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We obtain the potential nonrelativistic quantum chromodynamics Lagrangian relevant for S-wave states
with next-to-next-to-next-to-leading logarithmic accuracy. We compute the heavy quarkonium mass of
spin-averaged [ = 0 (angular momentum) states, with otherwise arbitrary quantum numbers, with next-to-
next-to-next-to-leading logarithmic accuracy. These results are complete up to a missing contribution of the

two-loop soft running.
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I. INTRODUCTION

High order perturbative computations in heavy quarko-
nium require the use of effective field theories (EFTs),
as they efficiently deal with the different scales of the
system. One such EFT is potential nonrelativistic quantum
chromodynamics (pNRQCD) [1,2] (for reviews see [3,4]).
The key ingredient of the EFT is, obviously, its Lagrangian.
At present the pNRQCD Lagrangian is known with next-
to-next-to-next-to-leading order (NNNLO) accuracy [5]
(for the nonequal mass case see [6]).

One of the major advantages of using EFTs is that it
facilitates the systematic resummation of the large loga-
rithms generated by the ratios of the different scales of the
problem. For the case at hand we are talking of

(i) the hard scale (m, the heavy quark mass),

(ii) the soft scale (muv, the inverse Bohr radius of the

problem),
(iii) and the ultrasoft scale (mw?, the typical binding
energy of the system).
At present, the pNRQCD Lagrangian is known with next-
to-next-to-next-to-leading log (NLL) precision as far as
P-wave states are concerned [7]. For S-wave observables
the present precision is NNLL [8]. The missing link to
obtain the complete N’LL pNRQCD Lagrangian is the
N3LL running of the delta(like) potentials.1 For the spin-
dependent case, such precision for the running has already

"We use the term “delta(like) potentials” for the delta potential
and the potentials generated by the Fourier transform of In” k (in
practice only In k).
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been achieved in [9,10]. Therefore, what is left is to obtain
the N3LL result for the spin-independent delta potential.
This is an extremely challenging computation. We under-
take this task in this paper.

The new results that we obtain in this paper are the

following:

(i) We compute the a/m* and the a*/m?> spin-indepen-
dent potentials. These potentials are finite. The expect-
ation value of them produces energy shifts of order
ma®, which contribute to the heavy quarkonium mass
at N°LO. Nevertheless, since some expectation values
are divergent, some of these energy shifts are loga-
rithmic enhanced, i.e., of order O(ma®In(;%)). Such
corrections contribute to the heavy quarkonium mass
at N°LL. This divergence and the associated factori-
zation scale v get canceled by the corresponding
divergence in the spin-independent delta potential.
By incorporating the heavy quark effective theory
(HQET) Wilson coefficients with LL accuracy2 in the
a/m* and o?/m? spin-independent potentials, the
divergent structure of their expectation value (tanta-
mount to computing potential loops) determines the
piece associated to these potentials of the renormal-
ization group (RG) equation of the spin-independent
delta potential with N3LL precision.

(i) We compute the (soft-)a®/m? contribution to the
spin-independent deltalike potential proportional to
(D2, P12, &V and &P, Unlike before, this
potential is divergent. Therefore, for future use, we
also give the renormalized expression. The divergent
pieces produce corrections of O(ma® In(-%)) (i.e., of
order N°LL). From these divergences we generate

These are known at O(1/m) [11], O(1/m?) [12,13] and
O(1/m?) [14].
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the (soft) RG equation of the spin-independent delta
potential and resum logarithms with N3LL preci-
sion. In order to reach this accuracy, we need
the NLL running of the 1/m?> HQET Wilson
coefficients. For ¢y this is known [15,16] but not
for ¢/, [The associated missing term is of
O(T snyma®In(1/a)) and is expected to be quite
small. Its computation will be carried out elsewhere.]
The possible mixing between the (soft) a®/m? and
the @®/m* spin-independent potential computed in
this paper is also quantified.

The computation of the (soft-)a’ /m? contribution
to the spin-independent deltalike potential, propor-
tional to other nonrelativistic quantum chromody-
namics (NRQCD) Wilson coefficients, like [c,({w]z,

[cf)]z, and c,g)c,((z), will be performed in a separated

paper. The associated contribution to the running is
expected to be small in comparison with the total
running of the heavy quarkonium potential. We will
estimate its size using the result of the running of the
already computed soft contribution.

(iii) The N’LL ultrasoft running of the static, 1/m and
1/m? potential was originally computed in [17-19]
(see also [20,21]). This is enough for P-wave
analyses [7], where such corrections produce a
N3LL shift to the energy. Nevertheless, it is not

|

so for S-wave states, as already noted in [9,10] for
the case of the hyperfine splitting. The reason is the
generation of singular potentials through divergent
ultrasoft loops. We revisit it in Sec. VB and
incorporate the missing contributions needed to
have the complete ultrasoft-potential running that
produces N3LL shifts to the energy.
(iv) Finally, we compute the complete (potential) RG
equation of the delta potential with N®LL accuracy
(the first nonzero contribution). Solving this equa-
tion we obtain the complete N°LL running of the
delta potential. This allows us to obtain the S-wave
mass with N3LL accuracy. It is also one of the
missing blocks to obtain the complete NNLL RG
improved expression of the Wilson coefficient of the
electromagnetic current. This, indeed, is what is
needed to achieve NNLL precision for nonrelativ-
istic sum rules and #-7 production near threshold. As
the spin-dependent (and [ # 0) contribution has
already been computed in earlier papers [7,9,10],
we only consider here energy averages of S-wave
states where the spin-dependent contributions van-
ish, and only include terms relevant for the N3LL
S-wave spin-average energy.
Throughout this paper we work in the MS renormaliza-
tion scheme, where bare and renormalized coupling are
related as (D = 4 + 2¢)

272€ 1 272€\ 2 1 1 eVE\ €
2 _ 2|1 gv 1 gv o 1 1 6 2 _ e € 1
=1+ it (55) [Bara vow) () m
|
where precision achieved in this paper we need in some cases the
two-loop running of the coupling when solving the RG
By = % Cy _‘3_‘ Ten;, equations.
34 , 20
pr =5 Ci— 5 CaTny —4CpTny. (2) IL. NRQCD LAGRANGIAN:

ny is the number of dynamical (active) quarks and
a = ¢’v*°/(4x). This definition is slightly different from
the one used, for instance, in [22].

In the following we will only distinguish between the
bare coupling g5 and the MS renormalized coupling g when
necessary. The running of « is governed by the £ function
defined through

a(v) has n, active light flavors and we define
¢ =[S0 ~ 1~ 1/(2n)a(v;) In(%). Note that with the

a(vy

1/m®> AND BEYOND

Instrumental in the determination of the Wilson coeffi-
cients of the pPNRQCD Lagrangian is the determination of
the Wilson coefficients of the Lagrangian of the EFT named
NRQCD [23,24]. We first need to assess which NRQCD
operators we have to include in our analysis. We will include
light fermions, which we will take to be massless.

The HQET 1/m? Lagrangian can be found in [25], and
including light fermions, though in a different basis, in [26].
Here we use the basis and notation from [14], which also
includes light fermions. In [14] one can find the resummed
expressions of the Wilson coefficients with LL accuracy for
the spin-independent operators. For the spin-dependent
1/m? operators, not relevant for this work, the LL running
can be found in [27,28]. Note that there are no pure gluonic
operators of dimension seven.
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To obtain the complete 1/m? NRQCD Lagrangian,
one also has to consider possible dimension-seven four
heavy-fermion operators. There are no such operators, as
mentioned in [29]. At O(1/m*), we do not need the
complete Lagrangian for the purposes of this paper. For
the heavy-quark bilinear sector the complete set of oper-
ators was written for the case of QED in [30] and for QCD
in [31] (in the last case without light fermions). Of those we
can neglect most, we do not need the spin-dependent 1/m*
operators, nor terms proportional to a single B, nor terms
with two (either B or E) terms. The reason is that we only
need 1/ m? tree level potentials. Therefore, we can take all
relevant operators from the QED case. Following the
notation of [30], the possible relevant operators are

1)
6Ly = “X4y'glD>.D-E + E - Dly
1
) !
+ 22y (D% [V El}y + 23w gV, V- Ely
m m
1 1
+ ... (4)

and similarly for the antiquark. The dots stand for terms
that one can trivially see do not contribute to the S-wave
spin-independent spectrum at NNNLL, either because they
involved the emission of two gluons or because they are
spin dependent. In principle we need three new coefficients.
Nevertheless, we will see later that only cy; contributes to
the running of the spin-independent delta potential. Still,
we will compute any tree level potential proportional to
Cx1, Cx2 and Cx3.

The fact that we need cy;, one of the Wilson coefficients
of the 1/m* heavy quark bilinear Lagrangian, could make it
necessary to consider the Wilson coefficients of the 1/m*
heavy-light operators as well [light-light operators are
subleading for the same reason they are at O(1/m?%)], as
they may enter through RG mixing. Fortunately, cx; can be
determined by reparametrization invariance, which gives us
the following relation [30]:

3¢ = %Z — W4y (5)
(where one should take Z =1 for QCD). Note that it
depends on c¢p, so indeed cgg is gauge dependent.
Nevertheless, we will see later that it always combines
with ¢j, to produce gauge invariant combinations. This
indeed is a nontrivial check of the computation. Note also
that the above coefficient has an Abelian term, so it can be
checked with QED computations.

