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While lattice QCD allows for reliable results at small momentum transfers (large quark separations),
perturbative QCD is restricted to large momentum transfers (small quark separations). The latter is
determined up to a reference momentum scale Λ, which is to be provided from outside, e.g., from
experiment or lattice QCD simulations. In this article, we extract ΛMS for QCD with nf ¼ 2 dynamical
quark flavors by matching the perturbative static quark-antiquark potential in momentum space to lattice
results in the intermediate momentum regime, where both approaches are expected to be applicable.
In a second step, we combine the lattice and the perturbative results to provide a complete analytic
parametrization of the static quark-antiquark potential in position space up to the string breaking scale.
As an exemplary phenomenological application of our all-distances potential, we compute the bottomo-
nium spectrum in the static limit.
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I. INTRODUCTION

This article finalizes our attempts started in [1], and
subsequently improved in [2], to determine ΛMS by
matching the static quark-antiquark potential obtained from
perturbation theory to lattice data. While this endeavor
seems almost trivial at first sight, it actually is not and
requires us to deal with several problems and tricky issues.
To keep our series of articles self-contained and to allow for
a fair comparison of the different approaches and their
results, also in the present article we stick to quantum
chromodynamics (QCD) with nf ¼ 2 dynamical quark
flavors. However, the described approach can be readily
adopted to other setups.
Note that many other studies, resorting to different lattice

QCD ensembles generated with different numbers of
dynamical quark flavors, have pursued related strategies
to extract ΛMS from the static quark-antiquark potential
[3–9]. Also, various complementary approaches exist to
determine ΛMS or, alternatively, the strong coupling αs at a
specific momentum scale. For recent results based on

lattice computations, see, e.g., [10–21], employing the
Schrödinger functional, vacuum polarization functions,
ghost and gluon propagators, heavy quark correlators,
and Dirac operator spectrum. Other works have studied
τ decays, the collision of electrons with positrons and
protons, or holographic QCD [22–31]. For a recent review
concerning the QCD running coupling, cf. [32].
Perturbation theory is based on series expansions in the

strong coupling αs, which thus is required to be small.
The physical coupling αs ≡ αsðμÞ generically depends on
a momentum scale μ, which can be considered as a
measure of the typical momentum transfer in a given
process. Due to the asymptotic freedom of QCD,
αsðμÞ ≪ 1 for large values of μ, while αsðμÞ ≫ 1 for
small values of μ. In momentum space we have μ ∼ p,
while in position space μ ∼ 1=r. Correspondingly, per-
turbative calculations of the static potential in QCD are
limited to small quark-antiquark separations r or large
relative momentum transfers p, respectively. They are
conventionally carried out in momentum space, where the
static potential is presently known up to Oðα4sÞ. Lattice
simulations are tailored to the manifestly nonperturbative
regime of QCD. They are naturally performed in position
space and allow for controlled insights into the static
potential from a minimum distance of a few times the
lattice spacing a. Hence, the basic idea to determine ΛMS
from the quark-antiquark potential amounts to fitting the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 114506 (2018)

2470-0010=2018=98(11)=114506(19) 114506-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.114506&domain=pdf&date_stamp=2018-12-14
https://doi.org/10.1103/PhysRevD.98.114506
https://doi.org/10.1103/PhysRevD.98.114506
https://doi.org/10.1103/PhysRevD.98.114506
https://doi.org/10.1103/PhysRevD.98.114506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


perturbative static potential to lattice data in the inter-
mediate regime of separations (momentum transfers),
where both approaches are expected to allow for trust-
worthy insights, using ΛMS as a fitting parameter.
In our initial article [1], we pursued this strategy in

position space. To this end we transformed the perturbative
static potential from momentum space to position space via
an ordinary Fourier transform. As this Fourier transform
also receives contributions from momenta where the
perturbative expression is no longer trustworthy, the result-
ing perturbative potential in position space suffers from
uncontrolled contributions, significantly worsening its
convergence behavior as compared to the original momen-
tum space potential. It can, however, be shown that the
introduction of an additional momentum scale can remove
these pathologies [33–40], thereby facilitating a reliable
extraction of ΛMS. Proceeding along these lines, in [1] we

obtained Λðnf¼2Þ
MS

¼ 315ð30Þ MeV.
Subsequently, in [2] we argued that this analysis can be

performed more reliably in momentum space. To obtain
the lattice potential in momentum space, we employed a
discrete Fourier transform in three dimensions. In order to
increase the number of available data points for the
discrete Fourier transform, governing the resolution in
momentum space, we used a fitting function to extrapolate
the long distance behavior inferred from the lattice
simulations up to distances of several hundreds of the
lattice spacing a. The values of the extrapolating function
were then stored for the sites of our extended three-
dimensional lattice serving as a supplementary input for
the discrete Fourier transform. Pursuing this strategy, in

[2] we found Λðnf¼2Þ
MS

¼ 331ð21Þ MeV. Note that the

results of both analyses [1] and [2] are compatible with
each other, the latter exhibiting a smaller error.
In the present article, we further improve and streamline

the procedure to extract ΛMS in momentum space. The
main difference compared to [2] is that we do not perform
a discrete Fourier transform of lattice data from position
space to momentum space. Instead, we immediately
parametrize the discrete lattice data points for the static
potential in position space by a continuous function,
thereby providing us with a “continuous lattice potential.”
More specifically, we choose the parametrizing function
such that its Fourier transform to momentum space can be
performed analytically, implying that the construction of
the lattice potential in momentum space becomes essen-
tially trivial. Another improvement to our previous articles
[1] and [2] is that in the meantime the knowledge of the
QCD β-function has been improved by an additional order
in αs [41]. This results in a more precise relation between
the strong coupling αsðμÞ and the dimensionless ratio
μ=ΛMS, prospectively further diminishing the error of our
extracted value for ΛMS.

However, the present article aims not only at an
accurate and efficient determination of ΛMS. The
extracted value of ΛMS is immediately used to construct
a complete analytic parametrization of the static quark-
antiquark potential in position space up to the string
breaking scale. This potential encodes both perturbative
and manifestly nonperturbative information and has
various phenomenological applications. For instance, it
can be employed to study the spectrum of heavy
quarkonia. As an example, here we adopt it to bottomo-
nium in the static limit.
More specifically, our article is organized as follows.
Section II is devoted to the lattice computation of

the static quark-antiquark potential V lat for QCD with
nf ¼ 2 dynamical quark flavors in position space. Here,
our main goal is to parametrize the discrete data points
for the potential obtained from Wilson loop averages in
Sec. II B by a continuous function. In Sec. II C, we confirm
that a simple three-parameter fit of the Cornell form,
V lat ¼ V0 − α=rþ σr, with offset V0 and parameters α
and σ, already accurately describes the lattice data points.
We not only extract the values of α and σ and their errors,
but also account for their correlations.
Section III focuses on the perturbative static potential.

After briefly reviewing the known contributions to the
static potential in momentum space Ṽpert in Sec. III A, we
discuss its position space analogue Vpert in Sec. III B.
Section III C details the relation of the perturbative strong
coupling αsðμÞ at a given momentum scale μ to ΛMS.
In general, the constituting equation relating the dimen-
sionless ratio μ=ΛMS to αsðμÞ cannot be solved analyti-
cally for αsðμÞ. However, an analytical expression for
αsðμÞ can be extracted in the limit of μ=ΛMS ≫ 1.
In Sec. IV we determine ΛMS for QCD with nf ¼ 2

dynamical quark flavors. To this end, we fit Ṽpert to the
Fourier transform of the continuous lattice potential V lat
in the intermediate momentum regime where both lattice
simulations and perturbation theory are expected to
allow for trustworthy results, treating ΛMS as a fitting
parameter.
Using the extracted value of ΛMS, in Sec. V we construct

a complete analytic parametrization of the static potential in
position space V, interpolating between both the perturba-
tive and the manifestly nonperturbative regime. To this end,
Vpert is smoothly connected to the continuous lattice
potential V lat at intermediate quark-antiquark separations.
In order to allow for an analytic representation of Vpert, we
employ the analytic expression for αsðμÞ in the limit
of μ=ΛMS ≫ 1.
In Sec. VI we study the bottomonium spectrum in the

static limit. This analysis serves as an application of the all-
distances potential V constructed in the preceding section.
Finally, we end with conclusions and a brief outlook in

