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We present a lattice calculation of the leading hadronic vacuum polarization (HVP) contribution of the
light u- and d-quarks to the anomalous magnetic moment of the muon, a}fVP(ud), adopting the gauge
configurations generated by the European Twisted Mass Collaboration (ETMC) with Ny =2+ 1+ 1
dynamical quarks at three values of the lattice spacing (a ~ 0.062, 0.082,0.089 fm) with pion masses in the
range M, ~210-450 MeV. Thanks to several lattices at fixed values of the light-quark mass and scale but
with different sizes we perform a careful investigation of finite-volume effects (FVEs), which represent

one of main source of uncertainty in modern lattice calculations of a}}vp

(ud). In order to remove FVEs
we develop an analytic representation of the vector correlator, which describes the lattice data for time
distances larger than ~0.2 fm. The representation is based on quark-hadron duality at small and
intermediate time distances and on the two-pion contributions in a finite box at larger time distances.
After removing FVEs we extrapolate the corrected lattice data to the physical pion point and to the
continuum limit taking into account the chiral logs predicted by Chiral Perturbation Theory (ChPT). We
obtain a;/V* (ud) = 619.0(17.8) x 107'°. Adding the contribution of strange and charm quarks, obtained
by ETMC, and an estimate of the isospin-breaking corrections and quark-disconnected diagrams from
the literature we get afV*(udsc) = 683(19) x 107'°, which is consistent with recent results based on
dispersive analyses of the experimental cross section data for eTe™ annihilation into hadrons. Using our
analytic representation of the vector correlator, taken at the physical pion mass in the continuum and infinite
volume limits, we provide the first eleven moments of the polarization function and we compare them with

recent results of the dispersive analysis of the ztz~ channels. We estimate also the light-quark contribution

to the missing part of aVP

DOI: 10.1103/PhysRevD.98.114504

I. INTRODUCTION

The anomalous magnetic moment of the muon a, =

(g — 2)/2 is one of the most precisely determined quantities
in particle physics. It is known experimentally with an
accuracy of 0.54 ppm [1] (BNL E821) and the current
precision of the Standard Model (SM) prediction is at the
level of 0.4 ppm [2]. The tension between the experimental

value a;" and the SM prediction a3"' corresponds to

~3.5 + 4 standard deviations, according to the most recent
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not covered in the MUonE experiment.

determinations of the hadronic vacuum polarization (HVP)
contribution, namely

ap® — aiM = 31.3(4.9),(6.3).,,[7.7] x 10710 [3],
=26.8(4.3),(6.3).,,[7-6] x 10710 [4],
= 27.1(3.6),(6.3)eyp[7.3] x 10710 [S], (1)

where the first error is from the SM theory (mainly the HVP
term), the second one from the experiment and the third one
corresponds to their sum in quadrature.

Since the tension given in Eq. (1) might be an exciting
indication of new physics (NP) beyond the SM, an
improvement of the uncertainties is highly desirable. The
forthcoming g —2 experiments at Fermilab (E989) [3]
and J-PARC (E34) [4] aim at reducing the experimental
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uncertainty by a factor of four, down to 0.14 ppm, making the
comparison of the experimental value of a, with the theo-
retical predictions one of the most important tests of
the SM in the quest of NP effects. With such a reduced
experimental error, the uncertainty of the hadronic correc-
tions, due to the HVP and hadronic light-by-light (LBL) terms
[5], will soon become the main limitation of this SM test.

The theoretical predictions for the hadronic contribution
alV? have been traditionally obtained from experimental
data using dispersion relations for relating the HVP
function to the experimental cross section data for ee™
annihilation into hadrons [6,7]. An alternative approach
was proposed in Refs. [8-10], namely to compute a}* in
lattice QCD from the Euclidean correlation function of two
electromagnetic (em) currents. In this respect an impressive
progress in the lattice determinations of a;** has been
achieved in the last few years [11-23] and very interesting
attempts to compute also the LBL contribution are under
way both on the lattice [24,25] and via dispersion
approaches and chiral perturbation theory (ChPT) [26-28].

An updated status of lattice (as well as nonlattice) efforts
for evaluating the hadronic corrections to @, can be found
in Ref. [29]. The main open issue concerning the most
accurate lattice calculations of a¥*, performed using
gauge configurations at the physical pion point, is a
significative tension between the HPQCD [20] result,
al™? = 667(13) x 1071°, on one hand side and the
BMW [22] and RBC/UKQCD [23] findings, a;'* =
711.0(18.9) x 1071 and  af¥F = 715.4(18.7) x 1071°
respectively, on the other hand side. Such a tension
originates almost totally from the light u- and d-quark
(connected) contribution to the HVP and it turns out to be at
the same level of the muon anomaly (1).

Besides the leading HVP correction to the one-loop muon
diagram, which is of order O(a2,,), the increasing precision
of the lattice calculations makes it necessary to include both
em and strong isospin-breaking (IB) corrections, which
contribute at order O(a,,) and O(a2,,(my;—m,)) to the
HVP, respectively. In Ref. [30] a lattice calculation of both the
leading and the IB corrections to the HVP contribution due to
strange and charm quark intermediate states was carried out
using the time-momentum representation for afV* [31] and
the expansion method of the path integral in the small
parameters ,,, and (m, —m,)/Aqcp [32,33]. In the strange
and charm sectors the strong IB corrections are absent at
leading order in (m, — m,,), while the em corrections have
been found to be negligible with respect to present uncer-
tainties. Other recent calculations of the IB corrections to
the HVP have been performed in Refs. [23,34,35], while
higher-order corrections due to diagrams containing HVP and
lepton insertions have been recently estimated on the lattice
in Ref. [36].

In this paper we present the results of a new lattice
calculation of the leading HVP contribution due to light

u- and d-quark (connected) intermediate states, ay *" (ud),
while the evaluation of the corresponding IB corrections
will be addressed in a separate work. We make use of the
gauge ensembles generated by the European Twisted Mass
Collaboration (ETMC) with Ny =2+ 1+ 1 dynamical
quarks, which include in the sea, besides two light mass-
degenerate quarks, also the strange and the charm quarks
with masses close to their physical values [37,38].
Thanks to the various lattice volumes of the ETMC
gauge ensembles we observe quite relevant finite volume
effects (FVEs) for af¥* (ud). Thus, we develop an analytic
representation of the temporal dependence of the Euclidean
vector correlator, based on the quark-hadron duality [39],
already observed in Ref. [30], and on the two-pion
contributions in a finite box [40—46]. Using such a
representation, which constitutes the original part of this
work, we are able to reproduce accurately the temporal
dependence of the Euclidean vector correlator for all the
ETMC gauge ensembles and, by taking properly the
infinite volume limit, we can correct in a systematic way
our lattice values of aj " (ud) for the FVEs. We point out
that our estimate of FVEs takes into account the resonant
interaction in the two-pion system at variance with the
ChPT prediction at next-to-leading (NLO) order [47].
The main result of the present study is

a/I;IVP(”d) = 619'0(14'7)stal+ﬁt+input(6'2)chir(4'9)disc
X (6.2)pyg[17.8] x 10710, (2)

where the errors come in the order from (statistics—+
fitting procedure + input parameters), chiral extrapolation,
discretization and finite volume effects.

Our result (2) improves the previous ETMC estimate
of Ref. [13] and agrees within the errors with the
HPQCD ;P (ud) = 599(11) x 107'° [20], the CLS/
Mainz a;V?(ud) = 588.2(35.8) x 10710 [21], the BMW
afVP(ud) = 647.5(19.2) x 1071 [22] and the RBC/
UKQCD afV?(ud) = 649.7 (15.0) x 107'% [23] results.

Adding the (connected) contributions from strange
and charm quarks, a}VP(s) =53.1(2.5) x 107" and
afVP(c) = 14.75(0.56) x 107'* determined by ETMC in

Ref. [30], and an estimate of the IB corrections a'i ¥ (IB) =

8(5) x 1071 and of the quark disconnected diagrams
aVP(disconn) = —12(4) x 107'%, obtained using the find-
ings of Refs. [22,23], we finally get

a,"" (udsc) = 683(19) x 1071, 3)

which is in nice agreement with the recent results a;;"* =
688.07 (4.14) x 10710 [48], alVF = 693.10 (3.40) x 1071°
[49] and @}V = 693.27 (2.46) x 10719 [50], based on
dispersive analyses of the experimental cross section data
for e*e™ annihilation into hadrons.
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Using our analytic representation of the vector correlator,
taken at the physical pion mass in the continuum and
infinite volume limits, we provide the slope and curvature

of the polarization function, H =0.1642 (33) GeV~2

and Hg 9 = 0383 16) GeV~*, which are compared with
lattice results available in the literature. We also estimate
higher-order moments (up to the eleventh moment) and
compare them with the values of the dispersive analysis of
the #* 7~ channels made in Ref. [50]. Finally, we estimate
the light-quark contribution to the missing part of a;/'* not
covered in the MUonE experiment [51,52].

The paper is organized as follows. In Sec. Il we introduce
the basic quantities and notation. After providing the
simulation details and addressing the identification of the
ground-state, we evaluate aff¥(ud) for all the ETMC
ensembles and show the relevance of FVEs. In Sec. III we
develop an analytic representation of the vector correlator,
based on the quark-hadron duality and the two-pion
contributions, obtaining a quite accurate reproduction of
the lattice data of the light-quark vector correlator. In
Sec. IV we remove FVEs from the lattice data using
the analytic representation, while in Sec. V we perform
the extrapolations to the physical pion point and to the
continuum limit. Our findings are then compared with
lattice results available in the literature. In Sec. VI we
discuss some relevant features of the analytic representation
extrapolated at the physical pion mass and in the continuum
limit. We provide the estimates of the lowest-order
moments of the polarization function and compare them
with the lattice results available in the literature. We
estimate also higher-order moments, which we compare
with the values of the dispersive analysis of the ztz~
channels made in Ref. [50], as well as the light-quark
contribution to the missing part of a;/'* not covered in the
MUonE experiment [51,52]. Flnally, Sec. VII contains our
conclusions and outlooks for future developments.

