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We combine techniques previously utilized to study flux tube field density profiles and to study the
excited spectrum of the gluonic fields produced by a static quark-antiquark pair. Working with pure gauge
SU(3) fields discretized in a lattice, we utilize Wilson loops with a large basis of gluonic spacelike Wilson
lines to include different excitations of the quark-antiquark flux tube. To increase the signal over noise ratio,
we use the multihit technique in the temporal Wilson lines and the APE smearing in spatial Wilson lines.
The number of gluonic operators combined with the space points where we compute the flux tube densities
turns out to be very large, and we resort to GPUs and to CUDA codes. Computing the effective mass plot
from the diagonalized correlation matrix, we separate the excitations with different two-dimensional
angular momentum, parity, and radial quantum numbers. We then compute the color field density profiles
for all the components of the colour electric and colour magnetic fields. We analyze our results for the first
excitations of the flux tube and search for signals of novel phenomena beyond the Nambu-Goto string
model, such as a longitudinal mode or an explicit gluon.

DOI: 10.1103/PhysRevD.98.114507

I. INTRODUCTION

Understanding the confinement of color remains a main
theoretical problem of modern physics. Its solution could
also open the door to other unsolved theoretical problems.
One of the evidences of confinement, where we may search
for relevant details to understand it, is in the QCD flux
tubes [1]. Here we study quantitatively the excitations of
the QCD flux tube with lattice QCD techniques, extending
the work presented in Ref. [2].
Experimentally, we only have indirect evidence of the

flux tubes, through the hadron spectrum and Regge
trajectories [3] who point to a linear confining potential
[4,5]. A direct evidence for flux tube or gluonic excitations
would be the confirmed observation of hybrid mesons. A
reliable quantitative lattice QCD prediction of flux tubes
will assist our experimental colleagues in discovering these
exotic mesons [6,7], where the gluon degrees of freedom
(d.o.f.) would excite quantum numbers inaccessible to the
quark d.o.f.

Presently, the qualitative understanding of flux tubes is
quite developed, mostly based in string models. The
dominant behavior of the flux tubes is clearly stringlike,
with a single scale σ. The main analytical model utilized in
the literature to explain the behavior of the QCD flux tubes
is the Nambu-Goto bosonic string model [8]. It assumes
infinitely thin strings, with transverse quantum fluctuations
only. The quantum fluctuations predict not only a zero
mode width of the ground state flux tube, increasing with
distance [9], but also an infinite tower of quantum exci-
tations [10,11]. Both effects have been observed by lattice
QCD computations [12–17], indeed confirming the string
dominance of the QCD flux tube. The stringlike behavior
partly obscures the details of confinement or of other
possible hadronic phenomena, and precise lattice QCD
computations are necessary to go beyond the string models.
Recently, our lattice QCD collaboration PtQCD studied

the zero temperature ground state flux tube of pure gauge
QCD, and found evidence for a penetration length λ [18], as a
second scale other than the string tension σ, contributing to
the color fields density profile of the flux tube.
Another instance where the flux tube deviates from the

string model is at short quark-antiquark distances, where
the fields produced by the charges diverge, and where
lattice QCD has shown the potential becomes dominated by
perturbative QCD [19].
A lattice QCD evidence for explicit gluon d.o.f. or for

longitudinal quantum excitations would also go beyond the
Nambu-Goto string model.
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In Sec. II we thus combine different lattice QCD tech-
niques adequate to study flux tube field density profiles
[18,20] and to study the excited spectrum of the gluonic
fields [12–17] produced by a static quark-antiquark pair.
Working with pure gauge SU(3) fields discretized in a
lattice, we utilize Wilson loops with a large basis of gluonic
spacelike Wilson lines to include different excitations of the
quark-antiquark flux tube. We combine our operators, to
block diagonalize our basis the angular momentum and
parity quantum numbers of the D∞h point group. We
numerically diagonalize the remaining blocks of the corre-
lation matrix and compute the corresponding effective mass
plots. We then compute the field density profiles for all the
components of the color electric and color magnetic fields.
We also discuss our computational efficiency. The number
of gluonic operators combined with the space points where
we compute the flux tube densities turn out to be very large,
andwe resort to computations in GPUs and to CUDA codes.
In Sec. III we show, for the quantum numbers where the

signal is clear, the results of our computations for the spectra
and the field densities of our flux tubes. Finally in Sec. IV,we
analyze our results for the first excitations of the flux tube
and search for signals of novel phenomena beyond the
Nambu-Goto stringmodel; in Sec. Vwe conclude our work.