Sec. VII.
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II. LATTICE COMPUTATION OF THE
STATIC POTENTIAL

A. Lattice setup

We use the same nf ¼ 2 gauge link configurations as in
our previous articles concerned with the determination of

Λðnf¼2Þ
MS

[1,2]. These gauge link configurations were gen-
erated by the European Twisted Mass Collaboration
(ETMC) [42–44]. The gluon action is the tree-level
Symanzik improved gauge action [45],

Sgluon½U� ¼ β

6

�
b0

X
x;μ≠ν

Trð1 − P1×1ðx; μ; νÞÞ

þ b1
X
x;μ≠ν

Trð1 − P1×2ðx; μ; νÞÞ
�

ð1Þ

with b0 ¼ 1 − 8b1 and b1 ¼ −1=12, and the quark action is
the Wilson twisted mass action [46–49],

Squark½χ; χ̄; U� ¼
X
x

χ̄ðxÞðDW þ iμqγ5τ3ÞχðxÞ; ð2Þ

with

DW ¼ 1

2
ðγμð∇μ þ∇�

μÞ −∇�
μ∇μÞ þm0: ð3Þ

∇μ and ∇�
μ are the gauge covariant forward and backward

derivatives; m0 and μq are the bare untwisted and twisted
quark masses; τ3 is the third Pauli matrix acting in flavor
space; and χ ¼ ðχðuÞ; χðdÞÞ represents the quark fields in the
so-called twisted basis.
The twist angle ω is given by ω ¼ arctanðμR=mRÞ, where

μR and mR denote the renormalized twisted and untwisted
quark masses. For the ensembles of gauge link configura-
tions considered in the present study, ω has been tuned to
π=2 by adjusting m0 appropriately. This ensures automatic
OðaÞ improvement for many observables including the
static potential (cf. [43] for details).
The considered gauge link configurations cover several

different values of the lattice spacing [cf. Table I, which
also provides the corresponding pion masses mPS, space-
time volumes ðL=aÞ3 × T=a, and numbers of gauge link
configurations used for the computations of the static
potential]. The lattice spacing in physical units has been

set via the pion mass and the pion decay constant using
chiral perturbation theory. The resulting value for the
hadronic scale1 r0 is r0 ¼ 0.420ð14Þ fm (cf. also Sec. 5
of [43] and Table 8 of [44]). For further details on the
generation of these gauge field configurations as well as on
the computation and the analysis of standard quantities,
such as lattice spacing and pion mass, we refer to [43,44].

B. Extracting the lattice static potential
from Wilson loop averages

We extract the static potential in position space V latðr⃗Þ
from the exponential decay of Wilson loop averages
hWðr⃗; tÞi with respect to their temporal extent t, while
keeping their spatial extent r⃗ fixed [51]. To this end we first
compute

VðeffectiveÞ
lat ðr⃗; tÞ ¼ 1

a
ln

� hWðr⃗; tÞi
hWðr⃗; tþ aÞi

�
: ð4Þ

In a second step, the t-independent quantity V latðr⃗Þ is
obtained by performing an uncorrelated χ2 minimizing fit

to VðeffectiveÞ
lat ðr⃗; tÞ in a suitable t range. This range is chosen

such that the contributions of excited states are strongly
suppressed, while statistical errors are still small.
We perform two independent computations on each of

the ensembles listed in Table I.
(i) No-HYP computation:

Temporal links remain unchanged, i.e., are not
smeared. The resulting static potential has small
discretization errors, in particular at small quark-
antiquark separations r ¼ jr⃗j, but large statistical
errors at large separations. To obtain a fine resolution
at small r, we consider both on- and off-axis Wilson
loops (for a detailed explanation regarding the
construction of off-axis Wilson loops, cf. [1]).
Spatial links are APE smeared, to improve the
ground state overlap and, hence, to be able to extract
the static potential more precisely (NAPE ¼ 20,
αAPE ¼ 0.5; cf. [52] for details). Also, the tree-level
improvement technique put forward by [53,54] is
employed to further reduce discretization errors.

TABLE I. Ensembles of gauge link configurations.

β a (fm) ðL=aÞ3 × T=a mPS (MeV) r0=a Number of gauges no-HYP/HYP

3.90 0.079(3) 243 × 48 340(13) 5.36(4) 168=108
4.05 0.063(2) 323 × 64 325(10) 6.73(5) 71=189
4.20 0.0514(8) 243 × 48 284(5) 8.36(6) 123=211
4.35 0.0420(17) 323 × 64 352(22) 9.81(13) 146=295

1The hadronic scale r0 is defined via r20Fðr0Þ ¼ 1.65, with
FðrÞ ¼ dVðrÞ=dr [50].
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(ii) HYP computation:
Temporal links are HYP2 smeared (HYP refers to

hypercubic smearing), which corresponds to using
the HYP2 static quark action [55–57]. The resulting
static potential has large discretization errors at
small quark-antiquark separations, but the reduced
self-energy of the static quarks leads to signifi-
cantly smaller statistical errors at large separa-
tions. We consider only on-axis Wilson loops.
Spatial links are again APE smeared (NAPE ¼ 60,
αAPE ¼ 0.5).

While the no-HYP results have already been used in our

previous determinations of Λðnf¼2Þ
MS

[1,2], the HYP results
have been generated for this study.

C. Parametrization of the discrete lattice data
by a continuous function

In contrast to our previous determination of Λðnf¼2Þ
MS

in
momentum space [2], we parametrize the discrete lattice
data for the static potential by a continuous function before
transforming to momentum space. This has several advan-
tages. For example, rotational symmetry is restored already
at an early stage, thereby avoiding technical problems like
performing a cylinder cut. Moreover, this approach is
technically less complicated and the uncertainty of the
final result forΛMS is somewhat smaller; see below. Finally,
the continuous function used to parametrize the lattice
potential forms an important constituent of the analytic all-
distances potential constructed in Sec. V.
For quark-antiquark separations rmin ≤ r ≤ rmax, with

rmin ≳ 0.13 fm and rmax ≤ 0.79 fm (the maximum range of
separations, where results are available) the lattice potential
computed on all four ensembles can be parametrized
consistently by the Cornell potential,

V latðrÞ ¼ V0 − α
1

r
þ σr: ð5Þ

Here, V0 is a constant shift of the potential and σ is the
string tension. Even though V0 amounts to a physically
irrelevant shift within lattice QCD alone, it will be
explicitly needed in Sec. V below to match the static
potentials obtained from lattice QCD and perturbation
theory. While α ¼ π=12 ≈ 0.26 for large r in the bosonic
string picture [58,59], lattice simulations with nf ¼ 2 quark
flavors have extracted α ≈þ0.3…þ 0.5 [60], which is in
agreement with our results. We have explicitly checked
whether accounting for additional terms ∼ lnmðrÞ=r with
m ∈ f1; 2; 3g and ∼1=rm with m ∈ f2; 3g improves the
parametrization of the static potential (5). We find that at
our current level of statistical precision such terms are not
needed. Their prefactors are zero within statistical errors.
Moreover, none of these terms has the potential to reduce
χ2red significantly with respect to the values quoted in
Table II, implying that their inclusion does not enhance
the parametrization of the static potential. This finding is
also supported by Fig. 1, depicting no-HYP and HYP
results for our smallest lattice spacing together with the
corresponding analytic parametrizations (5). The latter
accurately describe the lattice data points and no systematic
deviations are visible.
The parametrization (5) does not account for string

breaking, which is happening at quark-antiquark separa-
tions r ≈ rsb, where VðrsbÞ ¼ 2mB, with mB denoting the
mass of the lightest heavy-light meson (quantum numbers
JP ¼ 0−, 1−; cf., e.g., [52,61]). The string breaking dis-
tance has been determined using lattice QCD in [62],
yielding rsb ¼ 1.13ð10Þð10Þ fm. In this section we do not
use any lattice data for r > rsb and hence do not consider
string breaking; cf. Sec. VI for a study of the effect of string
breaking on the bottomonium spectrum.
In the present study, we determine the parameters V0, α,

and σ by performing uncorrelated χ2 minimizing fits of
Eq. (5) to the discrete lattice QCD data of the static
potential for separations rmin ≤ r ≤ rmax; cf. Table II for
the explicit values of rmin and rmax. The minimum distance

TABLE II. Parametrization of the lattice static potential via Eq. (5). To allow for a straightforward comparison, the results for σ at fixed
β (upper eight lines) have been converted from lattice units to 1=fm2 without accounting for the lattice spacing errors. The column
“Number of data points” gives the number of data points available for the extraction of V latðrÞ.

