F

�
η0ðxÞffiffiffiffiffiffi
Nf

p þπiðxÞTi

���
σðxÞffiffiffiffiffiffi
Nf

p þai0ðxÞTi

�
:

ð2Þ
The sum over the repeated adjoint indices is implied,
and Ti are the generators of SUðNfÞ normalized such that
Tr½TiTj� ¼ δij. The mass scale F is the vacuum expectation
value (v.e.v.) of the σ field. Under parity, the matrix field
transforms as Mðx⃗; tÞ → M†ð−x⃗; tÞ.
In the underlying gauge theory, the η0 degree of freedom

is made heavy by mixing with topological fluctuations in
the gluon field strength. In Refs. [31,32], the η0 degree of
freedom is retained and a relationship between the η0 and σ
masses is derived. Here, we manually remove the heavy η0
degree of freedom from the EFT by setting η0ðxÞ ¼ 0. With
MðxÞ having been parametrized according to Eq. (2), the η0
degree of freedom is not mixed with the other field
components under SULðNfÞ × SURðNfÞ chiral transforma-
tions. So, when η0ðxÞ is set to zero, the fields in Eq. (2) still
transform in a representation of the chiral symmetry (albeit
a nonlinear one), but not of the UAð1Þ symmetry.
Having removed the heavy η0, we could do the same with

the a0. There is some evidence that thea0 is becoming lighter
relative to the vector state as the fermion mass is reduced, so
we will keep the a0 in the EFT for our discussion. However,
in current lattice data, the a0 is still comparable inmass to the
vector. It is possible to remove the a0 from the EFT as
explained in Appendix A. We find that the tree-level masses
of the other states and v.e.v. of the σ field remain the same,
even if the a0 is taken out of the EFT.
In the leading, chirally symmetric part of the effective

Lagrangian, we include all SULðNfÞ × SURðNfÞ invariant
relevant and marginal operators. For Nf ≤ 4, additional
chirally invariant operators involving detM are marginal or
relevant and also need to be included. We consider this case
separately in Appendix B. In what follows, we exhibit the
terms appropriate for Nf > 4. The effective Lagrangian is

L ¼ 1

2
Tr½∂μM∂μM†� − V0ðMÞ − VSBðMÞ; ð3Þ

where

V0 ¼
−m2

σ

4
Tr½M†M� þm2

σ −m2
a

8f2
Tr½M†M�2

þ Nfm2
a

8f2
Tr½M†MM†M�: ð4Þ

V0 is symmetric under the complete global symmetry
group. The potential VSB represents the effects of the
quark mass within the EFT, including the explicit breaking
of SULðNfÞ × SURðNfÞ chiral symmetry. We discuss the
form of VSB in Sec. III, keeping only the leading operators
necessary to describe the mass spectrum of the EFT. For the
analysis presented here, we work only to tree level.
We take m2

σ > 0, so that the theory exhibits spontaneous
chiral symmetry breaking in the chiral limit. We have
parametrized the coefficients of the potential V0 so thatmσ,
ma and f are the chiral-limit values of the mass of the σ
state, the mass of the a0 states, and the v.e.v. of the field
after spontaneous symmetry breaking.
The MðxÞ field takes on a v.e.v. which is a global

minimum of the potential. We choose the v.e.v. to be
oriented along the direction of the trace (the “σ direction”).
We denote quantities away from the chiral limit (VSB ≠ 0)
by capital letters: Mσ , Ma, F, andMπ are the mass of the σ
state, the mass of the a0 states, the v.e.v. of the field, and the
mass of the π states respectively. F is the same scale
appearing in Eq. (2) in order to canonically normalize the
pion kinetic term. We expect that f=F ≪ 1 for F in the
range of the current lattice data.
The minimum of the entire potential (V ¼ V0 þ VSB)

is given by σ ¼ F and ai0 ¼ πi ¼ 0, with F determined by
the extremization condition δVðMÞ=δMðxÞ¼0, which
reduces to

F
f

�
F2

f2
− 1

�
þ 2

fm2
σ

∂VSB

∂σ
����
σ¼F;πi¼ai

0
¼0

¼ 0: ð5Þ

After reexpanding around this v.e.v., one arrives at the
following expressions for the masses of the pions and
scalars:

M2
π ¼

∂2VSB

∂πi2
����
σ¼F;πi¼ai

0
¼0

; ð6Þ

M2
σ ¼ m2

σ

�
3

2

F2

f2
−
1

2

�
þ ∂2VSB

∂σ2
����
σ¼F;πi¼ai

0
¼0

; ð7Þ

M2
a ¼ m2

a
F2

f2
þm2

σ

2

�
F2

f2
− 1

�
þ ∂2VSB

∂ai20
����
σ¼F;πi¼ai

0
¼0

: ð8Þ

We can derive the expression for the pion decay constant
following the normalization conventions of Ref. [33] by
plugging the leading expression for the axial current,
AμiðxÞ ¼ ð2F= ffiffiffiffiffiffi

Nf
p Þ∂μπiðxÞ, into the matrix element

h0jAμið0Þjπjðp⃗Þi ¼ iδij
ffiffiffi
2

p
Fπpμ. One finds

Fπ ¼
ffiffiffiffiffiffi
2

Nf

s
F; ð9Þ

LINEAR SIGMA EFT FOR NEARLY CONFORMAL GAUGE … PHYS. REV. D 98, 114510 (2018)

114510-3



where F is the v.e.v. determined by the extremization
condition Eq. (5). Here there is an important distinction
between the linear sigma EFT and chiral perturbation
theory. In the latter, Fπ is a constant at tree level and
depends on the explicit chiral breaking only at loop level. In
the linear sigma EFT, the pion decay constant depends on
VSB through Eq. (5) at tree level.

III. CHIRAL BREAKING

The quark mass matrix is the source of explicit chiral
symmetry breaking in the underlying gauge theory. In the
EFT, we take this breaking into account by introducing an
auxiliary spurion field, χðxÞ, which transforms like χðxÞ →
LχðxÞR† under a chiral rotation.VSB contains operators built
out of χðxÞ and MðxÞ invariant under the chiral symmetry.
The symmetry is brokenwhen thematrix field χðxÞ is set to a
constant value proportional to the quark mass matrix M,

χðxÞ → BM; ð10Þ
where B is a new low-energy constant with dimensions
of mass. The spurion then breaks the chiral symmetry in
the EFT in the same way as the quark mass matrix in the
underlying gauge theory. We restrict to cases in which the
quark masses are all degenerate, M ¼ mq1.
The spurion construction catalogs the operators which

may appear in VSB on symmetry grounds, but we must
determine the relative importance of these operators with
respect to one another and with respect to operators that do
not contain χ. With VSB ≠ 0, the EFT is an expansion in
∂=Λ, MðxÞ=Λ, and χ=Λ2, where Λ is the EFT cutoff. With
the EFTemployed perturbatively, the cutoff can be taken no
larger than the mass of the lightest excluded state. In the
lattice data, for any value of mq in the current range, this is
the vector state. We take Λ to be of order this mass
throughout the mq range.
Lattice data for nearly conformal theories [1,2,4,7]

indicates that2 Mπ ∼Mσ and Mσ ∼ F [the v.e.v. of the
field σðxÞ]. To ensure that the EFT reproduces the latter
condition, we take the strength of the quartic potential to be
m2

σ=f2 ∼ 1, within the weak-coupling range. Finally, we
take the four momenta to be of order the particle masses,
thus fixing ∂=Λ ∼Mπ;σ=Λ ∼ F=Λ. For the existing lattice
data, the ratio Mσ=Λ is not much smaller than 1=2 but is
tending to smaller values as mq decreases [4,7]. As for the
a0 mass Ma, we can set its value relative to Mπ and Mσ by
making an appropriate choice of m2

a.
Next let us consider the order of magnitude of the chiral

symmetry breaking expansion parameter. A measure of
chiral symmetry breaking in the gauge theory is mqBπ

where Bπ ¼ h0jψ̄ψ j0imq¼0=f
2
π . The v.e.v. is the chiral

condensate for a single massless fermion flavor and fπ

denotes the chiral limit pion decay constant. In the chiral
limit, we will have the GMOR relation [34] ðM2

π ¼ 2mqBπÞ
but away from the chiral limit, 2mqBπ will not correspond
directly toM2

