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We obtain the potential nonrelativistic quantum chromodynamics Lagrangian relevant for S-wave states
with next-to-next-to-next-to-leading logarithmic accuracy. We compute the heavy quarkonium mass of
spin-averaged l ¼ 0 (angular momentum) states, with otherwise arbitrary quantum numbers, with next-to-
next-to-next-to-leading logarithmic accuracy. These results are complete up to a missing contribution of the
two-loop soft running.
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I. INTRODUCTION

High order perturbative computations in heavy quarko-
nium require the use of effective field theories (EFTs),
as they efficiently deal with the different scales of the
system. One such EFT is potential nonrelativistic quantum
chromodynamics (pNRQCD) [1,2] (for reviews see [3,4]).
The key ingredient of the EFT is, obviously, its Lagrangian.
At present the pNRQCD Lagrangian is known with next-
to-next-to-next-to-leading order (NNNLO) accuracy [5]
(for the nonequal mass case see [6]).
One of the major advantages of using EFTs is that it

facilitates the systematic resummation of the large loga-
rithms generated by the ratios of the different scales of the
problem. For the case at hand we are talking of

(i) the hard scale (m, the heavy quark mass),
(ii) the soft scale (mv, the inverse Bohr radius of the

problem),
(iii) and the ultrasoft scale (mv2, the typical binding

energy of the system).
At present, the pNRQCD Lagrangian is known with next-
to-next-to-next-to-leading log (N3LL) precision as far as
P-wave states are concerned [7]. For S-wave observables
the present precision is NNLL [8]. The missing link to
obtain the complete N3LL pNRQCD Lagrangian is the
N3LL running of the delta(like) potentials.1 For the spin-
dependent case, such precision for the running has already

been achieved in [9,10]. Therefore, what is left is to obtain
the N3LL result for the spin-independent delta potential.
This is an extremely challenging computation. We under-
take this task in this paper.
The new results that we obtain in this paper are the

following:
(i) We compute the α=m4 and the α2=m3 spin-indepen-

dent potentials. These potentials are finite. The expect-
ation value of them produces energy shifts of order
mα6, which contribute to the heavy quarkoniummass
at N3LO. Nevertheless, since some expectation values
are divergent, some of these energy shifts are loga-
rithmic enhanced, i.e., of order Oðmα6 lnð ν

mαÞÞ. Such
corrections contribute to the heavy quarkonium mass
at N3LL. This divergence and the associated factori-
zation scale ν get canceled by the corresponding
divergence in the spin-independent delta potential.
By incorporating the heavy quark effective theory
(HQET) Wilson coefficients with LL accuracy2 in the
α=m4 and α2=m3 spin-independent potentials, the
divergent structure of their expectation value (tanta-
mount to computing potential loops) determines the
piece associated to these potentials of the renormal-
ization group (RG) equation of the spin-independent
delta potential with N3LL precision.

(ii) We compute the (soft-)α3=m2 contribution to the
spin-independent deltalike potential proportional to

½cð1ÞF �2, ½cð2ÞF �2, c̄ð1Þhl1 and c̄ð2Þhl1 . Unlike before, this
potential is divergent. Therefore, for future use, we
also give the renormalized expression. The divergent
pieces produce corrections ofOðmα6 lnð ν

mαÞÞ (i.e., of
order N3LL). From these divergences we generatePublished by the American Physical Society under the terms of
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1We use the term “delta(like) potentials” for the delta potential
and the potentials generated by the Fourier transform of lnn k (in
practice only ln k).

2These are known at Oð1=mÞ [11], Oð1=m2Þ [12,13] and
Oð1=m3Þ [14].
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the (soft) RG equation of the spin-independent delta
potential and resum logarithms with N3LL preci-
sion. In order to reach this accuracy, we need
the NLL running of the 1=m2 HQET Wilson
coefficients. For cF this is known [15,16] but not
for c̄hl1 . [The associated missing term is of
OðTfnfmα6 lnð1=αÞÞ and is expected to be quite
small. Its computation will be carried out elsewhere.]
The possible mixing between the (soft) α3=m2 and
the α2=m3 spin-independent potential computed in
this paper is also quantified.
The computation of the (soft-)α3=m2 contribution

to the spin-independent deltalike potential, propor-
tional to other nonrelativistic quantum chromody-

namics (NRQCD) Wilson coefficients, like ½cð1Þk �2,
½cð2Þk �2, and cð1Þk cð2Þk , will be performed in a separated
paper. The associated contribution to the running is
expected to be small in comparison with the total
running of the heavy quarkonium potential. We will
estimate its size using the result of the running of the
already computed soft contribution.

(iii) The N3LL ultrasoft running of the static, 1=m and
1=m2 potential was originally computed in [17–19]
(see also [20,21]). This is enough for P-wave
analyses [7], where such corrections produce a
N3LL shift to the energy. Nevertheless, it is not

so for S-wave states, as already noted in [9,10] for
the case of the hyperfine splitting. The reason is the
generation of singular potentials through divergent
ultrasoft loops. We revisit it in Sec. V B and
incorporate the missing contributions needed to
have the complete ultrasoft-potential running that
produces N3LL shifts to the energy.

(iv) Finally, we compute the complete (potential) RG
equation of the delta potential with N3LL accuracy
(the first nonzero contribution). Solving this equa-
tion we obtain the complete N3LL running of the
delta potential. This allows us to obtain the S-wave
mass with N3LL accuracy. It is also one of the
missing blocks to obtain the complete NNLL RG
improved expression of the Wilson coefficient of the
electromagnetic current. This, indeed, is what is
needed to achieve NNLL precision for nonrelativ-
istic sum rules and t-t̄ production near threshold. As
the spin-dependent (and l ≠ 0) contribution has
already been computed in earlier papers [7,9,10],
we only consider here energy averages of S-wave
states where the spin-dependent contributions van-
ish, and only include terms relevant for the N3LL
S-wave spin-average energy.

Throughout this paper we work in the MS renormaliza-
tion scheme, where bare and renormalized coupling are
related as (D ¼ 4þ 2ϵ)

g2B ¼ g2
�
1þ g2ν̄2ϵ

ð4πÞ2 β0
1

ϵ
þ
�
g2ν̄2ϵ

ð4πÞ2
�

2
�
β20

1

ϵ2
þ β1

1

ϵ

�
þOðg6Þ

�
; ν̄2ϵ ¼ ν2ϵ

�
eγE

4π

�
ϵ

; ð1Þ

where

β0 ¼
11

3
CA −

4

3
TFnf;

β1 ¼
34

3
C2
A −

20

3
CATnf − 4CFTnf: ð2Þ

nf is the number of dynamical (active) quarks and
α ¼ g2ν2ϵ=ð4πÞ. This definition is slightly different from
the one used, for instance, in [22].
In the following we will only distinguish between the

bare coupling gB and the MS renormalized coupling gwhen
necessary. The running of α is governed by the β function
defined through

1

2
ν
d
dν

α

π
¼ ν2

d
dν2

α

π
¼ βðαÞ

¼ −
α

π

�
β0

α

4π
þ β1

�
α

4π

�
2

þ � � �
�
: ð3Þ

αðνÞ has nf active light flavors and we define

z ¼ ½ αðνÞαðνhÞ�
1
β0 ≃ 1 − 1=ð2πÞαðνhÞ lnð ννhÞ. Note that with the

precision achieved in this paper we need in some cases the
two-loop running of the coupling when solving the RG
equations.

II. NRQCD LAGRANGIAN:
1=m3 AND BEYOND

Instrumental in the determination of the Wilson coeffi-
cients of the pNRQCD Lagrangian is the determination of
the Wilson coefficients of the Lagrangian of the EFT named
NRQCD [23,24]. We first need to assess which NRQCD
operators we have to include in our analysis. We will include
light fermions, which we will take to be massless.
The HQET 1=m3 Lagrangian can be found in [25], and

including light fermions, though in a different basis, in [26].
Here we use the basis and notation from [14], which also
includes light fermions. In [14] one can find the resummed
expressions of the Wilson coefficients with LL accuracy for
the spin-independent operators. For the spin-dependent
1=m3 operators, not relevant for this work, the LL running
can be found in [27,28]. Note that there are no pure gluonic
operators of dimension seven.
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To obtain the complete 1=m3 NRQCD Lagrangian,
one also has to consider possible dimension-seven four
heavy-fermion operators. There are no such operators, as
mentioned in [29]. At Oð1=m4Þ, we do not need the
complete Lagrangian for the purposes of this paper. For
the heavy-quark bilinear sector the complete set of oper-
ators was written for the case of QED in [30] and for QCD
in [31] (in the last case without light fermions). Of those we
can neglect most, we do not need the spin-dependent 1=m4

operators, nor terms proportional to a single B, nor terms
with two (either B or E) terms. The reason is that we only
need 1=m4 tree level potentials. Therefore, we can take all
relevant operators from the QED case. Following the
notation of [30], the possible relevant operators are

δLð4Þ
ψ ¼ cð1ÞX1

m4
1

ψ†g½D2;D ·Eþ E · D�ψ

þ cð1ÞX2

m4
1

ψ†gfD2; ½∇ · E�gψ þ cð1ÞX3

m4
1

ψ†g½∇2;∇ · E�ψ

þ � � � ð4Þ
and similarly for the antiquark. The dots stand for terms
that one can trivially see do not contribute to the S-wave
spin-independent spectrum at NNNLL, either because they
involved the emission of two gluons or because they are
spin dependent. In principle we need three new coefficients.
Nevertheless, we will see later that only cX1 contributes to
the running of the spin-independent delta potential. Still,
we will compute any tree level potential proportional to
cX1, cX2 and cX3.
The fact that we need cX1, one of the Wilson coefficients

of the 1=m4 heavy quark bilinear Lagrangian, could make it
necessary to consider the Wilson coefficients of the 1=m4

heavy-light operators as well [light-light operators are
subleading for the same reason they are at Oð1=m3Þ], as
they may enter through RG mixing. Fortunately, cX1 can be
determined by reparametrization invariance, which gives us
the following relation [30]:

32cðiÞX1 ¼
5Z
4

− cðiÞF þ cðiÞD ð5Þ
(where one should take Z ¼ 1 for QCD). Note that it

depends on cD, so indeed cðiÞX1 is gauge dependent.
Nevertheless, we will see later that it always combines
with cM to produce gauge invariant combinations. This
indeed is a nontrivial check of the computation. Note also
that the above coefficient has an Abelian term, so it can be
checked with QED computations.
Finally, we consider the heavy four-fermion sector of the

1=m4 Lagrangian. They generate local or quasilocal poten-
tials, which do not produce divergent potential loops. The
same happens for the potentials generated by cX2 and cX3.
Therefore, in both cases, such potentials do not generate
contributions to the heavy quarkonium mass at N3LL, and
we can neglect them.