II. LATTICE QCD FRAMEWORK TO COMPUTE
THE FLUX TUBES

A. Our 33 operator basis to produce the different
excited quantum numbers

In the study of the flux tubes, we utilize a basis of spacial
Wilson line operators, defined in Fig. 1, sufficiently
complete to include different types of flux tube excitations
[15]. Since we have static charges, our temporal Wilson
lines are straight, and they close the Wilson loop. As usual
we choose our frame such that the charge axis is the z axis,
and the origin is set at the midpoint between the quark and
the antiquark, with distance R. The x and y axis are in the
two perpendicular directions.
Our basis is composed by four kinds of operators.

(i) The direct operator V0.
(ii) The eight open-staple operators VL

x , VL
y , VL

x̄ , V
L
ȳ , V

R
x ,

VR
y , VR

x̄ and VR
ȳ .

(iii) The sixteen open-staple two-direction operators VL
xy,

VL
xȳ, V

L
x̄y, V

L
x̄ ȳ, V

L
yx, VL

yx̄, V
L
ȳx, V

L
ȳ x̄, V

R
xy, VR

xȳ, V
R
x̄y,

VR
x̄ ȳ, V

R
yx, VR

yx̄, V
R
ȳx and VR

ȳ x̄.
(iv) The eight closed-staple operators similar to the

open-staple ones WL
x , WL

y , WL
x̄ , W

L
ȳ , W

R
x , WR

y , WR
x̄

and WR
ȳ .

The bar over a coordinate index means that there is displace-
ment in the negative axis direction. The L (side of the static
antiquark) and R (side of the static quark) labels indicate
whether the staple is in the left or in the right of the origin.
All our staples in the operators are long, they are

implanted in one half of the Wilson line, with length
R=2. We opt for long operators because we want them to
represent the first excitations of the flux tube. While V0 has
the minimum number of links, the one direction staple
operator has two more links, the two direction operator has
four more links and the closed-staple operator W has two
plus R=a more links.
This amounts to 33 different operators. Since the

computation of the flux tube profiles is extremely demand-
ing, although it would be interesting to use a more complete
basis with more operators, we limit our basis to the present
33 operators.
To further limit the size of the correlation matrix, we first

block diagonalize it. With linear combinations of our
operators, we construct operators with a definite symmetry,
since operators in different representations do no mix.
The symmetry group of our flux tubes, with two static

sources, is equivalent to the one of the molecular orbitals of
homonuclear diatomic molecules. It is the point group
denominated D∞h. We thus utilize the standard quantum
number notation of molecular physics, already adopted in
the previous studies of QCD flux tube excitations [12–17],
see also the recent Ref. [21]. D∞h has three symmetry
subgroups, and they determine three quantum numbers.

(i) Two-dimensional rotation about the charge axis
The two-dimensional rotation about the charge

axis corresponds to the quantum angular number,
projected in the unit vector of the charge axis
Λ¼jJg ·êzj. The capital Greek letters Σ;Π;Δ;Φ;…
indicate as usually states with Λ ¼ 0; 1; 2; 3;…,
respectively. The notation is reminiscent of the
s; p; d… waves in atomic physics. In the case of
two-dimensional rotations there are only two projec-
tions Jg · êz ¼ �Λ.

(ii) Parity inversion about the median point
The permutation of the quark and the antiquark

static charges is equivalent to a combined operations
of charge conjugation and spatial inversion about the
origin. Its eigenvalue is denoted by ηCP. States with
ηCP ¼ 1ð−1Þ are denoted by the subscripts g (u),
short notation for gerade (ungerade).

FIG. 1. Examples of the paths from the quark to the antiquark
used to construct the gauge field operators.
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(iii) Additional parity
Moreover there is a third quantum number,

different from the phase corresponding to a two-
dimensional p-wave. Due to the planar, and not
three-dimensional, angular momentum there is an
additional label for the s-wave Σ states only. Σ states
which are even (odd) under the reflection about a
plane containing the molecular axis are denoted by a
superscript þð−Þ.