π , even at tree level. We normalize the spurion
so that χ ¼ Bmq1 ¼ Bπmq1 up to small corrections.
We compare the size of the chiral breaking effects to the

ratio Mσ=Λ, which controls the expansion in powers of
fields and derivatives. In order to measure the size of
Bmq=Λ2 relative to Mσ=Λ, it is convenient to define the
quantity α by:

Bmq

Λ2
¼

�
Mσ

Λ

�
α

: ð11Þ

Each factor of χ=Λ2 in a Lagrangian operator therefore
contributes a factor of ðMσ=ΛÞα to physical processes. We
emphasize that α is not a free parameter, but rather is
determined by mq. As the chiral limit is approached, α
becomes larger. In the limit mq → 0, Eq. (11) dictates
that α → ∞.
We construct the EFT using the small quantities ∂=Λ,

MðxÞ=Λ and χ=Λ2. They have sizes

∂
Λ
∼
MðxÞ
Λ

∼
Mσ

Λ
and

χ

Λ2
¼

�
Mσ

Λ

�
α

1 ð12Þ

respectively. To provide an estimate for the size of each
operator coefficient, we take the Lagrangian to have the
simple schematic form

L ⊃ Λ4

�∂
Λ

�
Np
�
MðxÞ
Λ

�
NM

�
χ

Λ2

�
Nχ

; ð13Þ

such that the coefficient of an operator has order of
magnitude Λ4−Np−NM−2Nχ . This form arises from dimen-
sional analysis with the scale of each coefficient set by the
mass (∼Λ) of the lightest excluded state. We note first that
Eq. (13) sets the quartic couplings in V0 to be Oð1Þ. This
relatively weak value leads to F ∼Mσ as seen in the lattice
data. Relative to the estimate of Eq. (13), however, the
coefficient of the Tr½M†M� operator in V0 must be set to a
smaller value (much less than Λ2), a conventional tuning
needed to produce the light scalar.
The quartic interaction as well as corrections to V0

consisting of higher powers ofMðxÞ as dictated by Eq. (13)
are relatively weak. The same will be true of all the terms
we employ in VSB. Whether couplings with these sizes
emerge from an underlying nearly conformal gauge theory
with a relatively light scalar is an open question. The
answer will require further lattice study. Here we assume
that they do, at least for the operators that play a role here.
Using the order of magnitude estimate for the operator

coefficients in Eq. (13) together with Eq. (12), one finds
that each term in the Lagrangian has an order of magnitude

2Throughout this work, we use the notation A ∼ B to denote
A ¼ OðBÞ.
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size M4
σðMσ=ΛÞNpþNMþαNχ−4. This motivates us to define a

power counting dimension

D ¼ Np þ NM þ αNχ ; ð14Þ
where α is given by Eq. (11). The leading-order Lagrangian
is defined to include all terms with D ≤ 4. In the chiral
limit, taking Nχ ¼ 0, this corresponds to keeping only
marginal and relevant operators. More generally, the terms
to be included will depend on α, that is, on the comparative
size of chiral symmetry breaking. We will consider a
relatively large amount of chiral symmetry breaking,
corresponding to α as small as unity.

A. The breaking potential

For α as small as 1 and Nf > 4, the leading operators
that enter the breaking potential are shown in Table I.
The most general leading-order breaking potential may be
parametrized as

VSB ¼ −
X9
i¼1

c̃iOiðxÞ: ð15Þ

The first term (for which D ¼ 1þ α) takes the form
−c̃1BmqTr½M þM†�. We set c̃1 ¼ f=

ffiffiffiffiffiffi
Nf

p
, ensuring

that consistency with the GMOR relation near the chiral
limit is maintained after having set B ¼ Bπ up to small
corrections. The appearance of f in c̃1 amounts to a tuning
relative to the Eq. (13) estimate that this coefficient should be
∼Λ. This small value for c̃1 also ensures that operators other

than O1 can play a significant role in VSB, even when
Bmq=Λ2 ≪ 1. Since the coefficient of O1 is symmetry
protected, this value is technically natural. This is not true
of the tuned coefficient of Tr½M†M� described earlier. For all
the other operators in Table I, the principle of inclusion is that
D ¼ 4 when α ¼ 1. For each of these, we estimate the
coefficients using Eq. (13).
We compute the leading-order expressions for the