II. TIME-MOMENTUM REPRESENTATION

Following our previous work [30], we adopt the time-
momentum representation for the evaluation of a;"F,
namely

aV? = 4aemA dtf(t)V(1), (4)

where ¢ is the Euclidean time, the kernel function f(z) is
given by [31]

4 [ 1 VA+2-z2\?
f(t)=—2/ ¢ Va+ 72 <\/4+zz+z>
" [cos(zmﬂt) -1

my, Jo
1 242
ZZ +2mﬂt (5)

and the (Euclidean) vector correlator V(7) is defined as

——Z/dx (F, 1)7,(0)) (6)

i=x,y,2

with J,(x) being the em current operator

Z qr(X)ywp(x). (7)

f=uds.c,...

Ju(x) =

The vector correlator V(f) can be calculated on a lattice
with volume L? and temporal extension T at discretized
values of the time distance ¢ from O to 7. In this work we
will limit ourselves to the contribution of the light u- and d-
quarks, evaluated in isosymmetric QCD (m,, = m; = m, )
neglecting also off-diagonal flavor terms (i.e., including
quark-connected diagrams only). Thus, one gets

Tdala

a, VP (ud) = 4o, { > foyved(z)
=0
+ Z f(1)

1= Tdala +a V

where the first term in the r.h.s is directly given by the
lattice data, while for the second term the identification of
the ground-state at large time distances is required (see
Refs. [17,18,20,21,30]). In Eq. (8) M\

mass and Zifd) is the squared matrix element of the light-

quark vector current between the vacuum and the state |V):

2y = (1/3)Yiese Sewad} 1000, 0)V)[
The value of T4, has to be large enough that the
ground-state contribution is dominant for ¢ > Tg,, and
smaller than 7/2 in order to avoid backward signals. An
important consistency check is that the sum of the two
terms in the r.h.s. of Eq. (8) should be independent of the
specific choice of the value of Ty,,, as it will be shown later
in Sec. II B.

is the ground-state

A. Simulation details

The gauge ensembles used in this work are the same
adopted in Ref. [53] to determine the up, down, strange,
charm quark masses and the lattice scale. We employ the
Iwasaki action [54] for gluons and the Wilson twisted mass
action [55-57] for sea quarks.

We have considered three values of the inverse bare
lattice coupling f# and different lattice volumes, as shown
in Table I, where the number of configurations analyzed
(Nf4) corresponds to a separation of 20 trajectories. For
earlier investigations of FVEs ETMC had produced three
dedicated ensembles, A40.20, A40.24 and A40.32, which
share the same quark mass and lattice spacing and differ
only in the lattice size L. To improve such an investigation,
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TABLE L.

Values of the simulated quark bare masses (in lattice units), of the pion mass M, of the lattice size L

and of the product ML for the 16 ETMC gauge ensembles with Ny =2 + 1 + 1 dynamical quarks used in this
work (see Ref. [53]) and for the gauge ensemble, A40.40 added to improve the investigation of FVEs. The bare
twisted masses y, and ug describe the strange and charm sea doublet according to Ref. [56]. The central values and
errors of the pion mass are evaluated using the bootstrap events of the eight branches of the analysis of Ref. [53]. The
valence quarks in the pion are regularized with opposite values of the Wilson r-parameter in order to guarantee that
discretization effects on the pion mass are of order O(azﬂudAQCD).

Ensemble B V/a* Aflyy aj, ajps Ny, L (@fm) M, MeV) M,L
A40.40 190  40°x80  0.0040 0.15 0.19 100 35 317 (12) 5.7
A30.32 323 x 64 0.0030 150 2.8 275 (10) 3.9
A40.32 0.0040 100 316 (12) 4.5
A50.32 0.0050 150 350 (13) 5.0
A40.24 243 x 48 0.0040 150 2.1 322 (13) 35
A60.24 0.0060 150 386 (15) 4.2
A80.24 0.0080 150 442 (17) 4.8
A100.24 0.0100 150 495 (19) 53
A40.20 203 x 48 0.0040 150 1.8 330 (13) 3.0
B25.32 195  323x64  0.0025 0.135 0.170 150 2.6 259 (9) 3.4
B35.32 0.0035 150 302 (10) 4.0
B55.32 0.0055 150 375 (13) 5.0
B75.32 0.0075 80 436 (15) 5.8
B85.24 243 x 48  0.0085 150 2.0 468 (16) 4.6
D15.48 210  483x96  0.0015  0.1200  0.1385 100 3.0 223 (6) 3.4
D20.48 0.0020 100 256 (7) 3.0
D30.48 0.0030 100 312 (8) 4.7

which is crucial in the present work, a further gauge
ensemble, A40.40, has been generated at a larger value
of the lattice size L.

We work in isosymmetric QCD (m, = m,; = m,;) and
at each lattice spacing different values of the light sea
quark masses have been considered. The light valence
and sea quark masses are always taken to be degenerate
(g = my = m,)

In this work we made use of the bootstrap samplings
elaborated for the input parameters of the quark mass
analysis of Ref. [53]. There, eight branches of the analysis
were adopted differing in:

(i) the continuum extrapolation adopting for the scale
parameter either the Sommer parameter r, or the
mass of a fictitious pseudoscalar meson made up of
strange(charm)-like quarks;

(ii) the chiral extrapolation performed with fitting func-
tions chosen to be either a polynomial expansion or a
ChPT Ansatz in the light-quark mass;
the choice between the methods M1 and M2, which
differ by O(a?) effects, used to determine the mass
renormalization constant (RC) Z,, = 1/Zp in the
RI’-MOM scheme.

Throughout this work the renormalized light-quark mass
m,q is given in the MS scheme at a renormalization scale
equal to 2 GeV. At the physical pion point (M2™* =M o =
135 MeV) the value m""* =3.70(17) MeV was determined

(iii)

in Ref. [53], using the experimental value of the pion decay
constant for fixing the lattice scale.

B. Ground-state identification

As in Ref. [30], in the numerical simulations we have
adopted the following local version of the vector current

T, (x) = Zy' (X)7,p(x). ©)

where ' has the same mass and charge of y, but it is
regularized with an opposite value of the Wilson
r-parameter, i.e., ¥ = —r. Being at maximal twist the
current (9) renormalizes multiplicatively through the RC
Z, determined in Ref. [53]. By construction the local
current (9) cannot generate off-diagonal flavor contribu-
tions in the vector correlator (6).

As discussed in Ref. [30], the properties of the kernel
function f(¢), given by Eq. (5), guarantee that the contact
terms, generated in the HVP tensor by a local vector
current, cannot contribute to the evaluation of a;"* (see
also Ref. [58]).

We have calculated the vector correlator (6) adopting the
local current (9) for the light # and d-quarks using 160
stochastic sources (diagonal in the spin variable and dense

in the color one) per gauge configuration. For each gauge

(ud)

ensemble the ground-state mass M, ’ and the coupling
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TABLEII.  Values of 7., and ¢,,,, chosen to extract the ground-
state signal from the light-quark vector correlator V(¢) for the
ETMC gauge ensembles of Table 1.

ﬂ V/a4 tmin/a tmax/a

1.90 40% x 80 12 22
323 x 64 12 22
243 x 48 12 20
207 x 48 12 20

1.95 323 x 64 13 22
243 % 48 13 20

2.10 483 x 96 18 30

(ud)

constant Z;, ' are extracted from a single exponential
fit (including the proper backward signal) in the range
fomin <t < thax- The values chosen for 7., and 7., are

collected in Table II.

The statistical precision of the effective mass Mgf’fd )(t),
defined as

V(s — a) + VD (1 4 a)
2‘/(ud) (l.)

aM4” (1) = arcosh

(ud)

t> tmin aMV ’ (10)
is illustrated in Fig. 1 by comparing the results obtained
using either 40 or 160 stochastic sources per gauge
configuration in the case of the ETMC ensembles
A80.24, B55.32, and D30.48. We observe that the increase
of the number of stochastic sources is beneficial, but the

TABLE III.

quality of the plateaux at large time distances is never-
theless still limited.

C. Lattice data and FVEs

We have evaluated Eq. (8) adopting four choices of T g,
namely: Tgaa = (tmin + 261), ([min + tmax)/2’ (tmax - 2“)’
and (7/2 — 4a), and using the values of the ground-state

mass M{"" and (squared) matrix elements Z\"”, deter-

mined, as described in the previous subsection, from a
single exponential fit of the vector correlator V(“4)(¢) in the
range ti, <t < thaxe With the values of 1, and ¢, given
in Table II.

The results obtained in the case of the ETMC gauge
ensembles A40.24, B25.32, and D15.48 are collected in
Table I1I for illustrative purposes. The two terms in the r.h.s.
of Eq. (8) depend on the specific value of T 4,,, as expected,
but their total sum is almost independent of the specific
choice of Tg,,. In order to minimize the impact of the
contribution depending on the identification of the ground-
state signal and to optimize at the same time the statistical
uncertainties the value Ty, = (fnax —2a@) has been
adopted in what follows.

The results for a;¥* (ud) for all the ETMC ensembles of
Table I versus the simulated pion mass M, are collected in
the left panel of Fig. 2, while the right panel contains only
our findings in the case of the four ensembles A40.XX with
XX = 20, 24, 32, and 40, which share the same quark mass
and lattice spacing and differ only in the lattice size L.

The lattice data for aff¥(ud) exhibit a strong depend-
ence on the pion mass and a remarkable sensitivity to FVEs

Results for the light-quark (connected) contribution to aff¥* (ud) in units of 10~'°, obtained adopting

inEq. (8) Tyaa = (fmin + 2a), (fmin + fmax)/2s (tmax — 2a) and (T /2 — 4a) for the ETMC gauge ensembles A40.24,

B25.32, and D15.48.

