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1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
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The 2D O(3) model is widely used as a toy model for ferromagnetism and for quantum chromody-
namics. With the latter it shares—among other basic aspects—the property that the continuum functional
integral splits into topological sectors. Topology can also be defined in its lattice regularized version, but
semiclassical arguments suggest that the topological susceptibility χt does not scale towards a finite
continuum limit. Previous numerical studies confirmed that the quantity χtξ

2 diverges at large correlation
length ξ. Here we investigate the question whether or not this divergence persists when the configurations
are smoothened by the gradient flow (GF). The GF destroys part of the topological windings; on fine
lattices this strongly reduces χt. However, even when the flow time is so long that the GF impact range—or
smoothing radius—attains ξ=2, we still do not observe evidence of continuum scaling.

DOI: 10.1103/PhysRevD.98.114501

I. INTRODUCTION

Weare going to deal with the 2DO(3)model, a nonlinear σ
model, which is also known as the Heisenberg model, or
CPð1Þ model. It is a highly popular toy model both in solid
state physics—where it describes ferromagnets—and in
particle physics, where it shares fundamental features with
quantum chromodynamics (QCD). In particular, it is asymp-
totically free [1], it has a dynamically generated mass gap
(whichwas computedanalytically [2] andnumerically, e.g., in
Ref. [3]), and in the continuum formulation its configurations
are divided into topological sectors, due to Π2½S2� ¼ Z.
On a square lattice of unit spacing, the standard lattice

action reads

S½e⃗� ¼ β
X
hxyi

ð1− e⃗x · e⃗yÞ; e⃗x ∈ S2; x ∈ Z2; ð1:1Þ

where hxyi are nearest-neighbor lattice sites. The naïve
continuum limit leads to

S½e⃗� ¼ β

2

Z
d2x∂μe⃗ðxÞ · ∂μe⃗ðxÞ; ð1:2Þ

but at the quantum level it is far from obvious if the
continuum limit is well defined. This is a long-standing
issue, which arises in the context of topology. In particular,
the crucial question is whether or not the topological
susceptibility χt exhibits a continuum scaling behavior,
i.e., whether or not the term χtξ

2, which is supposed to
be a scaling term, is finite in the continuum limit ξ → ∞
(where ξ is the correlation length in lattice units).
Numerous studies have addressed this question before,

including Refs. [4–10]. After a period of confusion, the
consensus seemed to be that χtξ2 diverges at large ξ. This
conclusion is consistent with studies with different lattice
actions in the same universality class [11–13].
The interpretation of this observation is delicate: since the

functional integral includes all field fluctuations, the notion
of topology is generally nontrivial. For asymptotically free
theories, one usually refers to the weak-coupling regime,
where one assumes smooth configurations to dominate. For
them topological sectors are well defined, along with a
topological density qx. The topological susceptibility can be
assembled as χt ¼

P
xhq0qxi, where solely the contact term

at lattice site x ¼ 0 causes the divergence [10,13]. This
implies that it is anUVeffect, in agreementwith the picture of
more and more abundant tiny (with respect to ξ) topological
windings as we approach the continuum limit [6]. However,
that is not easily compatiblewith the assumption of dominant
smooth configurations, and it is questionable if the pertur-
bative expansion applies anywhere, even in the UV regime.
We have referred to the usual procedure which invokes

the correlation length ξ to set a scale. It grows exponentially
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when we increase the inverse coupling β, which defines the
standard continuum limit, say at fixed physical size L=ξ.
However, if this leads to a divergence of χtξ2, then there is
no way to renormalize it by subtracting counterterms.
Alternatively, one might consider taking χt as a reference
quantity to fix the scale and keep hQ2i ¼ L2χt constant
when β grows. Then L increases so slowly that the
(standard) size L=ξ shrinks to zero; this is what it takes
to sufficiently damp the topological fluctuations. Therefore
the continuum limit is ambiguous: there is no way to obtain
scaling for all observables, which are supposed to be
physical. This situation is strange and unusual, although
3D U(1) lattice gauge theory has an analogous feature [14],
where the string tension takes the rôle of χt.
Here we stay with the standard formulation of the

continuum limit. A conceivable way out is that the diver-
gence of χtξ2 is not truly physical, but it can be overcome by
systematic smoothing, which suppresses these tiny topo-
logical windings. Although smoothing techniques have been
applied before, e.g., in Ref. [8], this question has not yet been
addressed with the systematic method of the gradient flow
(GF). Unlike ad hoc approaches, this smoothing procedure is
justified based on the renormalization group [15–17]. Here
we explore the fate of the term χtξ

2 after applying the GF.
The GF has a characteristic radius, which we call impact

range (cf. Sec. II. 4); within this range the configurations
become much smoother, so one might well expect most tiny
topological windings to be eliminated, and—possibly—the
divergence of χt as well. On the other hand, semiclassical
topological windings fulfil the equations of motion, so they
are not destroyed by the GF. They are just a measure-zero
subset of all configurations, and the tricky question remains
what happens to the frequent tiny winding in the presence
of fluctuations. Hence it is hard to predict whether or not
the divergence of χtξ