masses and the scalar v.e.v. [Eqs. (5)–(8)] for the
general breaking potential, simplifying the expressions
by absorbing factors of Nf in the coefficients: c2;9 ¼ffiffiffiffiffiffi
Nf

p
c̃2;9, c3 ¼ c̃3=

ffiffiffiffiffiffi
Nf

p
, c4;6 ¼ Nfc̃4;6, c5;7 ¼ c̃5;7 and

c8 ¼ N3=2
f c̃8. We find

F2 ¼ f2 þ 2f2

m2
σ

�
2Bmq

f
F
þ 6Bmqðc2 þ c3ÞF þ 2B2m2

qð4c4 þ c5 þ c6 þ 2c7Þ þ 2B3m3
q
c8 þ c9

F

�
; ð16Þ

M2
π ¼ 2Bmq

f
F
þ 2Bmqðc2 þ c3ÞF þ 8B2m2

qðc4 þ c7Þ þ 2B3m3
q
c8 þ c9

F
; ð17Þ

M2
σ ¼ m2

σ þ 6Bmq
f
F
þ 6Bmqðc2 þ c3ÞF þ 4B2m2

qð4c4 þ c5 þ c6 þ 2c7Þ þ 6B3m3
q
c8 þ c9

F
; ð18Þ

M2
a ¼ m2

a
F2

f2
þ 4Bmq

f
F
þ 8Bmqc2F þ 2B2m2

qð8c4 þ c5 þ c6 þ 2c7Þ þ 4B3m3
q
c8 þ c9

F
: ð19Þ

To ensure that Mσ ∼ F for all values of Bmq, we set the
strength of the quartic potential m2

σ=f2 ∼ 1, a value within
its weak-coupling range.

B. Large quark-mass behavior

Equations (17), (18) can be combined to express M2
σ in

terms of M2
π ,

3M2
π −M2

σ þm2
σ ¼ 4B2m2

qð2c4 − c5 − c6 þ 4c7Þ; ð20Þ

where m2
σ must be positive in a theory with underlying

spontaneous symmetry breaking. For sufficiently small
values of Bmq (sufficiently large values of α), the right-
hand side of Eq. (20) will be highly suppressed and one

TABLE I. Operator content of the leading-order ðD ≤ 4Þ
breaking potential when α ¼ 1, corresponding to a relatively
large amount of chiral symmetry breaking. We show that this
amount is required to fit currently available lattice data.

Symbol Operator

O1 Tr½χ†M þM†χ�
O2 Tr½M†M�Tr½χ†M þM†χ�
O3 Tr½ðM†MÞðχ†M þM†χÞ�
O4 Tr½χ†M þM†χ�2
O5 Tr½χ†χM†M�
O6 Tr½χ†χ�Tr½M†M�
O7 Tr½χ†Mχ†M þM†χM†χ�
O8 Tr½χ†χ�Tr½χ†M þM†χ�
O9 Tr½ðχ†χÞðχ†M þM†χÞ�
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finds the inequality M2
σ ≥ 3M2

π, which is not respected by
the lattice data.
This inequality is present quite generally for any Bmq

small enough such that the operator O1 dominates VSB.
This can be seen from Eqs. (5)–(7), the factor of 3 in Eq. (7)
arising from the fact that the stabilizing potential is quartic.
Although we have shown only that the inequality appears
for Nf > 4, in Appendix B, we show that it arises also for
Nf ¼ 4 and Nf ¼ 2.
For large enough values of Bmq, however, this inequality

is not in general present.3 To analyze the terms in Eqs. (16)–
(18) and determine the requisite size of Bmq, we first use
Eq. (13) to estimate the sizes of the operator coefficients:

c2;3 ∼ Λ−1

c4;5;6;7 ∼ Λ−2

c8;9 ∼ Λ−3: ð21Þ
Using Eq. (11), the right-hand side of Eq. (20) can be
estimated to be of order

4B2m2
qð2c4 − c5 − c6 þ 4c7Þ ∼M2

σ

�
Mσ

Λ

�
2α−2

: ð22Þ

Thus if α can be taken as small as unity, that is if Bmq can
be made as large as MσΛ, the unacceptable inequality
cannot be established based only on order of magnitude
estimates. We now consider more general features of the
EFT for each of the qualitatively different regions of Bmq.
Region (i): Near the chiral limit, where Bmq ≲m2

