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We present a lattice calculation of the leading hadronic vacuum polarization (HVP) contribution of the
light u- and d-quarks to the anomalous magnetic moment of the muon, aHVPμ ðudÞ, adopting the gauge
configurations generated by the European Twisted Mass Collaboration (ETMC) with Nf ¼ 2þ 1þ 1

dynamical quarks at three values of the lattice spacing (a ≃ 0.062; 0.082; 0.089 fm) with pion masses in the
rangeMπ ≃ 210–450 MeV. Thanks to several lattices at fixed values of the light-quark mass and scale but
with different sizes we perform a careful investigation of finite-volume effects (FVEs), which represent
one of main source of uncertainty in modern lattice calculations of aHVPμ ðudÞ. In order to remove FVEs
we develop an analytic representation of the vector correlator, which describes the lattice data for time
distances larger than ≃0.2 fm. The representation is based on quark-hadron duality at small and
intermediate time distances and on the two-pion contributions in a finite box at larger time distances.
After removing FVEs we extrapolate the corrected lattice data to the physical pion point and to the
continuum limit taking into account the chiral logs predicted by Chiral Perturbation Theory (ChPT). We
obtain aHVPμ ðudÞ ¼ 619.0ð17.8Þ × 10−10. Adding the contribution of strange and charm quarks, obtained
by ETMC, and an estimate of the isospin-breaking corrections and quark-disconnected diagrams from
the literature we get aHVPμ ðudscÞ ¼ 683ð19Þ × 10−10, which is consistent with recent results based on
dispersive analyses of the experimental cross section data for eþe− annihilation into hadrons. Using our
analytic representation of the vector correlator, taken at the physical pion mass in the continuum and infinite
volume limits, we provide the first eleven moments of the polarization function and we compare them with
recent results of the dispersive analysis of the πþπ− channels. We estimate also the light-quark contribution
to the missing part of aHVPμ not covered in the MUonE experiment.
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I. INTRODUCTION

The anomalous magnetic moment of the muon aμ ≡
ðg − 2Þ=2 is one of the most precisely determined quantities
in particle physics. It is known experimentally with an
accuracy of 0.54 ppm [1] (BNL E821) and the current
precision of the Standard Model (SM) prediction is at the
level of 0.4 ppm [2]. The tension between the experimental
value aexpμ and the SM prediction aSMμ corresponds to
≃3.5 ÷ 4 standard deviations, according to the most recent

determinations of the hadronic vacuum polarization (HVP)
contribution, namely

aexpμ − aSMμ ¼ 31.3ð4.9Þthð6.3Þexp½7.7� × 10−10 ½3�;
¼ 26.8ð4.3Þthð6.3Þexp½7.6� × 10−10 ½4�;
¼ 27.1ð3.6Þthð6.3Þexp½7.3� × 10−10 ½5�; ð1Þ

where the first error is from the SM theory (mainly the HVP
term), the second one from the experiment and the third one
corresponds to their sum in quadrature.
Since the tension given in Eq. (1) might be an exciting

indication of new physics (NP) beyond the SM, an
improvement of the uncertainties is highly desirable. The
forthcoming g − 2 experiments at Fermilab (E989) [3]
and J-PARC (E34) [4] aim at reducing the experimental
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uncertainty by a factor of four, down to 0.14 ppm, making the
comparison of the experimental value of aμ with the theo-
retical predictions one of the most important tests of
the SM in the quest of NP effects. With such a reduced
experimental error, the uncertainty of the hadronic correc-
tions, due to theHVPandhadronic light-by-light (LBL) terms
[5], will soon become the main limitation of this SM test.
The theoretical predictions for the hadronic contribution

aHVPμ have been traditionally obtained from experimental
data using dispersion relations for relating the HVP
function to the experimental cross section data for eþe−
annihilation into hadrons [6,7]. An alternative approach
was proposed in Refs. [8–10], namely to compute aHVPμ in
lattice QCD from the Euclidean correlation function of two
electromagnetic (em) currents. In this respect an impressive
progress in the lattice determinations of aHVPμ has been
achieved in the last few years [11–23] and very interesting
attempts to compute also the LBL contribution are under
way both on the lattice [24,25] and via dispersion
approaches and chiral perturbation theory (ChPT) [26–28].
An updated status of lattice (as well as nonlattice) efforts

for evaluating the hadronic corrections to aμ can be found
in Ref. [29]. The main open issue concerning the most
accurate lattice calculations of aHVPμ , performed using
gauge configurations at the physical pion point, is a
significative tension between the HPQCD [20] result,
aHVPμ ¼ 667ð13Þ × 10−10, on one hand side and the
BMW [22] and RBC/UKQCD [23] findings, aHVPμ ¼
711.0ð18.9Þ × 10−10 and aHVPμ ¼ 715.4ð18.7Þ × 10−10

respectively, on the other hand side. Such a tension
originates almost totally from the light u- and d-quark
(connected) contribution to the HVP and it turns out to be at
the same level of the muon anomaly (1).
Besides the leading HVP correction to the one-loop muon

diagram, which is of order Oðα2emÞ, the increasing precision
of the lattice calculations makes it necessary to include both
em and strong isospin-breaking (IB) corrections, which
contribute at order Oðα3emÞ and Oðα2emðmd −muÞÞ to the
HVP, respectively. InRef. [30] a lattice calculation of both the
leading and the IB corrections to the HVP contribution due to
strange and charm quark intermediate states was carried out
using the time-momentum representation for aHVPμ [31] and
the expansion method of the path integral in the small
parameters αem and ðmd −muÞ=ΛQCD [32,33]. In the strange
and charm sectors the strong IB corrections are absent at
leading order in ðmd −muÞ, while the em corrections have
been found to be negligible with respect to present uncer-
tainties. Other recent calculations of the IB corrections to
the HVP have been performed in Refs. [23,34,35], while
higher-order corrections due to diagrams containingHVPand
lepton insertions have been recently estimated on the lattice
in Ref. [36].
In this paper we present the results of a new lattice

calculation of the leading HVP contribution due to light

u- and d-quark (connected) intermediate states, aHVPμ ðudÞ,
while the evaluation of the corresponding IB corrections
will be addressed in a separate work. We make use of the
gauge ensembles generated by the European Twisted Mass
Collaboration (ETMC) with Nf ¼ 2þ 1þ 1 dynamical
quarks, which include in the sea, besides two light mass-
degenerate quarks, also the strange and the charm quarks
with masses close to their physical values [37,38].
Thanks to the various lattice volumes of the ETMC

gauge ensembles we observe quite relevant finite volume
effects (FVEs) for aHVPμ ðudÞ. Thus, we develop an analytic
representation of the temporal dependence of the Euclidean
vector correlator, based on the quark-hadron duality [39],
already observed in Ref. [30], and on the two-pion
contributions in a finite box [40–46]. Using such a
representation, which constitutes the original part of this
work, we are able to reproduce accurately the temporal
dependence of the Euclidean vector correlator for all the
ETMC gauge ensembles and, by taking properly the
infinite volume limit, we can correct in a systematic way
our lattice values of aHVPμ ðudÞ for the FVEs. We point out
that our estimate of FVEs takes into account the resonant
interaction in the two-pion system at variance with the
ChPT prediction at next-to-leading (NLO) order [47].
The main result of the present study is

aHVPμ ðudÞ ¼ 619.0ð14.7Þstatþfitþinputð6.2Þchirð4.9Þdisc
× ð6.2ÞFVE½17.8� × 10−10; ð2Þ

where the errors come in the order from (statisticsþ
fitting procedureþ input parameters), chiral extrapolation,
discretization and finite volume effects.
Our result (2) improves the previous ETMC estimate

of Ref. [13] and agrees within the errors with the
HPQCD aHVPμ ðudÞ ¼ 599ð11Þ × 10−10 [20], the CLS/
Mainz aHVPμ ðudÞ ¼ 588.2 ð35.8Þ × 10−10 [21], the BMW
aHVPμ ðudÞ ¼ 647.5 ð19.2Þ × 10−10 [22] and the RBC/
UKQCD aHVPμ ðudÞ ¼ 649.7 ð15.0Þ × 10−10 [23] results.
Adding the (connected) contributions from strange

and charm quarks, aHVPμ ðsÞ ¼ 53.1 ð2.5Þ × 10−10 and
aHVPμ ðcÞ ¼ 14.75 ð0.56Þ × 10−10 determined by ETMC in
Ref. [30], and an estimate of the IB corrections aHVPμ ðIBÞ ¼
8ð5Þ × 10−10 and of the quark disconnected diagrams
aHVPμ ðdisconnÞ ¼ −12ð4Þ × 10−10, obtained using the find-
ings of Refs. [22,23], we finally get

aHVPμ ðudscÞ ¼ 683ð19Þ × 10−10; ð3Þ

which is in nice agreement with the recent results aHVPμ ¼
688.07 ð4.14Þ × 10−10 [48], aHVPμ ¼ 693.10 ð3.40Þ × 10−10

[49] and aHVPμ ¼ 693.27 ð2.46Þ × 10−10 [50], based on
dispersive analyses of the experimental cross section data
for eþe− annihilation into hadrons.
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Using our analytic representation of the vector correlator,
taken at the physical pion mass in the continuum and
infinite volume limits, we provide the slope and curvature

of the polarization function, ΠðudÞ
1 ¼ 0.1642 ð33Þ GeV−2

andΠðudÞ
2 ¼ −0.383 ð16Þ GeV−4, which are compared with

lattice results available in the literature. We also estimate
higher-order moments (up to the eleventh moment) and
compare them with the values of the dispersive analysis of
the πþπ− channels made in Ref. [50]. Finally, we estimate
the light-quark contribution to the missing part of aHVPμ not
covered in the MUonE experiment [51,52].
The paper is organized as follows. In Sec. II we introduce

the basic quantities and notation. After providing the
simulation details and addressing the identification of the
ground-state, we evaluate aHVPμ ðudÞ for all the ETMC
ensembles and show the relevance of FVEs. In Sec. III we
develop an analytic representation of the vector correlator,
based on the quark-hadron duality and the two-pion
contributions, obtaining a quite accurate reproduction of
the lattice data of the light-quark vector correlator. In
Sec. IV we remove FVEs from the lattice data using
the analytic representation, while in Sec. V we perform
the extrapolations to the physical pion point and to the
continuum limit. Our findings are then compared with
lattice results available in the literature. In Sec. VI we
discuss some relevant features of the analytic representation
extrapolated at the physical pion mass and in the continuum
limit. We provide the estimates of the lowest-order
moments of the polarization function and compare them
with the lattice results available in the literature. We
estimate also higher-order moments, which we compare
with the values of the dispersive analysis of the πþπ−
channels made in Ref. [50], as well as the light-quark
contribution to the missing part of aHVPμ not covered in the
MUonE experiment [51,52]. Finally, Sec. VII contains our
conclusions and outlooks for future developments.