2 will even survive the GF, which
motivates our numerical study.
There are other models with topological sectors, includ-

ing 4D SUðNÞ gauge theories and QCD, which suffer from
the same problem, if one uses a naïve lattice formulation of
the topological charge density. However, in QCD this
problem is less severe: solutions without GF are known
[18], and the GF provides another solution [19]. In the
absence of quarks, Ref. [20] discusses in detail how the GF
cures χt in 4D SU(3) gauge theory. This raises the question
if this remedy could also cure the divergence in the 2D O(3)
model, which we are going to investigate.
Section II describes the numerical tools used in

this study. Section III comments on the semiclassical
picture, and Sec. IV presents our results for the topological
scaling behavior at the quantum level, based on extensive
Monte Carlo simulations. We discuss the outcome in
Sec. V. The Appendix compares various numerical imple-
mentations of the GF. Preliminary results (with short
GF times) have been published in two proceedings
contributions [21].

II. NUMERICAL TECHNIQUES

A. Algorithm

Our simulations were performed with the Wolff cluster
algorithm [22]. It adapts the concept of the Swendsen-
Wang algorithm [23] from the Ising model to the OðNÞ
models, where it is highly efficient. In our study we
employed both the single-cluster as well as the multicluster
variant.

B. Topological charge

Regarding the topological charge of a lattice configura-
tion, we applied the geometric formulation, which was
introduced in Ref. [4]. For periodic boundary conditions—
which we assume throughout this article—it assigns an
integer charge Q½e⃗� ∈ Z to each configuration (except for a
subset of measure zero); this formulation is reviewed e.g.,
in Ref. [13], Sec. III.1 In the absence of a θ term, symmetry
implies hQi ¼ 0,2 and hence the topological susceptibility
takes the simple form

χt ¼
1

V
hQ2i: ð2:1Þ

C. Correlation length

The natural scale of the system is set by the correlation
length ξ, which corresponds to the inverse energy gap. It is
obtained by a two-parameter fit to the correlation function
between spin averages in layers at fixed instances in
Euclidean time, say x2 and x2 þ r, with 0 ≤ r < L,

CðrÞ ¼ hs⃗x2 · s⃗x2þri ∝ cosh

�
r−L=2

ξ

�
; s⃗x2 ¼

1

L

XL
x1¼1

e⃗x;

ð2:2Þ

where we refer to a periodic L × L lattice with sites
x ¼ ðx1; x2Þ. This proportionality relation holds when
jr − L=2j is sufficiently small. In practice we follow the
recipe of Ref. [25] to determine ξ by a fit in the range
L=3 ≤ r ≤ 2L=3 (varying this range leads to minor mod-
ifications of the fitting result for ξ). Our results agree
with the literature, in particular with ξ values given in
Refs. [3,25,26].
In each volume V ¼ L × L we tune β such that L=ξ ≃ 6.

Hence increasing the lattice volume corresponds to a
system of fixed physical size, which approaches the
continuum limit. The corresponding values of β and ξ

1Alternative definitions of the topological charge of a lattice
configuration were suggested in Refs. [7,12,24].

2This can be seen from the topological charge density in the
continuum, qðxÞ ¼ ϵμνe⃗ðxÞ · ð∂μe⃗ðxÞ × ∂νe⃗ðxÞÞ=8π: a global
spin flip e⃗ðxÞ → −e⃗ðxÞ, which is the Zð2Þ subgroup of the
global O(3) symmetry, changes the sign of q.
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are given in Table I (the column for ξ at t ¼ 0 contains the
results before application of the GF).
These results are based on sets of Sξ independent

measurements (see Table I), each of which involves 105

configurations. If we insert the errors as obtained from the
fits to Eq. (2.2), the independent results are not fully
consistent: requiring a unique value at each L, we obtain
χ2=d:o:f: ≃ 4.0, which shows that the errors are under-
estimated.3 Therefore we amplify the errors by a factor of 2,
which leads to consistency, in particular to χ2=d:o:f: ≃ 1.0.
These extended errors are inserted into the Gaussian
propagation to obtain the error of the average values given
in Table I.
Despite the sizable statistics, the uncertainty in ξ is non-

negligible; for comparison, the relative errors on χt are
much smaller—see Sec. IV. Therefore we also measured
the second moment correlation length ξ2. It is obtained
from the Fourier transform of the spin-spin correlation
function he⃗x · e⃗yi at zero momentum (χm), and at the lowest
nonzero momentum (F ),

χm¼ 1

V

X
x;y

he⃗x · e⃗yi; F ¼ 1

V

X
x;y

he⃗x · e⃗yicos
�
2πðx1−y1Þ

L

�
;

ξ2¼
1

2sinðπ=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
χm
F

−1

r
; ðV¼L×LÞ; ð2:3Þ

where χm is the magnetic susceptibility (at magnetization
zero). ξ2 can be measured more precisely than ξ
(cf. Table I), since it does not require any fit. In this case
we have performed Sξ2 independent measurements, each
one based on 105 configurations (again the errors are

somewhat enhanced for compatibility of the individual
results). Strictly speaking, this is not the physical scale, but
it is known to coincide with ξ to high accuracy: in the large-
L limit the discrepancy is below 1‰ [27], and at L=ξ2 ≃ 4,
L ≥ 70 it is still below 1% [13].4 (A systematic comparison
in other models is given in Ref. [28].)