Ensemble A40.24

a/}}VP(ud) (tmin + Za) (tmin =+ tmax)/z (tmax - 261) (T/2 - 4“)
T < Toua 274.4 (1.2) 300.0 (7.4) 319.3 (7.7) 334.1 (9.0)
T > Ty 78.7 (10.0) 53.1 (8.4) 34.5 (6.6) 19.9 (4.6)
total 353.1 (10.8) 353.1 (10.5) 353.9 (10.8) 354.0 (11.7)
Ensemble B25.32
a’I;IVP(ud) (tmin + 2a) (tmin + tmax)/z (tmax - Za) (T/2 - 461)
T < T 289.1 (5.7) 326.2 (7.3) 360.3 (9.4) 395.3 (14.7)
T > Toua 111.6 (9.8) 74.5 (8.0) 40.8 (5.5) 6.6 (1.4)
total 400.7 (13.6) 400.7 (13.6) 401.1 (13.9) 401.9 (16.0)
Ensemble D15.48
a}I;IVP(ud) (tmin + Za) (tmin + tmax)/z (tmax - 2a) (T/Z - 4a)
T < Tyua 324.9 (6.3) 380.8 (8.0) 416.0 (10.4) 440.6 (55.6)
T > Tyaa 133.4 (12.6) 79.1 (10.1) 41.6 (6.9) 2.1 (0.7)
total 458.3 (15.1) 459.9 (15.1) 457.6 (15.7) 4427 (55.7)
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O A80.24
< B55.32 ]
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t/a

FIG. 1. The effective mass Mgffd ) (1) in lattice units [see Eq. (10)] corresponding to the light-quark vector correlator V(“4)(¢) for the
ETMC gauge ensembles A80.24, B55.32, and D30.48, evaluated using either 40 (left panel) or 160 (right panel) stochastic sources per

each gauge configuration.

at variance with the results obtained in the case of the
strange and charm quark contributions to a;"" (see
Ref. [30]). In particular, the data shown in the right panel
of Fig. 2 indicates that at a simulated pion mass M, ~
320 MeV the FVEs are at the level of ~25% for M, L ~3
and they reduce to ~5% only at ML ~ 5. The precision of
the lattice data do not allow to distinguish whether the
FVEs are exponentially or power-law suppressed [40,41].

The large corrections observed for the ETMC ensembles
A40.XX need to be understood and estimated properly. At
NLO ChPT is unable to reproduce the value of a;/V* [59]
because of the important role of resonance contributions,
which starts only at higher orders. The NLO chiral

650 71T 71T 1T 1T
F| O p=1901/a=20 O p=1.951/a=24|
600 | 4 -
E B=1.90,L/a=24 O p=1.95L/a=32 E
550 :_ & p=1.90,L/a=32 O p=2.10,L/a=48 E
° a /A B=1.90,L/a=40 E
© s00f =
* o ]
g wof ¢ :
e E 4> h
2 C ]
<> 400 - % ]
350 | EIJ<I><I> 3
E il %
300:— <I) EDEI]
250 I T B R
0.1 0.2 0.3 0.4 0.5 0.6

Mn (GeV)

prediction for the FVEs is believed to be adequate close
to the physical pion point [47,60], since it is dominated by
pion loops. However, the NLO chiral result for the FVEs
coincide with the estimate corresponding to noninteracting
two-pion states in a finite box [21,46]. When applied at a
pion mass of ~300 MeV, we find that the NLO chiral
prediction for FVEs is off by one order of magnitude with
respect to what is observed in the right panel of Fig. 2. The
p-meson resonant contribution to the interaction between
two pions may therefore play an important role not only for
al™¥P(ud), but also for the evaluation of FVEs. Thus, we
have elaborated an analytic representation of the vector
correlator V() (t), which incorporates resonant two-pion

450 T
400 -

R I

©

* L

g 3501 A40.XX

=

T . M ~ 320 MeV

© Ed
300 a~0.089 fm
250-. 1 1 | I | 1 1

FIG. 2. Left panel: results for a}fvp (ud) obtained using Eq. (8) (with T gy, = f1nax — 2a) for all the ETMC ensembles of Table I versus
the simulated pion mass M,. Right panel: lattice data in the case of the four ensembles A40.XX with XX = 20, 24, 32 and 40,
corresponding to a pion mass M, ~ 320 MeV and a lattice spacing a ~ 0.089 fm. The (red) solid and (black) dashed lines correspond,
respectively, to an exponential, A(1 — Be <), and a power-law, A’(1 — B'/(M,L)?), phenomenological fit.
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states and is given in terms of few quantities exhibiting
small FVEs. In this way we may achieve a good, direct
control of FVEs in af!V* (ud). The analytic representation is
described in the next section and the subtraction of FVEs is

carried out in Sec. IV.

ITII. ANALYTIC REPRESENTATION OF THE
LIGHT-QUARK VECTOR CORRELATOR

In this section we develop an analytic representation of
the temporal dependence of the vector correlator V() (¢),
based on the quark-hadron duality [39] and on the two-pion
contributions in a finite box [40-46].

Let us start with the two-pion contribution, which in
infinite volume is a continuous function above the two-
particle threshold. In a finite box of volume L3 the two-pion
states have been analyzed in detail in Refs. [40—43]. The
energy levels w, of the two-pion states are given by

w, =2\/M; + k. (11)

where the discretized values k,, should satisfy the Liischer
condition, which for the case at hand (two pions in a
P-wave with total isospin 1) reads as

611 (ky,) + ¢(k2,,_71;> = nr, (12)

where §;; is the (infinite volume) scattering phase shift
and ¢(z) is a known kinematical function defined as

272z
Yezs (I)? = 22)7

The two-pion contribution to the vector correlator, V., (¢),
can be written as [44-46]

V(1) = Zl/n|An|2€_w"t7 (14)

tang(z) = —

(13)

where v, is the number of vectors 7 € Z> with norm
|Z]*> = n and the squared amplitudes |A,,|* are related to the
square of the timelike pion form factor |F,(w)|> by

23 kL  [(k,L\]"!
ol = o )P ko () + S (525

(15)

For our purposes all we need is a parametrization of the
timelike pion form factor F,(w) = |F,(w,)|e™", where its
phase coincides with the scattering phase shift according
to the Watson theorem. The most popular parametrization
is the Gounaris-Sakurai (GS) one [61], which is based on
the dominance of the p resonance in the amplitude of the

pion-pion P-wave elastic scattering (with total isospin 1),
namely

o M/z) - Altﬂ(o)
M2 — @ — A, (o)

, (16)

where the (twice-subtracted [61]) pion-pion amplitude
A, (@) is given by

2 2 h/(M/)) .
Ag(@) =h(M,) + (0° = M) 51 — h(w) + il (o)
P
(17)
with
2 13
9prrn k*
Fpmr(w) = gn' ;’ (18)
2 13
prn k° 2 w + 2k
h =————1 1
(@) 6r a)ﬂo(ZM,, ’ (19)
Porn k 2M2\ @ w + 2k
n =2 1 1 )21
(@) 67 7w U o )k o8 2M, ’
(20)
M P M
A, (0)=h(M,))——LNn(M i 21
ol0) = h(M,) =220 (M) + =25 o)

and k= \/w?/4 — M%. By analytic continuation the GS

form factor at @ =0 is normalized to unity, i.e.,
GS)

F! (w = 0) = 1. The scattering phase shift &, (k), i.e.,
the phase of the form factor, is given by
cotéll(k)

B M2 —w* —h(M,) — (0> —M3)h' (M,)/(2M ,) + h(w)

a)rpzm(w)

(22)

The GS parametrization contains two parameters: the
resonance mass, M,, and its strong coupling with two
pions, g,.,. At the physical pion point the GS parameter-
ization of the pion form factor provides a reasonable
description of the experimental data on the process
ete™ — nn~, as shown in Fig. 3.

In what follows we adopt the GS parametrization and
treat both M, and g,,, as free parameters to be determined

by fitting the vector correlator V(“¥)(¢). Note that the GS
form factor does not contain any effect of the p — @ mixing.
This is appropriate for our isosymmetric (m, = m;) QCD
lattice setup.

We expect that the low-lying states close to the resonance
mass can be properly described by the isovector two-pion
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FIG. 3.

Left panel: the squared time-like pion form factor |F, ()

160 L O exp. [63]
i < exp. [64]
L |—GS

120 B
[ M =0.135Gev

(degrees)

M =0.775GeV
o
80

11

d

40

0.4 0.6 0.8 1.0 1.2

|> determined by the KLOE experiment [62] from the process

ete™ — nt ™ (dots). Right panel: the experimental values of the scattering phase shift §;; obtained in Ref. [63] (squares) and in
Ref. [64] (diamonds). The solid lines represent the results of the GS parametrization (16)—(18) corresponding to M, = 0.135 GeV,

M, =0.775 GeV, and g,,, = 5.50.

contribution (14). This means that we may be able to
reproduce the vector correlator V(4 (¢) at large time
distances. However, we want to achieve an analytic
representation of the vector correlator valid also at low
and intermediate time distances. To this end we resort to an
observation made in Ref. [30], concerning the onset of
quark-hadron duality [39]. The matching between pertur-
bative QCD (pQCD) and the vector correlator is expected
to occur at enough small values of 7, i.e., t < 1/Agcp *
1 fm (with Agep = 300 MeV), which correspond to energy
scales > Aqcp. As shown in Ref. [30], the matching with
pQCD occurs instead up to time distances of ~1 fm. Such
an agreement holds in the case of the light #- and d-quarks,

10° ; ,
O A30.32 (a ~ 0.09 fm)
10" L O B25.32 (a ~ 0.08 fm)
S < D20.48 (a ~ 0.06 fm)
E“é [
~ 0%k —(5/18) x t* (pQCD)
>
g
>
10° L
10" I R
0.0 0.2 0.4 0.6 0.8 1.0

t (fm)

FIG. 4. The vector correlator V(4 (¢) in physical units corre-
sponding to the ETMC gauge ensembles specified in the inset,
which share an approximate common value of the (renormalized)
light-quark mass m,; ~ 12 MeV and differ in the values of the
lattice spacing a. The solid line represents the pQCD prediction
in the massless limit (cf. Eq. (3.22) of Ref. [30]).

which can be treated in the massless limit, as well as in the
case of the strange and charm quarks, once the corrections
due to the nonvanishing quark masses are included. The
fact that the matching appears to work up to 1~ 1 fm is a
nice manifestation of the quark-hadron duality a la SVZ,
which states that the sum of the contributions of the excited
states is dual to the pQCD behavior [39]. The onset of
quark-hadron duality in the vector correlator V() (z),
evaluated using our lattice data, is illustrated in Fig. 4.

Thus, inspired by the approach of QCD sum rules we
introduce a dual correlator, V., (), defined as

1 )
Vaua () = m/ ds/se™VS RPAD (s)
Sdual
51 0 Vit 4m5d 2mﬁd
=< dsy/se™V$ ] ——4 1] 4+ —
987 Jspa K s

+ O(as)]
3/2
1 1
— ésdual |:_3€—x<1 +X +_x2)
T~ | X

2
+ o(”?d) + (’)(as)} :

S qual

(23)

where x = | /sqaf and s,y is an effective threshold above
which the hadronic spectral density is considered to be
dual to the pQCD prediction RPCP () related to the (one
photon) e*e™ annihilation cross section into hadrons.