Finally, we consider the heavy four-fermion sector of the
1/m* Lagrangian. They generate local or quasilocal poten-
tials, which do not produce divergent potential loops. The
same happens for the potentials generated by cy, and cys.
Therefore, in both cases, such potentials do not generate
contributions to the heavy quarkonium mass at N°LL, and
we can neglect them.

Out of this discussion, we conclude that we have the LL
running of all necessary Wilson coefficients of the 1/m*
NRQCD Lagrangian operators.

III. pNRQCD LAGRANGIAN

Integrating out the soft modes in NRQCD we end
up with the EFT named pNRQCD. The most general
pNRQCD Lagrangian compatible with the symmetries of
QCD that can be constructed with a singlet and an octet
(quarkonium) field, as well as an ultrasoft gluon field to
NLO in the multipole expansion, has the form [1,2]

LyNroep = /d3rTr{S*(i80 — hy(r,p,Pg.S;.8,))S
+ O'(iDy — h,(r,p,Pg.S,.S,))0}
+ V4(r)Tr{O'r - gES + S'r - gEO}

v
+ #Tr{ou -gEO+ O'Or - gE}

1 <N
-7 GLG" + > 4iDq;. (6)
i1
P’ Pi
h’s(r’ P, PR? Slv SZ) = zmr + m + Vs(r7 P, PRv Sl? S2)’
(7)
p° P
h,(r,p.Pg.S1.8;) = 2m, ot V,(r,p.Pg.S1.S,).
(8)
where iDyO = i0yO — g[Ay(R, 1), 0], Pg = —iVy for the
singlet, P = —iDgr for the octet (where the covariant
derivative is in the adjoint representation), p = —iV,,
m = ©)
my + my

and M = my + m,. We adopt the color normalization

S=58I/\/N.. 0=0T/\/Tp,  (10)

for the singlet field S(r, R, ) and the octet field O“(r, R, 7).
Here and throughout this paper we denote the quark-
antiquark distance vector by r, the center-of-mass position
of the quark-antiquark system by R, and the time by .
Both &, and the potential V| are operators acting on the
Hilbert space of a heavy quark-antiquark system in the
singlet conﬁguration.3 V, (and V,) can be Taylor expanded
in powers of 1/m (up to logarithms). At low orders we have

3Therefore, in a more mathematical notation, h — 13,
Vi(r,p) —» Vi (£, p). We will however avoid this notation in
order to facilitate the reading.
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v _yo Y vl L2 (. v8)
m,  mumy r*  2mym, P
m"li; . Vi (s, -8,
+mleV(S]2)(r)Slz(r>+—V(Lzs>1(r>L Si
+ mllmz VES, ()L -8, + O(1/m), (1)

where S| =6,/2, S, =6,/2, L=rxp, and S,(r) =
3["6121"0'2 — 6, 0.

V() is known with N’LL accuracy [17,18]. The N°LL
result for the 1/m and 1/m? momentum-dependent poten-
tial is also known in different matching schemes [7,19,32]:
on-shell; off-shell (Coulomb, Feynman); and Wilson. In
terms of the original definitions used in these papers they
read (in four dimensions)

(1)
v = oy — yon = _CrGDT )
4r?
2 2,0 0.2 11

v _ve'o) Vi) Vo) _ el

mym, m? m3 mym,  2mym,r
(13)

viy vEOm vere) vy c,p®

mm, m? m3 mm, mymyr
(14)

The spin-dependent and momentum-dependent potentials
are also known with N3LL precision [7]. We use the
following definitions in this paper (again we refer to [7]):

1 20) 1o
= 1% yib
mlmz () ( ml LS ()+m1m2 Lys, ()
3C.D
2m1m2
[IE) 1 02 (L1)
1% =(— v
= Ls, (1) ( 2 VLS ()+m1m L5, (7)
3C;DV)
=S (16)
2m1m2

More delicate are V(Slz’l) and ng), as their running is
sensitive to potential loops, which are more efficiently
computed in momentum space. Therefore, it is more
convenient to work with the potential in momentum space,
which is defined in the following way:

V= (p'|V,lp). (17)

Then the potential reads

(1) 2)

- ay c c,
V:_4C_V_4L_2d5()
= s S (5 55 ) o)
(1) 77.'2
- CrC\ DY) ———(14+ 0
FY“A 2mr|q|1_2€< + (€>)
_ 22D +p” | 2CiDy <<p2 - p’2> P 1)
mymy q’ mymy q’
75(2) @)
ﬂCFD 477:C D
S’,S’ Si.s!
D e 1L |1
47[CFDFS‘2]2

i r i j r] qqu
S}, S7][S5. ) (6/—d ) )

dm,;m,
67rCFp qf
mymy q

(D3 [81.8{] + D [sh.84).  (18)

where the (Wilson) coefficients D generically stand for the
Fourier transform of the original Wilson coefficients in
position space D. For them (and for ay) we use the power
counting LL/LO for the first nonvanishing correction, and
SO on.

V(Slz‘l) is indeed known with the required N’LL accuracy

[9,10] (one should be careful when comparing though, as

there is a change in the basis of potentials used there,
compared with the one we use here). In terms of Dg) it

reads

(L1) 75(2) 75(2)
Ve _ 50)(r 82CpDg  8xCpDy;
myms 3mim, 3mim,
1 1 d -~ LL
x {—Ereg?—lnw“) (r)} (kﬁDsz L
(19)
where
! re ! / LI Ink (20)
. reo— = e
A B3 (27)3 '

and we neglect higher order logarithms (as they are
subleading).

Finally we consider V,. In terms of D< )

it reads

(2) (2,0 0.2) (1,1)
Vi Vi r Vv, r r r
VPO v Vi)

mymy m? m3 mym,
~(2)
CrD nC 1 1
5O () era | P E L e nws®)

(r) mm, +m1m2 47 8T (r)
d ~(2)> LL

x | k—D . (21)
< dk ¢ k=v

Unlike all the other potentials, we do not know ng) with
N3LL expression (though the N?LL expression is known

114034-4



S-WAVE HEAVY QUARKONIUM SPECTRUM WITH NEXT- ...

PHYS. REV. D 98, 114034 (2018)

[8]). This leads us to the main purpose of this paper: the
computation of V, with N3LL accuracy. This is equivalent
to obtaining the NLL expression of D;z). This will require
the use of the other Wilson coefficients to one order less:
LL. Indeed in Eq. (18) we have already approximated the
Fourier transform of V(L22> by its N’LL expression (other-

wise the momentum dependence is more complicated).
|

16

At LL the Wilson coefficients are equal in position and
momentum space. We only explicitly display those that we
will need later. For the static potential we would have at LL
that ay = ay = a. For the rest, we show the results in the

off-shell Coulomb (which are equal to the Feynman at this

2

order) and on-shell matching schemes, except for Dy,

which we do not need for the S-wave:

Cy a(v)

().LL _ &().LL _ o 2
D =D = —|—=+C In[ ———], 22
e €6 «) +3ﬁ0 ( 2" F>a ) n(“(vz/yh)) 22)
().LL _ &(1).LL 5 2Cr m; 16 (Cy 2 a(v)
DUt = pUMLE = 1-=E — (A4 In(——>2—). 23
o3 o3 “ (D)[ Cy mlm2:| +?’ﬂo 2 TCr)a)in a(v?/vy) @)
- 22C
Dg2),LL _ D(lz),LL o) (my + my) 2G4 )ln< a2(1/) > (24)
mymy  3f, a(v*/vy)
2).LL  x(2).LL
(Slz = Dgli = a(v)ci(v), (25)
2),LL _ #(2)LL 3
Dgz) — Dgz) - a(y)c%(y) - E (dsv (l/) + Cde;(y))' (26)
We now turn to DEf). Expanding D((f)(k, v) in powers of Ink, we obtain
- N d - k
DY k) = D i/ s+ e D s ) 00 @)

where we have made explicit the dependence on the differen
So far we have not made explicit the dependence on v, ~

solving the RG equations. Therefore, in the following, we use the notation D d2

fo) (vp;v) can be written in several ways: as a sum of the LL [ﬁ<d2)’LL(1/h;z/)] term and the NLL [5l~);2)

correction, or as the sum of the initial condition [DEZ2> (vpsvp)
[SD?) (vy;v) where 6DEJZ> (vpsvy) =01

D (wis) = D (1) + 0D (i)

t factorization scales.
m. Nevertheless, it will play an important role later, when

vy 20y, - = D (i),

N i)
)

= D’ (v,)] at the hard scale and the running contribution
=D i) + 8D ). (28)

This Wilson coefficient may depend on the matching scheme. Here we mainly consider the off-shell Coulomb gauge
matching scheme. Still, for later discussion, we also give expressions in the on-shell matching scheme (see [6] for more

details).
The LL running is known [8]:

D) = DL W) = 20(0) + i 0) + o)

g (5 e (Cns) )
DY) = DS W) = alb) + 2 (o) + Cri ()

P (5 e w7 ). (0)
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ﬁb ........ n;=0 (LL)
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22
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1.2
1.0 O R R R TS i B P T
1.0 1.2 1.4 1.6 1.8 20 22
v (GeV)

FIG. 1. Plotof Eq. (29), the LL running in the off-shell (Coulomb/Feynman) matching scheme of D£12> for different values of n; (0,3,4)
and in the single log (SL) approximation (in this case only with n; = 3). Upper panel: Plot for bottomonium with v;, = m,. Middle
panel: Plot for charmonium with v, = m,. Lower panel: Plot for B, with v;, = 2m,m,./(m, + m.).

where

@ (1)

_ c ¢y’ m
d,s :ﬂa%m—;—i—ﬂa%m—ﬁ—l—dm (31)

is a gauge invariant combination of NRQCD Wilson coef-
ficients, for which its LL running can be found in [8]. In order
to visualize the relative importance of the NLL corrections
compared with the LL term, we plot the latter in Fig. 1 in the

Coulomb gauge.4 For reference, in these and later figures, we
use the following numerical values for the heavy quark
masses and a: m;,=4.73GeV, a(m,)=0.216547, m, =
1.5 GeV, a(m.) = 0.348536 and a(2mym./(m, + m.)) =
0.290758. vj, = my, for bottomonium, v, = m, for charmo-
nium, and v, =2m,=2m,m./(m,+m,) for the B, system.

“Unlike in the other plots, we use here the two-loop running for
a. The effect is small.
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From the LL result (using the v, independence of the potential at LO) one obtains

d 5 o Ca\ )@, @ [m (1 g 4 @n_ S o
e 0 DAL (i) = 0T+ <2CF 2>Ck % o [ G =3 (Gt CPlETT — 7 Caler

m, (1 _niny 4 1 5 1
+m—1 (g Tynsei" - 3 (Ca+Cr)le 2 - ECA[C%)]2>:|

() ) -]

This term contributes to the N3LL energy shift of the spectrum.
Since we know the NLO expression of D;”, we can determine the initial matching condition. It reads

?(wy) (28 . 4 20 m, 25 .10 1 _
9CA 3C 9Tpl’lj+ m2+— 18CA 9Tan +ﬂ_—CF(dss(yh)+CFd1is(yh))’ (33)

47
~ 62 4 32 28
Do) = 2a(v) +2 4,,)<9 Cat5Cr=5 Caln2 =Ty
m;  mp 10 61 16 1 -
—+—)|-=T ———In2|C —(d Crd, . 34
+<mz+ml>{ 9 an+ (18 3 1 A +71'CF( ss(l/h)+ F Ls(l/h)) ( )

¢p and the four-fermion Wilson coefficients d,, and d,; were computed at one loop in [25] and [33] respectively, where one

can find the explicit expressions.
At the order we are working 6D

coefficient is given by the sum

@ )NLL(uh;u) can be split into pieces. Thus, the NLL approximation for the Wilson

(2)NLL

(Dz(i)>l loop(yh>+5Ddus NLL

~ (2)NLL ~ (2)NLL
DN (uys0) = (INLE(

(whiv) + 0Dy (vpsv) + D (i), (35)
where the second line is zero when v = v,. (D((iz))l—loop(yh) is the O(a?) term of Eq. (33) or (34), depending on the
matching scheme. Their numerical values in the Coulomb gauge matching scheme are for bottomonium 0.042, 0.052 and
0.081 for ny = 4, 3, and 0 respectively; for charmonium 0.108, 0.134 and 0.211 for n; = 4, 3, and O respectively; and for B,

0.048,0.072 and 0.142 for ny = 4, 3, and O respectively. We nicely observe that these numbers generate small corrections to

the leading order results.

At present the NLL running is only known for the ultrasoft term [19]:

D (wiv) _ (mi+ my)* 4z (CA CF> (v ){iln(a(“(’/) ))ala(l/)

myny ﬁ() 3z l/2/l/h dr
+(a(t?/vy) — a(v)) <§'Z—; (4711) 271 5 (Ca(47 + 67%) — IOTan)> }, (36)

where a; = 31/9C, — 20T pn;/9. We show the size of this
correction in Fig. 2. Note that the ultrasoft contribution to
the delta potential vanishes in the large N, limit (it is 1/N2
suppressed). Nevertheless, it quickly becomes big at
relatively small scales because the overall coefficient is
large and the ultrasoft scale quickly becomes small. Finally,
note also that part of the ultrasoft correction (proportional
to In k) is included in Eq. (32).

The missing terms to obtain the complete NLL running

of D(d) are then 5DdsNLL(vh,z/) and 5deNLL(

éﬁg%z’NLL(yh, v) we need the two-loop soft computation of

vy;v). For

D(dQ) , and the associated soft RG equation, which we
partially obtain in Secs. IV C and VA, respectively. We
also discuss the mixing with higher order 1/m potentials in

Sec. IV D. For 6D)N"(

solve the potential RG equation. This requires first the
matching between NRQCD and pNRQCD to higher orders
in 1/m, which we do in Secs. IVA and IV B; an extra
(ultrasoft associated) running, which we obtain in Sec. V B;
and obtaining the potential RG equation, which we do in
Sec. V C.

vy;v) we need to determine and

114034-7



C. ANZAI, D. MORENO, and A. PINEDA

PHYS. REV. D 98, 114034 (2018)

0.00

-0.05

-0.10

- 2) NLL
GDd.us( )

-0.15

n;=3 (NLL)
ny=4 (NLL)

de.us(a)Nu

-------- n;=0 (NLL)
n;=3 (NLL)

ny=4 (NLL)

0.00 -
-0.05

-0.10

A 2) NLL
GDd.us( )

-025H, % -

Al )

TR SE Y

ng=3 (NLL)
ng=4 (NLL)

A daaaal

i

1 N 1

1.6
v (GeV)

14

1.8

20 22

FIG. 2. PlotofEq. (36), the NLL ultrasoft running in the off-shell (Coulomb/Feynman) matching scheme of Df) for different values of
ny (0,3,4) and in the single log (SL) approximation (in this case only with n; = 3). Upper panel: Plot for bottomonium with v;, = m;,.
Middle panel: Plot for charmonium with v, = m,.. Lower panel: Plot for B, with v, = 2m,m./(m;, + m,).

IV. NRQCD-pNRQCD MATCHING, SPIN
INDEPENDENT

In this section we compute the potentials for which
their expectation values produce corrections to the
spectrum  of O(ma®). This means the O(a/m?),
O(a?/m?) and O(a®/m?) potentials. Of them we mostly
care about those that produce logarithmic enhanced
contributions to the spectrum. Therefore, in particular,
we do not need to consider the p®/m> correction to the
kinetic term, since it does not give an ultraviolet
divergent correction. The O(a/m*) and O(a?/m?)

potentials are finite. Some of them can be traced back
from the QED computation. We mainly compare with
[34] (but one could also look into [35] for the equal
mass case). Logarithmic enhanced corrections are pro-
duced by the divergences generated when inserting these
potentials in potential loops. On the other hand the
logarithmic enhanced contribution to the spectrum due
to the O(a’/m?) is not generated by potential loops but
by the divergent structure of the potential itself, which
we then refer to as soft running. This case will be
discussed separately in Sec. VA.
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The spin-dependent case was computed in [9,10].
Explicit expressions for the potentials can be found in
the Appendix of [36]. They produced corrections to the
hyperfine splitting (but not to the fine splittings, as shown
in [7]).

. ) @n T 2 2 (el e\ (@ —p
Viee = — C k--C =4+ = | —
tree ¢p ' Cp F64m%m% FY (mgl; + m421> k2
2 (12 (2)2
g ¢ 1
e - (2007 97 -k -
2 (1) .(2) (2 (1) 2
g cyicy cycy
C
+ F16m1m2 < +

m? m3 ) k?
7 C%ﬁ &%B

F +
16m 1My m% m%

In this result we have already used the (full) equations of
motion, replacing [37]

(38)

Such k3 terms are generated by Taylor expanding in powers
of the energy k, the denominator of the transverse gluon
propagator.

Not all terms in Eq. (37) contribute to the NLL running
of the delta potential. The ones that are local (or pseudo-
local) do not contribute, as they do not produce potential
loop divergences, since the expectation values of these
potentials are proportional to |y (0)> and/or (analytic)
derivatives of it [the kind of V2|y(0)|?], which are finite.
This happens for instance for the potentials proportional to
3, cx» and cys. It is also this fact that allows us to neglect
|

4
S(ed) Ca\ 1) 2 ¢ Ey\+ E)
Vlloop =—=Cr (CF _7> Ck Ck 512m m, |k|3—2€

A. O(a/m*) potential
From a tree level computation (see the first diagram in
Fig. 3) we obtain the complete (spin-independent) a/m*
potentials in momentum space:

—@+mﬁ. (37)

1/m* potentials generated by dimension eight four-heavy
fermion operators of the NRQCD Lagrangian.