D. Gradient flow

The GF in the OðNÞ models has been formulated in
Refs. [29]. In the continuum, the spin components eðxÞi are
altered by integrating the differential equation

∂teðt; xÞi ¼ Pijðt; xÞΔeðt; xÞj;
Pijðt; xÞ ¼ δij − eðt; xÞieðt; xÞj; ð2:4Þ

where Δ is the Laplace operator and t is the GF time (of
dimension ½length�2), which starts at t ¼ 0, i.e., e⃗ð0; xÞ ¼
e⃗ðxÞ and t ≥ 0. The GF preserves the spin norm, which
corresponds to the condition e⃗ · ∂te⃗ ¼ 0.
The concept of the GF is based on the heat kernel

Kðt; xÞ [15–17]:

Kðt; xÞ ¼ e−x
2=4t

ð4πtÞd=2 ; ð2:5Þ

which allows us to estimate its impact range, or smoothing
radius, x̄ðtÞ as (in d dimensions)

x̄ðtÞ ¼
�Z

ddx x2Kðt; xÞ
�

1=2
¼

ffiffiffiffiffiffiffi
2dt

p
: ð2:6Þ

On the lattice we deal with the spin field e⃗ðtÞx, and we
insert the standard lattice Laplacian:

TABLE I. Overview of the parameters in our study: we consider eight volumes V ¼ L × L; in each one β is tuned
such that L=ξ ≃ 6, and the GF time unit amounts to t0 ¼ L2=5760. When we apply the GF, the correlation length ξ
does not change significantly up to flow time 10t0. Before the GF, at t ¼ 0, ξ agrees fairly well with the second
moment correlation length ξ2, which can be measured more precisely. Our numerical measurements are based on Sξ

and Sξ2 independent simulations for ξ and ξ2, respectively, where each simulation generated 105 configurations.

ξ ξ2

L β Sξ Sξ2 t0 t ¼ 0 t ¼ 10t0 t ¼ 0

24 1.263 3 10 0.1 4.03(9) 4.02(5) 3.96(1)
36 1.37 4 5 0.225 5.97(10) 5.96(7) 6.01(1)
54 1.458 5 5 0.506 8.95(9) 8.96(7) 8.93(4)
80 1.535 4 5 1.111 12.99(17) 13.05(11) 13.24(4)
120 1.607 3 5 2.5 20.14(18) 19.87(13) 19.77(11)
180 1.677 3 5 5.625 31.09(36) 30.39(20) 30.01(18)
270 1.743 3 5 12.656 44.80(30) 45.32(8) 44.97(24)
404 1.807 2 5 28.336 68.34(52) 67.56(19) 67.66(31)

3Possible reasons are the fixed fitting range, and the use of the
same configurations to measure the correlation function over all
distances, although we only include a fixed x2 and r ¼ 0…L − 1
(i.e., one-to-all but no all-to-all correlations).

4This was observed for the “constraint lattice action”;
cf. Sec. III.
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Δe⃗ðt; xÞ →
Xd
μ¼1

½e⃗ðtÞxþμ̂ þ e⃗ðtÞx−μ̂� − 2de⃗ðtÞx; jμ̂j ¼ 1:

ð2:7Þ

For the numerical integration of Eq. (2.4) also the GF time t
has to be discretized. Here we apply the Runge-Kutta
method; see e.g., Ref. [30]. We first compute the gradients
to all spin components at all lattice sites, and then we rotate
all spins simultaneously (afterwards the normalization
je⃗xj ¼ 1 is readjusted at each site). In small and moderate
volumes we used the four-point Runge-Kutta method, with
time step dt ¼ 10−4.5

In this project, the GF integration took most of the
computation time. In order to handle lattice sizes up to
L ¼ 404, it was mandatory to implement an adaptive step
size. We applied the Dormand-Prince algorithm [31], which
gradually increases dt, if the Runge-Kutta four-point and
five-point gradients agree to high accuracy. At long flow
times this method provides a gain in computing time by
several orders of magnitude: once a configuration is quite
smooth, dt can be enhanced drastically without causing
significant artifacts. This is discussed in the Appendix.
In order to compare results in different volumes, and

therefore at different couplings, we need a GF time unit t0,
which has to be determined by referring to a dimensional
observable. Such a time unit allows for the matching of
results from different couplings and volumes and therefore
for a controlled continuum extrapolation (which is not
obvious for ad hoc smoothing techniques). In QCD, t0 is
usually fixed by the condition hEit20 ¼ 0.3 [15] [or hEit20 ¼
0.1 for SU(2) Yang-Mills theory [32] ], where the density
E ¼ −Tr½GμνGμν�=2 serves as an observable, which is
easily measurable (Gμν is a lattice field strength tensor).
In Refs. [21] we have used the corresponding density in