Out of this discussion, we conclude that we have the LL
running of all necessary Wilson coefficients of the 1=m4

NRQCD Lagrangian operators.

III. pNRQCD LAGRANGIAN

Integrating out the soft modes in NRQCD we end
up with the EFT named pNRQCD. The most general
pNRQCD Lagrangian compatible with the symmetries of
QCD that can be constructed with a singlet and an octet
(quarkonium) field, as well as an ultrasoft gluon field to
NLO in the multipole expansion, has the form [1,2]

LpNRQCD ¼
Z

d3rTrfS†ði∂0 − hsðr;p;PR;S1;S2ÞÞS

þ O†ðiD0 − hoðr;p;PR;S1;S2ÞÞOg
þ VAðrÞTrfO†r · gESþ S†r · gEOg

þ VBðrÞ
2

TrfO†r · gEOþ O†Or · gEg

−
1

4
Ga

μνGμνa þ
Xnf
i¼1

q̄iiDqi; ð6Þ

hsðr;p;PR;S1;S2Þ ¼
p2

2mr
þ P2

R

2M
þ Vsðr;p;PR;S1;S2Þ;

ð7Þ

hoðr;p;PR;S1;S2Þ ¼
p2

2mr
þ P2

R

2M
þ Voðr;p;PR;S1;S2Þ;

ð8Þ

where iD0O≡ i∂0O − g½A0ðR; tÞ;O�, PR ¼ −i∇R for the
singlet, PR ¼ −iDR for the octet (where the covariant
derivative is in the adjoint representation), p ¼ −i∇r,

mr ¼
m1m2

m1 þm2

ð9Þ

and M ¼ m1 þm2. We adopt the color normalization

S ¼ S lc=
ffiffiffiffiffiffi
Nc

p
; O ¼ OaTa=

ffiffiffiffiffiffi
TF

p
; ð10Þ

for the singlet field Sðr;R; tÞ and the octet fieldOaðr;R; tÞ.
Here and throughout this paper we denote the quark-
antiquark distance vector by r, the center-of-mass position
of the quark-antiquark system by R, and the time by t.
Both hs and the potential Vs are operators acting on the

Hilbert space of a heavy quark-antiquark system in the
singlet configuration.3 Vs (and Vo) can be Taylor expanded
in powers of 1=m (up to logarithms). At low orders we have

3Therefore, in a more mathematical notation, h → ĥ,
Vsðr;pÞ → V̂sðr̂; p̂Þ. We will however avoid this notation in
order to facilitate the reading.
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Vs ¼ Vð0Þ þ Vð1Þ

mr
þ Vð2Þ

L2

m1m2

L2

r2
þ 1

2m1m2

n
p2; Vð2Þ

p2 ðrÞ
o

þ Vð2Þ
r

m1m2

þ 1

m1m2

Vð1;1Þ
S2

ðrÞS1 · S2

þ 1

m1m2

Vð1;1Þ
S12

ðrÞS12ðrÞ þ
1

m1m2

Vð2Þ
LS1

ðrÞL · S1

þ 1

m1m2

Vð2Þ
LS2

ðrÞL · S2 þOð1=m3Þ; ð11Þ

where S1 ¼ σ1=2, S2 ¼ σ2=2, L≡ r × p, and S12ðrÞ≡
3r·σ1r·σ2

r2 − σ1 · σ2.
Vð0Þ is known with N3LL accuracy [17,18]. The N3LL

result for the 1=m and 1=m2 momentum-dependent poten-
tial is also known in different matching schemes [7,19,32]:
on-shell; off-shell (Coulomb, Feynman); and Wilson. In
terms of the original definitions used in these papers they
read (in four dimensions)

Vð1Þ ¼ Vð1;0ÞðrÞ ¼ Vð0;1Þ ≡ −
CFCADð1Þ

4r2
; ð12Þ

Vð2Þ
L2

m1m2

≡ Vð2;0Þ
L2 ðrÞ
m2

1

þ Vð0;2Þ
L2 ðrÞ
m2

2

þ Vð1;1Þ
L2 ðrÞ
m1m2

≡ CFD
ð2Þ
2

2m1m2r
;

ð13Þ
Vð2Þ
p2

m1m2

≡ Vð2;0Þ
p2 ðrÞ
m2

1

þ
Vð0;2Þ
p2 ðrÞ
m2

2

þ
Vð1;1Þ
p2 ðrÞ
m1m2

≡ −
CFD

ð2Þ
1

m1m2r
:

ð14Þ
The spin-dependent and momentum-dependent potentials
are also known with N3LL precision [7]. We use the
following definitions in this paper (again we refer to [7]):

1

m1m2

Vð2Þ
LS1

ðrÞ≡
�

1

m2
1

Vð2;0Þ
LS ðrÞ þ 1

m1m2

Vð1;1Þ
L2S1

ðrÞ
�

≡ 3CFD
ð2Þ
LS1

2m1m2

; ð15Þ

1

m1m2

Vð2Þ
LS2

ðrÞ≡
�

1

m2
2

Vð0;2Þ
LS ðrÞ þ 1

m1m2

Vð1;1Þ
L1S2

ðrÞ
�

≡ 3CFD
ð2Þ
LS2

2m1m2

: ð16Þ

More delicate are Vð1;1Þ
S2 and Vð2Þ

r , as their running is
sensitive to potential loops, which are more efficiently
computed in momentum space. Therefore, it is more
convenient to work with the potential in momentum space,
which is defined in the following way:

Ṽs ≡ hp0jVsjpi: ð17Þ

Then the potential reads

Ṽs ¼ −4πCF
αṼ
q2

− p4

�
cð1Þ4

8m3
1

þ cð2Þ4

8m3
2

�
ð2πÞdδðdÞðqÞ

− CFCAD̃ð1Þ π2

2mrjqj1−2ϵ
ð1þOðϵÞÞ

−
2πCFD̃

ð2Þ
1

m1m2

p2 þ p02

q2
þ πCFD̃

ð2Þ
2

m1m2

��
p2 − p02

q2

�
2

− 1

�

þ πCFD̃
ð2Þ
d

m1m2

−
4πCFD̃

ð2Þ
S2

dm1m2

½Si
1;S

j
1�½Si

2;S
j
2�

þ 4πCFD̃
ð2Þ
S12

dm1m2

½Si
1;S

r
1�½Si

2;S
j
2�
�
δrj − d

qrqj

q2

�

−
6πCF

m1m2

piqj

q2
ðD̃ð2Þ

LS1
½Si

1;S
j
1� þ D̃ð2Þ

LS2
½Si

2;S
j
2�Þ; ð18Þ

where the (Wilson) coefficients D̃ generically stand for the
Fourier transform of the original Wilson coefficients in
position space D. For them (and for αṼ) we use the power
counting LL/LO for the first nonvanishing correction, and
so on.

Vð1;1Þ
S2 is indeed known with the required N3LL accuracy

[9,10] (one should be careful when comparing though, as
there is a change in the basis of potentials used there,

compared with the one we use here). In terms of D̃ð2Þ
S2 it

reads

Vð1;1Þ
S2

m1m2

≡ δð3ÞðrÞ 8πCFD̃
ð2Þ
S2

3m1m2

þ 8πCFD̃
ð2Þ
S2

3m1m2

×

�
−

1

4π
reg

1

r3
− ln νδð3ÞðrÞ

��
k
d
dk

D̃ð2Þ
S2

�				LL
k¼ν

;

ð19Þ
where

−
1

4π
reg

1

r3
≡

Z
d3k
ð2πÞ3 e

−ik·r ln k; ð20Þ

and we neglect higher order logarithms (as they are
subleading).
Finally we consider Vr. In terms of D̃ð2Þ

d it reads

Vð2Þ
r

m1m2

≡Vð2;0Þ
r ðrÞ
m2

1

þVð0;2Þ
r ðrÞ
m2

2

þVð1;1Þ
r ðrÞ
m1m2

≡δð3ÞðrÞπCFD̃
ð2Þ
d

m1m2

þ πCF

m1m2

�
−

1

4π
reg

1

r3
− lnνδð3ÞðrÞ

�

×

�
k
d
dk

D̃ð2Þ
d

�				LL
k¼ν

: ð21Þ

Unlike all the other potentials, we do not know Vð2Þ
r with

N3LL expression (though the N2LL expression is known
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[8]). This leads us to the main purpose of this paper: the
computation of Vr with N3LL accuracy. This is equivalent

to obtaining the NLL expression of D̃ð2Þ
d . This will require

the use of the other Wilson coefficients to one order less:
LL. Indeed in Eq. (18) we have already approximated the

Fourier transform of Vð2Þ
L2 by its N2LL expression (other-

wise the momentum dependence is more complicated).

At LL the Wilson coefficients are equal in position and
momentum space. We only explicitly display those that we
will need later. For the static potential we would have at LL
that αV ¼ αṼ ¼ α. For the rest, we show the results in the
off-shell Coulomb (which are equal to the Feynman at this

order) and on-shell matching schemes, except for Dð2Þ
LSi

,
which we do not need for the S-wave:

Dð1Þ;LL
CG ¼ D̃ð1Þ;LL

CG ¼ α2ðνÞ þ 16

3β0

�
CA

2
þ CF

�
α2ðνÞ ln

�
αðνÞ

αðν2=νhÞ
�
; ð22Þ

Dð1Þ;LL
OS ¼ D̃ð1Þ;LL

OS ¼ α2ðνÞ
�
1 −

2CF

CA

m2
r

m1m2

�
þ 16

3β0

�
CA

2
þ CF

�
α2ðνÞ ln

�
αðνÞ

αðν2=νhÞ
�
; ð23Þ

Dð2Þ;LL
1 ¼ D̃ð2Þ;LL

1 ¼ αðνÞ þ ðm1 þm2Þ2
m1m2

2CA

3β0
αðνÞ ln

�
αðνÞ

αðν2=νhÞ
�
; ð24Þ

Dð2Þ;LL
S12

¼ D̃ð2Þ;LL
S12

¼ αðνÞc2FðνÞ; ð25Þ

Dð2Þ;LL
S2

¼ D̃ð2Þ;LL
S2

¼ αðνÞc2FðνÞ −
3

2πCF
ðdsvðνÞ þ CFdvvðνÞÞ: ð26Þ

We now turn to D̃ð2Þ
d . Expanding D̃ð2Þ

d ðk; νÞ in powers of ln k, we obtain

D̃ð2Þ
d ðk; νÞ ¼ D̃ð2Þ

d ðνs; νp; ν2p=νhÞjνs¼νp¼ν þ k
d
dk

D̃ð2Þ
d ðk; νÞjk¼ν ln

�
k
ν

�
þ � � � ; ð27Þ

where we have made explicit the dependence on the different factorization scales.
So far we have not made explicit the dependence on νh ∼m. Nevertheless, it will play an important role later, when

solving the RG equations. Therefore, in the following, we use the notation D̃ð2Þ
d ðνs; νp; ν2p=νhÞjνs¼νp¼ν ≡ D̃ð2Þ

d ðνh; νÞ.
D̃ð2Þ

d ðνh; νÞ can be written in several ways: as a sum of the LL [D̃ð2Þ;LL
d ðνh; νÞ] term and the NLL [δD̃ð2Þ;NLL

d ðνh; νÞ]
correction, or as the sum of the initial condition [D̃ð2Þ

d ðνh; νhÞ≡ D̃ð2Þ
d ðνhÞ] at the hard scale and the running contribution

[δD̃ð2Þ
d ðνh; νÞ where δD̃ð2Þ

d ðνh; νhÞ ¼ 0]:

D̃ð2Þ
d ðνh; νÞ ¼ D̃ð2Þ

d ðνhÞ þ δD̃ð2Þ
d ðνh; νÞ ¼ D̃ð2Þ;LL

d ðνh; νÞ þ δD̃ð2Þ;NLL
d ðνh; νÞ: ð28Þ

This Wilson coefficient may depend on the matching scheme. Here we mainly consider the off-shell Coulomb gauge
matching scheme. Still, for later discussion, we also give expressions in the on-shell matching scheme (see [6] for more
details).
The LL running is known [8]:

Dð2ÞLL
d;CG ðνÞ ¼ D̃ð2ÞLL

d;CG ðνÞ ¼ 2αðνÞ þ 1

πCF
½dssðνÞ þ CFd̄vsðνÞ�

þ ðm1 þm2Þ2
m1m2

8

3β0

�
CA

2
− CF

�
αðνÞ ln

�
αðνÞ

αðν2=νhÞ
�
; ð29Þ

Dð2ÞLL
d;OS ðνÞ ¼ D̃ð2ÞLL

d;OS ðνÞ ¼ αðνÞ þ 1

πCF
½dssðνÞ þ CFd̄vsðνÞ�

þ ðm1 þm2Þ2
m1m2

8

3β0

�
CA

2
− CF

�
αðνÞ ln

�
αðνÞ

αðν2=νhÞ
�
; ð30Þ
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where

d̄vs ¼ πα
cð2ÞD

2

m1

m2

þ πα
cð1ÞD

2

m2

m1

þ dvs ð31Þ

is a gauge invariant combination of NRQCD Wilson coef-
ficients, forwhich its LL running can be found in [8]. In order
to visualize the relative importance of the NLL corrections
compared with the LL term, we plot the latter in Fig. 1 in the

Coulomb gauge.4 For reference, in these and later figures, we
use the following numerical values for the heavy quark
masses and α: mb¼4.73GeV, αðmbÞ¼0.216547, mc ¼
1.5 GeV, αðmcÞ ¼ 0.348536 and αð2mbmc=ðmb þmcÞÞ ¼
0.290758. νh ¼ mb for bottomonium, νh ¼ mc for charmo-
nium, and νh¼2mr¼2mbmc=ðmbþmcÞ for the Bc system.

FIG. 1. Plot of Eq. (29), the LL running in the off-shell (Coulomb/Feynman) matching scheme of D̃ð2Þ
d for different values of nf (0,3,4)

and in the single log (SL) approximation (in this case only with nf ¼ 3). Upper panel: Plot for bottomonium with νh ¼ mb. Middle
panel: Plot for charmonium with νh ¼ mc. Lower panel: Plot for Bc with νh ¼ 2mbmc=ðmb þmcÞ.

4Unlike in the other plots, we use here the two-loop running for
α. The effect is small.
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From the LL result (using the νs independence of the potential at LO) one obtains

k
d
dk

D̃ð2Þ
d;CGjLLk¼νðνh; νÞ ¼ −β0

α2

π
þ α2

π

�
2CF −

CA

2

�
cð1Þk cð2Þk þ α2

π

�
m1

m2

�
1

3
Tfnfc̄

hlð2Þ
1 −

4

3
ðCA þ CFÞ½cð2Þk �2 − 5

12
CA½cð2ÞF �2

�

þm2

m1

�
1

3
Tfnfc̄

hlð1Þ
1 −

4

3
ðCA þ CFÞ½cð1Þk �2 − 5

12
CA½cð1ÞF �2

��

−
ðm1 þm2Þ2

m1m2

4

3

�
CA

2
− CF

�
α2

π

�
ln

�
αðνÞ

αðν2=νhÞ
�
þ 1

�
: ð32Þ

This term contributes to the N3LL energy shift of the spectrum.
Since we know the NLO expression of D̃ð2Þ

d , we can determine the initial matching condition. It reads

D̃ð2Þ
d;OSðνhÞ¼αðνhÞþ

α2ðνhÞ
4π

�
28

9
CAþ

4

3
CF−

20

9
TFnfþ

�
m1

m2

þm2

m1

��
25

18
CA−

10

9
TFnf

��
þ 1

πCF
ðdssðνhÞþCFd̄vsðνhÞÞ; ð33Þ

D̃ð2Þ
d;CGðνhÞ ¼ 2αðνhÞ þ

α2ðνhÞ
4π

�
62

9
CA þ 4

3
CF −

32

3
CA ln 2 −

28

9
TFnf

þ
�
m1

m2

þm2

m1

��
−
10

9
TFnf þ

�
61

18
−
16

3
ln 2

�
CA

��
þ 1

πCF
ðdssðνhÞ þ CFd̄vsðνhÞÞ: ð34Þ

cD and the four-fermion Wilson coefficients dss and dvs were computed at one loop in [25] and [33] respectively, where one
can find the explicit expressions.
At the order we are working δD̃ð2ÞNLL

d ðνh; νÞ can be split into pieces. Thus, the NLL approximation for the Wilson
coefficient is given by the sum

δD̃ð2ÞNLL
d ðνh; νÞ ¼ ðD̃ð2Þ

d Þ1−loopðνhÞ þ δD̃ð2ÞNLL
d;us ðνh; νÞ þ δD̃ð2ÞNLL

d;s ðνh; νÞ þ δD̃ð2ÞNLL
d;p ðνh; νÞ; ð35Þ

where the second line is zero when ν ¼ νh. ðD̃ð2Þ
d Þ1−loopðνhÞ is the Oðα2Þ term of Eq. (33) or (34), depending on the

matching scheme. Their numerical values in the Coulomb gauge matching scheme are for bottomonium 0.042, 0.052 and
0.081 for nf ¼ 4, 3, and 0 respectively; for charmonium 0.108, 0.134 and 0.211 for nf ¼ 4, 3, and 0 respectively; and for Bc

0.048, 0.072 and 0.142 for nf ¼ 4, 3, and 0 respectively. We nicely observe that these numbers generate small corrections to
the leading order results.
At present the NLL running is only known for the ultrasoft term [19]:

δD̃ð2Þ;NLL
d;us ðνh; νÞ ¼

ðm1 þm2Þ2
m1m2

4π

β0

�
CA

2
− CF

�
αðνÞ

�
2

3π
ln

�
αðνÞ

αðν2=νhÞ
�
a1

αðνÞ
4π

þðαðν2=νhÞ − αðνÞÞ
�
8

3

β1
β0

1

ð4πÞ2 −
1

27π2
ðCAð47þ 6π2Þ − 10TFnfÞ

��
; ð36Þ

where a1 ¼ 31=9CA − 20TFnf=9. We show the size of this
correction in Fig. 2. Note that the ultrasoft contribution to
the delta potential vanishes in the large Nc limit (it is 1=N2

c
suppressed). Nevertheless, it quickly becomes big at
relatively small scales because the overall coefficient is
large and the ultrasoft scale quickly becomes small. Finally,
note also that part of the ultrasoft correction (proportional
to ln k) is included in Eq. (32).
The missing terms to obtain the complete NLL running

of D̃ð2Þ
d are then δD̃ð2Þ;NLL

d;s ðνh; νÞ and δD̃ð2Þ;NLL
d;p ðνh; νÞ. For

δD̃ð2Þ;NLL
d;s ðνh; νÞ we need the two-loop soft computation of

D̃ð2Þ
d , and the associated soft RG equation, which we

partially obtain in Secs. IV C and VA, respectively. We
also discuss the mixing with higher order 1=m potentials in

Sec. IV D. For δD̃ð2Þ;NLL
d;p ðνh; νÞ we need to determine and

solve the potential RG equation. This requires first the
matching between NRQCD and pNRQCD to higher orders
in 1=m, which we do in Secs. IVA and IV B; an extra
(ultrasoft associated) running, which we obtain in Sec. V B;
and obtaining the potential RG equation, which we do in
Sec. V C.
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IV. NRQCD-pNRQCD MATCHING, SPIN
INDEPENDENT

In this section we compute the potentials for which
their expectation values produce corrections to the
spectrum of Oðmα6Þ. This means the Oðα=m4Þ,
Oðα2=m3Þ and Oðα3=m2Þ potentials. Of them we mostly
care about those that produce logarithmic enhanced
contributions to the spectrum. Therefore, in particular,
we do not need to consider the p6=m5 correction to the
kinetic term, since it does not give an ultraviolet
divergent correction. The Oðα=m4Þ and Oðα2=m3Þ

potentials are finite. Some of them can be traced back
from the QED computation. We mainly compare with
[34] (but one could also look into [35] for the equal
mass case). Logarithmic enhanced corrections are pro-
duced by the divergences generated when inserting these
potentials in potential loops. On the other hand the
logarithmic enhanced contribution to the spectrum due
to the Oðα3=m2Þ is not generated by potential loops but
by the divergent structure of the potential itself, which
we then refer to as soft running. This case will be
discussed separately in Sec. VA.

FIG. 2. Plot of Eq. (36), the NLL ultrasoft running in the off-shell (Coulomb/Feynman) matching scheme of D̃ð2Þ
d for different values of

nf (0,3,4) and in the single log (SL) approximation (in this case only with nf ¼ 3). Upper panel: Plot for bottomonium with νh ¼ mb.
Middle panel: Plot for charmonium with νh ¼ mc. Lower panel: Plot for Bc with νh ¼ 2mbmc=ðmb þmcÞ.
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The spin-dependent case was computed in [9,10].
Explicit expressions for the potentials can be found in
the Appendix of [36]. They produced corrections to the
hyperfine splitting (but not to the fine splittings, as shown
in [7]).