σ ∼ f2,
Eqs. (16)–(18) lead to M2

π ≲M2
σ ∼ F2 ∼ f2, corresponding

to α≳ 2 as shown in Fig. 1. The inequality M2
σ ≥ 3M2

π is
present. Near the upper boundary of this region, the
operator O1 contributes at the same level as the terms in
V0, while the additional operators are suppressed.
Region (ii): As Bmq is increased beyond m2

σ , the
quantities M2

π, M2
σ and F2 begin to grow and the operator

O1 begins to dominate the σ mass term in V0. This is a
transitional region.
Region (iii): Now suppose that Bmq becomes of order

f1=2Λ3=2. This is achievable even if Λ, taken here to be of
order the mass of the excluded vector state, increases
moderately with mq. We then have M2

π ∼M2
σ ∼ F2 ∼ fΛ.

This gives Bmq ∼MσΛ (α ≈ 1), the requisite order of
magnitude to avoid the inequality. At this level of chiral
symmetry breaking, one can see that each Lagrangian
operator in Table I contributes at the same level (∼f2Λ2) as
the dominant, quartic term in V0. It can also be seen that
symmetry-breaking operators with higher powers of M or
χ, which have D > 4 when α ¼ 1, contribute at a
lower level.

The key condition Bmq ∼MσΛ maintains itself even as
Bmq is taken larger, into the range f1=2Λ3=2 < Bmq ≪ Λ2.
As shown in Fig. 1, α stays close to 1 in this region. Here,
Eqs. (16)–(18) lead to M2

π ∼M2
σ ∼ F2 ∼ ðBmqÞ2=Λ2, and

each of the operators O2−9 contributes to the Lagrangian at
the same level ðBmq=ΛÞ4 as the quartic term in V0.
Operators with higher powers of M or χ are suppressed
to at least the level ðBmqÞ6=Λ8.
To summarize, the key condition Bmq ∼MσΛ is met

throughout the range f1=2Λ3=2 ≲ Bmq ≪ Λ2, where the EFT
remains within its range of validity. The picture here is
analogous to the Banks-Zaks limit in the loop expansion of
gauge theories. The leadingO1 term in VSB, being a relevant
operator, has been assigned a relatively small coefficient. The
other operators in Table I can then contribute comparably,
with additional operators being suppressed.
There is a price to pay for the relatively large amount of

explicit chiral symmetry breaking invoked here. The
dependence of the EFT masses and the decay constant F
on the fermion mass is governed by Eqs. (16)–(19). When
the O2−9 terms become comparable to the leading terms,
the form of this dependence becomes less evident.
Nevertheless, it should be possible to provide fits to the
smooth, monotonic behavior of the lattice data [1–7]. At
tree level, the EFT coefficients entering these fits (c2−9)
depend on the scale setting scheme used to express the
lattice data at each value of the quark mass. For a scheme in
which Λ varies with mq, it will be necessary to model the
quark mass dependence of Λ. There will also be quantum
loop corrections to consider. While our EFT is relatively
weakly coupled, with the strength of the quartic potential
far smaller than ð4πÞ2, the size of these corrections will
depend sensitively on Nf. Factors as large as OðN2

fÞ can
enhance the loop factors of order 1=ð4πÞ2, lifting the
effective loop expansion parameter closer to unity.

IV. CONCLUSIONS

We have constructed a generalized linear sigma model
as an EFT for nearly conformal gauge theories with

FIG. 1. Cartoon showing the dependence of the quantity α
[defined in Eq. (11)] on the quark mass. Roman numerals refer to
different quark mass regions described in the text below.