the 2D O(3) model, hEi ¼ hSi=βV. However, this turned
out to be impractical: for increasing GF time t the
(dimensionless) term hEit rises from 0 to some maximum
and decreases again. The value of this maximum decreases
as we enlarge L, so in order to capture all volumes under
consideration, we had to take a small reference value like
hEitshort0 ¼ 0.08 (for instance, the value 0.1 is never attained
at L ¼ 404). Thus we obtained short time units tshort0 ≲ 0.1,
and up to 6tshort0 the impact range attained at most 1.6 lattice
spacings.
In order to probe much larger impact ranges, ofOðξÞ, we

now refer directly to ξ as our reference observable to fix t0.
We define it such that 10t0—the longest GF time in our
study—corresponds to an impact range of about ξ=2:

t0 ¼
1

5760
L2 ≃

1

160
ξ2 → x̄ð10t0Þ ≃

1

2
ξ: ð2:8Þ

Table I contains the GF time unit t0, as well as the
correlation length measured at 10t0; we see that it hardly
changes compared to t ¼ 0.6
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FIG. 1. The correlation function CðrÞ ¼ hs⃗x2 · s⃗x2þri, measured
before and after the GF, at L ¼ 120 (as an example). At fixed
separation r, CðrÞ rises under GF, but the value of ξ—obtained
from a fit to relation (2.2) in the interval 40 ≤ r ≤ 80—remains
practically constant.

 10

 15

 20

 25

 30

 0  2  4  6  8  10

co
rr

el
at

io
n 

le
ng

th

t / t0

L = 120, ξ2
ξ

L = 80, ξ2
ξ

L = 54, ξ2
ξ

FIG. 2. A comparison of the correlation length ξ, and the
second moment correlation length ξ2, under GF up to flow time
10t0. We see that they initially agree well, but as the GF proceeds,
ξ2 increases, whereas ξ remains stable [this is visualized with
horizontal lines at the values of ξðt ¼ 0Þ]. We show three volumes
as examples for this generic effect.

5We checked that the results coincide within the errors with
those obtained at dt ¼ 10−5. On the other hand, when we increase
the step size to dt ¼ 10−3 we noticed (in a few cases) non-
negligible artifacts; they typically emerge at an early stage of
the GF.

6In the framework of finite temperature gauge theory, Ref. [33]
discusses the question how long the GF time can be, before
destroying physical information. Our results for ξðtÞ show that—
in our case—we are on the safe side, at least up to 10t0.
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An example for the GF time evolution of the correlation
function CðrÞ of Eq. (2.2) is illustrated in Fig. 1: at a fixed
distance r it increases under GF, but the value of ξ remains
virtually unaffected. This is consistent with the fact that x̄ is
still small compared to L, x̄ð10t0Þ ≃ L=12, so it does not
reach out to the interval, where we performed fits to relation
(2.2). The GF does, however, have the expected effect of
suppressing the statistical errors in ξ (they are amplified
with the factor of 2, as at t ¼ 0; cf. Sec. II. 3).
On the other hand, after applying the GF the second

moment correlation length ξ2 increases above its value at
t ¼ 0, as illustrated in Fig. 2. This property is generic7; it
implies that ξ2ðt > 0Þ cannot be used to set an (approxi-
mate) scale. Instead our results for ξðtÞ justify the use of the
scale ξ2ð0Þ even after the GF, all the way up to t=t0 ¼ 10.

III. THE SEMICLASSICAL PICTURE

Reference [4] was the first study to show that the
numerical results for the topological susceptibility χt, based
on Monte Carlo simulations of the standard action (1.1), do
not seem compatible with continuum scaling, i.e., with the
scaling towards a finite continuum limit, which is naïvely
expected. In particular, the dimensionless term χtξ

2 seems
to diverge in the continuum limit. Small topological
windings, which may occur in lattice configurations with
low action, were blamed for this effect; it was suspected
that their dominant rôle on fine lattices prevents continuum
scaling [4,5].
Reference [6] provided a comprehensive semiclassical

explanation for this behavior. It generally considered 2D
CPðN − 1Þ models,8 where the continuum instanton action
(the minimal action within the topological sector jQj ¼ 1)
amounts to

Sinst ¼ βϵinst; ϵinst ¼ 2πN: ð3:1Þ

On the lattice, a single topological winding (Q ¼ �1) with
minimal action is denoted as a dislocation. Its action was
numerically obtained as [6]

Sdisloc ¼ βϵdisloc; ϵdisloc ≃ 6.69 · N=2: ð3:2Þ

At the quantum level, the fate of a model depends on the
balance between action and entropy. In this case, a
perturbative calculation of the β function suggests that
the fate of this model depends on ϵdisloc as follows [6]:

ϵdisloc

�
> 4π continuum scaling;

< 4π divergence in the continuum limit:
ð3:3Þ

This implies that continuum scaling of χt is safe at N ≥ 4.
At N ¼ 3 it can still be arranged for by adding nonstandard
terms to the lattice action [34]. N ¼ 2, however, is a
peculiar case, where ϵinst coincides with the bound derived
from the β function. In this case, which corresponds to the
O(3) model, the semiclassical picture predicts the term χtξ