A. Oðα=m4Þ potential
From a tree level computation (see the first diagram in

Fig. 3) we obtain the complete (spin-independent) α=m4

potentials in momentum space:

Ṽ tree ¼ −cð1ÞD cð2ÞD CF
g2

64m2
1m

2
2

k2 − CFg2
�
cð1ÞX1

m4
1

þ cð2ÞX1

m4
2

� ðp2 − p02Þ2
k2

− CFg2
�
cð1ÞX2

m4
1

þ cð2ÞX2

m4
2

�
ðp2 þ p02Þ − CFg2

�
cð1ÞX3

m4
1

þ cð2ÞX3

m4
2

�
k2

þ CF
g2cð1Þ2k cð2Þ2k

16m2
1m

2
2

1

k4
ðp2 − p02Þ2

�
2ðp2 þ p02Þ − k2 −

ðp2 − p02Þ2
k2

�

þ CF
g2

16m1m2

�
cð1Þ4 cð2Þk

m2
1

þ cð2Þ4 cð1Þk

m2
2

�
p2 þ p02

k2

�
2ðp2 þ p02Þ − k2 −

ðp2 − p02Þ2
k2

�

− CF
g2

16m1m2

�
cð1ÞM cð2Þk

m2
1

þ cð2ÞM cð1Þk

m2
2

��ðp2 − p02Þ2
k2

− ðpþ p0Þ2
�
: ð37Þ

In this result we have already used the (full) equations of
motion, replacing [37]

k20 → −
cð1Þk cð2Þk ðp2 − p02Þ2

4m1m2

: ð38Þ

Such k20 terms are generated by Taylor expanding in powers
of the energy k0 the denominator of the transverse gluon
propagator.
Not all terms in Eq. (37) contribute to the NLL running

of the delta potential. The ones that are local (or pseudo-
local) do not contribute, as they do not produce potential
loop divergences, since the expectation values of these
potentials are proportional to jψð0Þj2 and/or (analytic)
derivatives of it [the kind of ∇2jψð0Þj2], which are finite.
This happens for instance for the potentials proportional to
c2D, cX2 and cX3. It is also this fact that allows us to neglect

1=m4 potentials generated by dimension eight four-heavy
fermion operators of the NRQCD Lagrangian.
As we have incorporated the LL running of the HQET

Wilson coefficients, these potentials are already RG
improved.
Note that with trivial modifications these potentials are

also valid for QED.

B. Oðα2=m3Þ potential
We now compute the complete set of theOðα2=m3Þ spin-

independent potentials. We show the relevant topologies
that contribute to the α2=m3 potential in Fig. 3. By properly
changing the vertices all potentials are generated.
The (b)-type diagrams in Fig. 3 do not generate

Oðα2=m3Þ potentials (in the Coulomb gauge).
The (c)-type diagrams in Fig. 3 do generate Oðα2=m3Þ

potentials. They read

Ṽðc;1Þ
1loop ¼ −CF

�
CF −

CA

2

�
cð1Þk cð2Þk

g4

512m1m2

E1 þ E2

jkj3−2ϵ ×

�
2ðp2 þ p02Þ − k2 −

ðp2 − p02Þ2
k2

−
8ðp · kÞðp0 · kÞ

k2

�
; ð39Þ

Ṽðc;2Þ
1loop ¼ −CF

�
CF −

CA

2

�
g4

256m1m2

�
cð1Þ2k cð2Þk

m1

þ cð1Þk cð2Þ2k

m2

�
jkj1þ2ϵ

×

�
3ðp2 þ p02Þ ðp · kÞðp0 · kÞ

k6
−
2ðp2 þ p02Þ

k2
þ 11

4
−
1

4

ðp2 − p02Þ2
k4

−
1

2

ðp2 þ p02Þ2
k4

�
: ð40Þ

The (d)-type diagrams in Fig. 3 do not generate Oðα2=m3Þ potentials.
The (e)-type diagrams in Fig. 3 do generate Oðα2=m3Þ potentials. They read

Ṽðe;1Þ
1loop ¼ CF

�
2CF −

CA

2

�
g4

512m1m2

�
cð1Þ2k cð2Þk

m1

þ cð1Þk cð2Þ2k

m2

�
jkj1þ2ϵ

�
5ðp2 þ p02Þ

k2
−
7

2
−
3

2

ðp2 − p02Þ2
k4

�
; ð41Þ
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Ṽðe;2Þ
1loop ¼ −CF

�
2CF −

CA

2

�
g4

256

�
cð1ÞA1

m3
1

þ cð2ÞA1

m3
2

�
jkj1þ2ϵ − CF

�
2CF −

CA

2

�
g4

512

�
cð1ÞA2

m3
1

þ cð2ÞA2

m3
2

�
jkj1þ2ϵ

− CF

�
2CF −

CA

2

�
g4

128m1m2

�
cð1Þ2F cð2Þk

m1

þ cð2Þ2F cð1Þk

m2

�
jkj1þ2ϵ − CFCA

g4

256m1m2

�
cð1ÞD cð2Þk

m1

þ cð2ÞD cð1Þk

m2

�
jkj1þ2ϵ

−
TF

Nc
CF

g4

128

�
cð1ÞA3

m3
1

þ cð2ÞA3

m3
2

�
jkj1þ2ϵ −

TF

Nc
CF

g4

256

�
cð1ÞA4

m3
1

þ cð2ÞA4

m3
2

�
jkj1þ2ϵ: ð42Þ

FIG. 3. Diagram (a) is the only topology that contributes to the tree level potential. Properly changing the vertex and/or Taylor
expanding the denominator of the propagators all potentials are generated. Diagrams (b)–(j) are the general topologies that contribute to
the α2=m3 potential. Again, properly changing the vertices and/or Taylor expanding the denominator of the propagators, all potentials
are generated.
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The (f)-type diagrams in Fig. 3 do generate Oðα2=m3Þ potentials. They read

Ṽðf;1Þ
1loop ¼ −CFCA

g4

128

�
cð1Þ2F cð1Þk

m3
1

þ cð2Þ2F cð2Þk

m3
2

�
jkj1þ2ϵ p · p0

k2
; ð43Þ

Ṽðf;2Þ
1loop ¼ −CFCA

g4

512m1m2

�
cð2Þk cð1Þ2k

m1

þ cð1Þk cð2Þ2k

m2

�
jkj1þ2ϵ

�
1 −

3

2

p2 þ p02

k2

��
2ðp2 þ p02Þ

k2
− 1 −

ðp2 − p02Þ2
k4

�

− CFCA
g4

512

�
cð1Þ3k

m3
1

þ cð2Þ3k

m3
2

�
jkj1þ2ϵ

�
p · p0

k2
þ 5ðp · kÞðp0 · kÞ

k4
−
12ðp · p0Þ2

k4
þ 2p2p02

k4
þ 6ðp · p0Þðp · kÞðp0 · kÞ

k6

�
;

ð44Þ

Ṽðf;3Þ
1loop ¼ −cð1Þk cð2Þk CFCA

3g4

128m1m2

jkj−1þ2ϵ

�
p · p0 −

ðp · kÞðp0 · kÞ
k2

� ðE1 þ E0
1Þ þ ðE2 þ E0

2Þ
k2

− CFCA
g4

256

�
cð1Þ2k

m2
1

ðE1 þ E0
1Þ þ

cð2Þ2k

m2
2

ðE2 þ E0
2Þ
�
jkj−1þ2ϵ

�
5p · p0

k2
−
3ðp · kÞðp0 · kÞ

k4

�
; ð45Þ

Ṽðf;4Þ
1loop ¼ −CFCA

g4

256

�
cð1Þ3k

m3
1

þ cð2Þ3k

m3
2

�
jkj1þ2ϵ

�
−1þ p2 þ p02

k2
þ 3ðp4 þ p04Þ þ ðp2 þ p02Þðp · p0Þ − 6ðp · p0Þ2

k4

þ −3ðp6 þ p06Þ þ 4ðp4 þ p04Þðp · p0Þ − 2ðp · p0Þ3
k6

�
; ð46Þ

Ṽðf;5Þ
1loop ¼ −CFCA

g4

128
jkj1þ2ϵ

�
cð2Þ2k

m2
2

�
3ðE1 þ E0

1Þðp · kÞðp0 · kÞ
k6

þ ðE1 þ E0
1Þðp · p0Þ
k4

þ 2ðE1p4 þ E0
1p

04Þ
k6

−
2ðE1p2 þ E0

1p
02Þðp · p0 þ k2Þ
k6

�
þ cð1Þ2k

m2
1

�
3ðE2 þ E0

2Þðp · kÞðp0 · kÞ
k6

þ ðE2 þ E0
2Þðp · p0Þ
k4

þ 2ðE2p4 þ E0
2p

04Þ
k6

−
2ðE2p2 þ E0

2p
02Þðp · p0 þ k2Þ
k6

��
; ð47Þ

Ṽðf;6Þ
1loop ¼ −CFCA

7g4

256m1m2

�
cð1Þ2k cð2Þk

m1

þ cð1Þk cð2Þ2k

m2

�
jkj1þ2ϵ

�
2ðp2 þ p02Þ

k2
− 1 −

ðp2 − p02Þ2
k4

�
; ð48Þ

Ṽðf;7Þ
1loop ¼CFCA

g4

256m1m2

�
cð1ÞD cð2Þk

m1

þcð2ÞD cð1Þk

m2

�
jkj1þ2ϵþCFCA

g4

1024

�
cð1Þ4

m3
1

þcð2Þ4

m3
2

�
jkj1þ2ϵ

�
10ðp2þp02Þ

k2
−7þ5ðp2−p02Þ2

k4

�

−CFCA
g4

256

�
cð1ÞM

m3
1

þcð2ÞM

m3
2

�
jkj1þ2ϵ−CFCA

g4

512

�
cð1ÞF cð1ÞS

m3
1

þcð2ÞF cð2ÞS

m3
2

�
jkj1þ2ϵ; ð49Þ

Ṽðf;8Þ
1loop ¼ CFCA

g4

64
jkj−5þ2ϵ

��
cð1Þk

E2
1

m1

þ cð2Þk
E2
2

m2

�
ðp · kÞ −

�
cð1Þk

E0
1
2

m1

þ cð2Þk
E0
2
2

m2

�
ðp0 · kÞ

�
; ð50Þ

Ṽðf;9Þ
1loop ¼ CFCA

g4

128

�
cð1Þ2F

m2
1

ðE1 þ E0
1Þ þ

cð2Þ2F

m2
2

ðE2 þ E0
2Þ
�
jkj−1þ2ϵ: ð51Þ

The rest of the topologies [(g), (h), (i), and (j)] do not
contribute. Note that those topologies include, in particular,
the one-loop diagrams proportional to chli or dhli , as they
may produce ∼α2=m3 potentials. We find that such con-
tributions vanish.