3The evasion of the inequality will depend on the signs as well
as the order of magnitude of the coefficients c4;5;6;7. These will be
determined by details of the underlying gauge theory.
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spontaneous chiral symmetry breaking. Such an EFT may
naturally accommodate several features indicated by recent
lattice studies of these systems, including a light flavor-
singlet scalar meson, significant dependence of the pion
decay constant Fπ on the quark mass mq [1–9], and the
possibility of relatively light flavored scalars a0 [7,26]. It is
also possible to remove the a0 states from the spectrum by
lifting their masses to infinity, as we explain in
Appendix A.
We investigated the linear sigma EFT by introducing a

spurion field to represent the explicit breaking of chiral
symmetry coming from the quark mass in the underlying
gauge theory. This enabled the various chiral symmetry
breaking operators to be enumerated and organized accord-
ing to their order in an expansion in a chiral symmetry
breaking parameter, proportional to the quark mass mq. To
further facilitate the organization of operators, a measure α
was employed, with values in the range α≳ 2 correspond-
ing to the approach to the chiral limit. We presented the
operator content of the leading-order chiral-breaking poten-
tial for Nf > 4, summarized in Table I. These operators
become leading when the chiral breaking is larger, corre-
sponding to the smaller value α ≈ 1.
We derived the tree level, leading-order expressions for

the EFT quantities F2,M2
π ,M2

σ , andM2
a, observing that the

σ mass and the π mass are related by Eq. (20). For small
chiral breaking, the suppressed contributions of the oper-
ators O4;5;6;7 imply that M2

σ ≥ 3M2
π , which is incompatible

with the lattice results in Refs. [1–9]. However, for
sufficiently large chiral symmetry breaking, but still in a
range where the EFT is under control (corresponding to α
being close to unity), this inequality is relaxed leading us to
conclude that the linear sigma EFT may indeed provide a
viable description of these mass-deformed, nearly con-
formal gauge theories.
Looking to the future, it will be important to improve the

lattice data for the SU(3) eight-flavor and other nearly
conformal gauge theories, moving as close as possible to
the chiral limit and minimizing lattice artifacts. One can
then fit the data to Eqs. (16)–(19), and estimate corrections
arising at the quantum-loop level of the EFT. If favored by
fits to lattice data, this EFT can be used to extrapolate the
data to the chiral limit.
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APPENDIX A: REMOVING
THE FLAVORED SCALARS

The flavored scalar states a0 do not affect the tree-level
relations shown in Eqs. (16)–(18), and these results con-
tinue to hold even if we remove the a0 from the EFT by
taking the limit ma → ∞. In this limit, the fields are
constrained to minimize the part of the potential propor-
tional toma. To derive this constraint, it is helpful to rewrite
the potential shown in Eq. (4) as

V0 ¼
m2

aNf

8f2
Tr

��
M†M −

1

Nf
Tr½M†M�1

�
2
�

þ m2
σ

8f2
½Tr½M†M� − f2�2; ðA1Þ

where a constant has been added to V0. To minimize the
first term in Eq. (A1), the matrix that is squared and traced
over should be set to zero, leading to a family of nonlinear
constraints

M†M ¼ 1

Nf
Tr½M†M�1: ðA2Þ

Both sides of Eq. (A2) are hermitian, and taking the trace
of each side does not lead to an independent constraint.
Therefore, imposing Eq. (A2) as a constraint removes
N2

f − 1 real field degrees of freedom.
The constraint Eq. (A2) can be conveniently expressed in

the field basis defined in Eq. (2),

σ2

Nf
1þ 2

σffiffiffiffiffiffi
Nf

p ai0T
i þ ai0a

j
0T

iTj ¼ σ2 þ ai20
Nf

1; ðA3Þ

independent of the π and η0 fields. The constraint is satisfied
by setting ai0 ¼ 0. The resulting Lagrangian with the
constraint imposed is

L ¼ σ2

2Nf
Tr½∂μΣ∂μΣ� þ 1

2
ð∂μσÞ2 þ

m2
σ

4
σ2

−
m2

σ

8f2
σ4 − VSBjai

0
¼0; ðA4Þ

where the pions are represented by the Σ field satisfying the
nonlinear constraint Σ†Σ ¼ 1. Despite couplings in Eqs. (3)
and (4) becoming large in the ma → ∞ limit, the resulting
tree-level potential for the σ Eq. (A4) is weakly coupled as
long as m2

σ=f2 is not too large. The Lagrangian Eq. (A4)
is only leading order, and should be supplemented by
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higher-dimensional operators inherited from the linear
sigma EFT. In general, these operators will also be needed
to cancel extra UV divergences that arise at loop level in the
ma → ∞ limit.