With these quantum numbers, the energy levels of the
flux tubes are labeled as Σþ

g ;Σ−
g ;Σþ

u ;Σ−
u ;Πu;Πg;Δg;Δu…

We illustrate the simplest quantum numbers in Fig. 2. As a
result of the different symmetries and respective quantum
numbers, we rearrange our initial 33 operators into the
following operators.
For the ground state quantum numbers Σþ

g , we have four
operators:

A0;1 ¼ V0

A0;2 ¼
1

2
ffiffiffi
2

p ðVL
x þ VL

y þ VL
x̄ þ VL

ȳ þ VR
x þ VR

y þ VR
x̄ þ VR

ȳ Þ

A0;3 ¼
1

4
ðVL

xy þ VL
xȳ þ VL

x̄y þ VL
x̄ ȳ þ VL

yx þ VL
yx̄ þ VL

ȳx þ VL
ȳ x̄ þ VR

xy þ VR
xȳ þ VR

x̄y þ VR
x̄ ȳ þ VR

yx þ VR
yx̄ þ VR

ȳx þ VR
ȳ x̄Þ

A0;4 ¼
1

2
ffiffiffi
2

p ðWL
x þWL

y þWL
x̄ þWL

ȳ þWR
x þWR

y þWR
x̄ þWR

ȳ Þ ð1Þ

We have four operators for the quantum numbers Πu, with projection Jg · êz ¼ þ1:

A4;1 ¼
1

2
ffiffiffi
2

p ðVL
x þ iVL

y − VL
x̄ − iVL

ȳ þ VR
x þ iVR

y − VR
x̄ − iVR

ȳ Þ

A4;2 ¼
1

4
ðVL

xy þ VL
xȳ − VL

x̄y − VL
x̄ ȳ þ iVL

yx þ iVL
yx̄ − iVL

ȳx − iVL
ȳ x̄ þ VR

xy þ VR
xȳ − VR

x̄y − VR
x̄ ȳ þ iVR

yx þ iVR
yx̄ − iVR

ȳx − iVR
ȳ x̄Þ

A4;3 ¼
1

4
ðVL

xy − VL
xȳ þ VL

x̄y − VL
x̄ ȳ − iVL

yx þ iVL
yx̄ − iVL

ȳx þ iVL
ȳ x̄ þ VR

xy − VR
xȳ þ VR

x̄y − VR
x̄ ȳ − iVR

yx þ iVR
yx̄ − iVR

ȳx þ iVR
ȳ x̄Þ

A4;4 ¼
1

2
ffiffiffi
2

p ðWL
x þ iWL

y −WL
x̄ − iWL

ȳ þWR
x þ iWR

y −WR
x̄ − iWR

ȳ Þ ð2Þ

For the quantum numbers Σþ
u , we have three operators:

A2;1 ¼
1

2
ffiffiffi
2

p ðVL
x þ VL

y þ VL
x̄ þ VL

ȳ − ðVR
x þ VR

y þ VR
x̄ þ VR

ȳ ÞÞ

A2;2 ¼
1

4
ðVL

xy þ VL
xȳ þ VL

x̄y þ VL
x̄ ȳ þ VL

yx þ VL
yx̄ þ VL

ȳx þ VL
ȳ x̄ − ðVR

xy þ VR
xȳ þ VR

x̄y þ VR
x̄ ȳ þ VR

yx þ VR
yx̄ þ VR

ȳx þ VR
ȳ x̄ÞÞ

A2;3 ¼
1

2
ffiffiffi
2

p ðWL
x þWL

y þWL
x̄ þWL

ȳ − ðWR
x þWR

y þWR
x̄ þWR

ȳ ÞÞ ð3Þ

These are the states with lowest energy, Σþ
g , Πu and

Σþ
u , illustrated in Fig. 2. In what concerns the combinations

of operators with the remaining quantum numbers
Σ−
g ;Σ−

u ;Πg;Δg;Δu…, we also studied them. Due to their
higher complexity and energy and we did not get a clear
enough signal for the respective flux tube. Thus we do not

find relevant to list their respective combination of oper-
ators here. A larger basis of operators, more configurations
and more effective noise reduction techniques will be
necessary to study them. However they require computa-
tional power beyond our resources and we leave this for
the future.