X rmin=a rmax=a Number of data points χ2red ᾱ Δα σ̄ fm2 Δσ fm2 corrðα; σÞ
β ¼ 3.90 No-HYP 2.83 8.00 72 0.36 0.414 0.006 7.94 0.09 −0.88

HYP 3 10 8 0.34 0.415 0.015 7.31 0.19 −0.96
β ¼ 4.05 No-HYP 2.83 8.00 72 0.53 0.386 0.006 7.87 0.08 −0.89

HYP 3 10 8 1.78 0.391 0.008 7.39 0.15 −0.96
β ¼ 4.20 No-HYP 2.83 10.0 126 0.66 0.368 0.006 7.60 0.10 −0.76

HYP 3 12 10 0.12 0.382 0.011 7.41 0.18 −0.92
β ¼ 4.35 No-HYP 3.00 10.0 124 0.70 0.347 0.004 7.86 0.09 −0.85

HYP 4 14 11 0.22 0.353 0.007 7.55 0.15 −0.93

Continuum No-HYP 0.324 0.006 7.47 0.56 −0.19
HYP 0.330 0.011 7.57 0.57 −0.25

Continuum Combined 0.326 0.005 7.52 0.55 −0.17
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rmin is needed to exclude data points with sizable lattice
discretization errors, and rmax is required to exclude
unwanted artifacts of the spatial periodicity of the lattice.
In detail we proceed as follows:

(i) For each of the four ensembles characterized by β
and both X ∈ fno-HYP;HYPg computations, we
determine the averages ᾱβ;X and ¯̂σβ;X, where σ̂ ¼ σa2

is the string tension in units of the lattice spacing.
The errors Δαβ;X and Δσ̂β;X are computed via the
jackknife method. Moreover, we determine the
correlation corrðαβ;X; σ̂β;XÞ. For two generic quan-
tities α and σ, the latter is defined as

corrðα; σÞ ¼ hðα − ᾱÞðσ − σ̄Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðα − ᾱÞ2ihðσ − σ̄Þ2i

p : ð6Þ

The respective results are collected in Table II,
together with the corresponding values of χ2red ¼
χ2=dof. Here, dof counts the degrees of freedom,
dof ¼ ðnumber of data pointsÞ − 3, with “number
of data points” denoting the number of data points
available for the extraction of V latðrÞ and 3 repre-
senting the number of fit parameters. Note that
results obtained for the same β but different X ∈
fno-HYP;HYPg may disagree within statistical
errors, because of different discretization errors.

(ii) For both no-HYP and HYP results we perform
continuum extrapolations of α and σ to linear order
in a2, which is the leading order of discretization
errors inWilson twistedmass latticeQCDatmaximal
twist (cf. Sec. II A). Correlations of α and σ are
properly taken into account by using jackknife
samples ðα; σÞ from step (i). Moreover, we account
for the lattice spacing errors listed in Table I when
converting a dimensionless σ̂ to a dimensionful σ.
Since the lattice spacing errors constitute the dom-
inant source of uncertainty for σ, they also reduce the

correlation corrðα; σÞ significantly; cf. the pro-
nounced difference between the values given in the
upper eight lines to those in the lower three rows of
Table II. Furthermore, notice that pion masses and
spacetime volumes for different lattice spacings are
similar, but not identical (cf. Table I). We do not
consider this as problematic, since the dependence of
the potential on the pion mass and the spacetime
volume is negligible within statistical errors [1]. This
is also supported by the small reduced χ2 of the
continuum extrapolations of both our no-HYP and
HYP computations. These extrapolations are shown
in Fig. 2, and the corresponding results for ᾱX, ΔαX,
σ̄X, ΔσX, and corrðαX; σXÞ are collected in the ninth
and tenth lines of Table II. As expected, the con-
tinuum extrapolated no-HYP and HYP results for
both α and σ are in agreement within statistical errors.

(iii) We combine the continuum extrapolated no-HYP
and HYP results from step (ii) by performing
constant fits. Correlations between α and σ are
properly taken into account by using jackknife
samples ðα; σÞ from step (ii). The fits are shown
in Fig. 3, and the results for ᾱ, Δα, σ̄, Δσ, and
corrðα; σÞ are collected in Table II.

The values for “Δα” and “Δσfm2” in Table II imply that
the no-HYP results constrain both α and σ more precisely
than the HYP results. At first glance this might seem
somewhat surprising, since lattice QCD results for the static
potential computed with HYP smeared temporal links are
generically much more precise than analogous results
obtained without HYP smearing. The important point to
note here is that the no-HYP computations comprise not
only on-axis Wilson loops but also all possible off-axis
Wilson loops, while the HYP computations are exclusively
based on on-axis Wilson loops (cf. Sec. II B). In turn, many
more data points for V latðrÞ are available for no-HYP
computations (cf. the column “Number of data points” in
Table II), resulting in smaller errors for α and σ in

-250

 0

 250

 500

 750

 0.1  0.2  0.3  0.4  0.5  0.6

V
-V

0 
[M

eV
]

r [fm]

no-HYP

-250

 0

 250

 500

 750

 0.1  0.2  0.3  0.4  0.5  0.6

V
-V

0 
[M

eV
]

r [fm]

HYP

FIG. 1. Results of no-HYP (left) and HYP (right) computations of the lattice static potential at β ¼ 4.35 (red data points). The dashed
green curves show the corresponding analytic parametrizations (5), with parameters α ¼ ᾱ ¼ 0.347, σ ¼ σ̄ ¼ 7.86=fm2

(α ¼ ᾱ ¼ 0.353, σ ¼ σ̄ ¼ 7.55=fm2) in the left (right) plot; cf. Table II.
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comparison to the HYP results. Noteworthily, the HYP
results nevertheless reduce the final uncertainty of α by
roughly 15% in comparison to the no-HYP results alone.
On the other hand, the uncertainties of the continuum
extrapolations of the no-HYP, HYP, and combined results

for σ differ only marginally, because they are strongly
dominated by the lattice spacing error (cf. [43,44] for
technical details about how this error is determined).
Consequently, the precision of σ could not be enhanced
by including off-axis Wilson loops to the HYP data sets.
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FIG. 2. Continuum extrapolation of the parameters α and σ in the analytic parameterization (5) of the lattice static potential for both
no-HYP and HYP computations.
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In any case, we consider it as reassuring to have two
independently computed data sets, no-HYP and HYP,
yielding perfectly compatible results.
The continuum extrapolation of the analytic parametri-

zation (5) of the lattice static potential combining both no-
HYP and HYP computations (cf. the last line of Table II) is
shown in Fig. 4.
To cross-check our results with previous ETMC analy-

ses, we determine the continuum extrapolated r0 from our
results for α and σ via

r0 ¼
�
1.65 − α

σ

�
1=2

; ð7Þ

yielding r0 ¼ 0.420ð15Þ. This value is in perfect agreement
with r0 ¼ 0.420ð14Þ (extrapolated to the continuum and
the chiral limit) from [44].
We note that there is an anticorrelation between α and σ;

cf. corrðα; σÞ ¼ −0.17 for our final continuum result. This
can be explained by the fact that both increasing α and σ
results in a larger slope of V latðrÞ, implying that these two
parameters have a similar effect on the shape of V latðrÞ.
Hence, for precise statistical analyses based on the static
potential, e.g., the determination of ΛMS or the computation
of the bottomonium spectrum, as done in Secs. IV and VI,
this anticorrelation should be taken into account. In Sec. V
we discuss in detail how to include this anticorrelation in
the computation of any observable, which makes use of the
analytic parametrization (5) of the static quark-antiquark
potential.