APPENDIX B: THE LEADING-ORDER
LAGRANGIAN FOR Nf ≤ 4

In this Appendix, we investigate whether for Nf ≤ 4 the
inequality M2

σ ≥ 3M2
π still arises for small Bmq, that is,

whether it remains necessary to take Bmq large, into
Region (iii) of Fig. 1. We show that this is the case for
Nf ¼ 2 and 4.
When Nf ≤ 4, operators that are invariant under

SULðNfÞ × SURðNfÞ transformations involving detM
become marginal or relevant and must be included in the
leading-order Lagrangian. We shall consider only new
operators that are invariant under the discrete parity sym-
metry Mðx⃗; tÞ → M†ð−x⃗; tÞ.
If the η0 state were included in the EFT, new determinant

operators which break UAð1Þ would provide it with mass.
However in the following we manually remove the η0 from
the EFT, as we did in Sec. II. We first consider the simpler
case of Nf ¼ 3 or 4, where only one new operator enters
the chirally symmetric part of the potential V0ðMÞ. We then
turn to the important case of Nf ¼ 2.

1. Nf = 3, 4

In this case, V0ðMÞ can be conveniently parametrized as

V0ðMÞ ¼ −
�
m2

σ

4
þ Nf − 4

4Nf
λf2

�
Tr½M†M�

þ
�
m2

σ −m2
a

8f2
þ λ

8

�
Tr½M†M�2

þ
�
m2

aNf

8f2
−
λ

4

�
Tr½M†MM†M�

−
λf4

2N2
f

�
fffiffiffiffiffiffi
Nf

p
�
−NfðdetM þ detM†Þ: ðB1Þ

As before, we choose the parametrization such that the
constants f, mσ and ma are the v.e.v. of the σ field and the
masses of the corresponding particles in the chiral limit.
This is the case for any value of the new dimensionless
constant λ. With the new determinant operator included,
Eqs. (5)–(8) are now modified to

0 ¼ F
f

�
F2

f2
− 1

�
þ λf2

Nfm2
σ

�
ðNf − 2ÞF

2

f2
− ðNf − 4ÞF

f

− 2

�
F
f

�
Nf−1

�
þ 2

fm2
σ

∂VSB

∂σ
����
σ¼F;πi¼ai

0
¼0

; ðB2Þ

M2
π ¼

∂2VSB

∂πi2
����
σ¼F;πi¼ai

0
¼0

; ðB3Þ

M2
σ ¼m2

σ

�
3

2

F2

f2
−
1

2

�
þ λf2

2Nf

�
3ðNf−2ÞF

2

f2
− ðNf−4ÞF

f

−2ðNf−1Þ
�
F
f

�
Nf−1

�
þ∂2VSB

∂σ2
����
σ¼F;πi¼ai

0
¼0

; ðB4Þ

M2
a ¼ m2

a
F2

f2
þm2

σ

2

�
F2

f2
− 1

�
þ λf2

2Nf

�
ðNf − 6ÞF

2

f2

− ðNf − 4ÞF
f
þ 2

�
F
f

�
Nf−1

�
þ ∂2VSB

∂ai20
����
σ¼F;πi¼ai

0
¼0

:

ðB5Þ

We now test for the presence of the inequality when the
chiral breaking is not large [below the threshold of Region
(iii)], where VSB is dominated by O1. We find the mass
relation

M2
σ ¼ m2

σ þ 3M2
π þ λf2

4 − Nf

Nf

��
F
f

�
Nf−2

− 1

�
: ðB6Þ

For Nf ¼ 4, the inequality is still present, meaning that
Bmq must again be taken large, into Region (iii) to avoid
the inequality. Intuitively, the new term in Eq. (B6)
vanishes because the new determinant term in V0 firstly
preserves chiral symmetry (making no contribution to M2

π)
and secondly contributes to the σ self-interaction only a
term of the form σ4.
For Nf ¼ 3, the inequality could be avoided even when

only the operator O1 is present, depending on the sign and
size of λ. In this case, it would not be necessary to evade it
by increasing Bmq and bringing the other operators of
Table I into the mix.