As we have incorporated the LL running of the HQET
Wilson coefficients, these potentials are already RG
improved.

Note that with trivial modifications these potentials are
also valid for QED.

B. O(a?/m?) potential

We now compute the complete set of the O(a?/m?) spin-
independent potentials. We show the relevant topologies
that contribute to the a?>/m? potential in Fig. 3. By properly
changing the vertices all potentials are generated.

The (b)-type diagrams in Fig. 3 do not generate
O(a?/m?) potentials (in the Coulomb gauge).

The (c)-type diagrams in Fig. 3 do generate O(a?/m?)
potentials. They read

o (2(p2 Fp?) -k - (p>-p?)° 8(p-K)(p" k)>’ (39)

k? k?

e elc Gy g* c,(cl)zc,(f)+
toop == == F\ =F =0 ) 256mymy \ m,

2(p° +p2) | 11

(p-k)(p' k)

1) (2)2
Cl(c )CE() )‘k|1+2€

my
1 (pz _ p/2)2

X (3(P2 + PQ) K6 -

k? 4 4 k* 2 k*

(40)

The (d)-type diagrams in Fig. 3 do not generate O(a?/m?) potentials.
The (e)-type diagrams in Fig. 3 do generate O(a?/m?) potentials. They read

1)2 (2 1) (2)2
V(e,l) _c.(2c _Q g4 cl((> cl<() +cl((>c§c) |k|1+2€ 5(p2—|-p/2) _z_é(pz _p/2)2 1)
Hloop F E2 ) 512mim, m m, ’
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FIG. 3. Diagram (a) is the only topology that contributes to the tree level potential. Properly changing the vertex and/or Taylor
expanding the denominator of the propagators all potentials are generated. Diagrams (b)—(j) are the general topologies that contribute to
the a®/m? potential. Again, properly changing the vertices and/or Taylor expanding the denominator of the propagators, all potentials
are generated.

4 (1) ) 4 (1) 2
(e2) _ Ca\ 9 (cai | Cal 142¢ 9 (Ca2 | Ca2 142¢
Ve — _cpl20c,—=2) L K|+ — Cp( 20, -4 ) 2L K
iy =-cr2er z>256<m%+m3)" ( =) (e
2,

(1 (1 _(2) 2) (1)
—C.l2C _& 94 2 |l+2€ C C 94 ‘D Cl(c +CD Ck |k|l+2e
g ) 128mm, ml ) A 256m m, m ny
Tr g* 0213) cE@ Tr gt Cy Q)
— T Cr A 43 )k 1+2¢ __C J | A4 A4 k l+2€ 42
M‘H%(@+m%| 256 §+m2|| (42)
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The (f)-type diagrams in Fig. 3 do generate O(a?/m?) potentials. They read

lloop ~ 128\ md

4 (M2 (1) 22 (2)
V(f A1) CFCA g <CF Ck +CF Ck >|k|1+2€p p (43)
1 m3 k*

4 (2) .(1)2 (1) (2)2 2 2 2 2 2 2\2
P2 _ —CpCy 9 (Ck Ck +Ck Sk )|k|1+2e(1 _3p +p ) (Z(P +p’ )_ 1— (p°—p") )

tloop 512mym, \ m, n, 2 k2 k2 k*
J c,£”3 A\ e (PP 5K K) 12(p-p)*  2p%p”  6(p-p)(p-K)(p - K)
— CrCy=— [ L+ 5 ) K| —+ - - =+ c :
512 3 k k Kk Kk k
(44)
4 / / !
(£3) (1) (2) 3g 142e (p-Kk)(p'-k)\ (E| + E}) + (E, + E)
Vlloop —c; ' ¢f CFCA7128m1m2|k| 1+2 (p-p’— = 2
gt (e , ,E N priae (PP 3(p-K)(P k)
—CpCyz 756 m—%(El +Ey) + (E2+E ) K| 2 K ; (45)
4 (1)3 (2)3 2 7 3(pd 14 2 2Y(p-p') —6(p - 02
U _ oo 9 ck +Ck k|2 (=1 4+ P 7 (p*+p*)+ (P +p*)p-p)-6(p-p)
loop = = F=A4 956 m3 k2 k*
-3 16 4 4 14 .p) =2 .n/\3
N (p° +p)+ (p 41-(5 )(p-p')—2(p p))’ (46)
7U _ _c.c, _|k|1+26 o (3(E +EDp k)P k) (E1+E’1)(p-p/)
toop = A 08 m3 K° k*
1)2
L 2AER T ERY) 2B+ Ep)e-p +K)) |, ¢ (3(E + B)(p- k)0 k)
k6 k6 m? k6
1
(E, + E5)(p-p') | 2(E;p* + ESp™Y)  2(E;p* + E5p”?)(p-p' + k) 47
+ K4 * Kk B Kk® ’ (47)
1)2 (2 1 2)2
SO _ o o 76* c,(() c,(( ) . c§( )c,<(> K[ 2(p? + p?) i (p? - p)? 48)
loop F A256m1m2 nmy my k2 k4 ’
4 (1) (2) (2) (1) 4 (1) (2) 2 ” 222
S(FT) g Cp' € | CpC 1426 €y | Gy 112¢ (10(p” +p") 5(p*-p")
v —c.c Kk CrC Kk —7
lloop = = F A256m1m2< m, + m, )' B A1024< + )' | ( k2 L
4 ) @ 4,00 @ (2>
9 (Cym |, Cu 142¢ 9 (C¢rCs | CF cs 142¢
—CpCy—— | M k|2 - CpCy—— EOS )k 49
r A256<m?+m2>| | 512( o )' | (49)
4 2 2 72 72
(f8) _ svae| (0 ET ) E3 m E” <>E )
vy — .0 L1k =1L =2 )(p-Kk) - K 50
O T | CUE= e =) [ S B G = (S (50)
o) g [ 22
Vlloop CFCA 128 ( (El + E’) +—(E2 + E')) |k|_1+2€' (51)
2
[
The rest of the topologies [(g), (h), (i), and (j)] do not As we have incorporated the LL running of the HQET

contribute. Note that those topologies include, in particular, =~ Wilson coefficients, these potentials are already RG
the one-loop dlagrams proportional to ¢ or d/!, as they ~ improved.

may produce ~a’/m> potentials. We ﬁnd that such con- Note that with trivial modifications these potentials are
tributions vanish. also valid for QED.
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C. O(a®/m?*) V, potential
In this section we perform a partial computation of the

O(a®/m?) soft contribution to the V, potential. The
contributions we compute here are those proportional to

the HQET Wilson coefficients Egiw and c}i). We define

D(dZ) DE{ZO) D(dO.Z) Dfil,l)
=——+—5 . (52)
mni, ml m2 myniy

Using the notation of [6],

7Cp DE,?;S) —p0

2,0
—g%CF{DS,l' '+

2 kZe
gB D(Z,O)

3k4s
5 DQ,O)JFM}’

(4x)3 "3
(53)

the bare new result reads

€(2e+3)I'(2e+3)

D%O) g lTFnl <CA <_2_8€_4ﬂ%_2€3(2€2 +7e+4)csc(2re) csc(me)

2766=3 7326 (40¢* + 160€° + 24062 + 167 +44) csc(2me) 2 (e+ 1)

€(2e+3)(e+3)(3e+3)

+2_6€_3ﬂ%_2€(4€4 +12€> +12€% +13e+6) sin(27e)csc? (ze)'(—2e —=3) (e + 2)>

el(e+3)

i <2‘8“‘47z2‘2€(2€+1)(2€+3)(62+2€+2)csc(ﬂe)sec(ne)F(€+2)F(2€+2)
F

T2 (e+3)(3e+3)

(Tpn;)?2783732¢ (e +1)%csc? (me)

_2—86—5”3—26(€+ 1) (2€+3) (262 —|—€+2)0802 (71'6)) )
el?(e+3)

1
] + [Cg)]2§CA2—86—7ﬂ.—2e

I*(e+3)

§ [C <246+53(e(e(e(e(2e(18e(2e+11)+401)+661)+33)—283)—165)—30)r(1—2e)r3(e)
A (4e(e+2)+3)T(3e+3)
m2%T(1-26)3(e+1) 37 (e(e(22—e€(12¢+17)) +45) + 15)csc?(ze)

(3e+3)

el?(e+3)

+24rc5/2 (e(e(e(de(e+12)+127)+130) +65)+15)csc(me) csc(2me)

127*(2¢ — 1)sec? (71'6))
I2(e+1)

T'(3¢+3)

247[3/2”1f‘TF <4€+1F(€+ 1) (6(46 + 3) COt<JZ€)F(—2€ _ 1) _ (6€2+9e+4)(26(26+5)+5)csc(2ﬂe)F(e))

e(4e(e+2)+3)(2e+3)
(2e+3)2
_ 7(2e+1)*(2¢+3) csc(ze) CSC(271'€>>:|
I'(2e+3) '

With obvious changes the same result is obtained for
Dgz)' It is worth emphasizing that this expression
vanishes in pure QED. A nontrivial check of this result
is that ¢, and ¢! appear in the gauge invariant combination
el = ¢p + . Another nontrivial check is that the coun-
terterm is independent of k and that the 1/¢? terms comply
with the constraints from RG. This computation has been
done in the Feynman gauge (with a general gauge param-
eter &) in the kinematic configuration p = k and p’ = 0.
We also set the external energy to zero. Not setting it to zero
produces subleading corrections (we recall that the one-
loop computation of this contribution has no energy
dependence [6]). The result is shown to be independent
of the gauge fixing parameter &.