2

to diverge in the continuum limit.
This semiclassical argument is not rigorous, of course;

there is no compelling reason for it to be conclusive at the full
quantum level. Still, a variety of numerical studies ultimately
suggested that this prediction is confirmed; cf. Sec. I.
Reference [11] applied a sophisticated lattice action, a

(truncated) classically perfect action, which was constructed
by means of classical block spin renormalization group
transformations. It involves couplings over several lattice
spacings, which exclude dislocations with ϵdisloc < 4π,
but χtξ2 still was found to diverge logarithmically in the
continuum limit.
Very different are topological lattice actions, in particular

the constraint action, where all configurations have action
0, if the relative angles between all nearest-neighbor spins
are below some bound δ.9 In this case, the dislocations are
extremely degenerate, with ϵdisloc ¼ 0. Hence one might
expect a very bad divergence of χtξ2 in the continuum limit,

 10
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 0  2  4  6  8  10
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t / t0

L=24: mean value
minimum

L=36: mean value
minimum

L=54: mean value
minimum

L=80: mean value
minimum
Instanton

Dislocation

FIG. 3. The quantity hϵi ¼ hSi=β measured in volumes
V ¼ L × L, at L=ξ ≈ 6. In each volume, and at each flow time
t=t0 ¼ 0; 1…10, we used 50 000 configurations with topological
charge jQj ¼ 1. We also show the minima of ϵ within this set.
Even after a long GF, up to flow time 10t0, these minima are still
more than a factor of 5 above the dislocation value ϵdisloc ≃ 6.69.
We infer that dislocations and their vicinities hardly contribute to
the statistics.

7Note that the entire configurations contribute to the terms χm
and F , in contrast to the fits, which determine ξ within a limited
range. Hence the short-distance deformation of the correlation
function (see Fig. 1) is likely to cause the distortion of ξ2.

8All the 2D CPðN − 1Þ models, N ¼ 2; 3; 4…, have topologi-
cal sectors (labeled by Q ∈ Z), in contrast to the 2D OðNÞ
models with N ≠ 3.

9If at least one nearest-neighbor angle exceeds δ, then the
action is infinite; i.e., such configurations are excluded from the
functional integral.
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which is attained in this case by δ → 0. It turned out,
however, that the divergence is still compatible with a
logarithmic dependence on ξ [13].
Here this question will be revisited under application of

the GF.10 Before doing so, however, we begin with an
observation about the relevance of the semiclassical picture.
To this end, it is sufficient to consider modest lattice
volumes, of sizes L ¼ 24…80, with the β values of
Table I. In each volume we selected 50 000 configurations
with topological charge jQj ¼ 1.
Figure 3 refers to the quantity ϵ ¼ S=β [S being the

lattice action (1.1)]: it shows the mean value hϵi, as well as
the minimum obtained in each volume. At GF time t ¼ 0
even the minima (in this set of configurations) are orders of
magnitude above the instanton and dislocation values. This
suggests that—although configurations with ϵ down to
ϵdisloc exist—their contribution to a typical expectation
value is negligible in our settings.11

When we apply the GF, as described in Sec. II, the
configurations become smoother and the action decreases,
so one might suspect that now the semiclassical configu-
rations (or at least their vicinity) become relevant. Figure 3
shows that this is not the case: even when we run the GF up
to 10t0, the averages and minima (within a set of 50 000
configurations, at any instant t) are still more than a factor
of 5 times larger than ϵdisloc.
Figure 3 further shows that this observation hardly

depends on the volume. It raises the question how relevant
the semiclassical consideration really is, since it does not
refer to the statistically significant contributions (unless
presumably in tiny physical volumes). Nevertheless, our

goal is a direct verification of its prediction; this is the
question to be addressed in the next section.

IV. TOPOLOGY UNDER THE GRADIENT FLOW

Based on Sχ sets of 105 configurations in each volume
(see Table II), we finally measured the topological suscep-
tibility χt, given in Eq. (2.1). Unlike the case of ξ, the results
for χt from these Sχ independent simulations are consistent
within our estimated errors: in this case we obtain a ratio
χ2=d:o:f: ≃ 0.90 (the cluster algorithm allows us to avoid
topological autocorrelations).
Our results for χt are listed in Table II. They are averaged

over all simulations, and each of their standard errors enters
the Gaussian composition of the final error. The evolution
under GF is illustrated in Fig. 4, which shows the
dimensionless term hQ2i ¼ χtV. In large lattice volumes,
i.e., on fine lattices, we see a rapid decrease of hQ2i when
the GF starts, in particular from t ¼ 0 to t0 (in the Appendix
we will see that most of this effect happens even within a
first small fraction of t0). At a later stage hQ2i still keeps
decreasing but at an ever slower rate.
At last we arrive at the discussion of the “scaling term”

χtξ
2. Regarding the correlation length, we rely on the

TABLE II. The topological susceptibility χt of Eq. (2.1) on L × L lattices, with the values of β and t0 given in
Table I, based on Sχ measurements with 105 configurations each.