According to Ref. [39] the value of /5., 1s expected to
be above the ground-state mass by an amount of the order
of AQCD. Therefore, we assume that
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FIG. 5. The vector correlator V(”")(t) (in lattice units) in the case of the gauge ensemble A40.24 corresponding to a pion mass of
~320 MeV versus the time distance 7 (in lattice units). The blue dotted and the red dashed lines represent respectively the contributions
of the dual correlator V., () and of the two-pion correlator V(7). The green solid line is the sum of the two contributions. In the left
panel a logarithmic scale is used, while in the right panel the region of low values of ¢ is better highlighted using a linear scale. Errors are

statistical only.

Sdual = (Mp + Edual)2 (24)
with Eg4,, being treated as a free parameter to be deter-
mined by fitting the vector correlator V(“4)(¢). Furthermore,
we introduce in the r.h.s. of Eq. (23) a multiplicative factor
R4, in order to take into account perturbative corrections
at order O(a,) (and beyond), discretization effects and an
(expected) slight dependence on the light-quark mass mud.l
Thus, our final expression for the dual correlator V g, (¢) is

5 Rdua]

Vdual(t) = 18”2t—3€_<Mﬂ+Edum)t |:1 + (M/) + Edual)t

1
+ 5 (Mp + Edual)2t2:| s

(25)
where both Ry, and Eg,, are free parameters to be
determined by fitting the vector correlator V(“4)(¢), while
M, is the same parameter appearing in the two-pion
contribution (14)—(15) through the GS parametrization of
the timelike pion form factor (16)—(18).

To sum up, our analytic representation of the vector
correlator V(4 (¢) is given by the sum of the dual correlator
Vaua () and the two-pion contribution V (1), viz.

Vavarsar (1) = Vauar () + Vir(2), (26)
which contains four free parameters, Rgy, Equas M,, and
9pr- More precisely, we can make use of four dimension-
less parameters, namely Reyq1 Equa/ Mz, M,/M,, and g,

'A more refined treatment of the perturbative and condensate
corrections to Vg, (#) is left to future developments.

which will be determined by fitting the vector correlator
V{d)(f) separately for each of the 17 ETMC gauge
ensembles of Table I. In this way the fitting procedure
can be carried out entirely in lattice units without requiring
the knowledge of the value of the lattice spacing (i.e., the
four parameters Ryya, Equa/ Mz, M,/M,, and g,,, are not
sensitive to the uncertainty of the scale setting). We find
that the inclusion of the (lowest) four two-pion energy
levels w, in Eq. (14) turns out to be sufficient for all of the
ETMC ensembles.”

By means of the analytic representation (26) we repro-
duce accurately the lattice data for the vector correlator
v#d)(1) for t > 0.2 fm for all ETMC ensembles. The fitting
region is extended up to larger values of #, where the
statistical uncertainties of the lattice correlator V4 (z) do
not exceed ~10% (i.e., t < 1.7 +2.0 fm).

The quality of the fits is illustrated in Figs. 5 and 6 in the
case of few ETMC gauge ensembles and it is nicely
confirmed by the comparison, shown in Fig. 7, between
the values of a}! V" (ud), evaluated using Eq. (8), and those
corresponding to the analytic representation (26), namely

a/I;IVP(ud)|dua]+mr = 46!2," if(t) [Vdua1<t) + er(t)}' (27)
=0

The high-level accuracy obtained for the reproduction of
the vector correlator V(“4)(¢) using the analytic represen-
tation (26) guarantees that the calculated values of

*We have explicitly checked that using the (lowest) eight
energy levels in Eq. (14) yield results for the four para-
meters Rgyar, Equas M), and g,,,, which differ well below the
uncertainties.
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FIG. 6. The same as in the left panel of Fig. 5, but in the case of the gauge ensembles B25.32 and D15.48 corresponding to M, ~ 260

and ~220 MeV, respectively. Errors are statistical only.
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FIG.7. The (connected) light-quark contribution to the muon HVP, a}fvp (ud), evaluated for all the ETMC gauge ensembles of Table 1.
Empty markers correspond to Eq. (8), where the lattice data for the vector correlator V(4 (1) are directly used. Full markers are the
results of Eq. (27), where the analytic representation (26) is adopted. For the latter case the points have been shifted horizontally for a

better readability.

afV? (ud) differs form the lattice data less than one standard
deviation.

We point out that for all the ETMC ensembles of Table I
the first noninteracting two-pion energy level, given by
2y/M2 + (2z/L)?, is always well above the position of the
resonance mass M ,. Due to the residual strong interaction
between the two pions the first energy level w,_ satisfying
the Liischer condition (12) turns out to be slightly below
M ,,. This feature justifies the use of a single exponential fit
in Eq. (8), at least for the ETMC ensembles of Table I. Such
a situation changes as the simulated pion mass decreases

and the single exponential fit is completely ruled out at the
physical pion point (see later Sec. VI).

Before closing this section, we address the issue of
possible correlations of the vector correlator V(4 (r) at
nearby values of 7. To this end we have repeated our fitting
procedure with reduced numbers of data corresponding to
including one out of two (or three) subsequent lattice
points. The results obtained for the four parameters Ry,
Egq/My, M,/M,, and g,,, differ within approximately
one standard deviation, as shown in Table IV in the case of
few ETMC gauge ensembles.
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TABLE 1V. Values of the four parameters Ry, Equa/M,, M,/M,, and g,,, obtained by fitting the vector
correlator V() (1) by including all subsequent timeslices (all) or one out of two (or three) subsequent lattice points
in the case of the gauge ensembles A40.24, B55.32, and D30.48.

A40.24 A40.24 B55.32 B55.32 D30.48 D30.48 D30.48
Parameter All 1 out of 2 All 1 out of 2 All 1 out of 2 1 out of 3
Rgual 1.44 4) 1.43 4) 1.39 (2) 1.39 (3) 1.21 (1) 1.20 (1) 1.18 (2)
Eua/M,  222(23) 21327 1959 196 (10)  1.84(10) 177 (11) 1.65 (13)
M,/M, 277 9) 2.76 (10) 244 (2) 244 (2) 276 (4) 274 4) 2.73 4)
Gprn 52209 5.25 (11) 4.98 (2) 4.98 (3) 5.04 (4) 5.07 4) 5.10 (5)
The results for the four parameters Ry, Equa/M - e~ ML
M,/M,, and g,,, obtained in the case of all the ETMC P =P 1+ Fp (ML) (28)

ensembles will be shown later in Figs. 11 and 12.

IV. SUBTRACTION OF FVEs

We start the analysis of FVEs by considering the four
ensembles A40.XX, which share the same quark mass
(m,q ~ 17 MeV) and lattice spacing (a ~0.089 fm) and
differ only in the lattice size L, namely XX = 20, 24, 32
and 40 (see Table I).

A. Ensembles A40.XX

The values of the four parameters Rgyy, Equas M), and
Gpzx Obtained by fitting the vector correlator vd)(r) are
shown in Fig. 8. It can be seen that the FVEs on all the
fitting parameters are definitely more limited with respect
to those observed for a;; ¥ (ud) in the right panel of Fig. 2.
This fact allows for a good control of the values of the four
parameters in the infinite volume limit, as shown in Fig. 8
by the solid, dashed and dotted lines, whose differences are
well within the uncertainties. The solid and dashed lines
correspond to the exponentially-suppressed Ansatz

L LI S I
1.6 -
1.4>\$~'¥_$ i =

» i dual

E L 4

° 1.2 -

I L i

o

5 A40.XX

= -

3

©

EduaI(GeV):
.
k4 ]
1 1 i 1 1

FIG. 8.

with @ = 3/2 and a = 0, respectively. In Eq. (28) P stands
for {Rquai» Eqvals M+ 9prr }» While P® and Fp are fitting
parameters. The dotted lines correspond instead to the

power-suppressed Ansatz

(29)

F/
P—P’“[1+ L }

(M L)*|

Besides the four parameters Rgyu, Equa, M,, and g,.,,
also the simulated pion mass M, suffers from FVEs, which
have been thoroughly investigated in Ref. [53] using the
resummed ChPT approach of Refs. [65,66]. For the
purposes of the present work it suffices to consider for
M2 the exponentially-suppressed Anzatz (28) with
a=3/2, as suggested by the asymptotic behavior of
NLO ChPT in the p-regime.

Once the infinite volume limits R, E@ ... M7, 9prrs
and MY have been determined, we need to specify the
infinite-volume limit of our “dual 4 77" representation

T T T T T
1.4 5 -
ENN
o) [0
r 9, /4
» i
5 1.2+ -
®
£
S A
& .
g [
1.0 -
0.8 - Mp(GeV) -
I I Ll I I

Left panel: the dual parameters Ry,, and Eg,, (given in physical units) versus M, L, appearing in Eq. (25), for the four

ensembles A40.XX (m,, ~ 17 MeV and a ~0.089 fm). Right panel: the parameters M, (given in physical units) and g,,,/4 versus
M L, appearing in the two-pion contribution (14). The solid and dashed lines correspond to the exponentially-suppressed Ansatz (28)
with @ = 3/2 and a@ = 0, respectively. The dotted lines correspond to the power-suppressed Ansatz (29).
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FIG. 9. Lattice data in the case of the four ensembles A40.XX
(red dots) versus M, L. The blue squares and the green diamonds
correspond respectively to the data corrected by FVEs according
to Egs. (33)-(34), evaluated by including either the zz
contribution only or the “dual + zz” terms and by using in
Egs. (31)~(32) the infinite-volume values R, EG.» M}, 9oz
and M. The dashed line is a constant fit to the green points.
The black triangles represent the data corrected by the FVEs
evaluated using in Egs. (31)—~(32) the values of Ryya, Equal, M s
Ypar> and M, obtained at each lattice size L (see text).

nglalJr;m(t) = ngla](t) + V;?r(t) (30)
For the dual contribution one has straightforwardly
5 Rofl —(MP+ES co 00
ngxal(t) = @%e (M7 +Ega)t |:1 + (Mp + Edual)t
1
#3003 + B2 31)

while the two-pion contribution in the infinite-volume limit
becomes [45]

1 0 (2M°°)2 3/2
Vor(t) — VO (t) = —— doa? |1 =21
mr( )L—>oo mr( ) 4877.'2 /ZM;.!o ww |: a)2 :|
< |F2(w)Pe=", (32)

TABLE V. Values of a¥* (ud)

|L—>oo

where |F ()| can be calculated from the GS parametri-
zation (16)—(18) using M;°, g7’ ., and M.