III. THE PERTURBATIVE STATIC POTENTIAL

A. The perturbative static potential in momentum space

In perturbation theory the static quark-antiquark poten-
tial V is conventionally determined in momentum space.
For gauge group SU(3), it can be expressed as

ṼpertðpÞ ¼ −
4

3

4π

p2
αVðαsðμÞ; lnðμ2=p2ÞÞ; ð8Þ

with p ¼ jp⃗j > ΛQCD. The latter condition implies an
explicit restriction to the perturbative momentum regime
of QCD. The dimensionless quantity αV is a function of
both the strong coupling αsðμÞ evaluated at the renormal-
ization scale μ (cf. also Sec. III C below) and lnðμ2=p2Þ. It
is explicitly known up to Oðα4sÞ.
The static potential is a renormalization group invariant,

implying invariance of V under a change of μ. In pertur-
bation theory this means that, when evaluating a result
known up to Oðαk̄Þ for two different choices of μ, the
differences among these results are relegated to Oðαk̄þ1Þ,
such that for small enough αs and large enough k̄ the
specific choice of μ eventually becomes irrelevant.
Note that if μ is chosen as μ ¼ cp, where c denotes a

proportionality constant, the logarithm in the argument of
αV becomes independent of p. For c ¼ 1 we have
lnðμ2=p2Þjμ¼cp ¼ 0, such that Eq. (8) can be written in a
particularly compact form and αV becomes a function of
αsðpÞ only. Adopting the latter choice, the known terms of
the static potential can be represented as

ṼpertðpÞ ¼ −
4

3

4παsðpÞ
p2

�
1þ αsðpÞ

4π
a1 þ

�
αsðpÞ
4π

�
2

a2

þ
�
αsðpÞ
4π

�
3

ða3 ln ln αsðpÞ þ a3Þ
�
: ð9Þ

In the remainder of this article we will refer to Eq. (9),
utilizing the identification μ ¼ p as the static potential in
momentum space. A truncation of Eq. (9) accounting for
terms up to Oðα1þn

s Þ is subsequently referred to as
ðnext-to-Þnleading order (NnLO). The coefficients a1
[63,64], a2 [65–67], and a3 ln [68,69] are known analyti-
cally, while some contributions to a3 are only known
numerically [70–74]. For gauge group SU(3), nf ¼ 2

dynamical massless quark flavors in the MS scheme
[75,76], they read

a1 ¼
73

9
; a2 ¼

25139

162
þ 9π2

�
4 −

π2

4

�
þ 94

3
ζð3Þ;

a3 ln ¼ 144π2; a3 ¼ 8783.16ð38Þ: ð10Þ

The running of αsðμÞ with μ is governed by the QCD
β-function,

βðαsðμÞÞ ¼
μ

αsðμÞ
dαsðμÞ
dμ

: ð11Þ

Its perturbative expansion in αs is presently known with the
following accuracy:
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FIG. 4. Analytic parametrization (5) of the lattice potential. The
red curve corresponds to V0 ¼ 0, α ¼ ᾱ ¼ 0.325, and σ ¼ σ̄ ¼
7.51=fm2 (cf. last line of Table II), while the gray error band has
been generated from the jackknife samples of step (iii).
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βðαsÞ ¼ −2β0
X4
i¼0

�
αs
4π

�
1þi

bi; ð12Þ

where bi ¼ βi=β0. For SUð3Þ with nf ¼ 2 and in the MS
scheme, the coefficients in Eq. (12) are given by [41,77]2

β0 ¼
29

3
; b1 ¼

230

29
; b2 ¼

48241

522
;

b3 ¼
18799309

14094
þ 275524

783
ζð3Þ;

b4 ¼
2522305027

112752
þ 109354687

4698
ζð3Þ − 68881

1620
π4

−
16675240

783
ζð5Þ: ð13Þ

Equations (11) and (12) imply that αsðpÞ can be expressed
in terms of αsðμÞ and β0 lnðμ2=p2Þ. By formally expanding
αsðpÞ in powers of αsðμÞ and solving these equations order
by order in αsðμÞ, one obtains

αsðpÞ ¼ αsðμÞ
�
1þ αsðμÞ

4π
β0 lnðμ2=p2Þ

×

�
1þ αsðμÞ

4π
ðβ0 lnðμ2=p2Þ þ b1Þ

þ
�
αsðμÞ
4π

�
2
�
½β0 lnðμ2=p2Þ�2

þ 5

2
b1β0 lnðμ2=p2Þ þ b2

���
þOðα5sÞ: ð14Þ

With the help of this identity, the couplings in Eq. (9) can
be promoted to any other renormalization scale. Upon
insertion into Eq. (9), we recover the structure of Eq. (8),
with αV known explicitly up to Oðα4sÞ.

B. The perturbative static potential in position space

When choosing μ as independent of p, Eq. (8) can be
straightforwardly transformed to position space by means
of a standard Fourier transform in three dimensions,

VpertðrÞ ¼
Z

d3p
ð2πÞ3 e

ip⃗·r⃗ṼpertðpÞ: ð15Þ

However, note that the Fourier integral (15) naturally
includes momenta p≲ ΛQCD for which perturbation theory
is no longer trustworthy, potentially inducing uncontrolled
contributions.
Contributions of this kind are already present in the

perturbative potential ṼpertðpÞ. In standard perturbation

theory loop diagrams come along with integrations
R d4q

ð2πÞ4

of the loop four-momentum q over the full momentum
regime, i.e., also receive contributions from outside the
perturbative momentum regime. The leading uncontrolled
contribution to ṼpertðpÞ is quadratic in ΛQCD and scales as

∼ − 4παs
p2 ðΛQCD

p Þ2 [36], translating to a term ∼ − αs
r ðrΛQCDÞ2

in VpertðrÞ. Obviously, the condition for momentum trans-
fers p to be described reliably in perturbation theory,
ΛQCD

p ≪ 1, corresponds to the restriction rΛQCD ≪ 1 in
position space.
Contrarily, the leading uncontrolled contribution arising

from the Fourier integral (15) is just linear in ΛQCD and
scales as ∼ − αs

r ðrΛQCDÞ [36], which implies that the
Fourier transform to position space in fact enhances the
pathological terms and renders the perturbative expansion
of VpertðrÞ worse behaved than that of ṼpertðpÞ [33,36–40].
In the literature, the contribution ∼ − αs

r ðrΛQCDÞ is often
referred to as the leading renormalon ambiguity of the
perturbative static potential in position space.
However, the latter problem can be cured by manifestly

restricting the Fourier integral to the perturbative momen-
tum regime p ≥ μf > ΛQCD, where μf denotes a momen-
tum cutoff still in the perturbative regime; cf. [36,78,79].
The position space potential as defined by a restricted
Fourier transform,

Vpertðr; μfÞ ¼
Z
p≥μf

d3p
ð2πÞ3 e

ip⃗·r⃗ṼpertðpÞ

¼ VpertðrÞ −
Z
p<μf

d3p
ð2πÞ3 e

ip⃗·r⃗ṼpertðpÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼∶δVpertðr;μfÞ

; ð16Þ

does not suffer from enhanced pathological terms in
comparison to VðpÞ. In this article, we will adopt this
definition of the perturbative potential in position space.
Equation (16) can be evaluated analytically [79].
To allow for a compact representation of the explicit

expressions for VpertðrÞ and δVpertðr; μfÞ, it is convenient to
introduce the following polynomials of degree k [80],

PkðLÞ ¼
Xk
m¼0

ρkmLm; ð17Þ

with dimensionless expansion coefficients ρkm. For 1 ≤
k ≤ 3 we have ρk0 ¼ ak,

ρ21 ¼ ð2a1 þ b1Þβ0; ρ31 ¼ ð3a2 þ 2a1b1 þ b2Þβ0;

ρ32 ¼ ð3a1 þ
5

2
b1Þβ20; ð18Þ

and ρkk ¼ βk0. Moreover, we use the shorthand nota-

tion PðnÞ
k ðLÞ ¼ ∂n

∂Ln PkðLÞ.
2Note that our conventions slightly differ from those of [41]. In

particular, βij½41� ¼ βi=4iþ1.
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Setting the renormalization scale to μ ¼ 1=r, we obtain

VpertðrÞ ¼ −
4

3
αsð1=rÞ

1

r

�
1þ αsð1=rÞ

4π
ð1þ 2γEβ0Þ

þ
�
αsð1=rÞ

4π

�
2
�
a2 þ 2γEρ21 þ

�
4γ2E þ π2

3

�
β20

�

þ
�
αsð1=rÞ

4π

�
3
�
a3 ln ln αs þ a3 þ 2γEρ31 þ

�
4γ2E þ π2

3

�
ρ32

þ ðð4γ2E þ π2ÞγE þ 8ζð3ÞÞ2β30
��

; ð19Þ

and

δVpertðr;μfÞ ¼ −
4

3
αsð1=rÞ

2μf
π

�
1þ αsð1=rÞ

4π

�
P1

�
ln

1

r2μ2f

�
þ 2β0

�

þ
�
αsð1=rÞ

4π

�
2
�
P2

�
ln

1

r2μ2f

�
þ 2P0

2

�
ln

1

r2μ2f

�
þ 8β20

�

þ
�
αsð1=rÞ

4π

�
3
�
a3 ln lnαs þ a3 ln

�
1

2
− γE −

rμf
π

�
þ 48β30

þ a3 ln
2

ln

�
1

r2μ2f

�
þP3

�
ln

1

r2μ2f

�
þ 2P0

3

�
ln

1

r2μ2f

�
þ 4P0

3

�
ln

1

r2μ2f

��
þOðr2μ2fÞ

�
: ð20Þ

In the latter expression we limited ourselves to the leading
term in an expansion in powers of rμf [36]. This is
completely sufficient as the terms explicitly accounted
for in Eq. (20) are exactly those canceling the pathological
contribution ∼ − αs

r ðrΛQCDÞ induced by the Fourier integral
(15) in Eq. (16). Uncontrolled higher-order terms cannot be
fully eliminated along these lines anyway.