FIG. 2. Sketches of the simplest quantum numbers we can
excite in a flux tube, labeled by the point group representations of
a homonuclear diatomic molecule.
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B. Computation of the excited state spectra

We start by utilizing the correlation matrix hWklðtÞi to
compute the energy levels of the excited states, as done
previously in the literature. Now the subindices k and l
stand for the spacial operators in the operator basis defined
in Sec. II A, denoted Ok. The spacial operators are con-
nected by temporal Wilson lines L,

WklðtÞ¼Okð−R=2;R=2;−t=2ÞLðR=2;−t=2;t=2Þ
×O†

l ðR=2;−R=2;t=2ÞL†ð−R=2;t=2;−t=2Þ: ð4Þ
The statistical average h� � �i is performed over our ensem-
ble of gauge link configurations.
Notice each matrix element corresponds to an evolution

operator in Euclidean space, where all energy levels Ei
contribute, with coefficients depending on how close the
operator is to the actual physical states, with the Euclidean
damping factor expð−EitÞ.
The first step to compute the energy levels is to

diagonalize the correlation matrix hWklðtÞi, for each time
extent t of the Wilson loop, and get a set of time dependent
eigenvalues λiðtÞ. With the time dependence, we study the
effective mass plot

Ei ≃ − log
λiðtþ 1Þ
λiðtÞ

; ð5Þ

and search for clear plateaux consistent with a constant
energy Ei in intervals t ∈ ½tiini; tifin� between the initial and
final time of the plateau. The different energies levels Ei,
should correspond to the ground state and excited states of
the flux tube. If our operator basis is good enough, then E0

is extremely close to the ground state energy, E1 is very
close to the first excited state, etc.
Moreover, with the diagonalization we also obtain the

eigenvector operators corresponding to the ground state,
first excitation, etc. We get a linear combination of our
initial operators,

Õ0 ¼ c01O1 þ c02O2þ � � �
Õ1 ¼ c11O1 þ c12O2þ � � �

� � � ð6Þ

Notice this result must be interpreted with a grain of salt.
The eigenvector operators Õi do not exactly correspond
to the respective state as in quantum mechanics, but they
get the clearest possible signal to noise ratio, among our
operator basis.
The eigenvector operators Õi and the respective corre-

lation matrix can be used in the same time interval t ∈
½tiini; tifin� ideal for the effective mass plateaux of the energy
spectrum. In Fig. 3 and Table I, we show the effective mass
plots, in the case of the excited state Σþ

g
� (eigenvalue 2 of

our correlation matrix).

C. Computation of the chromofields in the flux tube

We start by reviewing the technique of Ref. [18] since we
utilize it to compute the chromomagnetic fileds. Let us
temporarily assume we have a simple quark-antiquark
Wilson loop W. As in Ref. [18], the central observables
that govern the event in the flux tube can be extracted from
the correlation of a plaquette □μν with the Wilson loop W,

fμνðR; rÞ ¼
β

a4

�hWðR; tÞ□μνðrÞi
hWðR; tÞi − h□μνðrÞi

�
ð7Þ

where r ¼ ðx; y; zÞ denotes the spacial distance of the
plaquette from the center of the line segment connecting

FIG. 3. Effective mass plots for the potential V(R) of the Σþ
g
�

excited state. The potential and distance are in units of lattice
spacing a.

TABLE I. Computing the potential V(R) of theΣþ
g
� excited state

(eigenvalue 2 of our correlation matrix) with the effective mass
plots. The potential and distance are in units of lattice spacing a.

R V(R) err χ2=dof t2ini t2fin

2 1.17984 0.00236283 0.35667 5 11
3 1.17755 0.00202011 0.316707 5 13
4 1.17899 0.00213264 0.707024 5 13
5 1.18287 0.00474316 0.843876 5 12
6 1.1832 0.00929156 0.843143 6 9
7 1.19658 0.0114933 0.760257 6 9
8 1.20536 0.0207695 1.29409 6 12
9 1.21672 0.0188055 0.85246 6 11
10 1.23615 0.00494562 0.522346 6 10
11 1.24705 0.00467709 0.369248 6 10
12 1.26087 0.00771923 0.189831 6 8
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the quark sources, R is the quark-antiquark separation and t
is the time extent of the Wilson loop. Our plaquette is
defined as,