We can now correct the lattice data for a;“*(ud),
obtained at finite volume by means of Eq. (8), for the
FVEs evaluated using our representation of the vector
correlator V4 (¢) at infinite volume, Eqs. (31)~(32), and
the one at finite volume, Egs. (14) and (25), namely

a;I;IVP(ud”L—wo = all;wp(ud) + AFVEQL{VP(”d)v (33)
ApypaiVP(ud) = 402, > F(O[VEL(D) = Vaga (1)
=0
+ Var(t) = V(1)) (34)

The results obtained in the case of the ensembles A40.XX
are shown in Fig. 9. We observe that most of the FVE
correction comes from the zz contribution. The small
residual FVEs can be almost totally taken into account
by adding the FVEs related to the dual contribution. We
point out that in order to remove properly the FVEs it is
important to use in Eqs. (31)—(32) the infinite-volume
values RE 1, EQ.» MY, g5y, and M. Indeed, if one uses
instead the finite volume values (as done, e.g., in Ref. [21]),
the correction (34) may be largely underestimated, as
shown by the black triangles in Fig. 9.

We have explicitly checked the dependence of our
FVE correction (33) on the parametrization adopted for
the time-like pion form factor F,(w). To this end we keep
the p-meson dominance and consider two simple Breit-
Wigner forms in which either I',,, = const. (labeled here-
after as BW) or I',, o k (labeled as BW’) instead of the
GS width (18). Correspondingly, the real part of the two-
pion amplitude A,,(w) has been calculated using twice-
subtracted dispersion relations, as in the case of the GS
parametrization. We have considered also the approxima-
tion of neglecting the real part of A,,(w). The fitting
procedure of the vector correlator V(“4)(¢) corresponding to
the four ensembles A40.XX has been repeated for all the

obtained using Egs. (33)—(34) for the four ensembles A40.XX, adopting

different parameterizations of the time-like pion form factor F,(w). Besides the GS one [see Eq. (16)], two simple
Breit-Wigner forms in which either T',., = const. (BW) or T, o« k (BW’) have been considered; moreover, the real
part of the corresponding (twice-subtracted) two-pion amplitude A, (@) is either included or excluded. The last

column represents the values of a

HVP
"

(ud)| guatszr Obtained in the infinite volume limit for each parametrization

of F(w).

Parameterization of F,(®) A40.20 A40.24 A40.32 A40.40 dual + 7z (L - )
GS with ReA,, # 0 405 (12) 411 (10) 412 (13) 409 (12) 411 (13)

GS with ReA,. = 0 406 (13) 411 (11) 413 (13) 410 (13) 411 (13)

BW with ReA,, #0 404 (12) 410 (10) 411 (13) 408 (12) 410 (12)

BW with ReA,, =0 404 (12) 409 (10) 410 (13) 407 (12) 409 (12)

BW’ with ReA,, # 0 405 (12) 410 (10) 412 (13) 409 (12) 410 (12)

BW' with ReA,, = 0 404 (12) 411 (10) 411 (12) 408 (13) 410 (13)
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FIG. 10. Elastic P-wave zz scattering phase shift §;; obtained
in Ref. [67] (blue circles) and with our A40.XX ensembles
(red curve) versus the dimensionless variable w/M,,. The lattice
setup of Ref. [67] corresponds to Ny =2+ 1 clover fermions
with M, ~320 MeV, M,~800MeV, a=~0.114 fm, and
L ~3.65 fm. Our A40.XX setup corresponds to Ny=2+1+1
twisted-mass fermions in the infinite volume limit with
M3 ~315 MeV, M? ~850 MeV, and a ~0.089 fm.

parametrizations of the pion form factor and the values
obtained for the dual and nz parameters have been
extrapolated to the infinite volume limit. The results for
afV?(ud)|; . corresponding to Eqs. (33)-(34), are col-
lected in Table V.

The changes due to different parameterizations of the
time-like pion form factor F,(w) are quite small and they
do not exceed ~0.5%. This finding may be due to the fact
that in calculating Apygay '’ (ud) [see Eq. (34)] the
differences [V (1) — V,,(1)] are expected to be less
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o I

1.0 phys. point

os b v vy vy
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m  (GeV)
ud

sensitive to the specific parametrization of the pion form
factor than the separate terms.

Before closing this subsection, we compare our findings
with the results of Ref. [67], where the elastic P-wave zz
phase shifts J;; have been extracted from lattice QCD
simulations with Ny =2+ 1 flavors of clover fermions.
There the simulated pion mass was M, ~ 320 MeV, which
is quite close to the pion mass corresponding to our
A40.XX ensembles (MY ~ 315 MeV). The phase shifts
011 found in Ref. [67] are compared in Fig. 10 with our
A40.XX results corresponding to the infinite volume limit.
The comparison is made in terms of the dimensionless
variable w/M,, which helps in absorbing the different
values of the p-meson mass found in Ref. [67],
M, ~3800 MeV, and with our A40.XX ensembles,
M7 ~850 MeV, as well as in absorbing the statistical
fluctuations of the p-meson mass. It should be kept in mind
that discretization effects are expected to be different
between the lattice setup of Ref. [67] and our A40.XX
ensembles. Nevertheless, the overall agreement shown in
Fig. 10 is quite reassuring.

B. ETMC ensembles

We now address the subtraction of FVEs from the HVP
term a}!V*(ud) corresponding to the ETMC ensembles of
Table I. The fitting procedure of the vector correlator
V(d)(¢) provide us with the values of the four dimension-
less parameters Rayal, (Mﬂ/Edual)z’ (MH/M/))z and Gprns
which are collected in Figs. 11 and 12. We stress that
dimensionless parameters are not sensitive to the uncertainty

O p=1.90,L/7a=20 < p=1.951L/a=32
0O p=1.90,L/a=24 O p=2.10,L/a=48
1.0 H & p=1.90,L/a=32 @ physical point
/A Bp=1.90,L/a=40 continuum and L=e limits
| 0O p=1.95L/a=24
o~ 0.8 |- t
mg I
~ 0.6 |- —
. L
= |
0.4 % ]
L D
0.2 - o -
0.0 . .ph.ys'lpolm. P I RSN B
0.00 0.01 0.02 0.03 0.04 0.05
m (GeV)
ud

FIG. 11. Left panel: the dual parameter Ry,, versus the renormalized light-quark mass m,,, (in the MS(2 GeV) scheme) obtained
for all the ETMC ensembles of Table 1. Right panel: the same as in the left panel, but for the dual parameter (M,/Eg)> The
solid lines represent respectively the fitting functions (35) and (36) evaluated in the continuum and infinite volume limits. The full
(orange) diamonds identify the values of the parameters at the physical pion point, namely Rdual(mft];ys,o,oo) = 1.14(6) and

Equa(m™*,0, 00) = 479 (22) MeV.
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45 b
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FIG. 12. The same as in Fig. 11, but for the two-pion parameters (M, /M p)z and g,,,. The solid lines represent respectively the fitting
functions (37) and (38) evaluated in the continuum and infinite volume limits, namely M /,(mgl;ys, 0,00) =760 (19) MeV and

gpn’ﬂ(mzzysv 0, 00) =5.30 (5)

of the scale setting. The dependence of the four parameters
on the light-quark mass m,,,, the lattice spacing a and the
lattice size L can be described in terms of combined
phenomenological fits, viz.

Rdual (mud7 (12, L) = RO[I + leud + Raa2 + Ramazmud]

oML
x |1+ R —, 35
MZ
Ez—” (myq,a*, L) = Egmyq[1 + Eym,q + Elog(€)
dual
+ Ezmid + Eaaz] (36)
and
M3
e (Mygra* L) = Vomg[l + Vym,, + Elog(&)
P
+ Vom2, + V,a?], (37)
gpzm(mud’ a2’ L) = gO[l + g1Myq + 26 IOg(‘f) + gaaz]
oML
X 1+gmf—(ML)3/2 , (38)

where M? = 2Bym,; and & = M?/(4xf,)* with B, and £,
being the SU(2) low-energy constants (LECs) at LO
determined in Ref. [53]. Since the quantities M2/E3
and M2 /M3 have negligible FVEs (see the right panel of
Fig. 11 and the left panel of Fig. 12), we have not included
in Egs. (36) and (37) any dependence on the lattice size L.
In Eq. (38) the coefficient of the chiral log is the one
predicted by ChPT at NLO [68]. Moreover, a nonanalytic

term proportional to mi{f is expected from ChPT [68-70]
in Egs. (37)—(38). However, when we tried to include it in
the fitting procedure, its coefficient was found to be well
compatible with 0.

The quality of the fits based on Egs. (35)-(38) is quite
good with a y?/d.o.f. always less than 1. All the quantities
Rauat> Edqual» M, 9z and M, are correlated with each other,
since they come from fitting the ETMC vector correlators.
Such correlations are properly taken into account in our
bootstrap sampling procedure. The results corresponding
to the continuum and infinite volume limits are shown in
Figs. 11 and 12 as solid lines. In particular, at the physical
pion point (MY™ =M =135 MeV [53]) the value
MO = M, (mP°,0, 00) = 760(19) MeV is obtained, in
agreement with the experimental p-meson mass [2], though
within a large uncertainty.

Finally, for the simulated (squared) pion mass M2 we
adopt an Ansatz consistent with Eqgs. (36)-(37), but
including a phenomenological term for taking into account
FVEs, namely

M%(mud’ a2’ L) = 2’BOWlud[l + leud =+ ‘flog(é)

+P2mgd+Paa2]
e—ML
14 Py S|,
FVEf(ML)3/2

(39)
which nicely fits the lattice data and provides results
consistent with those of the quark mass analysis of
Ref. [53].