II. TIME-MOMENTUM REPRESENTATION

Following our previous work [30], we adopt the time-
momentum representation for the evaluation of aHVPμ ,
namely

aHVPμ ¼ 4α2em

Z
∞

0

dtfðtÞVðtÞ; ð4Þ

where t is the Euclidean time, the kernel function fðtÞ is
given by [31]

fðtÞ≡ 4

m2
μ

Z
∞

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ z2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p
− zffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ z2
p

þ z

�2

×

�
cosðzmμtÞ − 1

z2
þ 1

2
m2

μt2
�

ð5Þ

and the (Euclidean) vector correlator VðtÞ is defined as

VðtÞ≡ 1

3

X
i¼x;y;z

Z
dx⃗hJiðx⃗; tÞJið0Þi ð6Þ

with JμðxÞ being the em current operator

JμðxÞ≡
X

f¼u;d;s;c;…

qfψ̄fðxÞγμψfðxÞ: ð7Þ

The vector correlator VðtÞ can be calculated on a lattice
with volume L3 and temporal extension T at discretized
values of the time distance t from 0 to T. In this work we
will limit ourselves to the contribution of the light u- and d-
quarks, evaluated in isosymmetric QCD (mu ¼ md ¼ mud)
neglecting also off-diagonal flavor terms (i.e., including
quark-connected diagrams only). Thus, one gets

aHVPμ ðudÞ ¼ 4α2em

(XTdata

t¼0

fðtÞVðudÞðtÞ

þ
X∞

t¼Tdataþa

fðtÞ ZðudÞ
V

2MðudÞ
V

e−M
ðudÞ
V t

)
; ð8Þ

where the first term in the r.h.s is directly given by the
lattice data, while for the second term the identification of
the ground-state at large time distances is required (see

Refs. [17,18,20,21,30]). In Eq. (8)MðudÞ
V is the ground-state

mass and ZðudÞ
V is the squared matrix element of the light-

quark vector current between the vacuum and the state jVi:
ZðudÞ
V ≡ ð1=3ÞPi¼x;y;z

P
f¼u;dq

2
f jh0jψ̄fð0Þγiψfð0ÞjVij2.

The value of Tdata has to be large enough that the
ground-state contribution is dominant for t > Tdata and
smaller than T=2 in order to avoid backward signals. An
important consistency check is that the sum of the two
terms in the r.h.s. of Eq. (8) should be independent of the
specific choice of the value of Tdata, as it will be shown later
in Sec. II B.

A. Simulation details

The gauge ensembles used in this work are the same
adopted in Ref. [53] to determine the up, down, strange,
charm quark masses and the lattice scale. We employ the
Iwasaki action [54] for gluons and the Wilson twisted mass
action [55–57] for sea quarks.
We have considered three values of the inverse bare

lattice coupling β and different lattice volumes, as shown
in Table I, where the number of configurations analyzed
(Ncfg) corresponds to a separation of 20 trajectories. For
earlier investigations of FVEs ETMC had produced three
dedicated ensembles, A40.20, A40.24 and A40.32, which
share the same quark mass and lattice spacing and differ
only in the lattice size L. To improve such an investigation,
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which is crucial in the present work, a further gauge
ensemble, A40.40, has been generated at a larger value
of the lattice size L.
We work in isosymmetric QCD (mu ¼ md ¼ mud) and

at each lattice spacing different values of the light sea
quark masses have been considered. The light valence
and sea quark masses are always taken to be degenerate
(msea

ud ¼ mval
ud ¼ mud).

In this work we made use of the bootstrap samplings
elaborated for the input parameters of the quark mass
analysis of Ref. [53]. There, eight branches of the analysis
were adopted differing in:

(i) the continuum extrapolation adopting for the scale
parameter either the Sommer parameter r0 or the
mass of a fictitious pseudoscalar meson made up of
strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
ChPT Ansatz in the light-quark mass;

(iii) the choice between the methods M1 and M2, which
differ by Oða2Þ effects, used to determine the mass
renormalization constant (RC) Zm ¼ 1=ZP in the
RI’-MOM scheme.

Throughout this work the renormalized light-quark mass
mud is given in the MS scheme at a renormalization scale
equal to 2 GeV. At the physical pion point (Mphys

π ¼Mπ0 ¼
135MeV) the valuemphys

ud ¼3.70ð17ÞMeVwas determined

in Ref. [53], using the experimental value of the pion decay
constant for fixing the lattice scale.

B. Ground-state identification

As in Ref. [30], in the numerical simulations we have
adopted the following local version of the vector current

JμðxÞ ¼ ZAψ̄
0ðxÞγμψðxÞ; ð9Þ

where ψ 0 has the same mass and charge of ψ , but it is
regularized with an opposite value of the Wilson
r-parameter, i.e., r0 ¼ −r. Being at maximal twist the
current (9) renormalizes multiplicatively through the RC
ZA determined in Ref. [53]. By construction the local
current (9) cannot generate off-diagonal flavor contribu-
tions in the vector correlator (6).
As discussed in Ref. [30], the properties of the kernel

function fðtÞ, given by Eq. (5), guarantee that the contact
terms, generated in the HVP tensor by a local vector
current, cannot contribute to the evaluation of aHVPμ (see
also Ref. [58]).
We have calculated the vector correlator (6) adopting the

local current (9) for the light u and d-quarks using 160
stochastic sources (diagonal in the spin variable and dense
in the color one) per gauge configuration. For each gauge

ensemble the ground-state mass MðudÞ
V and the coupling

TABLE I. Values of the simulated quark bare masses (in lattice units), of the pion mass Mπ , of the lattice size L
and of the product MπL for the 16 ETMC gauge ensembles with Nf ¼ 2þ 1þ 1 dynamical quarks used in this
work (see Ref. [53]) and for the gauge ensemble, A40.40 added to improve the investigation of FVEs. The bare
twisted masses μσ and μδ describe the strange and charm sea doublet according to Ref. [56]. The central values and
errors of the pion mass are evaluated using the bootstrap events of the eight branches of the analysis of Ref. [53]. The
valence quarks in the pion are regularized with opposite values of the Wilson r-parameter in order to guarantee that
discretization effects on the pion mass are of order Oða2μudΛQCDÞ.
Ensemble β V=a4 aμud aμσ aμδ Ncfg L (fm) Mπ (MeV) MπL

A40.40 1.90 403 × 80 0.0040 0.15 0.19 100 3.5 317 (12) 5.7
A30.32 323 × 64 0.0030 150 2.8 275 (10) 3.9
A40.32 0.0040 100 316 (12) 4.5
A50.32 0.0050 150 350 (13) 5.0

A40.24 243 × 48 0.0040 150 2.1 322 (13) 3.5
A60.24 0.0060 150 386 (15) 4.2
A80.24 0.0080 150 442 (17) 4.8
A100.24 0.0100 150 495 (19) 5.3

A40.20 203 × 48 0.0040 150 1.8 330 (13) 3.0

B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 2.6 259 (9) 3.4
B35.32 0.0035 150 302 (10) 4.0
B55.32 0.0055 150 375 (13) 5.0
B75.32 0.0075 80 436 (15) 5.8

B85.24 243 × 48 0.0085 150 2.0 468 (16) 4.6

D15.48 2.10 483 × 96 0.0015 0.1200 0.1385 100 3.0 223 (6) 3.4
D20.48 0.0020 100 256 (7) 3.0
D30.48 0.0030 100 312 (8) 4.7
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constant ZðudÞ
V are extracted from a single exponential

fit (including the proper backward signal) in the range
tmin ≤ t ≤ tmax. The values chosen for tmin and tmax are
collected in Table II.

The statistical precision of the effective mass MðudÞ
eff ðtÞ,

defined as

aMðudÞ
eff ðtÞ≡ arcosh

�
VðudÞðt − aÞ þ VðudÞðtþ aÞ

2VðudÞðtÞ

�

t ≥ tmin

⟶
aMðudÞ

V ; ð10Þ

is illustrated in Fig. 1 by comparing the results obtained
using either 40 or 160 stochastic sources per gauge
configuration in the case of the ETMC ensembles
A80.24, B55.32, and D30.48. We observe that the increase
of the number of stochastic sources is beneficial, but the

quality of the plateaux at large time distances is never-
theless still limited.

C. Lattice data and FVEs

We have evaluated Eq. (8) adopting four choices of Tdata,
namely: Tdata ¼ ðtmin þ 2aÞ, ðtmin þ tmaxÞ=2, ðtmax − 2aÞ,
and ðT=2 − 4aÞ, and using the values of the ground-state

mass MðudÞ
V and (squared) matrix elements ZðudÞ

V , deter-
mined, as described in the previous subsection, from a
single exponential fit of the vector correlator VðudÞðtÞ in the
range tmin ≤ t ≤ tmax, with the values of tmin and tmax given
in Table II.
The results obtained in the case of the ETMC gauge

ensembles A40.24, B25.32, and D15.48 are collected in
Table III for illustrative purposes. The two terms in the r.h.s.
of Eq. (8) depend on the specific value of Tdata, as expected,
but their total sum is almost independent of the specific
choice of Tdata. In order to minimize the impact of the
contribution depending on the identification of the ground-
state signal and to optimize at the same time the statistical
uncertainties the value Tdata ¼ ðtmax − 2aÞ has been
adopted in what follows.
The results for aHVPμ ðudÞ for all the ETMC ensembles of

Table I versus the simulated pion mass Mπ are collected in
the left panel of Fig. 2, while the right panel contains only
our findings in the case of the four ensembles A40.XX with
XX ¼ 20, 24, 32, and 40, which share the same quark mass
and lattice spacing and differ only in the lattice size L.
The lattice data for aHVPμ ðudÞ exhibit a strong depend-

ence on the pion mass and a remarkable sensitivity to FVEs

TABLE II. Values of tmin and tmax chosen to extract the ground-
state signal from the light-quark vector correlator VðtÞ for the
ETMC gauge ensembles of Table I.

β V=a4 tmin=a tmax=a

1.90 403 × 80 12 22
323 × 64 12 22
243 × 48 12 20
203 × 48 12 20

1.95 323 × 64 13 22
243 × 48 13 20

2.10 483 × 96 18 30

TABLE III. Results for the light-quark (connected) contribution to aHVPμ ðudÞ in units of 10−10, obtained adopting
in Eq. (8) Tdata ¼ ðtmin þ 2aÞ, ðtmin þ tmaxÞ=2, ðtmax − 2aÞ and ðT=2 − 4aÞ for the ETMC gauge ensembles A40.24,
B25.32, and D15.48.