As we have incorporated the LL running of the HQET
Wilson coefficients, these potentials are already RG
improved.
Note that with trivial modifications these potentials are

also valid for QED.
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C. Oðα3=m2Þ Vr potential

In this section we perform a partial computation of the
Oðα3=m2Þ soft contribution to the Vr potential. The
contributions we compute here are those proportional to

the HQET Wilson coefficients c̄ðiÞhl1 and cðiÞF . We define

D̃ð2Þ
d

m1m2

¼ D̃ð2;0Þ
d

m2
1

þ D̃ð0;2Þ
d

m2
2

þ D̃ð1;1Þ
d

m1m2

: ð52Þ

Using the notation of [6],

πCFD̃
ð2;0Þ
d;B ¼D̃ð2;0Þ

r

¼g2BCF

�
Dð2;0Þ

r;1 þg2Bk
2ϵ

16π2
Dð2;0Þ

r;2 þg3Bk
4ϵ

ð4πÞ3D
ð2;0Þ
r;3 þ���

�
;

ð53Þ

the bare new result reads

D̃ð2;0Þ
r;3 ¼ c̄hl1

"
TFnl

�
CA

�
−
2−8ϵ−4π

5
2
−2ϵ3ð2ϵ2þ7ϵþ4Þcscð2πϵÞcscðπϵÞ

ϵð2ϵþ3ÞΓð2ϵþ5
2
Þ

−
2−6ϵ−3π

3
2
−2ϵð40ϵ4þ160ϵ3þ240ϵ2þ167ϵþ44Þcscð2πϵÞΓ2ðϵþ1Þ

ϵð2ϵþ3ÞΓðϵþ5
2
ÞΓð3ϵþ3Þ

þ2−6ϵ−3π
3
2
−2ϵð4ϵ4þ12ϵ3þ12ϵ2þ13ϵþ6Þsinð2πϵÞcsc2ðπϵÞΓð−2ϵ−3ÞΓðϵþ2Þ

ϵΓðϵþ5
2
Þ

�

þCF

�
2−8ϵ−4π2−2ϵð2ϵþ1Þð2ϵþ3Þðϵ2þ2ϵþ2ÞcscðπϵÞsecðπϵÞΓðϵþ2ÞΓð2ϵþ2Þ

ϵ2Γ2ðϵþ5
2
ÞΓð3ϵþ3Þ

−
2−8ϵ−5π3−2ϵðϵþ1Þð2ϵþ3Þð2ϵ2þϵþ2Þcsc2ðπϵÞ

ϵΓ2ðϵþ5
2
Þ

��
þðTFnlÞ22−8ϵ−3π3−2ϵðϵþ1Þ2csc2ðπϵÞ

Γ2ðϵþ5
2
Þ

#
þ½cð1ÞF �21

3
CA2

−8ϵ−7π−2ϵ

×

�
CA

�
24ϵþ53ðϵðϵðϵðϵð2ϵð18ϵð2ϵþ11Þþ401Þþ661Þþ33Þ−283Þ−165Þ−30ÞΓð1−2ϵÞΓ3ðϵÞ

ð4ϵðϵþ2Þþ3Þ2Γð3ϵþ3Þ

þπ24ϵþ5Γð1−2ϵÞΓ3ðϵþ1
2
Þ

Γð3ϵþ3
2
Þ þ3π3ðϵðϵð22−ϵð12ϵþ17ÞÞþ45Þþ15Þcsc2ðπϵÞ

ϵΓ2ðϵþ5
2
Þ

þ24π5=2ðϵðϵðϵð4ϵðϵþ12Þþ127Þþ130Þþ65Þþ15ÞcscðπϵÞcscð2πϵÞ
ϵð4ϵðϵþ2Þþ3ÞΓð2ϵþ5

2
Þ þ12π4ð2ϵ−1Þsec2ðπϵÞ

Γ2ðϵþ1Þ
�

þ24π3=2nfTF

ð2ϵþ3Þ2
�
4ϵþ1Γðϵþ1Þðϵð4ϵþ3ÞcotðπϵÞΓð−2ϵ−1Þ− ð6ϵ2þ9ϵþ4Þð2ϵð2ϵþ5Þþ5Þcscð2πϵÞΓðϵÞ

Γð3ϵþ3Þ Þ
Γðϵþ3

2
Þ

−
πð2ϵþ1Þ2ð2ϵþ3ÞcscðπϵÞcscð2πϵÞ

Γð2ϵþ5
2
Þ

��
: ð54Þ

With obvious changes the same result is obtained for

D̃ð0;2Þ
r;3 . It is worth emphasizing that this expression

vanishes in pure QED. A nontrivial check of this result
is that cD and chl1 appear in the gauge invariant combination
c̄hl1 ¼ cD þ chl1 . Another nontrivial check is that the coun-
terterm is independent of k and that the 1=ϵ2 terms comply
with the constraints from RG. This computation has been
done in the Feynman gauge (with a general gauge param-
eter ξ) in the kinematic configuration p ¼ k and p0 ¼ 0.
We also set the external energy to zero. Not setting it to zero
produces subleading corrections (we recall that the one-
loop computation of this contribution has no energy
dependence [6]). The result is shown to be independent
of the gauge fixing parameter ξ.

For future computations, it is useful to explain the
convention we have taken for the D-dimensional spin

matrices. For the cðiÞF vertex we typically take a covariant
notation ∼σμν (see for instance [38]) and project to the
particle to single out the spin-independent part:
∼Tr½ðI þ γ0Þ=2ð� � � � � �ÞðI þ γ0Þ=2�. At one loop this pro-
cedure gives the same result as using Pauli matrices with
the conventions used in [6].
Though not directly relevant for this work, we also give

the MS renormalized expression of the bare potential
computed above. It will be of relevance for future compu-
tations of the spectrum (and decays) at N4LO. The result
reads [α ¼ αðνÞ]
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D̃ð2;0Þ
r;MS

ðkÞ¼CFα
2

2

�
13

36
cð1Þ2F CA−

5

9
c̄hlð1Þ1 TFnfþ

�
−CA

5

6
cð1Þ2F þ2

3
c̄hlð1Þ1 TFnf

�
lnðk=νÞ

�

þcð1Þ2F CFC2
A
α3

2π

�
1080ζð3Þþ706−900γþ432π2−81π4þ900 lnð4πÞ

5184
−
179

108
lnðk=νÞþ10

9
ln2ðk=νÞ

�

þcð1Þ2F CFCAnfTF
α3

2π

�
−3581þ750γ−750 lnð4πÞ

2592
þ91

54
lnðk=νÞ− 7

12
ln2ðk=νÞ

�

þ c̄hl1 CFnfTFCA
α3

2π

�
−1008ζð3Þþ627−130γþ130 lnð4πÞ

864
þ5

6
lnðk=νÞ−31

36
ln2ðk=νÞ

�

þ c̄hl1 C
2
FnfTF

α3

2π

�
48ζð3Þ−55þ6γ−6 lnð4πÞ

48
þ1

2
lnðk=νÞ

�
þ c̄hl1 CFn2fT

2
F
α3

2π

�
25

81
−
20

27
lnðk=νÞþ4

9
ln2ðk=νÞ

�
;

ð55Þ

where we have also included the Oðα2Þ term.

Note that this contribution does not mix with Vð2Þ
L .

Therefore, it really corresponds to the contributions

proportional to cð1ÞF and c̄hlð1Þ1 of Dð2;0Þ
r , as defined in

[6]. With obvious changes a similar expression is

obtained for D̃ð0;2Þ
r;MS

ðkÞ.
Finally, note that the missing part of the soft term

should carefully be computed in a way consistent with
the scheme we have used for the rest of the computation,
in particular of the α2=m3 potential, as a strong mixing (if
using field redefinitions) of the terms proportional to c2k
is expected.

D. Equations of motion

Some of the potentials we have obtained in Sec. IVB are
energy dependent. If we want to eliminate such energy
dependence, and write an energy-independent potential, this
could be achieved by using field redefinitions. At the order
we are working it is enough to use the full equation of
motion (at leading order), which includes the Coulomb
potential. Let us see how it works. We first consider Eq. (39).
It depends on the total energy of the heavy quarkonium and
does not contribute to the running of the delta potential. We
next consider Eq. (51), which is the only energy-dependent
potential proportional to cðiÞ2F . Such a potential is generated
by the following interaction Lagrangian:

L
Ṽðf;9Þ
1loop

¼ −CFCA
g4

128

cð1Þ2F

m2
1

Z
d3x1d3x2ðψ†ði∂0ψðt;x1ÞÞ − ði∂0ψ

†Þψðt;x1ÞÞ
Z

d3k
ð2πÞ3

eik·x

jkj1−2ϵ χ
†
cχcðt;x2Þ

− CFCA
g4

128

cð2Þ2F

m2
2

Z
d3x1d3x2ψ†ψðt;x1Þ

Z
d3k
ð2πÞ3

eik·x

jkj1−2ϵ ðχ
†
ci∂0χcðt;x2Þ − ði∂0χ

†
cÞχcðt;x2ÞÞ: ð56Þ

For this Lagrangian one can use the equations of motion [VCðxÞ ¼ −CFα=jxj]�
i∂0 þ

∇2

2m1

�
ψðt;xÞ −

Z
d3x2ψðt;xÞVCðx − x2Þχ†cχcðt;x2Þ ¼ 0 ð57Þ

and similarly for the other fields. We then obtain

L
Ṽðf;9Þ
1loop

¼ −CFCA
g4

128

cð1Þ2F

m2
1

Z
d3x1d3x2

�
ψ†

�
−

∇2

2m1

ψðt;x1Þ
�
þ
�
−

∇2

2m1

ψ†
�
ψðt;x1Þ

� Z
d3k
ð2πÞ3

eik·x

jkj1−2ϵ χ
†
cχcðt;x2Þ

− CFCA
g4

64

cð1Þ2F

m2
1

Z
d3x1d3x2d3x3ψ†ψðt;x1ÞVCðx1 − x3Þ

Z
d3k
ð2πÞ3

eik·ðx1−x2Þ

jkj1−2ϵ χ†cχcðt;x2Þχ†cχcðt;x3Þ þ � � � ; ð58Þ

where the dots stand for the analogous contribution for the antiparticle.
The first term in Eq. (58) yields the potential we had obtained after using the free on-shell equations of motion in Eq. (51).