χt (in units of 10−3Þ
L Sχ t ¼ 0 t0 2t0 5t0 10t0

24 5 7.54(1) 5.80(1) 4.85(1) 3.516(7) 2.681(6)
36 5 4.736(9) 2.926(6) 2.319(5) 1.677(3) 1.356(3)
54 5 2.982(7) 1.388(3) 1.103(2) 0.856(2) 0.743(1)
80 5 1.87(1) 0.662(2) 0.552(1) 0.466(1) 0.423(1)
120 5 1.150(6) 0.321(3) 0.287(2) 0.255(2) 0.235(2)
180 3 0.691(2) 0.1614(4) 0.1491(4) 0.1360(4) 0.1266(4)
270 3 0.422(1) 0.0843(2) 0.0765(2) 0.0705(2) 0.0662(2)
404 2 0.2538(8) 0.0414(1) 0.0392(1) 0.0362(1) 0.0342(1)

 1
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t / t0

L = 404
L = 270
L = 180
L = 120
L = 80
L = 54
L = 36
L = 24

FIG. 4. GF time evolution of the expectation value hQ2i ¼ χtV.

10According to Eq. (2.8) we deal with an impact range which is
adjusted to L=12; it attains 33.7 lattice spacings in our largest
volume. This strongly differs from Refs. [21] (see Sec. II. 4) and
also from Ref. [11], where the coupling range of the “perfect
lattice action” was fixed to a couple of lattice spacings, while ξ
increased up to 58.

11Actually such configurations have the highest probability
p½e⃗� ∝ expð−S½e⃗�Þ, but configurations with a significantly larger
action have a much higher degeneracy, such that they over-
whelmingly dominate the functional integral.

WOLFGANG BIETENHOLZ et al. PHYS. REV. D 98, 114501 (2018)

114501-6



property that the flow times are not excessively long, so that
physical aspects are not affected, and in particular the long-
range scale ξ should not change, as we argued in Sec. II. 4.
In fact, our results in Table I confirm that the modifications
of ξ are minor: in each volume, ξð0Þ and ξð10t0Þ agree
within less than 1.7σ. [It is also noteworthy that the sign of
ξð0Þ − ξð10t0Þ differs in our results from different lattice
volumes, which further shows the absence of a systematic
effect of the GF on ξ up to 10t0.]
Trusting the stability of ξ, we replace it by ξ2ð0Þ, for

which we have precise results—see Table I—and use it at
any flow time t ∈ ½0; 10t0�; cf. Sec. II. 3. This yields the
scaling plot in Fig. 5.
It is an unambiguous observation that—after any fixed

multiple of the flow time unit t0 that we considered—the
quantity χtξ

2 keeps growing as we increase the correlation
length; we cannot observe convergence towards a finite
continuum limit. This trend is most obvious in our largest
lattice volumes and at long flow times. At relatively short
GF, in particular at flow time t0, the term, which is
supposed to scale, looks almost stable up to L ¼ 80,
ξ ≈ 13, but even closer to the continuum limit it turns into
the (qualitative) behavior observed at long flow times.
As a first hypothesis, we assume the asymptotic behavior

at large ξ to be logarithmic.12 This can be expressed by the
ansatz

χtξ
2 ¼ a1 lnða2ξþ a3Þ; ai ¼ const; ð4:1Þ

which was successful in fits to results obtained with
topological lattice actions [13]. As an alternative, we
consider another three-parameter ansatz, which describes
a power law,

χtξ
2 ¼ b1ξb2 þ b3; bi ¼ const; ð4:2Þ

as in Refs. [13,21]. That behavior corresponds to the
semiclassical picture of Ref. [6] (for the case of 4D
Yang-Mills gauge theory, this property is worked out
explicitly in Ref. [35]).
We first consider the data before the GF. In this case, we

perform fits over the entire range L ¼ 24…404, so there are
5 “degrees of freedom,” and we obtain at t ¼ 0

a1 ¼ 1.3ð1Þ; a2 ¼ 0.021ð3Þ;
a3 ¼ 1.014ð2Þ; χ2=d:o:f: ¼ 3.76;

b1 ¼ 0.0522ð5Þ; b2 ¼ 0.741ð2Þ;
b3 ¼ −0.026ð1Þ; χ2=d:o:f: ¼ 0.04:

The power-law fit has a tiny value of χ2=d:o:f. (which
appears accidental), but this quantity is somewhat large for
the logarithmic fit.13 However, even there the uncertainties
of the fitting parameters are moderate. The observation that
the constants a1, a2, b1, and b2 are all larger than 0 (far
beyond the errors) confirms that the data before GF are
incompatible with continuum scaling.
Figure 6 shows the constants aiðtÞ and biðtÞ obtained

from the fits to the functions (4.1) and (4.2) at GF times
t ¼ t0; 2t0…10t0. The lower plot also shows the ratio
χ2=d:o:f., as a measure of the quality of the fits. All fits
were performed in the range L ¼ 54…404; hence they
capture six data points, corresponding to six lattice vol-
umes. In all these cases, i.e., after the GF, the fits to the
logarithmic ansatz (4.1) are superior, as we see from the
lower plot in Fig. 6 (this behavior agrees with Refs. [21]).
The essential observation, however, is based on the upper

plot: it shows that the constants a1, a2, b1, and b2 keep on
being larger than zero during the GF; zero values are well
beyond the errors.14 Therefore, even after the GF our data
are incompatible with a scaling of χtξ

2 towards a finite
continuum limit.