C. The perturbative coupling αsðμÞ
and its relation to ΛMS

Up to now, we did not specify how the strong coupling
αsðμÞ is promoted to an explicit numerical value. This
identification involves the definition of a reference scale,
which—in the MS scheme—is denoted by ΛMS. More
specifically, the scale ΛMS is introduced in terms of
specific initial conditions in the integration of Eq. (11)
[81] (cf. also [2]),

μ

ΛMS

¼
�
β0αsðμÞ

4π

� b1
2β0 exp

�
2π

β0αsðμÞ

þ 1

β0

Z
αsðμÞ

0

dαs
αs

�
β0

βðαsÞ
þ 2π

αs
−
b1
2

��
: ð21Þ

This scale cannot be determined within perturbation theory,
but has to be provided as an external input parameter. In this

study, we aim at determining Λðnf¼2Þ
MS

, i.e., ΛMS for nf ¼ 2

dynamical massless quark flavors, from lattice simulations
of the static potential.
Equation (21) constitutes an implicit equation for αsðμÞ

as a function of μ=ΛMS. Aiming at the best achievable
precision, Eq. (21) can be inverted numerically for αsðμÞ,
resorting to two different options, namely, by [2]3

(I) either plugging the perturbative β-function (12) at
the best-known accuracy into Eq. (21) and perform-
ing the integration over αs numerically,

(II) or adopting a Taylor expansion of the integrand in
Eq. (21) and performing the integral analytically. To
this end only those terms whose coefficients are
known explicitly are kept, i.e.,

Z
αsðμÞ

0

dαs
αs

�
β0

βðαsÞ
þ 2π

αs
−
b1
2

�

¼ b2 − b21
2

αsðμÞ
4π

þ b3 − 2b1b2 þ b31
4

�
αsðμÞ
4π

�
2

þ b4 − b22 − 2b1b3 þ 3b21b2 − b41
6

�
αsðμÞ
4π

�
3

þOðα4sÞ: ð22Þ

3Note that the expansion coefficient b4 [41] was not yet known
in our previous studies [1,2].
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These two choices may also serve as a consistency criterion as in the manifestly perturbative regime both options should, of
course, yield compatible results.
Also, Eq. (21) can be solved approximately for αsðμÞ [81] by first adopting the expansion (22); then employing a power-

series ansatz for αsðμÞ in powers of 1=l, with l ¼ lnðμ2=Λ2

MS
Þ; and finally iteratively determining the expansion

coefficients. This results in

αsðμÞ ¼
4π

β0l

�
1 −

b1
β0l

lnlþ
�

b1
β0l

�
2
�
ln2l − lnl − 1þ b2

b21

�

−
�

b1
β0l

�
3
�
ln3l −

5

2
ln2l −

�
2 − 3

b2
b21

�
lnlþ 1

2

�
1 −

b3
b31

��

þ
�

b1
β0l

�
4
�
ln4l −

13

3
ln3l −

�
3

2
− 6

b2
b21

�
ln2lþ

�
4 − 3

b2
b21

− 2
b3
b31

�
lnl

þ 7

6
−
b2
b21

�
3 −

5

3

b2
b21

�
−
1

6

b3
b31

þ 1

3

b4
b41

�
þO

�
1

l5

��
: ð23Þ

Terms beyond Oð1=l5Þ also include higher, to date
unknown coefficients bi≥5 of the QCD β-function.
Even though the options (I) and (II) allow for reliable

results for αsðμÞ in a wider range of μ, Eq. (23) is
specifically useful when aiming at an analytic expression
of the static potential in the limit of μ ≫ ΛMS. Hence, in our
determination of the value of ΛMS by matching the
perturbative static potential to lattice results, we will
exclusively resort to the options (I) and (II). Contrarily,
for the analytic expression of the position space potential
we will adopt Eq. (23).

IV. DETERMINATION OF ΛMS FOR nf = 2
MASSLESS QUARK FLAVORS

In this section we determine ΛMS by matching the
perturbative static potential Ṽpert in momentum space,
Eq. (9), to the Fourier transform of our analytic para-
metrization (5) of the lattice static potential V lat. Recall that
the lattice static potential in momentum space allows for
reliable insights below a certain momentum, while the
perturbative results are applicable above a certain momen-
tum. In turn, the matching procedure has to be done in the
momentum regime where the validity of both results
overlaps.

A. Matching perturbative and lattice QCD
results for the static potential

The analytic parametrization of the lattice potential
V latðrÞ in Eq. (5) can be straightforwardly transformed
to momentum space,

Ṽ latðpÞ ¼
Z

d3re−ip⃗·r⃗V latðrÞ ¼ −σ
8π

p4
þ α

4π

p2
; ð24Þ

where the physically irrelevant constant V0 has been
set to zero. In this section, we exclusively adopt the

“continuum/combined” values for the parameters α and
σ listed in the last line of Table II.
For the perturbative static potential ṼpertðpÞ, we adopt

the expression given in Eq. (9), with the implicit Eq. (21)
inverted by one of the options (I) or (II) for the strong
coupling αsðpÞ. In turn, ṼpertðpÞ is determined up to a

single parameter, namely, Λðnf¼2Þ
MS

.

To match ṼpertðpÞ and Ṽ latðpÞ, we minimize their
squared difference,

ΔðΛðnf¼2Þ
MS

Þ ¼
Z

pmax

pmin

dpðṼpertðpÞ − Ṽ latðpÞÞ2; ð25Þ

with respect to Λðnf¼2Þ
MS

in a given momentum interval
pmin ≤ p ≤ pmax. The lower and upper momenta, pmin and
pmax, respectively, are chosen such that both Ṽpert and Ṽ lat

exhibit small systematic errors, i.e., errors due to the lattice
discretization and the truncation of the perturbative series.
The minimization is done numerically using standard
integration and root finding techniques. The small differ-
ence in the results obtained by options (I) and (II) is
included in the systematic error for the final result (cf. the
discussion below). For an exemplary plot, cf. Fig. 5.

In our previous determination of Λðnf¼2Þ
MS

in momentum
space [2], we additionally had to account for a constant
offset Ṽ0 in the matching of ṼpertðpÞ and Ṽ latðpÞ. Such a
constant was needed in [2], because the matching was
performed with discrete lattice data points for the static
potential in momentum space obtained by means of a
discrete Fourier transform from the corresponding lattice
data in position space. Due to lattice discretization errors at
small separations r, the discrete lattice data points in
position space do not exhibit a singularity for r → 0, but
form a negative peak, saturating at a finite value. The shape
of the peak depends on the lattice spacing a and becomes
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more pronounced for smaller a. Such a peak in position
space translates into an a-dependent constant in momentum
space. Contrarily, in the present work we parametrize the
lattice data points in position space with the function (5),
intrinsically excluding lattice data points for small r
exhibiting large errors, and thus we do not need to account
for such a constant shift. A further argument against the
necessity of such a constant shift in the present study is the
fact that both Ṽ latðpÞ and ṼpertðpÞ exhibit the same
asymptotic behavior for p → ∞. For consistency, we
checked this numerically and found Ṽ0 ¼ 0 within stat-
istical errors.