It reads
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Ṽðf;9Þ
1loop ¼CFCA

g4

256

�
cð1Þ2F cð1Þk

m3
1

þcð2Þ2F cð2Þk

m3
2

�
jkj1þ2ϵp

2þp02

k2
:

ð59Þ

The second term is a six-fermion field term. After con-
tracting two of them, a new α3=m2 potential is generated
(here we only care about the divergent part). It reads

δṼðf;9Þ
1loop ¼

1

32ϵ
C2
FCA

g6k4ϵ

ð4πÞ2
�
cð1Þ2F

m2
1

þ cð2Þ2F

m2
2

�
: ð60Þ

It is worth mentioning that this contribution has a different
color structure as those (purely soft) computed in Sec. IV C,
and that they are π2 enhanced compared to those also.
Therefore, one could expect them to be more important
than the strictly pure-soft contribution.
Remarkably enough, we will see later that the contribu-

tions from Eqs. (59) and (60) to the running of the delta
potential cancel each other in the equalmass case (but not for

differentmasses). This was to be expected, since in the equal
mass case, the potential can be written in terms of the total
energy of the heavy quarkonium, which does not produce
divergences that should be absorbed in the delta potential.
It is worth mentioning that this exhausts all possible cðiÞ2F

structures that can be generated. To be sure of this statement,
we have to check that the result does not depend on the
gauge. Therefore, we have redone the diagrams proportional

to cðiÞ2F (i.e., the associated contributions to Ṽðe;2Þ
1loop, Ṽ

ðf;1Þ
1loop and

Ṽðf;9Þ
1loop) in the Feynman gauge and found the same result.
The other potentials that are dependent on the energy are

proportional to c2k. As before, these contributions will mix
with the α3=m2 pure-soft contribution proportional to c2k,
which we have not computed anyhow. Therefore, in this
paper, we only include the explicit contribution generated
using the free equations of motion and postpone the incor-
poration of the other contribution to have the full result. The
contributions we explicitly include in this paper then read

Ṽðf;3Þ
1loop ¼ −CFCA

3g4

1024m1m2

�
cð1Þ2k cð2Þk

m1

þ cð1Þk cð2Þ2k

m2

�
jkj1þ2ϵ p

2 þ p02

k2

�
2ðp2 þ p02Þ

k2
− 1 −

ðp2 − p02Þ2
k4

�

− CFCA
g4

512

�
cð1Þ3k

m3
1

þ cð2Þ3k

m3
2

�
jkj1þ2ϵ p

2 þ p02

k2

�
5p · p0

k2
−
3ðp · kÞðp0 · kÞ

k4

�
; ð61Þ

Ṽðf;5Þ
1loop ¼ −CFCA

g4

256m1m2

jkj1þ2ϵ

�
cð1Þ2k cð2Þk

m1

þ cð1Þk cð2Þ2k

m2

��
3ðp2 þ p02Þðp · kÞðp0 · kÞ

k6

−
2ðp4 þ p04Þ

k4
þ ðp2 þ p02Þðp · p0Þ

k4
þ 2ðp6 þ p06Þ

k6
−
2ðp4 þ p04Þðp · p0Þ

k6

�
; ð62Þ

Ṽðf;8Þ
1loop ¼ CFCA

g4

512

�
cð1Þ3k

m3
1

þ cð2Þ3k

m3
2

�
jkj1þ2ϵ

�
2ðp6 þ p06Þ

k6
−
ðp4 þ p04Þðp2 þ p02Þ

k6
þ p4 þ p04

k4

�
: ð63Þ

V. D̃ð2Þ
d NLL RUNNING

We now compute the NLL soft and potential running of D̃ð2Þ
d .

A. Soft running

From the results obtained in Sec. IV C we can obtain theOðα3Þ RG soft equation of D̃d [theOðα2Þ RG soft equation can

be found in [8] ] proportional to cðiÞ2F and chlðiÞ1 . In practice, such a computation can be understood as getting the NLL soft
running of dss þ CFd̄vs [see Eq. (29) or (30)]. It reads

νs
d
dνs

ðdss þ CFd̄vsÞjsoft ¼ CFα
2

�
2CF −

CA

2

�
cð1Þk cð2Þk þ CFα

2

�
m1

m2

�
1

3
Tfnfc̄

hlð2Þ
1 −

4

3
ðCA þ CFÞ½cð2Þk �2 − 5

12
CA½cð2ÞF �2

�

þm2

m1

�
1

3
Tfnfc̄

hlð1Þ
1 −

4

3
ðCA þ CFÞ½cð1Þk �2 − 5

12
CA½cð1ÞF �2

��

þ CF
α3

4π

�
m1

m2

�
−
TFnf
54

ð65CA − 54CFÞc̄hlð2Þ1 −
CA

18

�
25CA −

125

3
TFnf

�
½cð2ÞF �2

�

þm2

m1

�
−
TFnf
54

ð65CA − 54CFÞc̄hlð1Þ1 −
CA

18

�
25CA −

125

3
TFnf

�
½cð1ÞF �2

��
þOðα3Þ: ð64Þ
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The Oðα3Þ stands for terms proportional to NRQCD

Wilson coefficients different from cðiÞ2F and chlðiÞ1 . This
equation is meant to represent the pure-soft running of
the NRQCD Wilson coefficients. It does not give the

full running of D̃ð2Þ
d , as one should also include the

potential and ultrasoft running. We fix the initial

matching condition to zero, since we only need the
initial matching condition of the total potential, which
can be determined in the final step, when combining the
different contributions.
The strict NLL contribution to the solution of this

equation reads [the LL is already included in Eq. (29)]

πCFδD
ð2Þ;NLL
d;s ¼ ½dss þ CFd̄vs�NLL ¼ −α2ðνhÞCF

�
ð465C6

Að757m2
1 − 306m1m2 þ 757m2

2Þ

− 13824C2
Fð2m2

1 − 3m1m2 þ 2m2
2Þn4fT4

F þ C5
Að5580CFð53m2

1 þ 102m1m2 þ 53m2
2Þ

þ ð−590218m2
1 þ 342117m1m2 − 590218m2

2ÞnfTFÞ − C4
AnfTFð34CFð8347m2

1 þ 38772m1m2

þ 8347m2
2Þ − 3ð115117m2

1 − 101466m1m2 þ 115117m2
2ÞnfTFÞ þ 32CAn3fT

3
Fð81C2

Fð70m2
1

− 83m1m2 þ 70m2
2Þ − 4CFð5m2

1 − 459m1m2 þ 5m2
2ÞnfTF þ 120ðm2

1 þm2
2Þn2fT2

FÞ
− 8C2

An
2
fT

2
Fð81C2

Fð566m2
1 − 563m1m2 þ 566m2

2Þ − 3CFð193m2
1 − 17595m1m2 þ 193m2

2ÞnfTF

þ 2ð739m2
1 þ 1080m1m2 þ 739m2

2Þn2fT2
FÞ þ 6C3

AnfTFð360C2
Fð106m2

1 − 93m1m2 þ 106m2
2Þ

þ CFð10129m2
1 þ 187731m1m2 þ 10129m2

2ÞnfTF − 4ð2536m2
1 − 4959m1m2 þ 2536m2

2Þn2fT2
FÞÞ

×
1

36m1m2ð31CA − 16nfTFÞð5CA − 4nfTFÞð11CA − 4nfTFÞ2ð2CA − nfTFÞ
þ 5CAðm2

1 þm2
2Þð397C3

A þ 48CFn2fT
2
F þ 11C2

Að33CF − 35nfTFÞ

þ 10CAnfTFð−21CF þ 10nfTFÞÞz13ð5CA−4nfTFÞ 1

6m1m2ð5CA − 4nfTFÞð11CA − 4nfTFÞ2

−
1

468m1m2ð11CA − 4nfTFÞ2
ð1989C3

Að8m2
1 þ 3m1m2 þ 8m2

2Þ þ 8CFnfTFð81CFð6m2
1

þ 13m1m2 þ 6m2
2Þ þ 1240ðm2

1 þm2
2ÞnfTFÞ þ 2CAnfTFðCFð−15134m2

1 þ 5967m1m2

− 15134m2
2Þ þ 3100ðm2

1 þm2
2ÞnfTFÞ þ 2C2

Að3978CFð2m2
1 − 3m1m2 þ 2m2

2Þ − 5ð2263m2
1

þ 351m1m2 þ 2263m2
2ÞnfTFÞÞz23ð11CA−4nfTFÞ

þ 2ð5CA þ 8CFÞðm2
1 þm2

2ÞnfTFð−1327CA þ 594CF þ 620nfTFÞz316CA−8
3
nfTF

117m1m2ð31CA − 16nfTFÞð11CA − 4nfTFÞ
− CAðm2

1 þm2
2Þð15C3

A − 188C2
AnfTF − 2n2fT

2
Fð27CF þ 10nfTFÞ þ CAnfTFð216CF

þ 137nfTFÞÞz83ð2CA−nfTFÞ 1

12m1m2ð11CA − 4nfTFÞ2ð2CA − nfTFÞ

−
5C2

Að1 − z
1
3
ð5CA−4nfTFÞÞðm2

2 lnðνhm1
Þ þm2

1 lnðνhm2
ÞÞ

2m1m2ð5CA − 4nfTFÞ
�
: ð65Þ

We do not aim in this paper to give a full-fledged
phenomenological analysis. Still, we compute numerically

the running of δD̃ð2Þ;NLL
d;s to see its size. We show the result

in Fig. 4. The contribution is small.
To this contribution one should also add the contribu-

tions generated by the new α3=m2 potentials that appear
after using the full equations of motion. Of those we only

computed the contributions proportional to cðiÞ2F and chl1 (the

latter happened to be zero). This generates a new contri-
bution to the soft RG equation:

νs
d
dνs

ðdss þ CFd̄vsÞ
			
soft

¼ � � � þ 1

16
C2
FCAg2α2

�
m2

m1

cð1Þ2F þm1

m2

cð2Þ2F

�
: ð66Þ

Its solution reads
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δD̃ð2ÞNLL
d;new ¼ 1

πCF
ðdssþCFd̄vsÞ

¼−
πCACFðm2

1þm2
2Þð1−z−2ðCA−β0ÞÞα2ðνhÞ

4m1m2ðCA−β0Þ
:

ð67Þ

We then show the size of this new contribution in
Fig. 5.
Finally, let us note that the c2k terms can also mix with

α2=m3 potentials through field redefinitions; see the

discussion in the Appendix. Therefore, this contribution
could be different for other matching schemes.