V. CONCLUSIONS

There is a variety of models with topological sectors, and
some of them are plagued by problems with the continuum
scaling of χt. This is not the case in the simple 1D O(2)
model, where—for a multitude of lattice actions—χtξ
exhibits a straight convergence to its continuum value of
1=2π2 [13,36].

 0.1

 1

 4  8  16  32  64

χ t
ξ 2

2

ξ2

t=0
t0

2 t0
4 t0
6 t0
8 t0

10 t0

FIG. 5. Illustration of the nonscaling of the term χtξ
2. The scale

used in this plot is the second moment correlation length ξ2.

12Here and in the following we refer to ξ, which is conceptually
correct, although in practice it is replaced by ξ2, as we explained
before.

13The fits to our preliminary data that we considered in
Refs. [21] had a similar quality for both functions. On the other
hand, in Ref. [13] we observed superiority of the logarithmic
function for data obtained with the constraint lattice action.

14In light of Fig. 6, one might question the behavior of a2 and
b1 at short t ≤ t0. However, in Refs. [21] we arrived at the same
conclusion also for such short GF times.
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In naïve lattice formulations of 4D Yang-Mills gauge
theory, as well as QCD, this problem appears, but there
are various ways to overcome it; see Ref. [37] for pure
SU(3) gauge theory and the aforementioned Refs. [18,19]
for QCD.
Regarding the 2D CPðN − 1Þ models, the numerical

results confirm the semiclassical picture of Ref. [6] that we
sketched in Sec. 3: no problem occurs at N ≥ 4, and at
N ¼ 3 there is a divergence, but it can be avoided by
nonstandard lattice actions; see e.g., Refs. [34,38].
There remains the case N ¼ 2, which is peculiar indeed:

in this model, which is equivalent to the 2D O(3) model, no
way around the divergent continuum limit of χtξ2 is known;
we have seen that not even the GF, which is a safe remedy
in other models, helps in this specific case.

This does not mean that all topological terms in the 2D
O(3) model are ill defined. Even without GF, there
is evidence for the opposite to hold for the following
quantities:

(i) The correlation function of the topological charge
density qx, hqxqyi, is well defined (i.e., finite in the
continuum limit) at all separations x − y, expect for
x ¼ y. That point alone causes the divergence of
χt ¼

P
yhqxqyi [10,13], and the situation is similar

in QCD [18].15

(ii) The kurtosis c4 ¼ ð3hQ2i2 − hQ4iÞ=V is a charac-
teristic of the distribution of the topological charges
(it vanishes if this distribution is Gaussian). In the
continuum limit, the ratio c4=χt converges to a value
close to −1 [40] (which is the value of a dilute
instanton gas).

(iii) If we add a θ term, S½e⃗�θ ¼ S½e⃗� − iθQ½e⃗�, with
−π < θ ≤ π, we obtain an expectation value hQi,
which does not need to vanish anymore. Therefore
we now have to refer to the general expression
for χt:

hQi ¼ −i∂θ lnZðθÞ;

χt ¼
1

V
ðhQ2i − hQi2Þ ¼ −

1

V
∂2
θ lnZðθÞ: ð5:1Þ

The expectation value hQi is well defined at any
vacuum angle θ, but the function hQiðθÞ has an
infinite slope at θ ¼ 0. This is the picture elaborated
in Ref. [41], without GF, which is sketched sche-
matically in Fig. 7. It implies that θ remains finite
under renormalization16 and that χtðθÞ does exhibit
continuum scaling at any θ ≠ 0.

We have seen that the picture of Ref. [41]—in particular
the infinite slope at θ ¼ 0—seems to (qualitatively) persist
under the GF. This extends our previous observation [21] to
much longer flow times.
Reference [41] did not consider this behavior unnatural,

although χtðθ ¼ 0Þ is supposed to be an observable. This
scenario requires the free energy FðθÞ ¼ −β−1 lnZðθÞ to
take an unusual—though conceivable—form, where FðθÞ
and F0ðθÞ have removable singularities at θ ¼ 0, which
give rise to a divergence of F00ð0Þ [a prototype for such a
function is FðθÞ ∝ θ2 ln θ].
Here we present our numerical results, which support

this scenario. We leave it to the reader to decide whether he
or she considers this property as fatal for the topology of the
2D O(3) model.
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t / t0
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FIG. 6. The constants aiðtÞ and biðtÞ of the fits to the
logarithmic function (4.1) and to the power law (4.2), respec-
tively, along with the χ2=d:o:f. ratios. The fits were performed at
any flow time t=t0 ¼ 1…10, in the range L ¼ 54…404
(d:o:f: ¼ 3). In all cases the logarithmic fits have a better quality,
in contrast to the case t ¼ 0. The constants a1, a2, b1, and b2 are
positive and incompatible with 0 at any GF time up to 10t0.
Hence our data are incompatible with continuum scaling.