[(e+3)

(54)

For future computations, it is useful to explain the
convention we have taken for the D-dimensional spin
matrices. For the cg) vertex we typically take a covariant
notation ~¢** (see for instance [38]) and project to the
particle to single out the spin-independent part:
~Tr[(I 4 y9)/2(- -+ -+ )(I +70)/2]. At one loop this pro-
cedure gives the same result as using Pauli matrices with
the conventions used in [6].

Though not directly relevant for this work, we also give
the MS renormalized expression of the bare potential
computed above. It will be of relevance for future compu-
tations of the spectrum (and decays) at N*LO. The result
reads [a = a(v)]
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2,0) (1) S an
rm(k> 2 36 CA 9 Tpnf+< CA Cr

D< CFa |:13 5 hl
6

261111( )Tan> In (k/l/):|

(02 Cza (1080{(3)+706—900)/+4327z'2—817r4+9001n(4n') 179
F

A1 5184

358147507 = 750In(4x) 91

+cl? CFCAnfTF2 ( 593

1008¢(3) + 627 — 130y + 1301n(47z)

——In(k/v)+

0
103 —lnz(k/v)>

9

(k)= 15 (k1) )

+C CanTFCAZ <

<4SC (3)-

864
55+ 6y — 61n(47r)
48

+&'ChngT
rTENy Fon

term.
Note that this contribution does not mix with Vg ),

Therefore, it really corresponds to the contributions

proportional to cg) and ¢ 'hl( of D§2'°>, as defined in
[6]. With obvious changes a similar expression is
obtained for Diol%(k).

Finally, note that the missing part of the soft term
should carefully be computed in a way consistent with
the scheme we have used for the rest of the computation,
in particular of the @>/m? potential, as a strong mixing (if
using field redefinitions) of the terms proportional to c7

is expected.

where we have also included the O(a?)

gln(k/y) -%m%k/y))

25_20,
(k/v)) +chlan§T2Fg (

Sy + g k) ).

(55)

D. Equations of motion

Some of the potentials we have obtained in Sec. IV B are
energy dependent. If we want to eliminate such energy
dependence, and write an energy-independent potential, this
could be achieved by using field redefinitions. At the order
we are working it is enough to use the full equation of
motion (at leading order), which includes the Coulomb
potential. Let us see how it works. We first consider Eq. (39).
It depends on the total energy of the heavy quarkonium and
does not contribute to the running of the delta potential. We
next consider Eq. (51), which is the only energy-dependent
potential proportional to c¢’*. Such a potential is generated
by the following interaction Lagrangian:

g CSFI)Z s s . . Pk ek
L\”/(l((f); =—CrCy 128 m? & x;dx; (W' (i0oy (1, %)) — (i0py " )y (2, X1)) /(2ﬂ)3|k|1—2e)(0)(c(t’x2)
4 (2)2 3 ik-x
g c d’k e .
= CrCh—=—L | dx\dPxyyw(t, Xl)/ TR ()(cla())(c(t X;) — (z@oﬂ);(c(t, X3)). (56)
128 m3 27)% K|
For this Lagrangian one can use the equations of motion [V (x) = —Cra/|x|]
- v 3 i
iy + e w(tx) — [ dExp (. x)Ve(x = Xo)yex (1. x2) =0 (57)
1

and similarly for the other fields. We then obtain

gt C(Fl)z \
LV”OOP = ~CrCatg & xd’x, [WT <—2—W(f X1)
; C(1>z
—CpCp o L | dPxidPxd® ey Ty (%) Ve(x, X%)/
mi (

) o] i

Bk eik-(xl—xz)

i T
A N3 111=2e AcAc , cAc , Tty 58
277 K[ XX (tXao)xex (1, X3) + (58)

where the dots stand for the analogous contribution for the antiparticle.
The first term in Eq. (58) yields the potential we had obtained after using the free on-shell equations of motion in Eq. (51).

It reads
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4 M2 (1) (2)2 (2) 2.4 2
V(f.9)_CFCAg_<CF Cr +CF gk >|k|1+25p ljzp ]

(59)

my m;

The second term is a six-fermion field term. After con-
tracting two of them, a new o’ /m? potential is generated
(here we only care about the divergent part). It reads

(9) 6k4e Fl)2 01(;2)2
PY% =—C%iC, . 60
1loop 32 (4”)2 |: m% + m% :| ( )

It is worth mentioning that this contribution has a different
color structure as those (purely soft) computed in Sec. IV C,
and that they are n? enhanced compared to those also.
Therefore, one could expect them to be more important
than the strictly pure-soft contribution.

Remarkably enough, we will see later that the contribu-
tions from Egs. (59) and (60) to the running of the delta
potential cancel each other in the equal mass case (but not for
|

different masses). This was to be expected, since in the equal
mass case, the potential can be written in terms of the total
energy of the heavy quarkonium, which does not produce
divergences that should be absorbed in the delta potential.

It is worth mentioning that this exhausts all possible 61(;)2
structures that can be generated. To be sure of this statement,
we have to check that the result does not depend on the

gau ge Therefore, we have redone the diagrams proportional

(e2) pf)

1loop> " 1loop and

toc! F  (i.e., the associated contributions to ¥/

11001D) in the Feynman gauge and found the same result.

The other potentials that are dependent on the energy are
proportional to ¢7. As before, these contributions will mix
with the a®/m? pure-soft contribution proportional to ¢7,
which we have not computed anyhow. Therefore, in this
paper, we only include the explicit contribution generated
using the free equations of motion and postpone the incor-
poration of the other contribution to have the full result. The
contributions we explicitly include in this paper then read

U _ oo 30 (6] +Ci1)6‘f)2 PRTNEN) e U el SR i 0
toop = == F=A1004m my \ m, m, k2 k2 k!
1)3 2)3
_C C g4 C](c) +CI(€) |k|]+2€p2+p/2 Spp,_3(pk)(p/k) (61)
4512 m} Kk’ Kk’ k* ’
)2 (2 1 2)2
P eI e et Ci)+c‘§<>62) 3(p° +p2)(p-K)(p' - k)
loop ~ A 256m1m2 ml m2 k6
_2pt ) P +p?)(eep) 200 +p) 200+ )P (62)
k* k* k° k° '
_ 4 (1)3 (2)3 ) 16 4 14 (2 7) 4 14
V‘l{(;i;:CFcAg(ck3 +Ck3>|k|1+2e< (p tp ) (p*+p )(6p %) P +4p ) (63)
52\ m3 " omd Kk k Kk

V. D ) NLL RUNNING

We now compute the NLL soft and potential running of D p

< .

A. Soft running

From the results obtained in Sec. IV C we can obtain the O(«a

be found in [8] ] proportional to cg)z and c’lﬂ(i)

running of d,, + Crd,, [see Eq. (29) or (30)]. It reads

%) RG soft equation of D, [the O(a?) RG soft equation can

. In practice, such a computation can be understood as getting the NLL soft

d d Cy my (1 4 5 .
IJsd_yS(dss + Cdes>|soft = CFa <2CF 2 )c](( )c](( ) + CFa |:m2 <3 Tfnfcl hi(2) _(CA + CF)[C/(( )] —ECA[CE;)]2>

3
1 _n(y 4 (12
+m—1<3Tfnfc ( —3(Ca+ Cpl P ——CA
(13 my Tan _hl(Z) CA 125 (2)
+ CF 47[ |: <— 54 (65CA - 54CF')C1 18 <25CA 3 T}ﬂ’lf) [CF ]2)
Trn C 125
+2 < ‘5” L(65C, — 54Cy)e" 12 (25(7A TT,vn,f) [c2>]2)] +O(). (64)
ny :
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The O(a?) stands for terms proportional to NRQCD

Wilson coefficients different from ¢\’* and ¢, This
equation is meant to represent the pure-soft running of
the NRQCD Wilson coefficients. It does not give the

full running of Dgz), as one should also include the

potential and ultrasoft running. We fix the initial
|

matching condition to zero, since we only need the
initial matching condition of the total potential, which
can be determined in the final step, when combining the
different contributions.