B. Ultrasoft running

To obtain the complete potential RG equation, we also
need an extra potential divergence that is generated by
ultrasoft divergences. This term was already computed in
[36] and applied to the spin-dependent case. Here, we give
the full term, which contributes to both the spin-dependent
and spin-independent term. It is generated by the following
diagram:

FIG. 4. Plot of the NLL soft running due to Eq. (65) to δD̃ð2ÞNLL
d;s for different values of nf (0,3,4) and in the single log (SL)

approximation (in this case only with nf ¼ 3). Upper panel: Plot for bottomonium with νh ¼ mb. Middle panel: Plot for charmonium
with νh ¼ mc. Lower panel: Plot for Bc with νh ¼ 2mbmc=ðmb þmcÞ.
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which produces the following ultrasoft RG equation,

νus
dVS2;1=r3

dνus
¼ 4CF

3

�
2S1 ·S2c

ð1Þ
F ðνusÞcð2ÞF ðνusÞ
m1m2

−
3

4

�
cð1Þ2F ðνusÞ

m2
1

þcð2Þ2F ðνusÞ
m2

2

��

×
��

Vo−VsÞ3þ
�

1

m1

þ 1

m2

�ðVo−VsÞ2
2r2

�

×

�
αðνusÞ
2π

�
; ð68Þ

or alternatively (but equivalent at this order)

FIG. 5. Plot of the extra contribution to the NLL soft running, δD̃ð2ÞNLL
d;s , due to Eq. (67), for different values of nf (0,3,4) and in the

single log (SL) approximation (in this case only with nf ¼ 3). Upper panel: Plot for bottomonium with νh ¼ mb. Middle panel: Plot for
charmonium with νh ¼ mc. Lower panel: Plot for Bc with νh ¼ 2mbmc=ðmb þmcÞ.
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νus
dVS2;1=r3

dνus
¼ 4CF

3

�
2S1 · S2c

ð1Þ
F ðνusÞcð2ÞF ðνusÞ
m1m2

−
3

4

�
cð1Þ2F ðνusÞ

m2
1

þ cð2Þ2F ðνusÞ
m2

2

��

× VoðVo − VsÞ2
�
αðνusÞ
2π

�
: ð69Þ

Using that the LL running of cF is independent of the
masses (we take the initial matching condition to be νh for
both heavy quarks), its solution reads

VS2;1=r3 ¼
4CF

3

�
2S1 · S2

m1m2

−
3

4

�
1

m2
1

þ 1

m2
2

��
× VoðVo − VsÞ2D1=r3;S2 ; ð70Þ

or

VS2;1=r3 ¼
4CF

3

�
2S1 ·S2

m1m2

−
3

4

�
1

m2
1

þ 1

m2
2

��
D1=r3;S2

×

�
ðVo−VsÞ3þ

�
1

m1

þ 1

m2

�ðVo−VsÞ2
2r2

�
; ð71Þ

where (we use the same notation as in [36])

D1=r3;S2 ¼
1

2CA

��
αðνhÞ
αðνusÞ

�
2CA=β0

−
�
αðνhÞ
αð1=rÞ

�
2CA=β0

�
: ð72Þ

VS2;1=r3 is singular and will contribute to the potential

running of D̃ð2Þ
d .

C. Potential running

We now have all the necessary preliminary ingredients to
obtain the complete potential RG equation. The next step is
to compute all potential loops that produce ultraviolet

divergences that get absorbed in D̃ð2Þ
d and are at most of

Oðα3Þ. Since the deltalike potential is ofOð1=m2Þ we must
construct potential loop diagrams of Oðαn=m2Þ with n ≤ 3
describing the interaction between the two heavy quarks in
the bound state through several potentials. The first non-
vanishing contribution to the potential running is indeed of
Oðα3=m2Þ. To construct such potential loop diagrams, we
must consider the power of α and m of each potential and
take into account that each propagator adds an extra power
of the mass m in the numerator. We summarize all kind of

FIG. 6. Divergent diagrams with one potential loop that
contribute to the running of D̃ð2Þ

d at Oðα3Þ.

FIG. 7. Divergent diagrams with two potential loops that
contribute to the running of D̃ð2Þ

d at Oðα3Þ.

FIG. 8. Divergent diagrams with three potential loops that
contribute to the running of D̃ð2Þ

d at Oðα3Þ.
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diagrams that contribute to the NLL potential running of

D̃ð2Þ
d , in Figs. 6–9. The ultraviolet divergences arising in

such diagrams must be absorbed in the 1=m2 potentials.
However, after the computation, we observe that all
divergences are only absorbed by the deltalike potential.
It is important to mention that the iteration of two or
more spin-dependent potentials can give a contribution to

D̃ð2Þ
d , associated to a spin-independent potential. The

relevant diagrams are shown in Figs. 6–9, where VC is
the tree level, OðαÞ, Coulomb potential; Vαr=ms is the
Oðαr=msÞ potential; and V1=m3 corresponds to the first
relativistic correction to the kinetic energy, and it is
proportional to c4.
It is interesting to discuss in more detail which of the

novel α2=m3 potentials computed in Secs. IV B and IV D
[we remind that here we use the potentials after using the
(free) equations of motion, i.e., the expressions in
Sec. IV D for the energy-dependent potentials] contribute

to the running of D̃ð2Þ
d . The potentials in Eqs. (39)–(40)

do not contribute to the running of D̃ð2Þ
d . Equation (39)

does not because it is proportional to a total derivative,
whereas Eq. (40) does not because of the following
argument: the only possible potential loop that can be
constructed with an Oðα2=m3Þ potential is the iteration
of it with a Coulomb potential. As a consequence, the
α2=m3 potential is always applied to an external momen-
tum. When the high loop momentum limit is taken in the
integral in order to find the ultraviolet pole, all these
external momenta vanish and all the terms become
proportional to jkj1þ2ϵ. After doing so and summing
all the terms the overall coefficient is zero, explaining
the fact that they do not contribute. This argument also
applies to Ṽðe;1Þ and Ṽðf;iÞ (with i ¼ 1 to 6). On the other
hand Ṽðe;2Þ and Ṽðf;7=8=9Þ do contribute to the running.
Note that Ṽðf;8Þ and Ṽðf;9Þ were originally dependent on
the energy.
Diagrams with V1=m3 in the extremes of a potential

loop, i.e., acting over a external momentum, have not
been drawn because they do not produce any ultraviolet
divergence. Similarly, diagrams with V1=m5 do not
produce ultraviolet divergences. One can then easily
convince oneself that there are no diagrams with five
potential loops or more that can contribute to the Oðα3Þ
anomalous dimension of D̃d. Therefore, the above
discussion exhausts all possible contributions to the
Oðα3Þ anomalous dimension of D̃d, and the potential
RG equation finally reads
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FIG. 9. Divergent diagrams with four potential loops that
contribute to the running of D̃ð2Þ

d at Oðα3Þ.
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The first five lines are generated by potential loops with
α2=m, α=m2 and the p4=m3 correction to the kinetic
energy (besides the iteration of the Coulomb potential,
accounted for by αV). The sixth line is the term
generated by the potential computed in Sec. V B.
The last four lines are generated by potential loops
with the α2=m3 and α=m4 potentials (besides the
iteration of the Coulomb potential, accounted for by
αV). Note that, for simplicity, we have already used

cðiÞk ¼ 1 [39] in the terms that do not have NRQCD
Wilson coefficients in the above expression. A part of
this equation was already computed in [40]. Also,
several of these terms (for QED) can be checked with
the computations in [34].

It is interesting to see that there is a matching scheme
dependence of the individual α2=m3 and α=m4 potentials
that cancels out in the sum. In the above expression the
coefficients cA2

, cD, cM, cX1 appear (note that the last two
coefficients are dependent on cD due to reparametrization
invariance). They are gauge-dependent quantities. Such
gauge dependence should vanish in the final result. Indeed
it does. This is actually a strong check of the computation.
In Eq. (73) we can approximate αV ¼ α (everything is
needed with LL accuracy). Then we can show that every-
thing can be written in terms of c̄A2

, which is gauge
independent (it is an observable in the low energy limit of
the Compton scattering; see the discussion in [14]), and the
explicit dependence in cD, cM, cX1, and cA2 disappears. The
resulting expression reads
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From this result one may think that cA3 and cA4
contribute to the Abelian case. Nevertheless, the LO
matching condition is zero for these Wilson coefficients,
and all the running vanishes in the Abelian limit.
Therefore, there is no contradiction with the pure
QED case.
In order to solve Eq. (74), we need to introduce the

D’s, the Wilson coefficients of the potentials. The
necessary expressions can be found in Sec. III. Note
that in those expressions we have already correlated the
ultrasoft factorization scale νus with ν and νh using
νus ¼ ν2=νh. We also do so in Eq. (72) (where we also

set 1=r ¼ ν, consistent with the precision of our compu-
tation). This correlation of scales was first introduced and
motivated in [41].
For nf ¼ 3 or 4 it is not possible to get an analytic

result for the solution of the RG equation, more
specifically for the coefficients multiplying the differ-
ent z functions (note that this comes back to the fact
that the polarizability Wilson coefficients cA1; cA2;…,
cannot be computed analytically). On top of that
the resulting expressions are too long. Therefore, we
only explicitly show the analytic result with nf ¼ 0.
It reads
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Finally, in Fig. 10, we give the numerical evaluation δD̃ð2ÞNLL
d;p for different values of nf. The contribution is sizable.

D. Potential running, spin-dependent delta potential

Even though not relevant for this paper, we profit to present the potential RG equation of D̃ð2Þ
S2 in the

basis that we use in this paper, which is different from the basis used in [36]. The final solution is nevertheless
the same:
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ð76Þ

This equation has slightly changed with respect to Eq. (36) in [36] because of the change in the basis of potentials.

In particular the term proportional to Dð2Þ
S2

changes to compensate for the fact that Dð2Þ
d is also different so that the

result is the same.
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VI. N3LL HEAVY QUARKONIUM MASS

For the organization of the computation and presentation
of the results we closely follow the notation of [7]. In
particular we split the total RG improved potential in the
following way:

VNiLL
s ðνh; νÞ ¼ VNiLO

s ðνÞ þ δVNiLL
s ðνh; νÞ; ð77Þ

where VNiLO
s ðνÞ≡ VNiLL

s ðνh ¼ ν; νÞ. We then split the total
energy into the N3LO result and the new contribution
associated to the resummation of logarithms. The S-wave

spectrum at N3LO was obtained in Ref. [42] for the ground
state, in Refs. [43,44] for S-wave states, and in Refs. [45,46]
for general quantumnumbers but for the equalmass case. The
result for the nonequal mass case was obtained in Ref. [6].
From the RG improved potential one obtains the NiLL

shift in the energy levels

ENiLLðνh; νÞ ¼ ENiLOðνÞ þ δERGðνh; νÞjNiLL; ð78Þ

where the explicit expression for ENiLOðνÞ can be found in
Ref. [6], and in a different spin basis in Appendix B of [7].