□μν

�
rþ μþ ν

2

�
¼ 1 −

1

3
ReTr½UμðrÞUνðrþ μÞ

×U†
μðrþ νÞU†

νðrÞ�: ð8Þ
Expanding it in powers of the small lattice spacing a
we get,

□μν ¼ 1 −
1

3
ReTr exp

�
iga2

X
c

Fc
μνTc þOða3Þ

�
¼ a4

2β

�X
c

Fc
μνFc

μν þOðaÞ
�
: ð9Þ

Notice in non-Abelian gauge theories, such as SU(3), the
electric and magnetic field components are not gauge
invariant since they depend on the color index c. We have
to go up to order a4 to find our first nonvanishing gauge
invariant term in the plaquette expansion, and it is the square
of a component of the electric ormagnetic fields. For instance
Ex

2 ¼ P
cðEx

cÞ2 is gauge invariant, while Ex
c is not.

Therefore, using all the different plaquette orientations
ðμ; νÞ ¼ ð2; 3Þ, (3, 1), (1, 2), (1, 4), (2, 4), (3, 4), we can
respectively relate the six components in Eq. (7) to the
components of the chromoelectric and chromomagnetic
fields,

fμν → ðhB2
xi; hB2

yi; hB2
zi; hE2

xi; hE2
yi; hE2

ziÞ: ð10Þ
Notice these are the Euclidan space components. In
Minkowski spacewemust include a− phase in themagnetic
field density, B2

i → −B2
i . With the field densities it is then

trivial to compute the total action (Lagrangian) density,
hLi ¼ 1

2
ðhE2i − hB2iÞ.

Now, to extend Eq. (7) for the study of excited flux tubes,
we simply have to replace the Wilson loopW by W̃i, where
the spacial links are given by the eigenvector operators Õi
of Eq. (6).
The eigenvector operators Õi and the respective

Wilson loop eWi can be used in the same time interval
t ∈ ½tini; tfin� ideal for the effective mass plateaux of the
energy spectrum.

D. Configuration ensemble and code efficiency

We compute our results using 1199 configurations
for a fixed lattice volume of 243 × 48 and β ¼ 6.2. Our
figures are presented in lattice spacing units of a, with
a ¼ 0.07261ð85Þ fm or a−1 ¼ 2718ð32Þ MeV. The quark
and antiquark are located at (0, 0, −R=2) and (0, 0, R=2) for
R between 6 and 10 in lattice spacing units.
Moreover, in order to improve the signal over noise ratio

[18], we use the multihit technique in the temporal Wilson

lines and the APE smearing [22] in the spatial Wilson lines.
The multihit technique, [23,24], replaces each temporal
link by its thermal average,

U4 → Ū4 ¼
R
dU4U4eβTr½U4F†�R
dU4eβTr½U4F†� : ð11Þ

Here it is not possible to utilize the extended multihit
technique as defined in Ref. [18], because our operators in
the spatial Wilson line have a broader structure.
The number of gluonic operators combined with the

number space points where we compute the flux tube
densities turns out to be very large, requiring a large
computer power. We thus write all our codes in CUDA
and run them in computer servers with NVIDIAGPUs. The
computation of the chromofields are very computer inten-
sive and due to the GPU limited memory this requires an
intensive use of atomic memory operations.
Moreover we simplify the possible number of operators.

Compared with Ref. [16,17] who specialized in computing
the spectrum, we have to utilize a smaller set of operators.
We also limit the number of intercharge distances, we
compute the fields for intercharge distances of R ¼ 6a, 8a,
10a. In string tension units, we have a ¼ 0.161013=

ffiffiffi
σ

p
,

for instance 6a ¼ 0.966077=
ffiffiffi
σ

p
.

For example, to calculate the field densities, per con-
figuration and per flux tube state, our CUDA code takes
approximately 70 min to run on a GeForce GTX TITAN
3.5cc (architecture Kepler) and approximately 50 on a
GeForce GTX TITAN X 5.2cc (architecture Maxwell).

III. RESULTS

In Fig. 4 we show our results for the flux tube spectra, as
a function of the charge distance R. The distance and
energy are shown in string tension lattice unit

ffiffiffi
σ

p
.