B. Variation of input parameters, final result,
and uncertainty of ΛMS

To allow a fair comparison of the results, we determine

the systematic error of Λðnf¼2Þ
MS

in the same way as in our
previous articles [1,2]. More specifically, we perform the
matching procedure outlined in Sec. IVA a total of 20 000
times, while varying the input parameters as follows:
(1) 50% of the matching is done with Ṽpert as defined in

Eq. (9) at NNLO and 50% at NNNLO.
(2) 50% of the matching uses option (I) to invert

Eq. (21) for αsðpÞ, 50% option (II).
(3) For each matching, we randomly choose

(a) pmin ∈ ½1500; 2250� MeV,
(b) pmax ∈ ½2250; 3000� MeV,

with the constraint pmax − pmin ≥ 375 MeV.
As this is exactly the procedure used in Sec. 4.2 of our

previous work [2] for the extraction of Λðnf¼2Þ
MS

, though now

based on an improved and streamlined determination of Ṽ lat
(cf. the detailed discussion in Sec. II C above), we can
resort to findings of [2]. This, in particular, applies for
the detailed arguments on the choice of pmin and pmax.

For completeness, let us just briefly recall the main points:
The lower bound arises from an analysis of the relative
importance of the known perturbative orders of Ṽpert.
For nf ¼ 2, this motivates the constraint αsðpÞ≲ 0.3,
translating into p≳ 1500 MeV. The upper bound arises
from constraints due to lattice discretization effects.
The maximum momentum on our finest lattice along
an axis, given by π=a ≈ 15 GeV, motivates the criterion
p≲ π=ð3aÞ ≈ 5000 MeV for reasonably small lattice
discretization errors [2]. To be on the safe side, we
choose the value of pmax even somewhat smaller, namely,
pmax ≲ 3000 MeV. In [2], we have moreover confirmed the

stability of the extracted result for Λðnf¼2Þ
MS

under variations
of pmin and pmax, reflecting itself in almost perfect plateaus
in Fig. 4 of [2].
For each matching we randomly pick one of the jack-

knife samples ðα; σÞ used in step (iii) of Sec. II C to
generate our final “continuum/combined” results for α and
σ, listed in the last line of Table II. This ensures that the
statistical uncertainties of these parameters and their
correlation are properly taken into account.

The impact of finite volume effects on Λðnf¼2Þ
MS

was
studied in [1] and found to be negligible in comparison to
other errors. Similarly, the effects of nonvanishing light

quark masses on Λðnf¼2Þ
MS

were examined in detail in [1] by
performing computations with different pion masses in the
range mPS ≈ 325 MeV…517 MeV at fixed lattice spacing

and spacetime volume. These calculations found Λðnf¼2Þ
MS

to
be stable and constant within tiny statistical errors of
≈� 1 MeV. Hence, we do not expect the nonvanishing
light quark masses in the lattice QCD computation to
induce any significant deviations from the limit of massless
dynamical quark flavors assumed in the derivation of the
perturbative static potential in Sec. III. For these reasons, in
the present study we do not account for any potential errors
arising from finite volumes and nonvanishing light quark
masses on the lattice.
By performing the matching procedure 20 000 times, we

obtain 20 000 samples for Λðnf¼2Þ
MS

. Their mean value
determines our final result, and their standard deviation
the corresponding combined statistical and systematic
error. This results in

Λðnf¼2Þ
MS

¼ 302ð16Þ MeV: ð26Þ

In comparison to our previous result, Λðnf¼2Þ
MS

j½2� ¼
331ð21Þ MeV, obtained from a momentum space analysis
of the static potential in [2], our new result is slightly
smaller, but still compatible within errors. More impor-
tantly, the error of our new result (26) is reduced by roughly
25% with regard to our previous result, indicating that the
procedure presented here allows for a more accurate
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FIG. 5. Matching of ṼpertðpÞ in Eq. (9) to Ṽ latðpÞ in Eq. (24)
using option (II), pmin ¼ 1875 MeV and pmax ¼ 2625 MeV. In
particular, for pmin ≤ p ≤ pmax, the two curves are in perfect
agreement.
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determination of ΛMS. We mainly attribute this reduction of
the error to the more straightforward and less technically
challenging approach pursued for the ΛMS determination.
Resorting to the continuous parametrization (5) of the
discrete lattice potential, which has an analytical Fourier
momentum space representation (24), technicalities intro-
ducing additional systematic errors, such as the cylinder cut
employed for the discrete numerical Fourier transform in
[2], are no longer required. Another notable difference from
our previous determination of ΛMS [2] is the inclusion of
the coefficient b4 in the perturbative expansion of the QCD
β-function (12), which was not yet known in [2]. However,
in the present analysis we have immediately implemented
both changes at the same time, such that their separate
impacts on our final error estimate cannot be straightfor-
wardly disentangled.
For completeness, also note the result of our initial

determination of ΛMS from a position space analysis of the
quark-antiquark static potential based on the same lattice

QCD data [1], yielding Λðnf¼2Þ
MS

j½1� ¼ 315ð30Þ MeV, which
is also consistent, but exhibits a larger error. This is related
to the observation that our momentum space determinations
of ΛMS are essentially unaffected by variations of the input
parameters, while the position space determination exhibits
a sizable dependence on the input parameters; cf. also
Sec. 4.3.1 of [1] and Sec. 4.2.1 of [2].
A sizable contribution to the error of our final result (26)

for Λðnf¼2Þ
MS

is coming from the different values obtained for

Ṽpert at NNLO and NNNLO. Since the perturbative
expansion converges quickly in the considered momentum
regime (cf. also the detailed study in Sec. 4.2.1 of [2]), this
error can be considered as estimated rather conservatively.

In turn, we also provide a result for Λðnf¼2Þ
MS

obtained by

exclusively accounting for Ṽpert at NNNLO, yielding

Λðnf¼2Þ;NNNLO
MS

¼ 291ð12Þ MeV: ð27Þ

The mean value of this result is 11 MeV smaller than that
in Eq. (26), based on the combination of both the NNLO
and NNNLO input. At the same time, the error is reduced
by roughly 25%, which is consistent with the findings
of our previous momentum space analysis [2], yielding

Λðnf¼2Þ
MS

j½2� ¼ 331ð21Þ MeV and Λðnf¼2Þ;NNNLO
MS

j½2� ¼
318ð16Þ MeV. On the other hand, a more conservative
estimate of the error would be to take the difference of the

NNLO and the NNNLO results for Λðnf¼2Þ
MS

as a measure of
the uncertainty introduced by the perturbative expansion.
Adding this difference to the error quoted in (27) in
quadrature results in

Λðnf¼2Þ;NNNLO;Δ
MS

¼ 291ð25Þ MeV: ð28Þ

V. COMPLETE ANALYTIC PARAMETRIZATION
OF THE STATIC POTENTIAL

The analytic parametrization of the lattice potential V latðrÞ
derived in Eq. (5) and the perturbative static potentialVpertðrÞ
as defined in Eqs. (16)–(20), with the strong coupling given
by Eq. (23) and μ ¼ 1=r, can be combined to provide a
complete analytic parametrization of the quark-antiquark
static potentialVðrÞ for nf ¼ 2 valid up to the string breaking
distance. This parametrization will be useful for various
applications, such as heavy-quark phenomenology.

A. Construction of the analytic parametrization of VðrÞ
The analytic parametrization (5) of the lattice potential

V latðrÞ, with parameters α and σ fixed to the “continuum/
combined” results provided in the last line of Table II,
accurately describes the quark-antiquark potential for
heavy-quark separations r≳ 3a (cf. Table II). For our
smallest lattice spacing, the latter condition corresponds
to r≳ 0.12 fm. This expression is valid up to the string
breaking distance rsb ≈ 1 fm. On the other hand, the
perturbative static potential VpertðrÞ at NNNLO,
Eqs. (16)–(20), is expected to exhibit small systematic
errors for small quark antiquark separations. Given that
we set μ ¼ 1=r in the strong coupling (23) and choose

μf ≈ 3…7Λðnf¼2Þ
M̄S

, with Λðnf¼2Þ
M̄S

fixed to the value given in
Eq. (26), it is expected to be trustworthy for r≲ 0.12fm [79].
To provide an analytic parametrization ofVðrÞ for r≲ rsb,

we use these two results and connect them in a smooth way,
making use of the so-far undetermined, constant offset V0

between the perturbative and lattice static potentials,
accounted for in the definition of V lat in Eq. (5). This offset
originates in the regularization dependent self-energy of the
static quarks, and naturally differs in perturbation theory and
lattice QCD.More specifically, on the lattice the self-energy
is finite and depends on the lattice spacing and on the
smearing of temporal links. More specifically, we define