The strict NLL contribution to the solution of this
equation reads [the LL is already included in Eq. (29)]

7CpsDIN™ = [dy, + Crd N = —a? (1)) Cr | (465C8,(75Tm2 — 306m,my, + 757m3)

— 13824C2(2m? = 3mymy + 2m3)nt T4 + C3(5580C(53m? + 102mmy + 53m3)

+ (=590218m? + 34211 Tmymy — 590218m2)n Ty) — Cin,Tp(34CH(834Tm2 + 38772m,my
+ 8347m3) — 3(115117m?} — 101466m,my + 115117m3)nTr) + 32CAn}T%(81C2F(7Om%

— 83mymy + T0m3) — 4Cp(5m7 — 459mymy + 5m3)n;Tp + 120(mi + m3)n3T5)

— 8CAnFTE(81CE(566mT — 563mymy 4 566m3) — 3Cr(193mi — 17595mymy + 193m3)n, T
+2(739m3 + 1080mym; + 739m3)n2T%) + 6C3n, T (360C%(106m? — 93mym; + 106m3)

+ C(10129m2 + 18773 1mymy + 10129m3)n, T — 4(2536m? — 4959m,my + 2536m3)nT%))

1

X
36m1m2(31CA - 16I’lfTF)(5CA - 4nfTF)(1lCA - 4I’lfTF)2(2CA - l’lfTF)
+5C(mi + m3)(397C} + 48CpniT; + 11C5(33C — 35n,Tr)

+ 10Con; T p(=21Cp + 10n,T}))25Ca=4n,Te)

1
 468mymy(11C, — 4n ;T

1
6m1m2(5CA — 4I’lfTF)(1 ICA — 4nfTF)2

(1989C5 (8m73 + 3mymy + 8m3) + 8Cpn;Tr(81Ck(6m]

+ 13mymy + 6m3) + 1240(m?} + m3)n;Tr) + 2Can;T(Cr(—15134m3 + 5967m m,
— 15134m3) + 3100(m? + m3)n;Tr) 4+ 2C5(3978Cr(2m? — 3m my + 2m3) — 5(2263m?

+351mym, + 2263m%)nfTF))Z%<11CA—4"/‘TF)

N 2(5C, +8Cr)(m? + m3)n Tp(=1327Cy + 594Cy + 620n,T ) e a5 Tr

117m1m2(31CA - 16I’lfTF)(11CA - 4l’lfTF)
= Ca(mi +m3)(15C3 = 188C3n; Ty — 2n7TE(27CE + 10n,Tp) + CansTp(216Ck

+ 1370, Ty)) CCa—Tr)

12m1m2(11CA — 4nfTF)2(2CA - nfTF)

_5CR(1 = OCT) (3 In() + m} In(z))

2m1m2(5CA - 4nfTF)

We do not aim in this paper to give a full-fledged

phenomenological analysis. Still, we compute numerically

the running of SD;?)’NLL to see its size. We show the result

in Fig. 4. The contribution is small.

To this contribution one should also add the contribu-
tions generated by the new o®/m? potentials that appear
after using the full equations of motion. Of those we only

computed the contributions proportional to ¢\* and ch (the

(65)

[
latter happened to be zero). This generates a new contri-
bution to the soft RG equation:

d _
—(d Crd
l/sdl/ ( ss+ F vs)

N

soft

1 my (12 , My (2)2
=~~-+EC%CAgza2{m—lc%) +m—2c}> . (66)

Its solution reads

114034-15



C. ANZAI, D. MORENO, and A. PINEDA

PHYS. REV. D 98, 114034 (2018)

0.00
., -o001
|

=

2 _oo2
@

°

IQ d
o _003[

----- n;=3 (SL)
n;=0 (NLL)
n;=3 (NLL)

n;=4 (NLL)

6D 52 NL

ng=
n;=4 (NLL)

1 L -

16
v (GeV)

FIG. 4. Plot of the NLL soft running due to Eq. (65) to 6D

1.8

NLL

20 22

for different values of n; (0,3,4) and in the single log (SL)

approximation (in this case only with n; = 3). Upper panel: Plot for bottomonium with v;, = m,,. Middle panel: Plot for charmonium
with v, = m,.. Lower panel: Plot for B, with v;, = 2mm,/(m;, + m,).

~(2)NLL

6Dd,new _—<dss + CF‘_ivs)

ﬂCACF(m +m3)(1-z72C~))a? (1)
4mymy(Ca—Po)

(67)

We then show the size of this new contribution in
Fig. 5.
Finally, let us note that the ¢? terms can also mix with

a?/m? potentials through field redefinitions; see the

discussion in the Appendix. Therefore, this contribution
could be different for other matching schemes.

B. Ultrasoft running

To obtain the complete potential RG equation, we also
need an extra potential divergence that is generated by
ultrasoft divergences. This term was already computed in
[36] and applied to the spin-dependent case. Here, we give
the full term, which contributes to both the spin-dependent

and spin-independent term. It is generated by the following
diagram:
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FIG. 5. Plot of the extra contribution to the NLL soft running, 6D<2>NLL due to Eq. (67), for different values of n, (0,3,4) and in the

single log (SL) approximation (in this case only with ny = 3). Upper panel Plot for bottomonium with v, = m;,. Middle panel: Plot for
charmonium with v;, = m,.. Lower panel: Plot for B, with v;, = 2mym./(m;, + m.).

dVSZ,l/r3 _4CF |:2S1 'SZC(F])(VMS)C%Z)(VMS)

Z/MS -
666—6\6\6\6\% dv,, 3 mn,
1)2 2)2
S &) 3 <c<F) (i) <vm>)]
oD o 4\ m} m3
mi 7 My 1 1\ (V,=V,)?
0 vV —V.)3 — ) S/
]‘/(E - ‘/0( ) - p2/(2m7’)) x (( ‘ S) + <m1+m2> 27’2
(Vus)
- {7} ’ (68)
which produces the following ultrasoft RG equation, or alternatively (but equivalent at this order)
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dVSZ,l/r3 4CF (28 - S2cl('7l>(l/us)c§72)(yus)
Vys =
dv,, 3

1)2 2)2
3 <c<F> () |, €F <>>}
4

myni,

2 2
my my

xV,(V,=V,)? [%} : (69)

Using that the LL running of ¢y is independent of the

masses (we take the initial matching condition to be v;, for
both heavy quarks), its solution reads

AC;[28,-S, 3/1 1
V 3 = — —_— — _—
§2.1/7 3 { mym, 4 m% +m%

S Vo(Vo - VS)ZDl/r3,SZ? (70)
or
4Cr [28,-S, 3/ 1 1
Vv = ——|—=+—=||D;,3
§%.1/r 3 [mlmz 4 m%+m% 1/rs?
1\ (V,=Vy)?
V —V 3 o N , 71
X(( ’ S)+(m1+m2> 2r? ) )

where (we use the same notation as in [36])

s (822 o

Vs is singular and will contribute to the potential

running of Df).

C. Potential running

We now have all the necessary preliminary ingredients to
obtain the complete potential RG equation. The next step is

to compute all potential loops that produce ultraviolet

divergences that get absorbed in ijz) and are at most of

______ ._._..___._._._.._..__._.._
Va2 fms Ve
______ B---—-——--HR--—-—--
Vo Va2 jm3
______ ._.__._.__._..______
Va2/m ‘/oz/rn.2
______ ._______.______
Va/m2 Va2/m

FIG. 6. Divergent diagrams with one potential loop that
contribute to the running of D dz at O(a?).

—————— [ [ -
Va/m4 VC VC
—————— [ R - -
Ve Va/ma Ve
------ RS S ———
Ve Ve Va/ma
—————— [ R - ———
Vigme  Viyms Ve
—————— | RS R -
Vi Vo Vi
—————— [ [ IS E—
Ve Voym2 Vo /m2
—————— | RS-
Vaz/m Vvl/m”’ Ve
—————— -
Ve Vvl/m"‘ Va2/m

FIG. 7. Divergent diagrams with two potential loops that
contribute to the running of D dz at O(a?).

O(a?). Since the deltalike potential is of O(1/m?) we must
construct potential loop diagrams of O("/m?) with n < 3
describing the interaction between the two heavy quarks in
the bound state through several potentials. The first non-
vanishing contribution to the potential running is indeed of
O(a®/m?). To construct such potential loop diagrams, we
must consider the power of a and m of each potential and
take into account that each propagator adds an extra power
of the mass m in the numerator. We summarize all kind of

------ N-------R------l -l -~
Ve Vl/ms Ve Va/mz
------ USRI W RS- —
Ve Vl/m3 Va/m2 Vo
—————— [ SRR~ R —
Va/m? Vi/ms Ve Ve
—————— RS TR - E——
Ve Ve Vl/m3 Va/m2
—————— Bl oo i
Ve Va/mz Vl/ms Vo
------ TR TR - —— R —
Va/m? Ve Vi/ms Ve

FIG. 8. Divergent diagrams with three potential loops that
contribute to the running of D d2> at O(a?).
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—————— T~
Ve Vi/m3 Vi/m3 |7 Ve
—————— TR - ——
Ve Vi/m3 Ve Vi /ms3 Ve
—————— =
Ve Ve Vl/m3 Vl/m3 Ve

FIG. 9. Divergent diagrams with four potential loops that
contribute to the running of D ) at O(®).

diagrams that contribute to the NLL potential running of

Df), in Figs. 6-9. The ultraviolet divergences arising in
such diagrams must be absorbed in the 1/m? potentials.
However, after the computation, we observe that all
divergences are only absorbed by the deltalike potential.
It is important to mention that the iteration of two or
more spin-dependent potentials can give a contribution to
D<dz>, associated to a spin-independent potential. The
relevant diagrams are shown in Figs. 6-9, where V. is
the tree level, O(a), Coulomb potential; Vs is the
O(a’/m*) potential; and Vs corresponds to the first
relativistic correction to the kinetic energy, and it is
proportional to cy.