The ground state Σþ
g is the familiar static-quark potential

[18]. The lowest-lying excitation is the Πu, it has two-
dimensional angular momentum Jg · êz ¼ �1. Then the
next excitation is the first radial excitation of the funda-
mental state, Σþ

g
�. The only other quantum number with

clear results for the flux tube is the s-wave with inversion
parity, corresponding to the first excited harmonic Σþ

u , as
shown in Fig. 2. For all remaining quantumnumbers our flux
tubes have larger error bars, and with our present computa-
tional resources we abandon the pursue of their study.
For these quantum numbers, we get as many excited

levels with clear plateaux in the effective mass plots as the
number of operators we have. However, we should trust
less states than the ones we observe clearly. We only accept
a number of states smaller than half of the respective
number of operators, and the respective spectrum is shown
in Fig. 4. For instance in quantum mechanics, when using a
limited basis of states as a variational set to compute the
energy of excited states in a spectrum, a rule of thumb is to
trust only circa the lowest half of the spectrum (in Ref. [25],
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among 11 to 12 states, only the lightest 6 are trusted). Just
to illustrate why we must exclude the remaining states, in
Fig. 5 we show also the states we discard. Notice the
discarded states already have their spectrum saturated.
Moreover these discarded states do not follow, at larger

distances, the expected spectrum form the Nambu-Gotto
stringmodel [26,27], expressed in theArvis potential [11,28],

VnðRÞ ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2π

σ

�
n −

D − 2

24

�s
; ð12Þ

where an infinite tower of excitations is predicted. Our
accepted five states correspond, at larger distances, to the
Arvis potential with n ¼ 0, 1, 2, 3.

FIG. 5. Flux tube spectra VðRÞ as a function of the charge
distance R. We now show all the spectra with clear plateaux in the
effective mass plots, including the spectra of Fig. 4 and the levels
we discard.

FIG. 6. Lagrangian L, E2 and B2 field densities in the
charges axis. We show the ground state and the excited
states respectively for the quantum numbers Σþ

g , Πu

and Σþ
u . The distance and energy are shown in string tension

units
ffiffiffi
σ

p
.

FIG. 4. Flux tube spectra VðRÞ as a function of the charge
distance R. The distance and energy are shown in string tension
units

ffiffiffi
σ

p
. We only show the spectra of the quantum numbers Σþ

g ,
Πu and Σþ

u , producing the clearest signals for the flux tube.
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In what concerns comparing with the spectra of
Ref. [16,17], our states have similar energies. The only
difference is in our highest states in the spectrum, our Π�

u is
slightly heavier than our Σþ

u , whereas Ref. [16,17] finds Σþ
u

slightly lighter than Π�
u. Nevertheless, in both studies the

differences between the spectrum of these two states are
very small.
Thus, in the quantum number Σþ

g we accept two states, in
the quantum number Πu we accept two states and in the
quantum number Σþ

u we accept only one state.
Our results for the flux tubes are presented in Figs. 6, 7,

8, 9, 10 and 11. In all these figures we show the flux tubes

FIG. 7. Lagrangian L, E2 and B2 field densities in the mediator
plane. We show the ground state and the excited states respec-
tively for the quantum numbers Σþ

g , Πu and Σþ
u . The distance and

energy are shown in string tension units
ffiffiffi
σ

p
.

FIG. 8. Chromoelectric Ek2 ¼ Ez
2 and E⊥2 ¼ Ex

2 þ Ey
2 com-

ponent field densities in the charges axis. We show the ground
state and the excited states respectively for the quantum numbers
Σþ
g , Πu and Σþ

u . The distance and energy are shown in string
tension units

ffiffiffi
σ

p
.
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for the ground state Σþ
g and its first excitation (s-wave,

parityþ for the charge conjugation and inversion) and its
excitations, the flux tubes for the Πu and its first excitation
(p-wave, parity—for the charge conjugation and inversion)
and the flux tubes for the Σþ

u (s-wave, parity—for the
charge conjugation and inversion).
In particular we show in Fig. 6 and in Fig. 7 the

Lagrangian field density L, the electric field density E2

and the magnetic field density B2 respectively, both in the
charges axis and in the mediator plane.
In Fig. 8 we show the components of chromoelectric

field density in the charges axis, in Fig. 9 the components
of the chromomagnetic field density in the charges axis,

in Fig. 10 the components of the chromoelectric field
density in the mediator plane, and in Fig. 11 the compo-
nents of the chromomagnetic field density in the mediator
plane. We separate the parallel Ek2¼Ez

2, Bk2¼Bz
2 and

the perpendicular E⊥2 ¼ Ex
2 þ Ey

2, B⊥2 ¼ Bx
2 þ By

2

components.
In Figs. 12 and 13 we analyze in 3D plots the density

profile in the whole mediator plane.