Ensemble A40.24

aHVPμ ðudÞ ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
T ≤ Tdata 274.4 (7.2) 300.0 (7.4) 319.3 (7.7) 334.1 (9.0)
T > Tdata 78.7 (10.0) 53.1 (8.4) 34.5 (6.6) 19.9 (4.6)
total 353.1 (10.8) 353.1 (10.5) 353.9 (10.8) 354.0 (11.7)

Ensemble B25.32

aHVPμ ðudÞ ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
T ≤ Tdata 289.1 (5.7) 326.2 (7.3) 360.3 (9.4) 395.3 (14.7)
T > Tdata 111.6 (9.8) 74.5 (8.0) 40.8 (5.5) 6.6 (1.4)
total 400.7 (13.6) 400.7 (13.6) 401.1 (13.9) 401.9 (16.0)

Ensemble D15.48

aHVPμ ðudÞ ðtmin þ 2aÞ ðtmin þ tmaxÞ=2 ðtmax − 2aÞ ðT=2 − 4aÞ
T ≤ Tdata 324.9 (6.3) 380.8 (8.0) 416.0 (10.4) 440.6 (55.6)
T > Tdata 133.4 (12.6) 79.1 (10.1) 41.6 (6.9) 2.1 (0.7)
total 458.3 (15.1) 459.9 (15.1) 457.6 (15.7) 442.7 (55.7)
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at variance with the results obtained in the case of the
strange and charm quark contributions to aHVPμ (see
Ref. [30]). In particular, the data shown in the right panel
of Fig. 2 indicates that at a simulated pion mass Mπ ≃
320 MeV the FVEs are at the level of ≃25% for MπL ≃ 3
and they reduce to ≃5% only at MπL ≃ 5. The precision of
the lattice data do not allow to distinguish whether the
FVEs are exponentially or power-law suppressed [40,41].
The large corrections observed for the ETMC ensembles

A40.XX need to be understood and estimated properly. At
NLO ChPT is unable to reproduce the value of aHVPμ [59]
because of the important role of resonance contributions,
which starts only at higher orders. The NLO chiral

prediction for the FVEs is believed to be adequate close
to the physical pion point [47,60], since it is dominated by
pion loops. However, the NLO chiral result for the FVEs
coincide with the estimate corresponding to noninteracting
two-pion states in a finite box [21,46]. When applied at a
pion mass of ≃300 MeV, we find that the NLO chiral
prediction for FVEs is off by one order of magnitude with
respect to what is observed in the right panel of Fig. 2. The
ρ-meson resonant contribution to the interaction between
two pions may therefore play an important role not only for
aHVPμ ðudÞ, but also for the evaluation of FVEs. Thus, we
have elaborated an analytic representation of the vector
correlator VðudÞðtÞ, which incorporates resonant two-pion

FIG. 2. Left panel: results for aHVPμ ðudÞ obtained using Eq. (8) (with Tdata ¼ tmax − 2a) for all the ETMC ensembles of Table I versus
the simulated pion mass Mπ . Right panel: lattice data in the case of the four ensembles A40.XX with XX ¼ 20, 24, 32 and 40,
corresponding to a pion mass Mπ ≃ 320 MeV and a lattice spacing a ≃ 0.089 fm. The (red) solid and (black) dashed lines correspond,
respectively, to an exponential, Að1 − Be−MπLÞ, and a power-law, A0ð1 − B0=ðMπLÞ3Þ, phenomenological fit.

FIG. 1. The effective mass MðudÞ
eff ðtÞ in lattice units [see Eq. (10)] corresponding to the light-quark vector correlator VðudÞðtÞ for the

ETMC gauge ensembles A80.24, B55.32, and D30.48, evaluated using either 40 (left panel) or 160 (right panel) stochastic sources per
each gauge configuration.
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states and is given in terms of few quantities exhibiting
small FVEs. In this way we may achieve a good, direct
control of FVEs in aHVPμ ðudÞ. The analytic representation is
described in the next section and the subtraction of FVEs is
carried out in Sec. IV.

III. ANALYTIC REPRESENTATION OF THE
LIGHT-QUARK VECTOR CORRELATOR

In this section we develop an analytic representation of
the temporal dependence of the vector correlator VðudÞðtÞ,
based on the quark-hadron duality [39] and on the two-pion
contributions in a finite box [40–46].
Let us start with the two-pion contribution, which in

infinite volume is a continuous function above the two-
particle threshold. In a finite box of volume L3 the two-pion
states have been analyzed in detail in Refs. [40–43]. The
energy levels ωn of the two-pion states are given by

ωn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ k2n

q
; ð11Þ

where the discretized values kn should satisfy the Lüscher
condition, which for the case at hand (two pions in a
P-wave with total isospin 1) reads as

δ11ðknÞ þ ϕ

�
knL
2π

�
¼ nπ; ð12Þ

where δ11 is the (infinite volume) scattering phase shift
and ϕðzÞ is a known kinematical function defined as

tanϕðzÞ ¼ −
2π2zP

m⃗∈Z3ðjm⃗j2 − z2Þ−1 : ð13Þ

The two-pion contribution to the vector correlator, VππðtÞ,
can be written as [44–46]

VππðtÞ ¼
X
n

νnjAnj2e−ωnt; ð14Þ

where νn is the number of vectors z⃗ ∈ Z3 with norm
jz⃗j2 ¼ n and the squared amplitudes jAnj2 are related to the
square of the timelike pion form factor jFπðωÞj2 by

νnjAnj2 ¼
2k5n
3πω2

n
jFπðωnÞj2

�
knδ011ðknÞ þ

knL
2π

ϕ0
�
knL
2π

��
−1
:

ð15Þ

For our purposes all we need is a parametrization of the
timelike pion form factor FπðωÞ ¼ jFπðωnÞjeiδ11, where its
phase coincides with the scattering phase shift according
to the Watson theorem. The most popular parametrization
is the Gounaris-Sakurai (GS) one [61], which is based on
the dominance of the ρ resonance in the amplitude of the

pion-pion P-wave elastic scattering (with total isospin 1),
namely

FðGSÞ
π ðωÞ ¼ M2

ρ − Aππð0Þ
M2

ρ − ω2 − AππðωÞ
; ð16Þ

where the (twice-subtracted [61]) pion-pion amplitude
AππðωÞ is given by

AππðωÞ ¼ hðMρÞþ ðω2−M2
ρÞ
h0ðMρÞ
2Mρ

−hðωÞþ iωΓρππðωÞ

ð17Þ

with

ΓρππðωÞ ¼
g2ρππ
6π

k3

ω2
; ð18Þ

hðωÞ ¼ g2ρππ
6π

k3

ω

2

π
log

�
ωþ 2k
2Mπ

�
; ð19Þ

h0ðωÞ ¼ g2ρππ
6π

k
πω

�
1þ

�
1þ 2M2

π

ω2

�
ω

k
log

�
ωþ 2k
2Mπ

��
;

ð20Þ

Aππð0Þ ¼ hðMρÞ −
Mρ

2
h0ðMρÞ þ

g2ρππ
6π

M2
π

π
ð21Þ

and k≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4 −M2

π

p
. By analytic continuation the GS

form factor at ω ¼ 0 is normalized to unity, i.e.,

FðGSÞ
π ðω ¼ 0Þ ¼ 1. The scattering phase shift δ11ðkÞ, i.e.,

the phase of the form factor, is given by

cotδ11ðkÞ

¼M2
ρ −ω2−hðMρÞ− ðω2−M2

ρÞh0ðMρÞ=ð2MρÞþhðωÞ
ωΓρππðωÞ

:

ð22Þ

The GS parametrization contains two parameters: the
resonance mass, Mρ, and its strong coupling with two
pions, gρππ . At the physical pion point the GS parameter-
ization of the pion form factor provides a reasonable
description of the experimental data on the process
eþe− → πþπ−, as shown in Fig. 3.
In what follows we adopt the GS parametrization and

treat both Mρ and gρππ as free parameters to be determined
by fitting the vector correlator VðudÞðtÞ. Note that the GS
form factor does not contain any effect of the ρ − ωmixing.
This is appropriate for our isosymmetric (mu ¼ md) QCD
lattice setup.
We expect that the low-lying states close to the resonance

mass can be properly described by the isovector two-pion
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contribution (14). This means that we may be able to
reproduce the vector correlator VðudÞðtÞ at large time
distances. However, we want to achieve an analytic
representation of the vector correlator valid also at low
and intermediate time distances. To this end we resort to an
observation made in Ref. [30], concerning the onset of
quark-hadron duality [39]. The matching between pertur-
bative QCD (pQCD) and the vector correlator is expected
to occur at enough small values of t, i.e., t ≪ 1=ΛQCD ≈
1 fm (with ΛQCD ≈ 300 MeV), which correspond to energy
scales ≫ ΛQCD. As shown in Ref. [30], the matching with
pQCD occurs instead up to time distances of ≈1 fm. Such
an agreement holds in the case of the light u- and d-quarks,

which can be treated in the massless limit, as well as in the
case of the strange and charm quarks, once the corrections
due to the nonvanishing quark masses are included. The
fact that the matching appears to work up to t ≈ 1 fm is a
nice manifestation of the quark-hadron duality à la SVZ,
which states that the sum of the contributions of the excited
states is dual to the pQCD behavior [39]. The onset of
quark-hadron duality in the vector correlator VðudÞðtÞ,
evaluated using our lattice data, is illustrated in Fig. 4.
Thus, inspired by the approach of QCD sum rules we

introduce a dual correlator, VdualðtÞ, defined as

VdualðtÞ≡ 1

24π2

Z
∞

sdual

ds
ffiffiffi
s

p
e−

ffiffi
s

p
tRpQCDðsÞ

¼ 5

9

1

8π2

Z
∞

sdual

ds
ffiffiffi
s

p
e−

ffiffi
s

p
t

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ud

s

r �
1þ 2m2

ud

s

�

þOðαsÞ
#

¼ 5

9

s3=2dual

2π2

�
1

x3
e−x

�
1þ xþ 1

2
x2
�

þO
�
m4

ud

s2dual

�
þOðαsÞ

�
; ð23Þ

where x≡ ffiffiffiffiffiffiffiffiffi
sdual

p
t and sdual is an effective threshold above

which the hadronic spectral density is considered to be
dual to the pQCD prediction RpQCDðsÞ related to the (one
photon) eþe− annihilation cross section into hadrons.
According to Ref. [39] the value of

ffiffiffiffiffiffiffiffiffi
sdual

p
is expected to

be above the ground-state mass by an amount of the order
of ΛQCD. Therefore, we assume that

FIG. 4. The vector correlator VðudÞðtÞ in physical units corre-
sponding to the ETMC gauge ensembles specified in the inset,
which share an approximate common value of the (renormalized)
light-quark mass mud ≃ 12 MeV and differ in the values of the
lattice spacing a. The solid line represents the pQCD prediction
in the massless limit (cf. Eq. (3.22) of Ref. [30]).