2. Nf = 2

The Nf ¼ 2 case is of particular relevance
because the nearly conformal SU(3) gauge theory with
Nf ¼ 2 sextet flavors has been studied on the lattice.
Here, even more determinant operators are marginal
and must be included in the leading-order Lagrangian.
We first consider scalars transforming in the complex
linear representation of SULð2Þ × SURð2Þ. A full set
of independent determinant operators to include in
V0ðMÞ is

detM þ detM†;

Tr½M†M�½detM þ detM†�:

The leading-order expressions for Mπ, Mσ and F are unaf-
fected by these operators and are given by Eqs. (5)–(7).
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Therefore the inequality is also unaffected. This is
because the determinant operators preserve chiral
symmetry and contribute only quadratic and quartic σ
self-interactions. For scalars transforming in the real

representation, there are no determinant operators that
are independent. The inequality M2

σ ≥ 3M2
π continues to

hold for quark masses in regions (i) and (ii) in this
case too.
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[28] M. Lévy, Currents and symmetry breaking, Nuovo Cimento
A 52, 23 (1967).

[29] J. Schechter and Y. Ueda, Symmetry breaking and spin-zero
mass spectrum, Phys. Rev. D 3, 168 (1971).

[30] J. Schechter and Y. Ueda, General treatment of the breaking
of chiral symmetry and scale invariance in the SU(3) sigma
model, Phys. Rev. D 3, 2874 (1971); Erratum 8, 987 (1973).

LINEAR SIGMA EFT FOR NEARLY CONFORMAL GAUGE … PHYS. REV. D 98, 114510 (2018)

114510-9

https://doi.org/10.1103/PhysRevD.89.111502
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.96.014508
https://doi.org/10.1103/PhysRevD.93.114514
http://arXiv.org/abs/1807.08411
https://doi.org/10.22323/1.187.0062
https://doi.org/10.22323/1.214.0244
https://doi.org/10.22323/1.251.0219
https://doi.org/10.1103/PhysRevD.93.075028
https://doi.org/10.1142/S0217751X17470066
https://doi.org/10.1103/PhysRevD.90.114502
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1051/epjconf/201817501017
https://doi.org/10.1103/PhysRevLett.118.022002
https://doi.org/10.1103/PhysRevD.96.054516
https://doi.org/10.1103/PhysRevD.97.054513
https://doi.org/10.1103/PhysRevD.98.014507
https://doi.org/10.22323/1.256.0242
https://doi.org/10.22323/1.256.0242
https://doi.org/10.1051/epjconf/201817508024
https://doi.org/10.1051/epjconf/201817508024
https://doi.org/10.1016/j.nuclphysb.2012.09.005
https://doi.org/10.1016/j.nuclphysb.2012.09.005
https://doi.org/10.1103/PhysRevD.95.036005
https://doi.org/10.1103/PhysRevD.95.036005
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1103/PhysRevD.98.056025
https://doi.org/10.1103/PhysRevD.98.056025
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP03(2018)039
https://doi.org/10.1051/epjconf/201817508015
https://doi.org/10.1088/1126-6708/2006/12/034
https://doi.org/10.1007/BF02739271
https://doi.org/10.1007/BF02739271
https://doi.org/10.1103/PhysRevD.3.168
https://doi.org/10.1103/PhysRevD.3.2874
https://doi.org/10.1103/PhysRevD.8.987


[31] Y. Meurice, Linear sigma model for multiflavor gauge
theories, Phys. Rev. D 96, 114507 (2017).

[32] D. De Floor, E. Gustafson, and Y. Meurice, Mass splittings
in a linear sigma model for multiflavor gauge theories, Phys.
Rev. D 98, 094509 (2018).

[33] A. Pich, Chiral perturbation theory, Rep. Prog. Phys. 58,
563 (1995).

[34] M. Gell-Mann, R. J. Oakes, and B. Renner, Behavior of
current divergences under SUð3Þ × SUð3Þ, Phys. Rev. 175,
2195 (1968).

T. APPELQUIST et al. PHYS. REV. D 98, 114510 (2018)

114510-10

https://doi.org/10.1103/PhysRevD.96.114507
https://doi.org/10.1103/PhysRevD.98.094509
https://doi.org/10.1103/PhysRevD.98.094509
https://doi.org/10.1088/0034-4885/58/6/001
https://doi.org/10.1088/0034-4885/58/6/001
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195