Thus, at each value of the light-quark mass m,; and of
the lattice spacing a the fitting functions (35)—(39) allow us
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to determine the infinite volume limits R,y (71,4, a*, o),
Edual(mudv az’ OO)’ M/)(mud’ a2’ OO), g/)lm(mud’ a2’ OO)’ and
M, (m,y, a*, ), which can be used in Egs. (31)~(32) to
evaluate the finite-volume correction ApygafV*(ud) for
each of the ETMC ensembles. The results of the subtraction
of FVEs are illustrated in Fig. 13, where the (connected)
light-quark contribution to the muon HVP, a}V¥(ud), is

calculated using either the physical muon mass m, =

mh™ = 105 MeV or the effective lepton mass (ELM)
mEM | defined as

phys

~ 2
Mghys M/J(mud, as, L). (40)

2 _
m Mg, a*, L) =

ELM(
The ELM procedure was introduced in Ref. [13] in order
to weaken the light-quark mass dependence of a; " (ud),
improving in this way the reliability of the chiral extrapo-
lation. From Fig. 13 it can be seen that the ELM procedure
is able to reduce the light-quark mass dependence, but it
does not modify the impact of FVEs. Once the latter are
removed, the resulting values of a} " (ud)|; _,, (see the full
markers in the right panel of Fig. 13) exhibit again a
remarkable dependence on the light-quark mass.

The attractive feature of the ELM procedure is based on
the fact that af¥* (ud) depends on the lepton mass in lattice
units am, [see Eqgs. (4)~(5)]. Thus, using Eq. (40) the
knowledge of the value of the lattice spacing is not required
and therefore the resulting a}/V* (ud) is not affected by the
uncertainties of the scale setting. The drawback of the ELM
procedure is instead represented by its potential sensitivity

650 O p=1.90,1/a=20 ® §-1.90, L/a= 20 (FVE corr.)
[| O p=1.90,L/a=24 ®  §=1.90, L/a =24 (FVE corr.)
600 H <© p=190L/a=32 ® (=1.90, L/a =32 (FVE corr.)
[| A p=1.90,L/a=40 A =1.90, L/a = 40 (FVE corr.)
[| O p=1.95L/a=24 ® g =1.95, L/a= 24 (FVE corr.)
550 H
[] O p=1.95La=32 ® §=1.95,L/a=32 (FVE corr.)
°© [l O p=2.10L/a=48 @ =2.10,L/a =48 (FVE corr.)
© 500 F 3
k3 r B
= C ¢ m=m"™
T 450 n " —
=) C % ]
= L ]
o
z C ]
<> 400 - % ¥ —_
350 il i % 3
300 F ¢ t $
250 P I NTN S T T [N TN T ST S N T N N N BN
0.2 0.3 0.4 0.5

Mn (GeV)

FIG. 13.

to the statistical fluctuations of the p-meson mass, aM,,
determined on the lattice.

We close this section by observing that:

(1) the use of the analytic representation (26) of the
vector correlator V4 () allows to subtract the
FVEs on af¥*(ud) relying only on lattice data;

(ii) the light-quark mass dependence of aj ' (ud) be-
comes remarkably steeper after the subtraction of
FVESs, which means that any reliable chiral extrapo-
lation or interpolation of the lattice values of
afV? (ud) cannot be carried out without taking care
of FVEs properly.

V. EXTRAPOLATIONS TO THE PHYSICAL PION
POINT AND TO THE CONTINUUM LIMIT

In this section we perform the extrapolation to the
physical pion point and to the continuum limit of the
lattice data corrected by the FVEs as discussed in
the previous section (see the full markers in Fig. 13).
An important feature of the chiral behavior of aj ¥ (ud)
is that it diverges in the chiral limit m,, — 0 [71-73].
This is connected with the loss of analyticity of the
(subtracted) HVP function at vanishing photon virtuality
Q? = 0 in that limit. As a consequence, ChPT predicts
already at NLO the presence of a chiral log proportional
to log(m,y) [74].

The ChPT expansion can be applied to the HVP form

factor H;e”d) (Q?) appearing in the covariant decomposition
of the HVP tensor related to the u- and d-quark em currents

[71-74]. For the connected part of TI*(02) one has

650 O §-1.90 /a-20 ® §=1.90,L/a =20 (FVE corr.)
O $=1.90,L/a=24 ®  §=1.90, L/a = 24 (FVE corr.)
O p=1.90,L/a=32 ® §=1.90, L/a = 32 (FVE corr.)
600 | A p=1.90,L/a=40 A B =1.90, L/a =40 (FVE corr.)
[l O p=1.951/a=24 ®  §=1.95 L/a=24 (FVE corr.)
O p=1.95L/a=32 ® p=1.95L/a=32 (FVE corr.)
o O p=2.10,L/a=48 ® (=2.10,L/a= 48 (FVE corr.)
o -
— 550 | -
* i * ELM 1
’_c'; - § m =m -
S L ® u 1 i
= [ <{> & ]
>
2 soo T
i {> o &' ]
450 - E}] -
400 Lo v v v vy ]
0.2 0.3 0.4 0.5
M (GeV)
e

The (connected) light-quark contribution to the muon HVP, a!IVF(ud), evaluated for all the ETMC gauge ensembles of

u

Table I. Empty markers correspond to Eq. (8), where the lattice data for the vector correlator V(”d)(t) are directly used. Full markers
are the results of the subtraction of FVEs by means of Eqgs. (33)—(34). The physical muon mass is used in the left panel, while the ELM

mass (40) is adopted in the right panel.
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M (0%) = 2 [MRH0(02) + INO(Q) 4] (41)
with

Y0(02) — 1 pB(Q%. M2) + B(Q®. M), (42)

2477

000 = o a0 ) + B(Q M)
L3l 1 s 2807
FBO M) -8CH)0 (@Y

where p, is the ChPT renormalization scale and

2

B(Q> M?) = % [1 +log (%)} +B(Q* M?).  (44)

X
2
B(Qz,MZ):B(x:“M)

i
1++/1 4
_(1+X)3/210g<%> —x—g. (45)
The NLO term (42) is independent of any LECs, while
at NNLO two LECs appear in Eq. (43), namely L(u,)
and Cly (1)
The NLO and NNLO contributions to afV* (ud) can be
evaluated using the following expression

[ aEVP ( u d)]NLO(NNLO)

40 , e 1 (\/4—1—12—1)2
= 5 Aem <
9 0 Va+ 22 \Vad+72 42
NLO(NNLO
T, ( )(mﬁzz). (46)

Thus, we have adopted three different fitting functions,
which, besides discretization effects, include in different
ways the effects of chiral logs, namely

(1) including NLO ChPT:

a, " (ud) = {[a,"" (ud)]N0 + Ay + Aymyy
+ Aym2,} - [1 + Doa® + Dya*m,g),
(47)

(i1) including NLO and NNLO ChPT:

aIEIVP(ud) — {[all;lVP(ud)]NLO + [a#l;IVP(ud)}NNLO
+A6 + A’lmud}
[l + Dha* + Dya’m,,), (48)

(iii) including free logs:

AP (ud) = (Ay + Ag® log(m,g))
x (1+ Aymyy + Allogmud log(myq))
14 Do + Dy, (49)

where, for the sake of simplicity, a}/¥"(ud) stands from

now on for a;* (ud) [see Egs. (33)—(34)]. The results
of the combined chiral extrapolation and continuum limit
obtained using either Eq. (47) or Eq. (48) are shown in
Figs. 14 and 15, respectively, with and without the use of
the ELM procedure. Similar results are obtained in the case
of the “free logs” fitting function (49).

In the case of the NNLO fitting function (48) we get the
following values for the LECs Lg and Cp; at the p-meson

mass scale u, = 0.77 GeV:

|L—>oo

L5(0.77 GeV) = 0.00273 (143), (50)
C15(0.77 GeV) = —0.0136 (20) GeV=2,  (51)

which are consistent (within the uncertainties) with the find-
ings L§(0.77GeV)=0.00593(43) and Cg;(0.77GeV)=
—0.0154(4) GeV~ obtained in Ref. [74].

From Figs. 14 and 15 it can be clearly seen that the
enhancement due to chiral logs is important close to the
physical point. This makes a;;'*(ud) quite sensitive to
small changes of the light-quark mass, which may be
crucial even for a local interpolation around the physical
point. This immediately rises the question of how much
we can trust the sharp rise visible in Figs. 14 and 15. In
order to address this issue we resort to our “dual 4 zz”
analytic representation. At each value of the light-quark
mass m,, we can determine the values Ry (7,4,0, ),
Edual(mud7 O’ OO), Mp (mud’ 07 00), gpzm(mud’ 0’ OO) and
M, (m,4,0,00) from the fitting functions (35)—(39) (i.e.,
the solid lines in Figs. 11 and 12). Then, by means of
Eqgs. (31)—(32) we estimate the light-quark mass depend-
ence of a}'?(ud). The corresponding results are shown in
Fig. 16 by the blue squares and compared with those
obtained using the fitting function (48) in the continuum
limit (green dots). A remarkable agreement is observed not
only at large values of m,; (where our analytic representa-
tion fits very nicely the ETMC vector correlators), but also
at values of m,; close and even smaller than the physical
point. We point out that our “dual 4+ zz” analytic repre-
sentation does not contain chiral logs explicitly and,
therefore, the agreement with the ChPT fit shown in
Fig. 16 is reassuring about the reliability of the sharp rise
of a/V¥(ud) at low values of the light-quark mass m,,.

The results obtained at the physical pion point and in the
continuum (and infinite volume) limit using the fitting
functions (47)—(49) and adopting for the muon mass either
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FIG. 14. Values of the (connected) light-quark contribution to the muon HVP, a;wp (ud), corrected by FVEs and evaluated using either
my, = mi™ = 105 MeV (left panel) or m, = mf™ (right panel). The dashed lines represent the fitting function (47), which includes

the NLO ChPT prediction, evaluated at each value of the lattice spacing of the ETMC ensembles. The solid lines represent the same
fitting function in the continuum limit. The full (orange) diamonds are the values extrapolated at the physical pion point and in the
continuum limit.

its physical value (m)™* = 105 MeV) or the ELM value itself as well as the error coming from the uncer-
(40) are collected in Table VI. Using the averaging tainties of the input parameters of the eight branches
procedure given by Eq. (28) of Ref. [53] we get of the quark mass analysis of Ref. [53];

(i) () is the error due to the chiral extrapolation
estimated from the spread of the results correspond-

HVP _ . . .
a, " (ud) = 619.0 (14.7) e st input (6-2)enir (4-9)aise ing to the three fitting functions (47)—(49);
X (6.2)pyg X 10710 (iii) ()gisc i the uncertainty due to both discretization
619.0 (17.8) x 10-10 5 effects and scale setting, estimated by comparing
- 0(17.8) x ’ (52) the results obtained with and without the ELM
procedure (40);
where (iv) ()pyg is the error due to the subtraction of FVEs,
(1) Ostacrfierinpue incorporates the uncertainties induced taken conservatively to be twice the uncertainty
by both the statistical errors and the fitting procedure found in subsection IV A (see Table V).
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FIG. 15. The same as in Fig. 14, but adopting the fitting function (48), which includes also the NNLO ChPT prediction.
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FIG. 16. The light-quark mass dependence of all"*(ud), in units of 10'°, obtained in the continuum and infinite volume limits using
the physical muon mass. The blue squares correspond to the predictions of our “dual 4 zz” analytic representation (31)—(32) evaluated
using the values Ry, (17,4, 0, 00), Egya1 (14, 0, 00), M, (11,14, 0, 0), gz (1,14, 0, 00), and M, (1,4, 0, co) obtained from Egs. (35)—(39).
The green dots represent the results of the ChPT fit (48) taken in the continuum limit.