FIG. 3. Left panel: the squared time-like pion form factor jFπðωÞj2 determined by the KLOE experiment [62] from the process
eþe− → πþπ− (dots). Right panel: the experimental values of the scattering phase shift δ11 obtained in Ref. [63] (squares) and in
Ref. [64] (diamonds). The solid lines represent the results of the GS parametrization (16)–(18) corresponding to Mπ ¼ 0.135 GeV,
Mρ ¼ 0.775 GeV, and gρππ ¼ 5.50.
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sdual ¼ ðMρ þ EdualÞ2 ð24Þ

with Edual being treated as a free parameter to be deter-
mined by fitting the vector correlator VðudÞðtÞ. Furthermore,
we introduce in the r.h.s. of Eq. (23) a multiplicative factor
Rdual in order to take into account perturbative corrections
at order OðαsÞ (and beyond), discretization effects and an
(expected) slight dependence on the light-quark massmud.

1

Thus, our final expression for the dual correlator VdualðtÞ is

VdualðtÞ ¼
5

18π2
Rdual

t3
e−ðMρþEdualÞt

�
1þ ðMρ þ EdualÞt

þ 1

2
ðMρ þ EdualÞ2t2

�
; ð25Þ

where both Rdual and Edual are free parameters to be
determined by fitting the vector correlator VðudÞðtÞ, while
Mρ is the same parameter appearing in the two-pion
contribution (14)–(15) through the GS parametrization of
the timelike pion form factor (16)–(18).
To sum up, our analytic representation of the vector

correlator VðudÞðtÞ is given by the sum of the dual correlator
VdualðtÞ and the two-pion contribution VππðtÞ, viz.

VdualþππðtÞ ¼ VdualðtÞ þ VππðtÞ; ð26Þ

which contains four free parameters, Rdual, Edual, Mρ, and
gρππ . More precisely, we can make use of four dimension-
less parameters, namely Rdual, Edual=Mπ ,Mρ=Mπ , and gρππ ,

which will be determined by fitting the vector correlator
VðudÞðtÞ separately for each of the 17 ETMC gauge
ensembles of Table I. In this way the fitting procedure
can be carried out entirely in lattice units without requiring
the knowledge of the value of the lattice spacing (i.e., the
four parameters Rdual, Edual=Mπ , Mρ=Mπ , and gρππ are not
sensitive to the uncertainty of the scale setting). We find
that the inclusion of the (lowest) four two-pion energy
levels ωn in Eq. (14) turns out to be sufficient for all of the
ETMC ensembles.2

By means of the analytic representation (26) we repro-
duce accurately the lattice data for the vector correlator
VðudÞðtÞ for t≳ 0.2 fm for all ETMC ensembles. The fitting
region is extended up to larger values of t, where the
statistical uncertainties of the lattice correlator VðudÞðtÞ do
not exceed ≃10% (i.e., t≲ 1.7 ÷ 2.0 fm).
The quality of the fits is illustrated in Figs. 5 and 6 in the

case of few ETMC gauge ensembles and it is nicely
confirmed by the comparison, shown in Fig. 7, between
the values of aHVPμ ðudÞ, evaluated using Eq. (8), and those
corresponding to the analytic representation (26), namely

aHVPμ ðudÞjdualþππ ¼ 4α2em
X∞
t¼0

fðtÞ½VdualðtÞþVππðtÞ�: ð27Þ

The high-level accuracy obtained for the reproduction of
the vector correlator VðudÞðtÞ using the analytic represen-
tation (26) guarantees that the calculated values of

FIG. 5. The vector correlator VðudÞðtÞ (in lattice units) in the case of the gauge ensemble A40.24 corresponding to a pion mass of
≃320 MeV versus the time distance t (in lattice units). The blue dotted and the red dashed lines represent respectively the contributions
of the dual correlator VdualðtÞ and of the two-pion correlator VππðtÞ. The green solid line is the sum of the two contributions. In the left
panel a logarithmic scale is used, while in the right panel the region of low values of t is better highlighted using a linear scale. Errors are
statistical only.

1A more refined treatment of the perturbative and condensate
corrections to VdualðtÞ is left to future developments.

2We have explicitly checked that using the (lowest) eight
energy levels in Eq. (14) yield results for the four para-
meters Rdual, Edual, Mρ, and gρππ , which differ well below the
uncertainties.
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aHVPμ ðudÞ differs form the lattice data less than one standard
deviation.
We point out that for all the ETMC ensembles of Table I

the first noninteracting two-pion energy level, given by
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ ð2π=LÞ2
p

, is always well above the position of the
resonance mass Mρ. Due to the residual strong interaction
between the two pions the first energy level ωn¼1 satisfying
the Lüscher condition (12) turns out to be slightly below
Mρ. This feature justifies the use of a single exponential fit
in Eq. (8), at least for the ETMC ensembles of Table I. Such
a situation changes as the simulated pion mass decreases

and the single exponential fit is completely ruled out at the
physical pion point (see later Sec. VI).
Before closing this section, we address the issue of

possible correlations of the vector correlator VðudÞðtÞ at
nearby values of t. To this end we have repeated our fitting
procedure with reduced numbers of data corresponding to
including one out of two (or three) subsequent lattice
points. The results obtained for the four parameters Rdual,
Edual=Mπ , Mρ=Mπ , and gρππ differ within approximately
one standard deviation, as shown in Table IV in the case of
few ETMC gauge ensembles.

FIG. 6. The same as in the left panel of Fig. 5, but in the case of the gauge ensembles B25.32 and D15.48 corresponding toMπ ≃ 260
and ≃220 MeV, respectively. Errors are statistical only.

FIG. 7. The (connected) light-quark contribution to the muon HVP, aHVPμ ðudÞ, evaluated for all the ETMC gauge ensembles of Table I.
Empty markers correspond to Eq. (8), where the lattice data for the vector correlator VðudÞðtÞ are directly used. Full markers are the
results of Eq. (27), where the analytic representation (26) is adopted. For the latter case the points have been shifted horizontally for a
better readability.
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The results for the four parameters Rdual, Edual=Mπ ,
Mρ=Mπ, and gρππ obtained in the case of all the ETMC
ensembles will be shown later in Figs. 11 and 12.

IV. SUBTRACTION OF FVEs

We start the analysis of FVEs by considering the four
ensembles A40.XX, which share the same quark mass
(mud ≃ 17 MeV) and lattice spacing (a ≃ 0.089 fm) and
differ only in the lattice size L, namely XX ¼ 20, 24, 32
and 40 (see Table I).

A. Ensembles A40.XX

The values of the four parameters Rdual, Edual, Mρ, and
gρππ obtained by fitting the vector correlator VðudÞðtÞ are
shown in Fig. 8. It can be seen that the FVEs on all the
fitting parameters are definitely more limited with respect
to those observed for aHVPμ ðudÞ in the right panel of Fig. 2.
This fact allows for a good control of the values of the four
parameters in the infinite volume limit, as shown in Fig. 8
by the solid, dashed and dotted lines, whose differences are
well within the uncertainties. The solid and dashed lines
correspond to the exponentially-suppressed Ansatz

P ¼ P∞
�
1þ FP

e−MπL

ðMπLÞα
�

ð28Þ

with α ¼ 3=2 and α ¼ 0, respectively. In Eq. (28) P stands
for fRdual; Edual;Mρ; gρππg, while P∞ and FP are fitting
parameters. The dotted lines correspond instead to the
power-suppressed Ansatz

P ¼ P0∞
�
1þ F0

P

ðMπLÞ3
�
: ð29Þ

Besides the four parameters Rdual, Edual, Mρ, and gρππ ,
also the simulated pion massMπ suffers from FVEs, which
have been thoroughly investigated in Ref. [53] using the
resummed ChPT approach of Refs. [65,66]. For the
purposes of the present work it suffices to consider for
M2

π the exponentially-suppressed Anzatz (28) with
α ¼ 3=2, as suggested by the asymptotic behavior of
NLO ChPT in the p-regime.
Once the infinite volume limits R∞

dual, E
∞
dual, M

∞
ρ , g∞ρππ ,

and M∞
π have been determined, we need to specify the

infinite-volume limit of our “dualþ ππ” representation

FIG. 8. Left panel: the dual parameters Rdual and Edual (given in physical units) versus MπL, appearing in Eq. (25), for the four
ensembles A40.XX (mud ≃ 17 MeV and a ≃ 0.089 fm). Right panel: the parameters Mρ (given in physical units) and gρππ=4 versus
MπL, appearing in the two-pion contribution (14). The solid and dashed lines correspond to the exponentially-suppressed Ansatz (28)
with α ¼ 3=2 and α ¼ 0, respectively. The dotted lines correspond to the power-suppressed Ansatz (29).

TABLE IV. Values of the four parameters Rdual, Edual=Mπ , Mρ=Mπ , and gρππ obtained by fitting the vector
correlator VðudÞðtÞ by including all subsequent timeslices (all) or one out of two (or three) subsequent lattice points
in the case of the gauge ensembles A40.24, B55.32, and D30.48.

A40.24 A40.24 B55.32 B55.32 D30.48 D30.48 D30.48
Parameter All 1 out of 2 All 1 out of 2 All 1 out of 2 1 out of 3

Rdual 1.44 (4) 1.43 (4) 1.39 (2) 1.39 (3) 1.21 (1) 1.20 (1) 1.18 (2)
Edual=Mπ 2.22 (23) 2.13 (27) 1.95 (9) 1.96 (10) 1.84 (10) 1.77 (11) 1.65 (13)
Mρ=Mπ 2.77 (9) 2.76 (10) 2.44 (2) 2.44 (2) 2.76 (4) 2.74 (4) 2.73 (4)
gρππ 5.22 (9) 5.25 (11) 4.98 (2) 4.98 (3) 5.04 (4) 5.07 (4) 5.10 (5)
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V∞
dualþππðtÞ ¼ V∞

dualðtÞ þ V∞
ππðtÞ: ð30Þ

For the dual contribution one has straightforwardly

V∞
dualðtÞ ¼

5

18π2
R∞
dual

t3
e−ðM∞

ρ þE∞
dualÞt

�
1þ ðM∞

ρ þ E∞
dualÞt

þ 1

2
ðM∞

ρ þ E∞
dualÞ2t2

�
; ð31Þ

while the two-pion contribution in the infinite-volume limit
becomes [45]