VðrÞ ¼

8>><
>>:

VpertðrÞ for r < r1
V12ðrÞ for r1 ≤ r ≤ r2
V latðrÞ for r2 < r

; ð29Þ

where r1; r2 ≈ 0.1 fm…0.2 fm, fulfilling r1 < r2, and

V12ðrÞ ¼ Aþ Brþ Cr2 ð30Þ
is a second degree polynomial. The coefficientsA,B,C, and
the constant shift V0 are chosen such that VðrÞ is a
continuous and smooth (C1 continuous) function, by solving
the following system of four simple linear equations:

Vpertðr1Þ ¼ V12ðr1Þ; V 0
pertðr1Þ ¼ V 0

12ðr1Þ;
V12ðr2Þ ¼ V latðr2Þ; V 0

12ðr2Þ ¼ V 0
latðr2Þ; ð31Þ

with the primes denoting differentiations with respect to r.
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As just mentioned, ourmotivation to use the second degree
polynomial V12ðrÞ in the intermediate region is to provide a
smooth analytic parametrization of VðrÞ. For sufficiently
small extents r2 − r1, this choice should accurately describe
the static potential in this region. We believe that the extents
r2 − r1 < 0.1 fm considered here fall into this category. For
further evidence, see Fig. 6 (left), constructed via the
procedure outlined in Eqs. (29)–(31). An alternative, simpler
option is to directly connect VpertðrÞ and V latðrÞ by choosing
V0 appropriately, i.e., to set r1 ¼ r2 in Eq. (29), thereby
omitting the interpolator V12ðrÞ. As an immediate drawback,
the so obtainedVðrÞ is notC1 continuous;whileV 0

pertðr1Þ and
V 0
latðr1Þ arequite similar, they arenot identical.However, note

that themismatch of perturbation theory and lattice QCD is in
fact very mild; cf. Fig. 6 (right) adopting this choice.

B. Error analysis, when using the analytic
parametrization of VðrÞ

In Secs. II–IV, possible uncertainties and errors
associated with the lattice QCD computation and the

perturbative calculation were discussed and quantified
in detail. For example we not only provided individual
errors for α and σ, but also accounted for their correlation.
In this section, we propose the following procedure,
allowing for the proper inclusion and propagation of
these uncertainties to observables whose determination is
based on our complete analytic parametrization of the
static potential (29) (an explicit example is presented
in Sec. VI):
(1) Let X denote the observable. For example, X could

be a specific difference of two bottomonium masses,
e.g., X ≡mηbð2SÞ −mηbð1SÞ (cf. Sec. VI).

(2) Repeat the calculation of X very often, namely, N ≫
100 times, by randomly sampling the parameters of
VðrÞ. The results are Xj, with j ¼ 1;…; N. To this
end we choose
(a) α and σ according to the following two-

dimensional Gaussian probability distribution,
characterized by the parameters ᾱ, Δα, σ̄, Δσ,
and corrðα; σÞ of the “continuum/combined”
results listed in the last line of Table II,

pðα; σÞ ¼ 1

2πΔαΔσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − corrðα; σÞ2

p exp

�
−

1

2ð1 − corrðα; σÞ2Þ

×

� ðα − ᾱÞ=Δα
ðσ − σ̄Þ=Δσ

�
T
�

1 −corrðα; σÞ
−corrðα; σÞ 1

�� ðα − ᾱÞ=Δα
ðσ − σ̄Þ=Δσ

��
: ð32Þ

(b) Λðnf¼2Þ
MS

according to a Gaussian probability distribution parametrized by our result in Eq. (26). For completeness,

note that, in principle, Λðnf¼2Þ
MS

, α, and σ are also correlated. As this correlation is rather small, we neglect it in the
error analysis.

(c) μf ∈ ½3Λðnf¼2Þ
MS

; 7Λðnf¼2Þ
MS

� uniformly.

(d) r1 ∈ ½0.08 fm; 0.12 fm�, r2 ∈ ½0.16 fm; 0.20 fm�, uniformly.
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FIG. 6. Analytic parametrization of the static potential for the parameters Λðnf¼2Þ
MS

¼ 302 MeV, μf ¼ 5 × 302 MeV, α ¼ 0.326, and
σ ¼ 7.52=fm2. Left: VðrÞ constructed along the lines of Eqs. (29)–(31) with r1 ¼ 0.10 fm and r2 ¼ 0.18 fm. Right: VðrÞ obtained by
setting r1 ¼ r2 ¼ 0.10 fm in Eq. (29).
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(3) The mean value of the obtained results Xj serves as
our estimate for X. Its error is defined via the
standard deviation. More specifically,

X̄ ¼ 1

N

XN
j¼1

Xj; ΔX ¼
�
1

N

XN
j¼1

ðXj − X̄Þ2
�

1=2
:

ð33Þ
(4) Check that both X̄ and ΔX are essentially indepen-

dent of N. If not, increase N.

VI. THE BOTTOMONIUM SPECTRUM IN THE
BORN-OPPENHEIMER APPROXIMATION

In the following, we use the parametrization of the static
potential (29) to compute the bottomonium spectrum. To
this end, we employ the Born-Oppenheimer approximation
[82], which consists of two steps. Its first step amounts to
the computation of the static potential, assuming the light
quarks and gluons as dynamical degrees of freedom and the
b quark and its antiquark b̄ as static. In the second step,
this constraint is relaxed, and the Schrödinger equation for
the relative coordinate of the b̄b pair is solved with the
potential computed in the first step, assuming a finite b
quark mass mb.
Since the static potential manifestly neglects 1=mb

corrections, encoding, e.g., spin effects of the heavy quarks,
this approach certainly does not allow us to obtain very
accurate results for the bottomonium spectrum. We rather
intend at performing an exemplary calculation, utilizing the
parametrization (29) of the static potential and including
a full error propagation along the lines of Sec. V B.
Moreover, it can be considered as a preparatory step for
a more refined computation, accounting for such 1=mb
corrections, to be determined within potential nonrelativ-
istic QCD and lattice QCD (cf., e.g., [83–87]). Also note
that the Born-Oppenheimer approach without 1=mb cor-
rections has recently been used for the study of heavy
tetraquarks (cf., e.g., [88–94]), where no experimental data
are available. A comparison of the theoretical predictions
for the bottomonium masses with corresponding exper-
imental results might provide us with an estimate of the
systematic error associated with this approach.
To this end, we solve the Schrödinger equation�

−
1

2μ
Δþ VðrÞ

�
ψðr⃗Þ ¼ Eψðr⃗Þ; ð34Þ

where r⃗ is the relative coordinate of the bb̄ pair, VðrÞ is the
parametrization (29) of the static potential, and μ ¼ mb=2
is the reduced mass of the b quark. For its explicit value, we
employ either mb ¼ mb;MS ¼ 4.18 GeV determined in the

MS scheme [95] or mb ¼ mb;qm ¼ 4.977 GeV from quark
models [96]. Since the potential is radially symmetric,
Eq. (34) can be separated in a radial and an angular

equation, with the latter being trivial to solve. The radial
equation reads�
−

1

2μ

d2

dr2
þ lðlþ 1Þ

2μr2
þ VðrÞ

�
un;lðrÞ ¼ En;lun;lðrÞ; ð35Þ

where we made use of the ansatz ψðr⃗Þ¼ðun;lðrÞ=rÞ
Yl;mðϑ;φÞ. The solutions un;lðrÞ are labeled by the principal
quantum number n and the azimuthal quantum number l,
corresponding to the orbital angular momentum of the
b̄b pair. This equation can be solved numerically using
standard techniques. Here we use a fourth-order Runge-
Kutta shooting method combined with Newton’s method
for root finding.
The resulting energy eigenvalues En;l can be related to

bottomonium masses Mn;l via

Mn;l ¼ En;l − E1;0 þmηbð1SÞ; ð36Þ
where mηbð1SÞ ¼ 9399 MeV is fixed by experimental input
[95]. Clearly, experimental input is needed to calibrate the
unknown constant shift between the energy eigenvalues
En;l and the bottomonium massesMn;l, which has its origin
in the self-energy of the static quarks and the lattice cutoff.
In other words, using the Born-Oppenheimer approach, one
can only predict mass differences, but not absolute masses
of bottomonium states. Moreover, the results are indepen-
dent of the heavy quark spins, because the potential VðrÞ
has been computed in the static limit. For example, for
orbital angular momentum l ¼ 0, there are degenerate
J ¼ 0 and J ¼ 1 states, and for l ¼ 1, there are degenerate
J ¼ l − 1, J ¼ l, and J ¼ lþ 1 states, with J denoting the
total angular momentum of the bottomonium system.
In the following we present results for three different

cases:
(A) mb ¼ mb;MS, VðrÞ ¼ VðrÞjEq: ð29Þ.
(B) mb ¼ mb;qm, VðrÞ ¼ VðrÞjEq: ð29Þ.
(C) mb ¼ mb;qm,

VðrÞ ¼
�
VðrÞjEq: ð29Þ for r < rsb

VðrsbÞ ¼ const for r ≥ rsb
; ð37Þ

where rsb ¼ 1.13 fm is the string breaking distance
determined with lattice QCD in [62].