Our finding (52) improves the previous ETMC estimate
of Ref. [13], ajl"*(ud) = 567 (11) x 107, thanks to a
more accurate treatment of both the FVEs and the extrapo-
lation to the physical pion point. The latter can be clearly
avoided using ensembles close to the physical point.
Recently ETMC has generated a gauge ensemble close
to the physical pion mass with Ny = 2 dynamical quarks,

obtaining the value afVF(ud) =552(39) % 1071* [75].
The lattice size is L ~4.4 fm, which corresponds to
M, L ~3.0. For such a setup we expect large FVEs, which
will be discussed in the next Section (see later Fig. 19).
For the setup chosen in Ref. [75] we estimate a correction
due to FVEs of order of 10%, which would yield a final
value afVP(ud) ~ 610 (40) x 107" in agreement with
Eq. (52), though within a large uncertainty.

Our result (52) is compared with the most recent ones
from other lattice collaborations in the left panel of Fig. 17.
Within the errors our value obtained with Ny =2 + 1 + 1
dynamical flavors of sea quarks agrees with the corre-
sponding results from HPQCD [20] (N, =2+ 1+1),
CLS/Mainz [21] (Ny=2), BMW [22] (N; =2+ 1+ 1),
and RBC/UKQCD [23] (Ny =2+ 1).

TABLE VI.  Values of a!™F(ud), in units of 10!, extrapolated
to the physical pion point and to the continuum limit using the
fitting functions (47)—(49) and adopting for the muon mass either
its physical value (m}ihys = 105 MeV) or the ELM value (40).

With NLO With NNLO Free logs

ChPT Eq. (47) ChPT Eq. (48)  Eq. (49)
m, = mﬁhys 624.6 (14.5) 634.1 (17.00  613.1 (13.2)
m, = mpM 612.3 (8.5) 613.8 (154) 6164 (17.5)

Adding the connected contributions from strange and

charm quarks, al¥¥(s) =53.1(2.5) x 107'% and a}/V?(c) =

14.75 (0.56) x 107! determined by ETMC in Ref. [30],

and an estimate of the IB corrections afV¥(IB) = 8(5) x
1071 and of the quark disconnected diagrams
aVP (disconn) = —12 (4) x 107'°, obtained using the find-

ings of Refs. [22,23], we finally get for the muon HVP
afVP(udsc) the value

a;IVP(udSC) = 683 (19) x 10710, (53)

which is in nice agreement with the recent results aj;'* =
688.07 (4.14) x 10710 [48], afVF = 693.10 (3.40) x 1071°
[49] and allVP = 693.27 (2.46) x 1079 [50], based on
dispersive analyses of the experimental cross section data
for ete~ annihilation into hadrons. Our value (53) is
compared with the results of other lattice collaborations
as well as with the dispersive results of Refs. [48—50] in the
right panel of Fig. 17.

VI. LIGHT-QUARK VECTOR CORRELATOR AT
THE PHYSICAL PION POINT AND MOMENTS
OF THE POLARIZATION FUNCTION

In this section we apply our analytic representation (26)
to estimate the connected light-quark vector correlator
V{#d)(1) at the physical pion point both for finite values
of the lattice size L and in the infinite volume limit.

To this end at each value of the lattice size L we
determine the values Ryyy (m’*,0,L), Equ(m"®,0,L),
Mp(mitéysyoi), gp,,,[(mf,},}ys, 0,L) and M,,(mgzys, 0, L) from
the fitting functions (35)—(39), where m?"* =3.70(17) MeV

ud
as determined in Ref. [53]. We use the above values in

114504-18



LIGHT-QUARK CONTRIBUTION TO THE LEADING ... PHYS. REV. D 98, 114504 (2018)

L L AL R BN L B L BN B R A B
HPQCD [23] —e—
HPQCD [23] e CLS/Mainz [24] ——————@——
BMW [25] ——
CLS/Mainz [24] —_— RBC/UKQCD [26] ————
this work ——
BMW [25] ——
RBC/UKQCD [26] <
RBC/UKQCD [26] —e—
FJ [3] L=s
) DHMZ [4] =
this work —— KNT 5] e
no New Physics ——
P B SR ST SRR T BT R R
450 500 550 600 650 700 550 600 650 700 750
aHVP(ud)*1O1O aHVP*.IO1O
u

FIG. 17. Left panel: values of the connected light-quark contribution to the muon HVP, a},{VP(ud), obtained at the physical pion point

and in the continuum and infinite volume limits in the present work (52), and by HPQCD [20], CLS/Mainz [21], BMW [22], and RBC/
UKQCD [23]. Right panel: values of the muon HVP ;¥ (udsc) obtained in the present work (53) and in Refs. [20-23]. The result
obtained in Ref. [23] using the R-ratio method (which turns out to be based on lattice points by ~30% and on dispersive eTe™ data by
~70%) is also included as an orange dot. The results of the recent dispersive analysis of Refs. [48-50] are shown together with the value

of aff V' corresponding to a vanishing muon anomaly (labeled as “no New Physics”).

Egs. (14) and (25) to obtain the connected light-quark vector
correlator V(#(¢) at the physical pion point and at finite
values of L.

The infinite volume limit is constructed by determining
the values Ry (m™°,0,00) = 1.14(6), Egyq (m"*,0,00) =
479(22) MeV, M,,(m"*,0,00) =760(19) MeV, g, (m"",
0,00)=5.30(5), and M, (m"*"*, 0, 00) = 135 MeV from the
fitting functions (35)—(39). The above values are used in
Egs. (31) and (32) to get the connected light-quark vector
correlator V() () at the physical pion point and in the
infinite volume limit.

107 L
’; L
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§ 107}
e r
g 107 ]
> E 3
= E ) 8
= dual + n & representation NN
h= NN N
8 N NSS
10 3 M =M Ps AN
k1 Ed \ 4 RN
s ¢ N
[ N
109 L v v e e e N
0 1 2 3 4 5 6

t (fm)

The results obtained for few values of the lattice size L
and in the infinite volume limit are shown in the left panel of
Fig. 18. The number of elastic energy levels included in
Eq. (14) depends on L and, at the physical pion point, it is
larger than 4, i.e., of the number of states used in the fitting
procedure of the ETMC vector correlators. The right panel of
Fig. 18 illustrates this point. There, the full dots represent the
position of the energy levels satisfying the Liischer condition
(12) for few values of L and, at the same time, the values of
the (squared) GS pion form factor occurring in Eq. (15).

We observe that from the threshold up to w ~ 1 GeV
the number of energy levels is 5 for L = 5.5 fm, 8 for

60 ———r+—r— 77—
—Ll=w
50 -
® | =55fm
® L=
40 [ L=8fm b
® L=10fm
N
E 30 ]
«
w GS pion f.f.
20
M =MP
10

06 07 08 09 1.0 1.1
o (GeV)

0
03 04 0.5

FIG. 18. Left panel: light-quark vector correlator V() (¢), multiplied by the muon kernel f(t), evaluated using our “dual + zz”
representation (26) extrapolated at the physical pion point and in the continuum limit for three values of the lattice size L (see text). The
infinite volume limit, constructed as explained in the text, is also shown by the black solid line. Right panel: the (squared) pion form
factor |F,(w)|* corresponding to the GS parametrization (16)—(21) evaluated in the infinite volume limit (see text) versus the two-pion
energy w. The full dots are located at the position of the energy levels satisfying the Liischer condition (12) for each value of the lattice
size L.
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L = 8 fm and reaches 14 for L = 10 fm. Therefore, at the
physical pion point the spectral decomposition of the vector
correlator V#(¢) is quite involved. Very large time
distances should be reached for getting the dominance of
the lowest energy level, because the corresponding cou-
pling A,_; is quite small. Higher energy levels fall off
faster, but they have larger values of the coupling A, up to
the location of the p-meson resonance. The consequences
are that: (i) the FVEs on the tail of V() (¢) increase
significantly as the time distance increases, and (ii) the
effective mass of the light-quark vector correlator [see
Eq. (10)] does not show any plateau for time distances
currently accessible on the lattice.

In Fig. 19 the FVEs estimated at the physical pion mass
on afV*(ud) by means of Eq. (34) are shown versus M, L
and compared with the predictions of ChPT at NLO
[47,60]. The latter ones coincide with the FVEs corre-
sponding to non-interacting two-pion states [21,46]. Our
determination of FVEs, instead, takes into account the
interaction in the two-pion system, and in particular the
resonant scattering between two pions in P-wave with total
isospin 1. Our estimate of FVE:s is significantly larger than
the ChPT NLO prediction. Recently, FVEs in the polari-
zation function close to the physical pion point have been
analyzed in ChPT at NNLO [60], but the corresponding
numerical findings seem to be too small to explain the
differences with our determination.

In Fig. 19 we have also shown the results for
Apypay“F(ud) at a larger pion mass equal to M, =

300 MeV. At fixed values of M, L the FVEs on
alV? (ud) appear to be only slightly dependent on the pion
mass (at variance with what occurs in case of the pion mass
and decay constant).

At the physical pion point FVEs of the order of the muon
anomaly (i.e., ~5%) are expected to occur for L ~ 5.5 fm.

In order to reach a finite volume correction of the order of
~1% or less a lattice size L larger than ~8 fm is required.