VππðtÞL→∞
⟶V∞

ππðtÞ ¼
1

48π2

Z
∞

2M∞
π

dωω2

�
1 −

ð2M∞
π Þ2

ω2

�
3=2

× jF∞
π ðωÞj2e−ωt; ð32Þ

where jF∞
π ðωÞj can be calculated from the GS parametri-

zation (16)–(18) using M∞
ρ , g∞ρππ , and M∞

π .
We can now correct the lattice data for aHVPμ ðudÞ,

obtained at finite volume by means of Eq. (8), for the
FVEs evaluated using our representation of the vector
correlator VðudÞðtÞ at infinite volume, Eqs. (31)–(32), and
the one at finite volume, Eqs. (14) and (25), namely

aHVPμ ðudÞjL→∞ ¼ aHVPμ ðudÞ þ ΔFVEaHVPμ ðudÞ; ð33Þ

ΔFVEaHVPμ ðudÞ ¼ 4α2em
X∞
t¼0

fðtÞ½V∞
dualðtÞ − VdualðtÞ

þ V∞
ππðtÞ − VππðtÞ�: ð34Þ

The results obtained in the case of the ensembles A40.XX
are shown in Fig. 9. We observe that most of the FVE
correction comes from the ππ contribution. The small
residual FVEs can be almost totally taken into account
by adding the FVEs related to the dual contribution. We
point out that in order to remove properly the FVEs it is
important to use in Eqs. (31)–(32) the infinite-volume
values R∞

dual, E
∞
dual, M

∞
ρ , g∞ρππ and M∞

π . Indeed, if one uses
instead the finite volume values (as done, e.g., in Ref. [21]),
the correction (34) may be largely underestimated, as
shown by the black triangles in Fig. 9.
We have explicitly checked the dependence of our

FVE correction (33) on the parametrization adopted for
the time-like pion form factor FπðωÞ. To this end we keep
the ρ-meson dominance and consider two simple Breit-
Wigner forms in which either Γρππ ¼ const. (labeled here-
after as BW) or Γρππ ∝ k (labeled as BW0) instead of the
GS width (18). Correspondingly, the real part of the two-
pion amplitude AππðωÞ has been calculated using twice-
subtracted dispersion relations, as in the case of the GS
parametrization. We have considered also the approxima-
tion of neglecting the real part of AππðωÞ. The fitting
procedure of the vector correlator VðudÞðtÞ corresponding to
the four ensembles A40.XX has been repeated for all the

FIG. 9. Lattice data in the case of the four ensembles A40.XX
(red dots) versus MπL. The blue squares and the green diamonds
correspond respectively to the data corrected by FVEs according
to Eqs. (33)–(34), evaluated by including either the ππ
contribution only or the “dualþ ππ” terms and by using in
Eqs. (31)–(32) the infinite-volume values R∞

dual, E
∞
dual, M

∞
ρ , g∞ρππ

and M∞
π . The dashed line is a constant fit to the green points.

The black triangles represent the data corrected by the FVEs
evaluated using in Eqs. (31)–(32) the values of Rdual, Edual, Mρ,
gρππ , and Mπ obtained at each lattice size L (see text).

TABLE V. Values of aHVPμ ðudÞjL→∞ obtained using Eqs. (33)–(34) for the four ensembles A40.XX, adopting
different parameterizations of the time-like pion form factor FπðωÞ. Besides the GS one [see Eq. (16)], two simple
Breit-Wigner forms in which either Γρππ ¼ const. (BW) or Γρππ ∝ k (BW0) have been considered; moreover, the real
part of the corresponding (twice-subtracted) two-pion amplitude AππðωÞ is either included or excluded. The last
column represents the values of aHVPμ ðudÞjdualþππ obtained in the infinite volume limit for each parametrization
of FπðωÞ.
Parameterization of FπðωÞ A40.20 A40.24 A40.32 A40.40 dualþ ππ (L → ∞)

GS with ReAππ ≠ 0 405 (12) 411 (10) 412 (13) 409 (12) 411 (13)
GS with ReAππ ¼ 0 406 (13) 411 (11) 413 (13) 410 (13) 411 (13)
BW with ReAππ ≠ 0 404 (12) 410 (10) 411 (13) 408 (12) 410 (12)
BW with ReAππ ¼ 0 404 (12) 409 (10) 410 (13) 407 (12) 409 (12)
BW0 with ReAππ ≠ 0 405 (12) 410 (10) 412 (13) 409 (12) 410 (12)
BW0 with ReAππ ¼ 0 404 (12) 411 (10) 411 (12) 408 (13) 410 (13)
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parametrizations of the pion form factor and the values
obtained for the dual and ππ parameters have been
extrapolated to the infinite volume limit. The results for
aHVPμ ðudÞjL→∞, corresponding to Eqs. (33)–(34), are col-
lected in Table V.
The changes due to different parameterizations of the

time-like pion form factor FπðωÞ are quite small and they
do not exceed ≃0.5%. This finding may be due to the fact
that in calculating ΔFVEaHVPμ ðudÞ [see Eq. (34)] the
differences [V∞

ππðtÞ − VππðtÞ] are expected to be less

sensitive to the specific parametrization of the pion form
factor than the separate terms.
Before closing this subsection, we compare our findings

with the results of Ref. [67], where the elastic P-wave ππ
phase shifts δ11 have been extracted from lattice QCD
simulations with Nf ¼ 2þ 1 flavors of clover fermions.
There the simulated pion mass wasMπ ≃ 320 MeV, which
is quite close to the pion mass corresponding to our
A40.XX ensembles (M∞

π ≃ 315 MeV). The phase shifts
δ11 found in Ref. [67] are compared in Fig. 10 with our
A40.XX results corresponding to the infinite volume limit.
The comparison is made in terms of the dimensionless
variable ω=Mρ, which helps in absorbing the different
values of the ρ-meson mass found in Ref. [67],
Mρ ≃ 800 MeV, and with our A40.XX ensembles,
M∞

ρ ≃ 850 MeV, as well as in absorbing the statistical
fluctuations of the ρ-meson mass. It should be kept in mind
that discretization effects are expected to be different
between the lattice setup of Ref. [67] and our A40.XX
ensembles. Nevertheless, the overall agreement shown in
Fig. 10 is quite reassuring.

B. ETMC ensembles

We now address the subtraction of FVEs from the HVP
term aHVPμ ðudÞ corresponding to the ETMC ensembles of
Table I. The fitting procedure of the vector correlator
VðudÞðtÞ provide us with the values of the four dimension-
less parameters Rdual, ðMπ=EdualÞ2, ðMπ=MρÞ2 and gρππ ,
which are collected in Figs. 11 and 12. We stress that
dimensionless parameters are not sensitive to the uncertainty

FIG. 10. Elastic P-wave ππ scattering phase shift δ11 obtained
in Ref. [67] (blue circles) and with our A40.XX ensembles
(red curve) versus the dimensionless variable ω=Mρ. The lattice
setup of Ref. [67] corresponds to Nf ¼ 2þ 1 clover fermions
with Mπ ≃ 320 MeV, Mρ ≃ 800 MeV, a ≃ 0.114 fm, and
L ≃ 3.65 fm. Our A40.XX setup corresponds to Nf ¼2þ1þ1
twisted-mass fermions in the infinite volume limit with
M∞

π ≃ 315 MeV, M∞
ρ ≃ 850 MeV, and a ≃ 0.089 fm.

FIG. 11. Left panel: the dual parameter Rdual versus the renormalized light-quark mass mud (in the MSð2 GeVÞ scheme) obtained
for all the ETMC ensembles of Table I. Right panel: the same as in the left panel, but for the dual parameter ðMπ=EdualÞ2. The
solid lines represent respectively the fitting functions (35) and (36) evaluated in the continuum and infinite volume limits. The full
(orange) diamonds identify the values of the parameters at the physical pion point, namely Rdualðmphys

ud ; 0;∞Þ ¼ 1.14 ð6Þ and
Edualðmphys

ud ; 0;∞Þ ¼ 479 ð22Þ MeV.
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of the scale setting. The dependence of the four parameters
on the light-quark mass mud, the lattice spacing a and the
lattice size L can be described in terms of combined
phenomenological fits, viz.

Rdualðmud; a2; LÞ ¼ R0½1þ R1mud þ Raa2 þ Rama2mud�

×

�
1þ RFVEξ

e−ML

ðMLÞ3=2
�
; ð35Þ

M2
π

E2
dual

ðmud; a2; LÞ ¼ E0mud½1þ E1mud þ ξ logðξÞ

þ E2m2
ud þ Eaa2� ð36Þ

and

M2
π

M2
ρ
ðmud; a2; LÞ ¼ V0mud½1þ V1mud þ ξ logðξÞ

þ V2m2
ud þ Vaa2�; ð37Þ

gρππðmud; a2; LÞ ¼ g0½1þ g1mud þ 2ξ logðξÞ þ gaa2�

×

�
1þ gFVEξ

e−ML

ðMLÞ3=2
�
; ð38Þ

where M2 ≡ 2B0mud and ξ≡M2=ð4πf0Þ2 with B0 and f0
being the SU(2) low-energy constants (LECs) at LO
determined in Ref. [53]. Since the quantities M2

π=E2
dual

and M2
π=M2

ρ have negligible FVEs (see the right panel of
Fig. 11 and the left panel of Fig. 12), we have not included
in Eqs. (36) and (37) any dependence on the lattice size L.
In Eq. (38) the coefficient of the chiral log is the one
predicted by ChPT at NLO [68]. Moreover, a nonanalytic

term proportional to m3=2
ud is expected from ChPT [68–70]

in Eqs. (37)–(38). However, when we tried to include it in
the fitting procedure, its coefficient was found to be well
compatible with 0.
The quality of the fits based on Eqs. (35)–(38) is quite

good with a χ2=d:o:f: always less than 1. All the quantities
Rdual, Edual,Mρ, gρππ andMπ are correlated with each other,
since they come from fitting the ETMC vector correlators.
Such correlations are properly taken into account in our
bootstrap sampling procedure. The results corresponding
to the continuum and infinite volume limits are shown in
Figs. 11 and 12 as solid lines. In particular, at the physical
pion point (Mphys

π ¼ Mπ0 ¼ 135 MeV [53]) the value
Mphys

ρ ≡Mρðmphys
ud ; 0;∞Þ ¼ 760ð19Þ MeV is obtained, in

agreement with the experimental ρ-meson mass [2], though
within a large uncertainty.
Finally, for the simulated (squared) pion mass M2

π we
adopt an Ansatz consistent with Eqs. (36)–(37), but
including a phenomenological term for taking into account
FVEs, namely