Cases (A) and (B) allow us to infer how strong bottomo-
nium mass differences depend on the value of mb.

4 For
cases (B) and (C) we keep the mass of the b quark fixed and
only alter the long-distance behavior of the static potential.
This allows us to check whether string breaking effects
have a sizable effect on the bottomonium spectrum. Of
course, with the potential (37) and the approach adopted
here, we can only determine bottomonium states below the

4Another option would be to tune mb such that for a specific
bottomonium mass difference, e.g., between the ηbð1SÞ and
ηbð2SÞ states, the theoretical result agrees with experiment.
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bb̄ threshold. States above are unstable resonances. In
principle, the determination of such states is possible along
the lines, but it requires techniques from scattering theory
(cf., e.g., [94]).
Our results for the mass differences ΔEn;l ¼ En;l − E1;0

with l ∈ f0; 1g are collected in Table III. The statistical
analysis has been performed with the method detailed in
Sec. V B, employing N ¼ 3000 samples for each botto-
monium mass.
The resulting bottomonium masses are confronted with

experimental data in Table IV and Fig. 7, where the
common notation S for L ¼ 0 and P for L ¼ 1 orbital
angular momentum is used. As discussed above, our
computations do not account for the heavy quark spins,
such that, e.g., the bottomonium states ηbð1SÞ and ϒð1SÞ
with quantum numbers JP ¼ 0− and JP ¼ 1−, respectively,

are mass degenerate. Here, the upper label P refers to the
parity of the state. In turn, the experimentally measured
mass difference of the order of 50 MeV for these two states
can serve as an estimate of the systematic error associated
with our results.
For the low-lying states 1S, 2S, 1P, and 2P, our

theoretical predictions are in good agreement with experi-
ment within the expected systematic error of the order of
50 MeV. Higher states, in particular those above the bb̄
threshold, should be treated with caution. Notably, all
masses below threshold, including those in its vicinity,
as, e.g., the 3S state, are essentially identical for cases (B)
and (C), which implies that they are not affected by the
flattening of the potential for heavy quark separations
above the string breaking distance.
Let us also note that the static bottomonium results of

[78] are compatible with ours. The authors of Ref. [78] did
not account for string breaking effects, but they modeled

TABLE IV. Masses of bottomonium states in units of GeV.
Experimental data listed by the Particle Data Group (PDG) [95]
are compared with theoretical predictions for the three cases (A),
(B), and (C) discussed in the main text. The values marked with �
serve as input and are not predictions. Three dots indicate that no
data are available.

n2Sþ1LJ PDG (A) (B) (C)

ηbð1SÞ 11S0 9.399(3) 9.399ð3Þ� 9.399ð3Þ� 9.399ð3Þ�
ϒð1SÞ 13S1 9.4603(3)

hbð1PÞ 11P1 9.8993(8) 9.83(1) 9.82(1) 9.83(1)
χb0ð1PÞ 13P0 9.8594(5)
χb1ð1PÞ 13P1 9.8928(4)
χb2ð1PÞ 13P2 9.9122(4)

ηbð2SÞ 21S0 9.999(4) 10.01(2) 9.99(2) 9.99(2)
ϒð2SÞ 23S1 10.0233(3)

hbð2PÞ 21P1 10.2598(12) 10.28(3) 10.27(3) 10.27(3)
χb0ð2PÞ 23P0 10.2325(6)
χb1ð2PÞ 23P1 10.2555(6)
χb2ð2PÞ 23P2 10.2687(6)

ϒð3SÞ 33S1 10.3552(5) 10.45(3) 10.42(3) 10.41(2)

χb1ð3PÞ 33P1 10.5121(23) 10.66(4) 10.64(4) � � �
ϒð4SÞ 43S1 10.5794(12) 10.83(4) 10.78(4) � � �

TABLE III. Mass differences ΔEn;l ¼ En;l − E1;0 in units of
GeV for the three cases (A), (B), and (C) discussed in the main
text. Three dots indicate that no data are available.

(A) (B) (C)

l ¼ 0 ΔE20 0.61(2) 0.59(2) 0.59(2)
ΔE30 1.05(3) 1.02(3) 1.01(2)
ΔE40 1.43(4) 1.38(4) � � �

l ¼ 1 ΔE11 0.43(1) 0.42(1) 0.43(1)
ΔE21 0.88(3) 0.87(3) 0.87(3)
ΔE31 1.26(4) 1.24(4) � � �
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FIG. 7. Masses of bottomonium states in units of GeV:
graphical representation of the data assembled in Table IV.
Our theoretical predictions for the three cases (A), (B), and
(C) discussed in the main text are confronted with experimental
data [95]. In our numerical computations, the mass of the 1S state
is fixed to the state ηbð1SÞ observed in experiment.
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contributions inversely proportional to the heavy quark
masses in the potential, encoding spin effects of the heavy
quarks and hyperfine splitting. A possible future direction
could be to compute 1=mb and 1=m2

b corrections of the
potential using lattice QCD, as proposed and pioneered for
nf ¼ 0 in [83–87].

VII. CONCLUSIONS AND OUTLOOK

In this article, we have determined the parameterΛMS for
QCD with nf ¼ 2 dynamical quark flavors by fitting the
perturbative result for the static potential to lattice data in
momentum space. Building on insights from our previous
determinations [1,2], we have substantially improved and
streamlined our strategy to extract the value of ΛMS,
resulting in

Λðnf¼2Þ
MS

¼ 302ð16Þ MeV: ð38Þ

One of the main improvements devised in the present work
is the use of an analytic parametrization of the discrete
simulation data of the lattice static potential in position
space. This renders the complicated and time-consuming
numerical techniques employed in our previous work [2]
superfluous, such as the discrete Fourier transform com-
bined with a cylinder cut, which possibly introduces large
systematic errors. Also, it immediately provides an ana-
lytical expression for the static quark-antiquark potential in
the manifestly nonperturbative regime.
In a second step, we have used ΛMS as the input

parameter in the perturbative static potential. Utilizing an
approximate analytical expression for the strong coupling
αsðμÞ in terms of the dimensionless ratio μ=ΛMS valid for
large values of μ, upon identification of μ ¼ 1=r, the
perturbative static potential in position space becomes an
analytic function of the quark-antiquark separation r. This
function accurately describes the small distance behavior of
the static potential. Connecting it with the analytic para-
metrization of the lattice potential by means of an
adequately chosen interpolating function, we have con-
structed a complete analytic parametrization of the static

quark-antiquark potential in position space, valid up to the
string breaking distance. If desired, the effect of string
breaking can also be phenomenologically accounted for by
letting the potential become constant beyond the string
breaking distance or by using first principles lattice QCD
input, e.g., from [62]. This all-distance potential encoding
both perturbative and manifestly nonperturbative informa-
tion has ample phenomenological applications.
As an immediate phenomenological application and

example, we have used this potential to determine the
bottomonium spectrum in the static limit, based on the
Born-Oppenheimer approximation. Fixing the lowest
bound state with data provided by the Particle Data
Group [95], all bound states below the bb̄ threshold are
in reasonable agreement with experiment. Note that small
deviations are not surprising as particular spin effects have
been completely ignored in our current analysis.
Let us finally emphasize that the strategy devised in the

present work can be readily adopted to the determination of
ΛMS, and for the construction of analytic all-distance
potentials from other lattice configurations with, e.g.,
nf ¼ 0, nf ¼ 2þ 1, and nf ¼ 2þ 1þ 1 dynamical quark
flavors.
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