15In a fixed topological sector, the correlation hqxqyi at
large separation can be employed for an indirect measurement
of χt [39].16Reference [41] concludes that each value of θ ∈ ½0; π�
represents a different continuum theory.
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APPENDIX: NUMERICAL INTEGRATION
OF THE GRADIENT FLOW

This Appendix compares various implementations of the
GF based on the Runge-Kutta method; for a pedagogical
description of this method we recommend Ref. [30]. In
particular we are going to address the performance of the
Dormand-Prince adaptive step size algorithm [31].
That algorithm allowed us to handle lattices up to size

L ¼ 404 with a high statistics of 2 × 105 configurations;
see Tables I and II. In the smaller volumes we could run the
GF at a fixed step size of dt ¼ 10−4, and extensive tests
demonstrated the consistency with the Dormand-Prince
algorithm, up to L ¼ 270. This Appendix is going to
concentrate on L ¼ 404, where fixed dt ¼ 10−4 production
runs are prohibitively expensive. Instead we refer to a
sample of 100 test configurations, which were generated at
β ¼ 1.807 (the value used in our study), well thermalized
and independent.

Our tests have further shown that the most delicate part
of the GF is the very beginning. This is expected: possible
artifacts due to the finite step size dt are most likely before
the configurations become smooth. In this Appendix we
consider flow time t ¼ 0 to 10 ≃ 0.35t0. This interval is of
primary interest: we will see that most of the reduction of
hQ2i that we observe up to 10t0 (see Fig. 4) happens in the
very first flow period.
Strictly speaking, the application of the Dormand-Prince

algorithm requires two parameters: the initial time step dt0
and a “tolerance parameter” ε. If the gradients computed by
the Runge-Kutta method with four points and with five
points17 coincide within this tolerance, i.e., the norm
of their difference is below ε, then dt will be increased
in the subsequent step—in the opposite case it will be
decreased.18

Regarding the initial time step dt0, we ran numerous tests
with dt0 ¼ 10−3 and dt0 ¼ 10−4: when everything else was
kept fixed, we never found any difference which could be
significant at our level of precision. After just a few time
steps one obtains results, which are practically indistin-
guishable. Since this choice hardly affects the computation
time, we used dt0 ¼ 10−4 in our production runs and also in
the tests to be presented in this Appendix. Hence our
discussion focuses on the tolerance parameter ε.
We are going to compare three numerical implementa-

tions of the GF:
(i) fixed step size dt ¼ 10−4,
(ii) Dormand-Prince adaptive step size with dt0 ¼ 10−4

and ε ¼ 10−6 (as used in our production runs), and

-1
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 0.5
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-3 -2 -1  0  1  2  3

〈 i
 Q

 〉

θ

FIG. 7. A schematic illustration of the expectation value ihQi as
a function of the vacuum angle θ, in the continuum limit. The
peculiarity of the 2D O(3) model is that its slope—which is
proportional to χt—seems to diverge at θ ¼ 0. This picture
corresponds to Refs. [41,42]; our results suggest that its quali-
tative features persist under the GF.
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FIG. 8. The mean value hQ2iðtÞ, obtained from 100 configu-
rations at L ¼ 404, at flow times t ¼ 0…10t. The results coincide
for all three GF implementations under consideration.

17Referring specifically to these two gradients is motivated by
the fact that some ingredients of their computation are identical.

18This is untypical, since the configurations become gradually
smoother under the GF, but it does occasionally happen; i.e., the
increase of dt is not strictly monotonic.
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(iii) the same Dormand-Prince algorithm with ε ¼ 10−7.
First we consider the topological charges of these 100

test configurations. We checked for possible deviations
when we apply these GF implementations, but they fully
agree at any t ¼ 1; 2; 3…10. Figure 8 shows the value of
the hQ2i obtained from this sample. It confirms that most of

the destruction of topological windings happens very early,
at t < 1 ≃ 0.035t0. This corresponds to an impact range
below two lattice spacings; hence it matches the picture of a
quick destruction of numerous tiny dislocations (compared
to the correlation length ξ ≃ 68). The topological windings
that persist can either be large or small with a structure,
which resists the GF for a longer flow time. We saw that
these remaining windings still make the topological sus-
ceptibility diverge.
Figure 9 illustrates how dt increases when we apply

the Dormand-Prince algorithm, with tolerance parameter
ε ¼ 10−6 or ε ¼ 10−7. The difference between these two
scenarios is significant: in particular, at ε ¼ 10−6 the step
size soon attains a remarkable magnitude of dt ≈ 0.25; at
t ≈ 4 the configurations are already sufficiently smooth to
allow for this value. (That case also confirms that, in
exceptional cases, the algorithm can temporarily decrease
dt; cf. footnote 18.)
Since we did not observe any significant difference in the

results, the use of this value of ε is highly motivated. It
provides a gain in computation time by several orders of
magnitude: this gain can be estimated by assuming the GF
to take computation time ∝ 1=dt, although adaptive step
size algorithms require some additional operations.
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