M2
πðmud; a2; LÞ ¼ 2B0mud½1þ P1mud þ ξ logðξÞ

þ P2m2
ud þ Paa2�

·

�
1þ PFVEξ

e−ML

ðMLÞ3=2
�
; ð39Þ

which nicely fits the lattice data and provides results
consistent with those of the quark mass analysis of
Ref. [53].
Thus, at each value of the light-quark mass mud and of

the lattice spacing a the fitting functions (35)–(39) allow us

FIG. 12. The same as in Fig. 11, but for the two-pion parameters ðMπ=MρÞ2 and gρππ . The solid lines represent respectively the fitting
functions (37) and (38) evaluated in the continuum and infinite volume limits, namely Mρðmphys

ud ; 0;∞Þ ¼ 760 ð19Þ MeV and

gρππðmphys
ud ; 0;∞Þ ¼ 5.30 ð5Þ.
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to determine the infinite volume limits Rdualðmud; a2;∞Þ,
Edualðmud; a2;∞Þ, Mρðmud; a2;∞Þ, gρππðmud; a2;∞Þ, and
Mπðmud; a2;∞Þ, which can be used in Eqs. (31)–(32) to
evaluate the finite-volume correction ΔFVEaHVPμ ðudÞ for
each of the ETMC ensembles. The results of the subtraction
of FVEs are illustrated in Fig. 13, where the (connected)
light-quark contribution to the muon HVP, aHVPμ ðudÞ, is
calculated using either the physical muon mass mμ ¼
mphys

μ ¼ 105 MeV or the effective lepton mass (ELM)
mELM

μ , defined as

mELM
μ ðmud; a2; LÞ ¼

mphys
μ

Mphys
ρ

Mρðmud; a2; LÞ: ð40Þ

The ELM procedure was introduced in Ref. [13] in order
to weaken the light-quark mass dependence of aHVPμ ðudÞ,
improving in this way the reliability of the chiral extrapo-
lation. From Fig. 13 it can be seen that the ELM procedure
is able to reduce the light-quark mass dependence, but it
does not modify the impact of FVEs. Once the latter are
removed, the resulting values of aHVPμ ðudÞjL→∞ (see the full
markers in the right panel of Fig. 13) exhibit again a
remarkable dependence on the light-quark mass.
The attractive feature of the ELM procedure is based on

the fact that aHVPμ ðudÞ depends on the lepton mass in lattice
units amμ [see Eqs. (4)–(5)]. Thus, using Eq. (40) the
knowledge of the value of the lattice spacing is not required
and therefore the resulting aHVPμ ðudÞ is not affected by the
uncertainties of the scale setting. The drawback of the ELM
procedure is instead represented by its potential sensitivity

to the statistical fluctuations of the ρ-meson mass, aMρ,
determined on the lattice.
We close this section by observing that:
(i) the use of the analytic representation (26) of the

vector correlator VðudÞðtÞ allows to subtract the
FVEs on aHVPμ ðudÞ relying only on lattice data;

(ii) the light-quark mass dependence of aHVPμ ðudÞ be-
comes remarkably steeper after the subtraction of
FVEs, which means that any reliable chiral extrapo-
lation or interpolation of the lattice values of
aHVPμ ðudÞ cannot be carried out without taking care
of FVEs properly.

V. EXTRAPOLATIONS TO THE PHYSICAL PION
POINT AND TO THE CONTINUUM LIMIT

In this section we perform the extrapolation to the
physical pion point and to the continuum limit of the
lattice data corrected by the FVEs as discussed in
the previous section (see the full markers in Fig. 13).
An important feature of the chiral behavior of aHVPμ ðudÞ
is that it diverges in the chiral limit mud → 0 [71–73].
This is connected with the loss of analyticity of the
(subtracted) HVP function at vanishing photon virtuality
Q2 ¼ 0 in that limit. As a consequence, ChPT predicts
already at NLO the presence of a chiral log proportional
to logðmudÞ [74].
The ChPT expansion can be applied to the HVP form

factor ΠðudÞ
R ðQ2Þ appearing in the covariant decomposition

of the HVP tensor related to the u- and d-quark em currents

[71–74]. For the connected part of ΠðudÞ
R ðQ2Þ one has

FIG. 13. The (connected) light-quark contribution to the muon HVP, aHVPμ ðudÞ, evaluated for all the ETMC gauge ensembles of
Table I. Empty markers correspond to Eq. (8), where the lattice data for the vector correlator VðudÞðtÞ are directly used. Full markers
are the results of the subtraction of FVEs by means of Eqs. (33)–(34). The physical muon mass is used in the left panel, while the ELM
mass (40) is adopted in the right panel.
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ΠðudÞ
R ðQ2Þ ¼ 5

9
½ΠNLO

R ðQ2Þ þ ΠNNLO
R ðQ2Þ þ � � �� ð41Þ

with

ΠNLO
R ðQ2Þ ¼ 1

24π2
½2B̂ðQ2;M2

πÞ þ B̂ðQ2;M2
KÞ�; ð42Þ

ΠNNLO
R ðQ2Þ ¼ 1

72π2
Q2

16π2f2π
½2BðQ2;M2

πÞ þ BðQ2;M2
KÞ�2

−
16

3
Lr
9ðμχÞ

Q2

16π2f2π
½2BðQ2;M2

πÞ

þ BðQ2;M2
KÞ� − 8Cr

93ðμχÞQ2; ð43Þ

where μχ is the ChPT renormalization scale and

BðQ2;M2Þ≡ 1

2

�
1þ log

�
M2

μ2χ

��
þ B̂ðQ2;M2Þ; ð44Þ

B̂ðQ2;M2Þ¼ B̂

�
x¼4M2

Q2

�

¼ð1þxÞ3=2 log
�
1þ ffiffiffiffiffiffiffiffiffiffi

1þx
pffiffiffi
x

p
�
−x−

4

3
: ð45Þ

The NLO term (42) is independent of any LECs, while
at NNLO two LECs appear in Eq. (43), namely Lr

9ðμχÞ
and Cr

93ðμχÞ.
The NLO and NNLO contributions to aHVPμ ðudÞ can be

evaluated using the following expression

½aHVPμ ðudÞ�NLOðNNLOÞ

¼ 40

9
α2em

Z
∞

0

dz
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ z2
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p
− zffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ z2
p

þ z

�2

· ΠNLOðNNLOÞ
R ðm2

μz2Þ: ð46Þ

Thus, we have adopted three different fitting functions,
which, besides discretization effects, include in different
ways the effects of chiral logs, namely

(i) including NLO ChPT:

aHVPμ ðudÞ ¼ f½aHVPμ ðudÞ�NLO þ A0 þ A1mud

þ A2m2
udg · ½1þD0a2 þD1a2mud�;

ð47Þ

(ii) including NLO and NNLO ChPT:

aHVPμ ðudÞ ¼ f½aHVPμ ðudÞ�NLO þ ½aHVPμ ðudÞ�NNLO
þ A0

0 þ A0
1mudg

· ½1þD0
0a

2 þD0
1a

2mud�; ð48Þ

(iii) including free logs:

aHVPμ ðudÞ ¼ ðÃ0 þ Ãlog
0 logðmudÞÞ

× ð1þ Ã1mud þ Ãlog
1 mud logðmudÞÞ

· ½1þ D̃0a2 þ D̃1a2mud�; ð49Þ

where, for the sake of simplicity, aHVPμ ðudÞ stands from
now on for aHVPμ ðudÞjL→∞ [see Eqs. (33)–(34)]. The results
of the combined chiral extrapolation and continuum limit
obtained using either Eq. (47) or Eq. (48) are shown in
Figs. 14 and 15, respectively, with and without the use of
the ELM procedure. Similar results are obtained in the case
of the “free logs” fitting function (49).
In the case of the NNLO fitting function (48) we get the

following values for the LECs Lr
9 and Cr

93 at the ρ-meson
mass scale μχ ¼ 0.77 GeV:

Lr
9ð0.77 GeVÞ ¼ 0.00273 ð143Þ; ð50Þ

Cr
93ð0.77 GeVÞ ¼ −0.0136 ð20Þ GeV−2; ð51Þ

which are consistent (within the uncertainties) with the find-
ings Lr

9ð0.77GeVÞ¼0.00593ð43Þ and Cr
93ð0.77GeVÞ¼

−0.0154ð4ÞGeV−2 obtained in Ref. [74].
From Figs. 14 and 15 it can be clearly seen that the

enhancement due to chiral logs is important close to the
physical point. This makes aHVPμ ðudÞ quite sensitive to
small changes of the light-quark mass, which may be
crucial even for a local interpolation around the physical
point. This immediately rises the question of how much
we can trust the sharp rise visible in Figs. 14 and 15. In
order to address this issue we resort to our “dualþ ππ”
analytic representation. At each value of the light-quark
mass mud we can determine the values Rdualðmud; 0;∞Þ,
Edualðmud; 0;∞Þ, Mρðmud; 0;∞Þ, gρππðmud; 0;∞Þ and
Mπðmud; 0;∞Þ from the fitting functions (35)–(39) (i.e.,
the solid lines in Figs. 11 and 12). Then, by means of
Eqs. (31)–(32) we estimate the light-quark mass depend-
ence of aHVPμ ðudÞ. The corresponding results are shown in
Fig. 16 by the blue squares and compared with those
obtained using the fitting function (48) in the continuum
limit (green dots). A remarkable agreement is observed not
only at large values of mud (where our analytic representa-
tion fits very nicely the ETMC vector correlators), but also
at values of mud close and even smaller than the physical
point. We point out that our “dualþ ππ” analytic repre-
sentation does not contain chiral logs explicitly and,
therefore, the agreement with the ChPT fit shown in
Fig. 16 is reassuring about the reliability of the sharp rise
of aHVPμ ðudÞ at low values of the light-quark mass mud.
The results obtained at the physical pion point and in the

continuum (and infinite volume) limit using the fitting
functions (47)–(49) and adopting for the muon mass either
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its physical value (mphys
μ ¼ 105 MeV) or the ELM value

(40) are collected in Table VI. Using the averaging
procedure given by Eq. (28) of Ref. [53] we get

aHVPμ ðudÞ ¼ 619.0 ð14.7Þstatþfitþinputð6.2Þchirð4.9Þdisc
× ð6.2ÞFVE × 10−10

¼ 619.0 ð17.8Þ × 10−10; ð52Þ

where
(i) ðÞstatþfitþinput incorporates the uncertainties induced

by both the statistical errors and the fitting procedure

itself as well as the error coming from the uncer-
tainties of the input parameters of the eight branches
of the quark mass analysis of Ref. [53];

(ii) ðÞchir is the error due to the chiral extrapolation
estimated from the spread of the results correspond-
ing to the three fitting functions (47)–(49);

(iii) ðÞdisc is the uncertainty due to both discretization
effects and scale setting, estimated by comparing
the results obtained with and without the ELM
procedure (40);

(iv) ðÞFVE is the error due to the subtraction of FVEs,
taken conservatively to be twice the uncertainty
found in subsection IVA (see Table V).

FIG. 14. Values of the (connected) light-quark contribution to the muon HVP, aHVPμ ðudÞ, corrected by FVEs and evaluated using either
mμ ¼ mphys

μ ¼ 105 MeV (left panel) or mμ ¼ mELM
μ (right panel). The dashed lines represent the fitting function (47), which includes

the NLO ChPT prediction, evaluated at each value of the lattice spacing of the ETMC ensembles. The solid lines represent the same
fitting function in the continuum limit. The full (orange) diamonds are the values extrapolated at the physical pion point and in the
continuum limit.