IV. ANALYSIS OF THE FLUX TUBES

In this first exploratory study of flux tubes, we analyze
the difference between quantum numbers Σ=Π and g=u.

FIG. 10. Chromoelectric Ek2 and E⊥2 component field den-
sities in the mediator plane. We show the ground state and the
excited states respectively for the quantum numbers Σþ

g , Πu and
Σþ
u . The distance and energy are shown in string tension

units
ffiffiffi
σ

p
.

FIG. 9. Chromomagnetic Bk2 and B⊥2 component field den-
sities in the charges axis. We show the ground state and the
excited states respectively for the quantum numbers Σþ

g , Πu and
Σþ
u . The distance and energy are shown in string tension

units
ffiffiffi
σ

p
.
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Notice how the first excited state Σþ
g
� differs from the

ground state Σþ
g . Its profile in the mediator plane has an

extra node, as expected in a radial excitation.
We now search for evidences of phenomena beyond the

bosonic Nambu-Goto string model.

A. Fields in the charges neighborhood

The clearest difference between the quantum string
model and the flux tubes is in the case of short intercharge
distance R. Not only the ground state potential has no
tachyon, unlike the Arvis potential, but also the fields of the
charges are very large. This is consistent with the onset of
perturbative-like QCD at short distances [19] and with
Coulomb potentials.

B. Densities E2⊥, E2
k, B

2⊥, B2
k

Unlike the bosonic string model, the fields in the flux
tubes have several components. We show the different
components, the parallel Ek2 ¼ Ez

2, Bk2 ¼ Bz
2 and the

perpendicular E⊥2 ¼ Ex
2 þ Ey

2, B⊥2 ¼ Bx
2 þ By

2 com-
ponents in Figs. 8, 9, 10, and 11.
In Figs. 8 and 9 it is clear that, in the neighborhood of the

charges, each one of the squared Cartesian components of
the chromoelectric fields E2

x, E2
y, E2

z has the same magni-
tude. Besides, the squared Cartesian components of the
chromomagnetic fields B2

x, B2
y, B2

z have a value of approx-
imately 1=2 of the chromoelectric ones.
To study in more detail the flux tube, we also analyze the

mediator plane in Figs. 10 and 11. There, the parallel
chromoelectric field density Ek2 is of the order of the

FIG. 11. Chromomagnetic Bk2 and B⊥2 component field den-
sities in the mediator plane. We show the ground state and the
excited states respectively for the quantum numbers Σþ

g , Πu and
Σþ
u . The distance and energy are shown in string tension units

ffiffiffi
σ

p
.

FIG. 12. 3D plots of the Lagrangian L, E2 and B2 field
densities in the mediator plane, for an intercharge distance
R ¼ 10a ¼ 1.610=

ffiffiffi
σ

p
. We show the ground state respectively

for the quantum numbers Σþ
g (top), Πu (center) and Σþ

u (bottom).
The distance and energy are shown in string tension units

ffiffiffi
σ

p
.

The magnitude of the densities is the same of Fig. 7.
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perpendicular one E⊥2, although the perpendicular com-
ponent has two Cartesian coordinates.
This goes approximately in the direction of the dual

superconductor picture, where it would be expected that the
Ek2 would absolutely dominate.
However the dual superconductor picture is not exact,

since all different components are nonvanishing, including
a large chromomagnetic B⊥2.