It is interesting to discuss in more detail which of the
novel a?/m? potentials computed in Secs. IV B and IV D
[we remind that here we use the potentials after using the
(free) equations of motion, i.e., the expressions in
Sec. IV D for the energy-dependent potentials] contribute

J

2
mr
Dy +Cray— . (D

d

c 0(2) : nm
. +L3> +<—‘+
mjy  m; m,

ny
ny

232 _

(4D(12)) 1 CCy [ZD(]Z)D(I) —DE,Z)D“) +DWaym,m;m, (L

to the running of Dg). The potentials in Egs. (39)-(40)

do not contribute to the running of DE;). Equation (39)
does not because it is proportional to a total derivative,
whereas Eq. (40) does not because of the following
argument: the only possible potential loop that can be
constructed with an O(a?/m?) potential is the iteration
of it with a Coulomb potential. As a consequence, the
a®/m? potential is always applied to an external momen-
tum. When the high loop momentum limit is taken in the
integral in order to find the ultraviolet pole, all these
external momenta vanish and all the terms become
proportional to |k|'*?¢. After doing so and summing
all the terms the overall coefficient is zero, explaining
the fact that they do not contribute. This argument also
applies to V(¢! and V) (with i = 1 to 6). On the other
hand V(¢? and V"7/3/%) do contribute to the running.
Note that V/8) and V%) were originally dependent on
the energy.

Diagrams with Vs in the extremes of a potential
loop, i.e., acting over a external momentum, have not
been drawn because they do not produce any ultraviolet
divergence. Similarly, diagrams with V,,,s do not
produce ultraviolet divergences. One can then easily
convince oneself that there are no diagrams with five
potential loops or more that can contribute to the O(a?)
anomalous dimension of Dd. Therefore, the above
discussion exhausts all possible contributions to the
O(a*) anomalous dimension of D,, and the potential
RG equation finally reads

2) (2 0 S 22 4. 022
8D DY + 120 =2 D{ + 2D )
NOC
7 t—3
my m
Cfx(CA _2CF)0‘§ D(z)
2 s21/8

AN 0N L)
—2Ckakam? [16m1m2 <Li+%) +2<L2+L2> + + (lz+i2)]
my - m; mi m3) mymy \mi m}

(1) (1 2 (12 (22
C 1/c c 1/c c 1 c c
#er (20 =Gt )ammon 5 () g (S 0 ) o (o)
1 2 1 2 1Mz 1 2
n @ (n 2 (2 (22 (1 (1 2 (2
1 c c 1 1 c c c c cr'c cr'c
‘zCFCA“Z“V"“”"lmZ{Z( Tt 43)+<_3+_3)‘< it M3)+< o F3>‘( T ﬂ
my 1 M my my m; my m;
(1) (2 (1) (2)
1
+-LCrataymmim, [(ciz—l—cig) += (c#—i—ig)]. (73)
. my  my 2\my  m3
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The first five lines are generated by potential loops with
a?/m, a/m* and the p*/m> correction to the kinetic
energy (besides the iteration of the Coulomb potential,
accounted for by ay). The sixth line is the term
generated by the potential computed in Sec. V B.
The last four lines are generated by potential loops
with the a*/m? and a/m* potentials (besides the
iteration of the Coulomb potential, accounted for by
ay). Note that, for simplicity, we have already used

c,@ =1 [39] in the terms that do not have NRQCD
Wilson coefficients in the above expression. A part of
this equation was already computed in [40]. Also,
several of these terms (for QED) can be checked with

the computations in [34].

It is interesting to see that there is a matching scheme
dependence of the individual a?/m? and a/m* potentials
that cancels out in the sum. In the above expression the
coefficients cy,, ¢p, ¢y, cx1 appear (note that the last two
coefficients are dependent on cp due to reparametrization
invariance). They are gauge-dependent quantities. Such
gauge dependence should vanish in the final result. Indeed
it does. This is actually a strong check of the computation.
In Eq. (73) we can approximate ay, = a (everything is
needed with LL accuracy). Then we can show that every-
thing can be written in terms of c,,, which is gauge
independent (it is an observable in the low energy limit of
the Compton scattering; see the discussion in [14]), and the
explicit dependence in cp, ¢y, cx1, and ¢4, disappears. The
resulting expression reads

dp®? 11\ o m (@2 on@p® @2 _3 pee 402
14 dj = —2C4C%—(X%/m§ (m—? + m—%)Dd + C%:(lvJ My, (Dd - 8Dd Dl + 12Dl - EDSIZ + gDSZ >
1 1 1 1
+2¢,Crabm? <—3 +— | @DP) + CiCy [2D§2)D“) = D'DY + ¢;DVaym,mym, <—3 + _3>]
my  m; my my
1 1\2 m m,\ C2 (Cy—2C )(13
202,34 ! 2) ZaltA F @
—I—c4CFan,mlm2 <m?+m%> + <mz+m1> 2 DSZ,I/r3

5
- 2C:a’m? [Smlmz

(.2

Cy 1 fcyi  cuf

+ CF (2CF - 7>a3mrm1m2 |:§ <m—? +m—%
(1)

c cf) 1
+—=+t|=3
my  m; mj

1
3 CrCpa®m,mym, {2 <L?
2

)
3

+

(
Cy Cas  Ch 1
— (CF—7>Cpa3m,m1m2[<m—?+m—% +§

From this result one may think that cy; and cyy
contribute to the Abelian case. Nevertheless, the LO
matching condition is zero for these Wilson coefficients,
and all the running vanishes in the Abelian limit.
Therefore, there is no contradiction with the pure
QED case.

In order to solve Eq. (74), we need to introduce the
D’s, the Wilson coefficients of the potentials. The
necessary expressions can be found in Sec. IIl. Note
that in those expressions we have already correlated the
ultrasoft factorization scale v,, with v and v, using
v,s = V*/v,. We also do so in Eq. (72) (where we also

Lo NUNIHC
<m4+m4> +2<mz+mz
1 2 1 2

)+

_|_

nmymy
_()  ~(2)

1 /c c 1 c

i) s

4\my  my mymy \ my

(12

c
_3> + < F3
m; my

(1)2

2)2
+C§v |

my
CEDZ)Z C(Fl)cgl) cf)c’gz)
+ m ) m3 + m3

2 1 2
1 2

>t 5|
my  mp

|

set 1/r = v, consistent with the precision of our compu-
tation). This correlation of scales was first introduced and
motivated in [41].

For ny =3 or 4 it is not possible to get an analytic
result for the solution of the RG equation, more
specifically for the coefficients multiplying the differ-
ent z functions (note that this comes back to the fact
that the polarizability Wilson coefficients cy4q, ca9, ...,
cannot be computed analytically). On top of that
the resulting expressions are too long. Therefore, we
only explicitly show the analytic result with n; =0.
It reads

(74)
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Finally, in Fig. 10, we give the numerical evaluation 6D for different values of n;. The contribution is sizable.

D. Potential running, spin-dependent delta potential

Even though not relevant for this paper, we profit to present the potential RG equation of D@ in the

basis that we use in this paper, which is different from the basis used in [36]. The final solution is nevertheless
the same:
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(76)

This equation has slightly changed with respect to Eq. (36) in [36] because of the change in the basis of potentials.
In particular the term proportional to D(Szz) changes to compensate for the fact that Dg{z)

result is the same.

is also different so that the
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FIG. 10. Plot of 8D """

for different values of ny (0,3,4) and in the single log (SL) approximation (in this case only with n; = 3).

Upper panel: Plot for bottomonium with v;, = m;,. Middle panel: Plot for charmonium with v, = m,.. Lower panel: Plot for B, with

vy = 2myme [ (my, +m.).

VL. N’LL HEAVY QUARKONIUM MASS

For the organization of the computation and presentation
of the results we closely follow the notation of [7]. In
particular we split the total RG improved potential in the
following way:

VI, 0) = VIO ) + VI 0),  (77)
where VN0 (1) = VN (1, = 1, 1). We then split the total
energy into the N°LO result and the new contribution
associated to the resummation of logarithms. The S-wave

spectrum at N3LO was obtained in Ref. [42] for the ground
state, in Refs. [43,44] for S-wave states, and in Refs. [45,46]
for general quantum numbers but for the equal mass case. The
result for the nonequal mass case was obtained in Ref. [6].
From the RG improved potential one obtains the N'LL
shift in the energy levels
Eni (v v) = Exio(v) + 8Erg (v V)N (78)
where the explicit expression for Eyip o(v) can be found in
Ref. [6], and in a different spin basis in Appendix B of [7].
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The LO and NLO energy levels are unaffected by the RG
improvement, i.e.,

5ERG|LL = 5ERG|NLL =0. (79)

We now determine the variations with respect to the NNLO
and N3LO results. We are here interested in the corrections
associated to the resummation of logarithms. In order to
obtain the spectrum at NNLL and N*LL we need to add the
following energy shift to the NNLO and N*LO spectrum:

OERG|nnLL = <”l|5VEINLL(Vh’ v)|nl), (80)

which was computed in Ref. [8], and

SE,ira i = (nl|8VY (v, 1) |nl) (81)
1
+ 2<nl|V1 WaVSNNLLO/h, U)|nl>
+ [5EUS(U’ l/us) _5EUS(Z/7 y)} (82)

Note that (nl|sVN'E(y,,v)|nl) includes (nl|sVNNLL x
(vp,v)|nl).