FIG. 15. The same as in Fig. 14, but adopting the fitting function (48), which includes also the NNLO ChPT prediction.
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Our finding (52) improves the previous ETMC estimate
of Ref. [13], aHVPμ ðudÞ ¼ 567 ð11Þ × 10−10, thanks to a
more accurate treatment of both the FVEs and the extrapo-
lation to the physical pion point. The latter can be clearly
avoided using ensembles close to the physical point.
Recently ETMC has generated a gauge ensemble close
to the physical pion mass with Nf ¼ 2 dynamical quarks,
obtaining the value aHVPμ ðudÞ ¼ 552 ð39Þ × 10−10 [75].
The lattice size is L ≃ 4.4 fm, which corresponds to
MπL ≃ 3.0. For such a setup we expect large FVEs, which
will be discussed in the next Section (see later Fig. 19).
For the setup chosen in Ref. [75] we estimate a correction
due to FVEs of order of 10%, which would yield a final
value aHVPμ ðudÞ ≃ 610 ð40Þ × 10−10 in agreement with
Eq. (52), though within a large uncertainty.
Our result (52) is compared with the most recent ones

from other lattice collaborations in the left panel of Fig. 17.
Within the errors our value obtained with Nf ¼ 2þ 1þ 1

dynamical flavors of sea quarks agrees with the corre-
sponding results from HPQCD [20] (Nf ¼ 2þ 1þ 1),
CLS/Mainz [21] (Nf¼2), BMW [22] (Nf ¼ 2þ 1þ 1),
and RBC/UKQCD [23] (Nf ¼ 2þ 1).

Adding the connected contributions from strange and
charm quarks, aHVPμ ðsÞ¼53.1ð2.5Þ×10−10 and aHVPμ ðcÞ ¼
14.75 ð0.56Þ × 10−10 determined by ETMC in Ref. [30],
and an estimate of the IB corrections aHVPμ ðIBÞ ¼ 8ð5Þ ×
10−10 and of the quark disconnected diagrams
aHVPμ ðdisconnÞ ¼ −12 ð4Þ × 10−10, obtained using the find-
ings of Refs. [22,23], we finally get for the muon HVP
aHVPμ ðudscÞ the value

aHVPμ ðudscÞ ¼ 683 ð19Þ × 10−10; ð53Þ

which is in nice agreement with the recent results aHVPμ ¼
688.07 ð4.14Þ × 10−10 [48], aHVPμ ¼ 693.10 ð3.40Þ × 10−10

[49] and aHVPμ ¼ 693.27 ð2.46Þ × 10−10 [50], based on
dispersive analyses of the experimental cross section data
for eþe− annihilation into hadrons. Our value (53) is
compared with the results of other lattice collaborations
as well as with the dispersive results of Refs. [48–50] in the
right panel of Fig. 17.

VI. LIGHT-QUARK VECTOR CORRELATOR AT
THE PHYSICAL PION POINT AND MOMENTS

OF THE POLARIZATION FUNCTION

In this section we apply our analytic representation (26)
to estimate the connected light-quark vector correlator
VðudÞðtÞ at the physical pion point both for finite values
of the lattice size L and in the infinite volume limit.
To this end at each value of the lattice size L we

determine the values Rdualðmphys
ud ; 0; LÞ, Edualðmphys

ud ; 0; LÞ,
Mρðmphys

ud ;0;LÞ, gρππðmphys
ud ; 0; LÞ andMπðmphys

ud ; 0; LÞ from
the fitting functions (35)–(39), wheremphys

ud ¼3.70ð17ÞMeV
as determined in Ref. [53]. We use the above values in

TABLE VI. Values of aHVPμ ðudÞ, in units of 1010, extrapolated
to the physical pion point and to the continuum limit using the
fitting functions (47)–(49) and adopting for the muon mass either
its physical value (mphys

μ ¼ 105 MeV) or the ELM value (40).

With NLO
ChPT Eq. (47)

With NNLO
ChPT Eq. (48)

Free logs
Eq. (49)

mμ ¼ mphys
μ 624.6 (14.5) 634.1 (17.0) 613.1 (13.2)

mμ ¼ mELM
μ 612.3 (8.5) 613.8 (15.4) 616.4 (17.5)

FIG. 16. The light-quark mass dependence of aHVPμ ðudÞ, in units of 1010, obtained in the continuum and infinite volume limits using
the physical muon mass. The blue squares correspond to the predictions of our “dualþ ππ” analytic representation (31)–(32) evaluated
using the values Rdualðmud; 0;∞Þ, Edualðmud; 0;∞Þ,Mρðmud; 0;∞Þ, gρππðmud; 0;∞Þ, andMπðmud; 0;∞Þ obtained from Eqs. (35)–(39).
The green dots represent the results of the ChPT fit (48) taken in the continuum limit.
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Eqs. (14) and (25) to obtain the connected light-quark vector
correlator VðudÞðtÞ at the physical pion point and at finite
values of L.
The infinite volume limit is constructed by determining

the values Rdualðmphys
ud ;0;∞Þ¼1.14ð6Þ, Edualðmphys

ud ;0;∞Þ¼
479ð22ÞMeV,Mρðmphys

ud ;0;∞Þ¼760ð19ÞMeV, gρππðmphys
ud ;

0;∞Þ¼5.30ð5Þ, andMπðmphys
ud ; 0;∞Þ ¼ 135 MeV from the

fitting functions (35)–(39). The above values are used in
Eqs. (31) and (32) to get the connected light-quark vector
correlator VðudÞðtÞ at the physical pion point and in the
infinite volume limit.

The results obtained for few values of the lattice size L
and in the infinite volume limit are shown in the left panel of
Fig. 18. The number of elastic energy levels included in
Eq. (14) depends on L and, at the physical pion point, it is
larger than 4, i.e., of the number of states used in the fitting
procedure of the ETMC vector correlators. The right panel of
Fig. 18 illustrates this point. There, the full dots represent the
position of the energy levels satisfying the Lüscher condition
(12) for few values of L and, at the same time, the values of
the (squared) GS pion form factor occurring in Eq. (15).
We observe that from the threshold up to ω ∼ 1 GeV

the number of energy levels is 5 for L ¼ 5.5 fm, 8 for

FIG. 17. Left panel: values of the connected light-quark contribution to the muon HVP, aHVPμ ðudÞ, obtained at the physical pion point
and in the continuum and infinite volume limits in the present work (52), and by HPQCD [20], CLS/Mainz [21], BMW [22], and RBC/
UKQCD [23]. Right panel: values of the muon HVP aHVPμ ðudscÞ obtained in the present work (53) and in Refs. [20–23]. The result
obtained in Ref. [23] using the R-ratio method (which turns out to be based on lattice points by ≃30% and on dispersive eþe− data by
≃70%) is also included as an orange dot. The results of the recent dispersive analysis of Refs. [48–50] are shown together with the value
of aHV

μ corresponding to a vanishing muon anomaly (labeled as “no New Physics”).

FIG. 18. Left panel: light-quark vector correlator VðudÞðtÞ, multiplied by the muon kernel fðtÞ, evaluated using our “dualþ ππ”
representation (26) extrapolated at the physical pion point and in the continuum limit for three values of the lattice size L (see text). The
infinite volume limit, constructed as explained in the text, is also shown by the black solid line. Right panel: the (squared) pion form
factor jFπðωÞj2 corresponding to the GS parametrization (16)–(21) evaluated in the infinite volume limit (see text) versus the two-pion
energy ω. The full dots are located at the position of the energy levels satisfying the Lüscher condition (12) for each value of the lattice
size L.
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L ¼ 8 fm and reaches 14 for L ¼ 10 fm. Therefore, at the
physical pion point the spectral decomposition of the vector
correlator VðudÞðtÞ is quite involved. Very large time
distances should be reached for getting the dominance of
the lowest energy level, because the corresponding cou-
pling An¼1 is quite small. Higher energy levels fall off
faster, but they have larger values of the coupling An up to
the location of the ρ-meson resonance. The consequences
are that: (i) the FVEs on the tail of VðudÞðtÞ increase
significantly as the time distance increases, and (ii) the
effective mass of the light-quark vector correlator [see
Eq. (10)] does not show any plateau for time distances
currently accessible on the lattice.
In Fig. 19 the FVEs estimated at the physical pion mass

on aHVPμ ðudÞ by means of Eq. (34) are shown versus MπL
and compared with the predictions of ChPT at NLO
[47,60]. The latter ones coincide with the FVEs corre-
sponding to non-interacting two-pion states [21,46]. Our
determination of FVEs, instead, takes into account the
interaction in the two-pion system, and in particular the
resonant scattering between two pions in P-wave with total
isospin 1. Our estimate of FVEs is significantly larger than
the ChPT NLO prediction. Recently, FVEs in the polari-
zation function close to the physical pion point have been
analyzed in ChPT at NNLO [60], but the corresponding
numerical findings seem to be too small to explain the
differences with our determination.
In Fig. 19 we have also shown the results for

ΔFVEaHVPμ ðudÞ at a larger pion mass equal to Mπ ¼
300 MeV. At fixed values of MπL the FVEs on
aHVPμ ðudÞ appear to be only slightly dependent on the pion
mass (at variance with what occurs in case of the pion mass
and decay constant).
At the physical pion point FVEs of the order of the muon

anomaly (i.e., ≃5%) are expected to occur for L ≃ 5.5 fm.

In order to reach a finite volume correction of the order of
≃1% or less a lattice size L larger than ≃8 fm is required.
Recently, in Ref. [76] the slope and the curvature of the

leading HVP function at vanishing photon virtuality have
been determined on the lattice at the physical pion point
and in the continuum and infinite volume limits. These
quantities are derivatives of the HVP function evaluated at
Q2 ¼ 0 and they can be easily related to time-moments of
the vector correlator. The separate contributions arising
from the (connected) light, strange, and charm quarks are
also provided in Ref. [76]. Thus, for a comparison with the
predictions of our “dualþ ππ” representation of the vector
correlator VðudÞðtÞwe consider the following time moments

ΠðudÞ
nþ1 ≡ ð−Þn ðnþ 1Þ!