C. Searching for transverse versus longitudinal
degrees of freedom

An effect beyond the string model would be the proof
of longitudinal vibration modes. It is subtle to detect
these modes.
We decided, for a first study with long nonlocal modes,

to use in this work the operators of Fig. 1, with a length of
R=2. In this framework, we designed the circular operators
WL

x ;WR
x ;WL

y… to enhance the signal of the longitudinal
d.o.f., exciting the components B⊥, correlated in principle
with the longitudinal Ek (the largest components as dis-
cussed in subsection IV B). However these operators did
not produce any observable improvement in any of the flux
tubes we measured.
Another possible evidence of longitudinal waves would

be in longitudinal quantum fluctuations. There we have
some evidence in the Σþ

u flux tubes. These flux tubes have

parity − and thus the field components should vanish in the
median point of the flux tube, at z ¼ 0, as illustrated in
Fig. 2. However the squared Cartesian components E2

i and
B2
i do not vanish in the mediator plane, and this may be

interpreted as an evidence for longitudinal fluctuations of
the flux tube. This is clear in Fig. 12, where the third set of
3D plots, for the Σþ

u flux tubes do not vanish in the
mediator plane.
As a final evidence, in Figs. 10 and 11, the density for the

parallel components Ek2, Bk2 do not vanish. Notice we
measure not only the fields but also their fluctuations. If the
flux tube would correspond to a transverse standing wave,
the parallel components Ek2, Bk2 should vanish as they
correspond to longitudinal fluctuations.

D. Searching for the evidence of an explicit gluon

An explicit gluon [20] would clearly go beyond the
bosonic string model. Such a particle, a vector with parity−
is expected to be visible in the flux tube with quantum
numbers Πu.
A departure from the most common profile of the flux

tubes, in general dominated by a Gaussian or exponential-
like profile is indeed observed in the channels Πu and Π�

u,
as shown in Figs. 12 and 13.
For these cases, there is a clear difference in the magnetic

field component, which squared field density −hB2i is
negative in the median point, as we show in Fig. 11.
Notice this is again in contradistinction with a transverse

standing p-wave, which should vanish in the origin. The
only way for an angular momentum Λ ¼ 1 not to vanish in
the origin is to have a particle with a spin, since the wave
function with a finite orbital angular momentum should
vanish in the z axis, as illustrated in Fig. 2.
Thus our results suggest, among the possible compo-

nents of the Πu and Π�
u states, the component with a

dynamical gluon is dominant. These states are essentially
hybrid states, with a static quark, a static antiquark and a
dynamical gluon.

V. CONCLUSIONS AND OUTLOOK

We succeed in showing the techniques of Ref. [18] to
study the field densities can be extended to excited flux
tubes. We improve the work of Ref. [2] and clarify a
discrepancy it had with Ref. [20].
We compute the potentials and flux tube densities for

several excitations of the pure SU(3) flux tubes produced
by two static 3 and 3̄ sources. We consider radial excita-
tions of the ground state Σþ

g , the first axial parity excitation
Σþ
u and the first angular excitation Πu. We select the main

excited states, up to three states, in each quantum number.
In our results, Figs. 6, 7, 8, 9, 10 and 11, we compare the

chromoelectric and the chromomagnetic field densities,
both in the mediator plane and in the charge axis. We
analyze several aspects of the flux tubes as well in our 3D

FIG. 13. 3D plots of the Lagrangian L, E2 and B2 field
densities in the mediator plane, for an intercharge distance
R ¼ 10a ¼ 1.610=

ffiffiffi
σ

p
. We show the excited states Σþ

g
� (top),

Πu
� (bottom), whereas the ground states are shown in Fig. 12.

The distance and energy are shown in string tension units
ffiffiffi
σ

p
.

The magnitude of the densities is the same of Fig. 7.
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Figs. 12 and 13, comparing with the bosonic Nambu-Goto
string model.
In particular we find evidences the flux tube cannot be

described by a string model with transverse modes only,
and we also find evidence for hybrid Πu and Π�

u states,
where an explicit gluon is coupled to the flux tube.
As an outlook, we plan to continue this first study of

SU(3) flux tubes, when we will be able to use much more
computational power. It is important to be able to compute
flux tubes for a larger operator basis and more quantum
numbers. It will also be interesting to further clarify the
questions raised by our results, as analyzed in Sec. IV. Also
notice the square of the chromoelectric or chromomagnetic
fields and the Lagrangian densities operators suffer from
ultraviolet divergences in the lattice gauge field theories,

therefore the absolute magnitude of their expectation values
should depend on the lattice spacing a. It is also important
to extrapolate to the infinite volume limit. Since all these
studies will require computational power beyond our
resources, we leave it for the future.
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