SE,1rG o1, Was computed for [ # 0 in Ref. [7], and for
[ =0, s = 1inRefs. [9,10]. To have the complete result for
S-wave states, one needs to compute (and add) the new
term for [ = O:

1

SRk, = (10[BVY™ = 3V 0y )n0) + 20001V e 6V (04 )0), (53)

where
C
V) = ——E2% 28 In(vres) + ay), (84)
r 4x
and SVN'L is the delta-related potential contribution to 5VNL. The new term generated from D((f) then reads
w 1 = (2)NLL ~ (2)NLL (m,Cra)?
5E?5,RG|N3LL:m1m2”CF [5D;> (vy.v)— 6D (U,V)} T‘;@o
- - m,Cra)?
2 C [D(Z)LL ’ _D(z)LL ’ ] [_7} (m,Cr 5
+ mlmzﬂ F|Dg" " Wwpv) =D, " (v,v) ] Ra— 10

1 2 3
o 5+ 7m0 -3 (57) 35,

6 . 2
N zCp [ 1]2(m,Cpa)3< nav

mpmy 4z 3

2

n

where 5D§,2)NLL is defined in Eq. (35). The first three
lines are generated by the term proportional to 6 (r).
The last two lines are the contribution to the S-wave
energy ([ =0) from the last term of Eq. (21). (The
contribution to the P-wave energy, proportional to the
1 — 9y term, is already included in Ref. [7]. Therefore,
we do not include it in the expression above.) To this
contribution we have explicitly subtracted the fixed
order contribution already included in the N3LO result.

By adding 6E} % Ine1L to the results computed in these
references’ one obtains the complete result.

>Note though that one should change 2=S(S+1) by S(S+1)—
3/2 in the result obtained in [9,10] to account for the change of
basis of the operators to the one we use here. One should also
change from the on-shell to the Coulomb basis of potentials in [7]
(this is very easy to do, as the ultrasoft running is not affected by
this transformation).

n—1 d - 2

o] 2

VII. CONCLUSIONS

In this paper we have computed the a/m* and the o> /m?>
spin-independent potentials (in the Coulomb gauge), and
an extra ultrasoft correction that contributes to the S-wave
spin-average NNNLL spectrum. We have also obtained the
potential RG equation of the delta potential with NLL
accuracy (the first nonzero contribution). Combined with
the previous results we solve this equation and obtain the
complete (potential and ultrasoft) NLL running of the delta
potential.

We have also computed the bare and renormalized
(soft-)a® /m? contribution to the spin-independent deltalike
potential proportional to [c']2, [¢']2, &\"" and &P and
obtained (and solved) the RG equation.

Combining all these results with the results in [7] and
Refs. [9,10] allows us to obtain the S-wave mass with N°LL
accuracy. The missing terms to obtain the full results are to
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have the NLL running of ¢!/ [the associated missing term is
of O(T jnyma® Ina) and is expected to be quite small, so its
computation will be carried out elsewhere], and a piece of
the soft running of the delta potential. This computation
will be performed in a separate paper. The magnitude of
this contribution is estimated to be smaller compared with
the potential running computed in this paper. It is also
expected to be smaller than the complete running of the
heavy quarkonium potential. Nevertheless, a detailed phe-
nomenological analysis is postponed to future publications.
Finally, we remark that significant parts of the compu-
tations above are necessary building blocks for a future
N*LO evaluation of the heavy quarkonium spectrum.
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APPENDIX: MATCHING SCHEME (IN)
DEPENDENCE

The potentials obtained in Sec. [V were computed in the
Coulomb gauge. On the other hand, the potential RG
equation obtained in Sec. V is generated by potential loops,
which are independent of the gauge/matching scheme.
The dependence on the matching scheme of Eq. (74) is
implicitly generated by the Wilson coefficients used for the
running, such as D dz or DU, and explicitly, since we put
the explicit expressions for the 1/m* and 1/m* potentials
obtained in the Coulomb gauge. This last point makes that
Eq. (74) can only be used in the Coulomb gauge matching
scheme, though with not much effort it could be written in
terms of general structures of the 1/m?> and 1/m* potentials
that would make it also useful for a computation in a
general matching scheme. Nevertheless, since we do not
know the 1/m? and 1/m* potentials in other matching
schemes, we refrain from doing so in this paper. Still it is
worth it to study how the differences between different
matching schemes show up in the terms where the entire
matching scheme dependence is encoded in the D’s [the
first four lines in Eq. (74)]. We do so in the following.

At O(ma*) the Coulomb and Feynman matching
schemes produce the same potential but the on-shell
scheme does not. At this order, the relations between the
Wilson coefficients of the delta-like and the 1/m potentials
in the off-shell Coulomb gauge (equal to the Feynman
gauge at this order) and in the on-shell scheme are given by

2 2
D =Dy +alv), (A1)

2CF m%

Ca mlmZ‘

1 1
Dy = D) + & (v) (A2)

At the order that we are working in this paper such
differences produce the following difference between the

RG equation for D;z) in the two schemes [for the first four
lines in Eq. (74)]:

d ~@ ~ (2

v (Do Doy
-2 m% 4 2D(2> 3 CAmlsz(l) A3
_Fm_a1+a_aC_Fm% cG | (A3)

which does not vanish. This difference can be understood
through field redefinitions. The field redefinition that
moves from the off-shell Coulomb to the on-shell scheme
was already discussed in [6,47]. In the second reference
the discussion was focused on effects to the spectrum
up to O(ma’). We now need to see (the logarithmically
enhanced) differences of O(ma®). They can be traced back
by using the following Hamiltonian in the Coulomb
(Feynman) gauge:

heg = h + h(czf); (A4)
where 7(%) ~ m? is the leading order Hamiltonian
0P L yo
h\Y = \% , A5
2o (a5

and h(Czé ~mv* is the relativistic correction, with the

explicit potentials

p* p* CyC,DY

o __. 2 P
cG C48m? C48m% 4m,r?
crDP (1 ) CeDP 1, 2D
—5— Pt L 89(r)
2mym, 1 2mimy r mymy
@)
87TCFDSZ
5 g,.S,60)
3mym, 1°526%(r)
3¢, 1 ) @ CPDY T
zmlmzﬁL-(Dlesl+DLSZS2)+W3S12(I').

(A6)

h¢g correctly reproduces the O(ma*) spectrum [for the
purpose of the comparison we can neglect the O(a)
corrections to the static potential: Cr“* ~ —Cral]. This
will be enough for our purposes. We now consider the field
redefinition that transforms h.; into hpg, the on-shell

Hamiltonian:
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i
U-eo(-Liwopt) )
W can be determined from the equation:
2
1
Vo =Veg=—-W-(VWO). (A8)

Since the only possible tensor structure of W is
W = W(r?)r', the above equation can be written as

Vo= Ve = 2 WA (VYO). (a9)
We then obtain
W= CuDL = D) e (AI0)
and
hony = UthegU = heg + 6h
= hO 4+ hG, + A5+ - (Al1)

hcg and hgy obviously produce the same spectrum.
Therefore, 5h cannot produce energy shifts, and any change
in the RG equations has to be compensated among different

terms. Let us see how it works. h(021)v produces the
differences reported in Eq. (A3). Such differences should

be eliminated by hg}v (as the other contributions to the

Hamiltonian are subleading), and indeed they do. In

AS)
momentum space /)y reads

7(4) ”D( ) 1+2¢ 1+2¢
hoy :CFQ%SmrS 22 K| +4(p-p')|k|”

2(p-k)(p 'k)>
t e
‘k|32
s 1 wm 1 mo L gy
c —=CrCyDY) + = C
* Fm1m2< 4 Creabee g, mym, ©16x?
21 1
Al2
47r€|k|_4€ ( )

Note that the term proportional to |k|'*2¢ in the first line

gives a contribution to the potential RG equation through
potential loops. It is equivalent to generating a new 1/m?
potential. The other two terms in the first line do not
contribute to the potential RG equation. Looking at the
second line, it is also interesting to see that there is a kind of
soft contribution, which nevertheless has ultrasoft in the on-
shell scheme. The second term in the second line can also
be interpreted as a pure-soft contribution. This brings the
interesting observation that even if the potential RG
equation can be written in a matching-scheme-independent
way, the implicit scheme dependence of the potentials
allows for a mixing with the soft computation (at least in the
on-shell scheme). Finally, for the dots in the third line we
refer to extra contributions to Eg‘,)\,, generated by the field
redefinitions, which nevertheless do not contribute to the
running.
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