Recently, in Ref. [76] the slope and the curvature of the
leading HVP function at vanishing photon virtuality have
been determined on the lattice at the physical pion point
and in the continuum and infinite volume limits. These
quantities are derivatives of the HVP function evaluated at
0? = 0 and they can be easily related to time-moments of
the vector correlator. The separate contributions arising
from the (connected) light, strange, and charm quarks are
also provided in Ref. [76]. Thus, for a comparison with the
predictions of our “dual + zz” representation of the vector
correlator V(9 (t) we consider the following time moments

(ud) _ (n—l—l)! 18
me) = (=) ———— —
w1 = () (2n+4)!'5

/oo dttz”+4V(”d)(t) (54)
0

with n = 0, 1,2, .... The quantities H(l"d> and Hé“d) corre-
spond respectively to the slope and the curvature deter-
mined in Ref. [76]. There, it has been shown that the time
distances that need to be reached to reliably determine the
slope and the curvature are above ~2 and ~4 fm, respec-
tively. At the physical pion point and in the continuum and
infinite volume limits the predictions of our “dual + zz”
representation are

") = 0.1642 (33) GeV~2,

Y = —0.383 (16) GeV™, (55)
which can be compared with the results H(l"d) =
0.1659 (33) GeV~2 and TI)"” = —0.311 (16) GeV~2 from

Ref. [76]. The agreement is quite good in the case of the
slope, while our curvature is (in absolute value) larger than
the corresponding result of Ref. [76] by ~20%. We note

T T T T T T
&0+~ | ChPT @ NLO (M = 135 MeV) .
° i + + O dual + xx (M =135 MeV)
2 60 - O dual + 77 (M = 300 MeV) .
x - <i,l.:zx.Sfm " 1
3 L
2 continuum limit
£ wo[ ]
T I .
< "o o ﬁ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
< r 0 L=6.0 f
20 b -, OUeom ]
L " . ®
1% o -8.0 fm
0 L L 15 et RO LR eeat " B
2 4 6 8 10
M L

FIG. 19.  Values of Apygal!V* (ud) [see Eq. (34)], evaluated in the continuum limit according to our “dual + zz” representation at the

"

physical pion point (red circles) and at a larger pion mass equal to M, = 300 MeV (blue squares). The dotted line corresponds to the

predictions of ChPT at NLO [47,60].
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FIG. 20. Left panel: ratio of the time moments (54) evaluated at finite lattice size L and in the infinite volume limit using our
“dual + zz” analytic representation of the light-quark vector correlator taken in the continuum limit and at the physical pion point. Right
panel: values of the first eleven moments (57) evaluated at the physical point using the zz contribution (32) in the infinite volume limit
(red circles), compared with the results of the dispersive analysis of the experimental cross section for the e™e™ — z7z~ channels of

Ref. [50]. Courtesy of the authors of Ref. [77].

that in Ref. [76] FVEs are estimated using ChPT at NLO
and, therefore, the difference with our result is likely to be
ascribed to the treatment of FVEs.

In the case of the higher moments I\ and TI\" our
results are
) = 1.394(65) GeV~S,
) = —7.60 (28) GeV-S. (56)

In the left panel of Fig. 20 we show the FVEs on the ratio

of the lowest four moments IT\“”-T1{“? evaluated at finite

lattice size L and in the infinite volume limit. Thanks to the
correlations between the numerator and the denominator
the results for such ratios turn out to be very precise. The
impact of FVEs is sizeable and increases significantly as

the order of the moment increases. In the case of Hg”d) the
use of a lattice size L ~ 10 fm still requires a finite volume

correction equal to ~3—4%.

In the case of higher moments H&”d) with n > 2 areliable
determination requires to reach very large time distances,
ie., t 2 4 fm. This represents a stringent test for the large
time-distance tail of the vector correlator V(“%)(¢) evaluated
with our analytic representation. The authors of Ref. [50]
have kindly supplied us with the first eleven moments
corresponding to the experimental cross section for the
eTe™ = xtx~ channels only [77]. The definition of the
moments is slightly different from Eq. (54) and follows
the notation of Ref. [78], namely

Md (—p) = dzga,,, (=) (4M2)"+] gn(””” (57)

n+1-

114504-21

We have evaluated Eq. (57) using the zz contribution
(32) in the infinite volume and continuum limits at the
physical pion point. The results are shown in Table VII and
in the right panel of Fig. 20 and they are compared with the
dispersive values from Refs. [50,77].

Our results agree within the errors with the dispersive
ones for n <4, while they overestimate the dispersive
moments at higher values of n. It should be kept in mind
that the values of Ref. [77] include the contributions of u
and d-quark disconnected diagrams as well as also 1B
effects. Thus, the differences visible in Table VII and in the
right panel of Fig. 20 may be ascribed (at least partially)
to the fact that the above contributions are missing in our

TABLE VII. Values of the first eleven moments (57) from the
dispersive analysis of the experimental cross section for the
ete™ — ntx~ channels [77] and the corresponding ones evalu-
ated at the physical point using the zz contribution (32) in the
infinite volume limit.

Dispersive 77 representation

M(=n)-103 Eq. (57)  a"n~ Ref. [77] this work

0 0.5336 (21) 0.5394 (122)
1 0.1046 (6) 0.1021 (45)

2 0.0285 (3) 0.0274 (13)

3 0.01099 (17) 0.01091 (42)
4 0.00549 (11) 0.00576 (17)
5 0.003183 (75) 0.003569 (89)
6 0.002009 (53) 0.002420 (54)
7 0.001336 (39) 0.001737 (36)
8 0.000921 (29) 0.001298 (26)
9 0.000653 (22) 0.000995 (19)
10 0.000472 (17) 0.000775 (15)
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calculations. Nevertheless, the good consistency visible (at
least) for n < 4 indicates in our opinion that the large time-
distance behavior of the vector correlator V4 (¢) can be
reliably evaluated using our analytic representation (at least
for time distances currently accessible on the lattice).
Recently [51,52] it has been proposed to determine aj, ¥
by measuring the running of a,,,(g*) for space-like values
of the squared four-momentum transfer ¢g> using a muon
beam on a fixed electron target. The method is based on the
following alternative formula for calculating af® [8]:

v =% [Cax(1 - aale ). (58)

H 7 Jo

where AaflYP(4?) is the hadronic contribution to the
running of a,,,(¢*) evaluated at

q*(x) = - m2. (59)

The quantity AatlYP(g?) can be extracted from the g¢*-

dependence of the ue — pe cross section data after the
subtraction of the leptonic and weak contributions [51,52].
For the proposed MUonE experiment exploiting the muon
beam at the CERN North Area [79] the region x € [0.93, 1]
in Eq. (58) cannot be reached and, therefore, the corre-
sponding contribution

1

. = [ a1 - A 0] (60)
T Jx

with X = 0.93 needs to be estimated using either e*e™ data

or lattice QCD simulations. In terms of the Euclidean

formula (4) one has

[a}""]. = da,, / Ve, (o))
0
where
> =3 ¢
i) VAT E\Var 24z

cos(zm,t) —1 1
X [Z’; +3 m; 12} (62)

with z = %/v1 —X~3.5.

Using the analytical representation (26) of the vector
correlator V,,(t), evaluated at the physical pion point in
the continuum and infinite volume limits, the light-

quark (connected) contribution [af¥*]_ (ud) is found to
be equal to

[afVP). (ud) = (81.2 £ 1.7) x 10710, (63)

While the estimate of [} V"], requires also the addition
of the contributions of the connected strange and charm
quark terms as well as of disconnected and IB effects, our

finding (63) indicates that the uncertainty of [a*]_ should

be of the order of ~2 x 107!1°. Such a value is close to the
statistical uncertainty (~0.3%) expected in the MUonE
experiment for the contribution [a!*] _ = [a!TVF] - [afIVP]

after two years of data taking at the CERN North Area [79].

VII. CONCLUSIONS

We have presented a lattice calculation of the leading
HVP contribution of the light u- and d-quarks to the
anomalous magnetic moment of the muon, a;*(ud).
The gauge configurations generated by ETMC with N, =
2+ 1+ 1 dynamical quarks at three values of the lattice
spacing (a ~ 0.062,0.082, 0.089 fm) and with pion masses
in the range M, ~210-450 MeV have been adopted.

Thanks to several lattices at fixed values of the light-
quark mass and scale but with different sizes, we have
performed a careful investigation of FVEs, which represent
one of main source of uncertainty in modern lattice
calculations of aff¥"(ud). In order to remove them we
have developed an analytic representation of the vector
correlator and applied it to describe the lattice data for time
distances larger than ~0.2 fm. The analytic representation
is based on quark-hadron duality at small time distances
and on the two-pion contributions in a finite box at larger
time distances, assuming the GS parameterization [61] for
the timelike pion form factor. Our estimate of FVEs takes
into account the resonant interaction in the two-pion system
at variance with the ChPT prediction at NLO [47].

After removing FVEs we have extrapolated the
corrected lattice data to the physical pion point and to
the continuum limit taking into account the chiral logs
predicted by ChPT, obtaining

AP (ud) = 619.0(17.8) x 1071°,  (64)

which is consistent with recent lattice results available in
the literature [20-23].

Adding the contribution of strange and charm quarks,
afVP(5)=53.1(2.5)x 107! and aV*(c) =14.75(0.56)x
10~1° determined by ETMC in Ref. [30], and an estimate of
the IB corrections a;"*(IB) = 8(5) x 107 and of the
quark disconnected diagrams a}f¥"(disconn) = —12 (4)x

10710, obtained using the findings of Refs. [22,23], we get
at™VP(udsc) = 683 (19) x 10717, (65)

which agrees nicely with the recent results a
688.07 (4.14) x 10710 [48], a,I,{VP:693.1O(3.40)><10‘10
[49], and aVP =693.27 (2.46) x 10710 [50], based on

HVP _
"
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dispersive analyses of the experimental cross section data
for e™e™ annihilation into hadrons.

Using our analytic representation of the light-quark
vector correlator, taken at the physical pion mass in the

continuum and infinite volume limits, we have provided

the slope and curvature of the polarization function, Hg”d) =

0.1642(33) GeV~2 and T1,"” = —0.383(16) GeV—, which
have been compared with the corresponding lattice results
of Ref. [76]. We have also evaluated the first eleven
moments of the polarization function and compared them
with the results of the dispersive analysis of the 7"z~
channels of Refs. [50,77]. Finally, we have estimated the
light-quark contribution to the missing part of V" not
covered in the MUonE experiment [51,52] [see Eq. (63)].

New simulations with N;=2+1+1 dynamical
quarks close to the physical pion point [80], the evaluation
of quark disconnected diagrams and of the IB corrections
[81] are in progress by ETMC. This will be crucial for

improving the determination of the HVP contribution
af™¥P(udsc) and for addressing the muon anomaly from
first principles.
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