ð2nþ 4Þ!
18

5

Z
∞

0

dtt2nþ4VðudÞðtÞ ð54Þ

with n ¼ 0; 1; 2;…. The quantities ΠðudÞ
1 and ΠðudÞ

2 corre-
spond respectively to the slope and the curvature deter-
mined in Ref. [76]. There, it has been shown that the time
distances that need to be reached to reliably determine the
slope and the curvature are above ∼2 and ∼4 fm, respec-
tively. At the physical pion point and in the continuum and
infinite volume limits the predictions of our “dualþ ππ”
representation are

ΠðudÞ
1 ¼ 0.1642 ð33Þ GeV−2;

ΠðudÞ
2 ¼ −0.383 ð16Þ GeV−4; ð55Þ

which can be compared with the results ΠðudÞ
1 ¼

0.1659 ð33Þ GeV−2 and ΠðudÞ
2 ¼ −0.311 ð16Þ GeV−2 from

Ref. [76]. The agreement is quite good in the case of the
slope, while our curvature is (in absolute value) larger than
the corresponding result of Ref. [76] by ≃20%. We note

FIG. 19. Values of ΔFVEaHVPμ ðudÞ [see Eq. (34)], evaluated in the continuum limit according to our “dualþ ππ” representation at the
physical pion point (red circles) and at a larger pion mass equal to Mπ ¼ 300 MeV (blue squares). The dotted line corresponds to the
predictions of ChPT at NLO [47,60].
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that in Ref. [76] FVEs are estimated using ChPT at NLO
and, therefore, the difference with our result is likely to be
ascribed to the treatment of FVEs.

In the case of the higher moments ΠðudÞ
3 and ΠðudÞ

4 our
results are

ΠðudÞ
3 ¼ 1.394 ð65Þ GeV−6;

ΠðudÞ
4 ¼ −7.60 ð28Þ GeV−8: ð56Þ

In the left panel of Fig. 20 we show the FVEs on the ratio

of the lowest four moments ΠðudÞ
1 –ΠðudÞ

4 evaluated at finite
lattice size L and in the infinite volume limit. Thanks to the
correlations between the numerator and the denominator
the results for such ratios turn out to be very precise. The
impact of FVEs is sizeable and increases significantly as

the order of the moment increases. In the case of ΠðudÞ
2 the

use of a lattice size L ∼ 10 fm still requires a finite volume
correction equal to ≃3–4%.

In the case of higher momentsΠðudÞ
n with n > 2 a reliable

determination requires to reach very large time distances,
i.e., t≳ 4 fm. This represents a stringent test for the large
time-distance tail of the vector correlator VðudÞðtÞ evaluated
with our analytic representation. The authors of Ref. [50]
have kindly supplied us with the first eleven moments
corresponding to the experimental cross section for the
eþe− → πþπ− channels only [77]. The definition of the
moments is slightly different from Eq. (54) and follows
the notation of Ref. [78], namely

MðudÞð−nÞ≡ 4παemð−Þnð4M2
πÞnþ1

5

9
ΠðudÞ

nþ1: ð57Þ

We have evaluated Eq. (57) using the ππ contribution
(32) in the infinite volume and continuum limits at the
physical pion point. The results are shown in Table VII and
in the right panel of Fig. 20 and they are compared with the
dispersive values from Refs. [50,77].
Our results agree within the errors with the dispersive

ones for n ≤ 4, while they overestimate the dispersive
moments at higher values of n. It should be kept in mind
that the values of Ref. [77] include the contributions of u
and d-quark disconnected diagrams as well as also IB
effects. Thus, the differences visible in Table VII and in the
right panel of Fig. 20 may be ascribed (at least partially)
to the fact that the above contributions are missing in our

FIG. 20. Left panel: ratio of the time moments (54) evaluated at finite lattice size L and in the infinite volume limit using our
“dualþ ππ” analytic representation of the light-quark vector correlator taken in the continuum limit and at the physical pion point. Right
panel: values of the first eleven moments (57) evaluated at the physical point using the ππ contribution (32) in the infinite volume limit
(red circles), compared with the results of the dispersive analysis of the experimental cross section for the eþe− → πþπ− channels of
Ref. [50]. Courtesy of the authors of Ref. [77].

TABLE VII. Values of the first eleven moments (57) from the
dispersive analysis of the experimental cross section for the
eþe− → πþπ− channels [77] and the corresponding ones evalu-
ated at the physical point using the ππ contribution (32) in the
infinite volume limit.

Mð−nÞ · 103 Eq. (57)
Dispersive

πþπ− Ref. [77]
ππ representation

this work

0 0.5336 (21) 0.5394 (122)
1 0.1046 (6) 0.1021 (45)
2 0.0285 (3) 0.0274 (13)
3 0.01099 (17) 0.01091 (42)
4 0.00549 (11) 0.00576 (17)
5 0.003183 (75) 0.003569 (89)
6 0.002009 (53) 0.002420 (54)
7 0.001336 (39) 0.001737 (36)
8 0.000921 (29) 0.001298 (26)
9 0.000653 (22) 0.000995 (19)
10 0.000472 (17) 0.000775 (15)
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calculations. Nevertheless, the good consistency visible (at
least) for n ≤ 4 indicates in our opinion that the large time-
distance behavior of the vector correlator VðudÞðtÞ can be
reliably evaluated using our analytic representation (at least
for time distances currently accessible on the lattice).
Recently [51,52] it has been proposed to determine aHVPμ

by measuring the running of αemðq2Þ for space-like values
of the squared four-momentum transfer q2 using a muon
beam on a fixed electron target. The method is based on the
following alternative formula for calculating aHVPμ [8]:

aHVPμ ¼ αem
π

Z
1

0

dxð1 − xÞΔαHVPem ½q2ðxÞ�; ð58Þ

where ΔαHVPem ðq2Þ is the hadronic contribution to the
running of αemðq2Þ evaluated at

q2ðxÞ≡ −
x2

1 − x
m2

μ: ð59Þ

The quantity ΔαHVPem ðq2Þ can be extracted from the q2-
dependence of the μe → μe cross section data after the
subtraction of the leptonic and weak contributions [51,52].
For the proposed MUonE experiment exploiting the muon
beam at the CERN North Area [79] the region x ∈ ½0.93; 1�
in Eq. (58) cannot be reached and, therefore, the corre-
sponding contribution

½aHVPμ �> ≡ αem
π

Z
1

x̄
dxð1 − xÞΔαHVPem ½q2ðxÞ� ð60Þ

with x̄ ¼ 0.93 needs to be estimated using either eþe− data
or lattice QCD simulations. In terms of the Euclidean
formula (4) one has

½aHVPμ �> ¼ 4α2em

Z
∞

0

dtf>ðtÞVðtÞ; ð61Þ

where

f>ðtÞ≡ 4

m2
μ

Z
∞

z̄
dz

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ z2
p

− zffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ z2

p
þ z

�2

×

�
cosðzmμtÞ − 1

z2
þ 1

2
m2

μt2
�

ð62Þ

with z̄ ¼ x̄=
ffiffiffiffiffiffiffiffiffiffiffi
1 − x̄

p
≃ 3.5.

Using the analytical representation (26) of the vector
correlator VudðtÞ, evaluated at the physical pion point in
the continuum and infinite volume limits, the light-
quark (connected) contribution ½aHVPμ �>ðudÞ is found to
be equal to

½aHVPμ �>ðudÞ ¼ ð81.2� 1.7Þ × 10−10: ð63Þ

While the estimate of ½aHVPμ �> requires also the addition
of the contributions of the connected strange and charm
quark terms as well as of disconnected and IB effects, our
finding (63) indicates that the uncertainty of ½aHVPμ �> should
be of the order of ≃2 × 10−10. Such a value is close to the
statistical uncertainty (≃0.3%) expected in the MUonE
experiment for the contribution ½aHVPμ �<≡ ½aHVPμ �− ½aHVPμ �>
after two years of data taking at the CERN North Area [79].

VII. CONCLUSIONS

We have presented a lattice calculation of the leading
HVP contribution of the light u- and d-quarks to the
anomalous magnetic moment of the muon, aHVPμ ðudÞ.
The gauge configurations generated by ETMC with Nf ¼
2þ 1þ 1 dynamical quarks at three values of the lattice
spacing (a ≃ 0.062; 0.082; 0.089 fm) and with pion masses
in the range Mπ ≃ 210–450 MeV have been adopted.
Thanks to several lattices at fixed values of the light-

quark mass and scale but with different sizes, we have
performed a careful investigation of FVEs, which represent
one of main source of uncertainty in modern lattice
calculations of aHVPμ ðudÞ. In order to remove them we
have developed an analytic representation of the vector
correlator and applied it to describe the lattice data for time
distances larger than ≃0.2 fm. The analytic representation
is based on quark-hadron duality at small time distances
and on the two-pion contributions in a finite box at larger
time distances, assuming the GS parameterization [61] for
the timelike pion form factor. Our estimate of FVEs takes
into account the resonant interaction in the two-pion system
at variance with the ChPT prediction at NLO [47].
After removing FVEs we have extrapolated the

corrected lattice data to the physical pion point and to
the continuum limit taking into account the chiral logs
predicted by ChPT, obtaining

aHVPμ ðudÞ ¼ 619.0 ð17.8Þ × 10−10; ð64Þ

which is consistent with recent lattice results available in
the literature [20–23].
Adding the contribution of strange and charm quarks,

aHVPμ ðsÞ¼53.1ð2.5Þ×10−10 and aHVPμ ðcÞ¼14.75ð0.56Þ×
10−10 determined by ETMC in Ref. [30], and an estimate of
the IB corrections aHVPμ ðIBÞ ¼ 8ð5Þ × 10−10 and of the
quark disconnected diagrams aHVPμ ðdisconnÞ ¼ −12 ð4Þ×
10−10, obtained using the findings of Refs. [22,23], we get

aHVPμ ðudscÞ ¼ 683 ð19Þ × 10−10; ð65Þ

which agrees nicely with the recent results aHVPμ ¼
688.07 ð4.14Þ × 10−10 [48], aHVPμ ¼693.10ð3.40Þ×10−10

[49], and aHVPμ ¼ 693.27 ð2.46Þ × 10−10 [50], based on
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dispersive analyses of the experimental cross section data
for eþe− annihilation into hadrons.
Using our analytic representation of the light-quark

vector correlator, taken at the physical pion mass in the
continuum and infinite volume limits, we have provided

the slope and curvature of the polarization function,ΠðudÞ
1 ¼

0.1642ð33ÞGeV−2 and ΠðudÞ
2 ¼−0.383ð16ÞGeV−4, which

have been compared with the corresponding lattice results
of Ref. [76]. We have also evaluated the first eleven
moments of the polarization function and compared them
with the results of the dispersive analysis of the πþπ−
channels of Refs. [50,77]. Finally, we have estimated the
light-quark contribution to the missing part of aHVPμ not
covered in the MUonE experiment [51,52] [see Eq. (63)].
New simulations with Nf ¼ 2þ 1þ 1 dynamical

quarks close to the physical pion point [80], the evaluation
of quark disconnected diagrams and of the IB corrections
[81] are in progress by ETMC. This will be crucial for

improving the determination of the HVP contribution
aHVPμ ðudscÞ and for addressing the muon anomaly from
first principles.
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