FIG. 10. Plot of δD̃ð2ÞNLL
d;p for different values of nf (0,3,4) and in the single log (SL) approximation (in this case only with nf ¼ 3).

Upper panel: Plot for bottomonium with νh ¼ mb. Middle panel: Plot for charmonium with νh ¼ mc. Lower panel: Plot for Bc with
νh ¼ 2mbmc=ðmb þmcÞ.
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The LO and NLO energy levels are unaffected by the RG
improvement, i.e.,

δERGjLL ¼ δERGjNLL ¼ 0: ð79Þ
We now determine the variations with respect to the NNLO
and N3LO results. We are here interested in the corrections
associated to the resummation of logarithms. In order to
obtain the spectrum at NNLL and N3LL we need to add the
following energy shift to the NNLO and N3LO spectrum:

δERGjNNLL ¼ hnljδVNNLL
s ðνh; νÞjnli; ð80Þ

which was computed in Ref. [8], and

δEnl;RGjN3LL ¼ hnljδVN3LL
s ðνh; νÞjnli ð81Þ

þ 2hnljV1

1

ðEC
n − hÞ0 δV

NNLL
s ðνh; νÞjnli

þ ½δEUSðν; νusÞ − δEUSðν; νÞ�: ð82Þ

Note that hnljδVN3LL
s ðνh; νÞjnli includes hnljδVNNLL

s ×
ðνh; νÞjnli.
δEnl;RGjN3LL was computed for l ≠ 0 in Ref. [7], and for

l ¼ 0, s ¼ 1 in Refs. [9,10]. To have the complete result for
S-wave states, one needs to compute (and add) the new
term for l ¼ 0:

δEnew
n0;RGjN3LL ¼ hn0j½δVN3LL

r − δVNNLL
r �ðνh; νÞjn0i þ 2hn0jV1

1

ðEC
n − hÞ0 δV

NNLL
r ðνh; νÞjn0i; ð83Þ

where

V1 ¼ −
CFα

r
α

4π
ð2β0 lnðνreγEÞ þ a1Þ; ð84Þ

and δVNiLL
r is the delta-related potential contribution to δVNiLL

s . The new term generated from D̃ð2Þ
d then reads

δEnew
nl;RGjN3LL ¼

1

m1m2

πCF
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naν
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�
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d

�				LL
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�
;

ð85Þ

where δD̃ð2ÞNLL
d is defined in Eq. (35). The first three

lines are generated by the term proportional to δð3ÞðrÞ.
The last two lines are the contribution to the S-wave
energy (l ¼ 0) from the last term of Eq. (21). (The
contribution to the P-wave energy, proportional to the
1 − δl0 term, is already included in Ref. [7]. Therefore,
we do not include it in the expression above.) To this
contribution we have explicitly subtracted the fixed
order contribution already included in the N3LO result.
By adding δEnew

nl;RGjN3LL to the results computed in these
references5 one obtains the complete result.

VII. CONCLUSIONS

In this paper we have computed the α=m4 and the α2=m3

spin-independent potentials (in the Coulomb gauge), and
an extra ultrasoft correction that contributes to the S-wave
spin-average NNNLL spectrum. We have also obtained the
potential RG equation of the delta potential with NLL
accuracy (the first nonzero contribution). Combined with
the previous results we solve this equation and obtain the
complete (potential and ultrasoft) NLL running of the delta
potential.
We have also computed the bare and renormalized

(soft-)α3=m2 contribution to the spin-independent deltalike

potential proportional to ½cð1ÞF �2, ½cð2ÞF �2, c̄ð1Þhl1 and c̄ð2Þhl1 and
obtained (and solved) the RG equation.
Combining all these results with the results in [7] and

Refs. [9,10] allows us to obtain the S-wave mass with N3LL
accuracy. The missing terms to obtain the full results are to

5Note though that one should change 2¼SðSþ1Þ by SðSþ1Þ−
3=2 in the result obtained in [9,10] to account for the change of
basis of the operators to the one we use here. One should also
change from the on-shell to the Coulomb basis of potentials in [7]
(this is very easy to do, as the ultrasoft running is not affected by
this transformation).
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have the NLL running of c̄hl1 [the associated missing term is
ofOðTfnfmα6 ln αÞ and is expected to be quite small, so its
computation will be carried out elsewhere], and a piece of
the soft running of the delta potential. This computation
will be performed in a separate paper. The magnitude of
this contribution is estimated to be smaller compared with
the potential running computed in this paper. It is also
expected to be smaller than the complete running of the
heavy quarkonium potential. Nevertheless, a detailed phe-
nomenological analysis is postponed to future publications.
Finally, we remark that significant parts of the compu-

tations above are necessary building blocks for a future
N4LO evaluation of the heavy quarkonium spectrum.
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APPENDIX: MATCHING SCHEME (IN)
DEPENDENCE

The potentials obtained in Sec. IV were computed in the
Coulomb gauge. On the other hand, the potential RG
equation obtained in Sec. V is generated by potential loops,
which are independent of the gauge/matching scheme.
The dependence on the matching scheme of Eq. (74) is
implicitly generated by the Wilson coefficients used for the
running, such as Dð2Þ

d or Dð1Þ, and explicitly, since we put
the explicit expressions for the 1=m3 and 1=m4 potentials
obtained in the Coulomb gauge. This last point makes that
Eq. (74) can only be used in the Coulomb gauge matching
scheme, though with not much effort it could be written in
terms of general structures of the 1=m3 and 1=m4 potentials
that would make it also useful for a computation in a
general matching scheme. Nevertheless, since we do not
know the 1=m3 and 1=m4 potentials in other matching
schemes, we refrain from doing so in this paper. Still it is
worth it to study how the differences between different
matching schemes show up in the terms where the entire
matching scheme dependence is encoded in the D’s [the
first four lines in Eq. (74)]. We do so in the following.
At Oðmα4Þ the Coulomb and Feynman matching

schemes produce the same potential but the on-shell
scheme does not. At this order, the relations between the
Wilson coefficients of the delta-like and the 1=m potentials
in the off-shell Coulomb gauge (equal to the Feynman
gauge at this order) and in the on-shell scheme are given by

Dð2Þ
d;CG ¼ Dð2Þ

d;ON þ αðνÞ; ðA1Þ

Dð1Þ
CG ¼ Dð1Þ

ON þ α2ðνÞ 2CF

CA

m2
r

m1m2

: ðA2Þ

At the order that we are working in this paper such
differences produce the following difference between the

RG equation for D̃ð2Þ
d in the two schemes [for the first four

lines in Eq. (74)]:

ν
d
dν

ðD̃ð2Þ
d;CG− D̃ð2Þ

d;ONÞ

¼C2
F

m2
r

m1m2

�
−4α2Dð2Þ

1 þα3−α
CA

CF

m1m2

m2
r

Dð1Þ
CG

�
; ðA3Þ

which does not vanish. This difference can be understood
through field redefinitions. The field redefinition that
moves from the off-shell Coulomb to the on-shell scheme
was already discussed in [6,47]. In the second reference
the discussion was focused on effects to the spectrum
up to Oðmα5Þ. We now need to see (the logarithmically
enhanced) differences of Oðmα6Þ. They can be traced back
by using the following Hamiltonian in the Coulomb
(Feynman) gauge:

hCG ¼ hð0Þ þ hð2ÞCG; ðA4Þ

where hð0Þ ∼mv2 is the leading order Hamiltonian

hð0Þ ¼ p2

2mr
þ Vð0ÞðrÞ; ðA5Þ

and hð2ÞCG ∼mv4 is the relativistic correction, with the
explicit potentials

hð2ÞCG¼−c4
p4

8m3
1

−c4
p4

8m3
2

−
CFCADð1Þ

4mrr2

−
CFD

ð2Þ
1

2m1m2

�
1

r
;p2

�
þCFD

ð2Þ
2

2m1m2

1

r3
L2þπCFD

ð2Þ
d

m1m2

δð3ÞðrÞ

þ8πCFD
ð2Þ
S2

3m1m2

S1 ·S2δ
ð3ÞðrÞ

þ 3CF

2m1m2

1

r3
L ·ðDð2Þ

LS1
S1þDð2Þ

LS2
S2Þþ

CFD
ð2Þ
S12

4m1m2

1

r3
S12ðr̂Þ:

ðA6Þ

hCG correctly reproduces the Oðmα4Þ spectrum [for the
purpose of the comparison we can neglect the OðαÞ
corrections to the static potential: CF

αVs
r ≃ −CFα

1
r]. This

will be enough for our purposes. We now consider the field
redefinition that transforms hCG into hOS, the on-shell
Hamiltonian:
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U ¼ exp

�
−

i
mr

fWðrÞ;pg
�
: ðA7Þ

W can be determined from the equation:

Vð1Þ
ON − Vð1Þ

CG ¼ 2

mr
W · ð∇Vð0ÞÞ: ðA8Þ

Since the only possible tensor structure of W is
W ¼ Wðr2Þri, the above equation can be written as

Vð1Þ
ON − Vð1Þ

CG ¼ 2

mr
Wðr2Þri · ð∇iVð0ÞÞ: ðA9Þ

We then obtain

Wi ¼ π

2g2B
CAðDð1Þ

CG −Dð1Þ
ONÞ

ri

r1þ2ϵ ; ðA10Þ

and

hON ¼ U†hCGU ¼ hCG þ δh

¼ hð0Þ þ hð2ÞON þ hð4ÞON þ � � � : ðA11Þ
hCG and hON obviously produce the same spectrum.
Therefore, δh cannot produce energy shifts, and any change
in the RG equations has to be compensated among different

terms. Let us see how it works. hð2ÞON produces the
differences reported in Eq. (A3). Such differences should

be eliminated by hð4ÞON (as the other contributions to the
Hamiltonian are subleading), and indeed they do. In

momentum space h̃ð4ÞON reads

h̃ð4ÞON ¼ C2
Fg

2
Bmr

πDð2Þ
1

8m2
1m

2
2

�
jkj1þ2ϵ þ 4ðp · p0Þjkj−1þ2ϵ

þ 2ðp · kÞðp0 · kÞ
jkj3−2ϵ

�

þ CF
π

m1m2

�
−
1

4
CFCAD

ð1Þ
CG þ 1

4

m2
r

m1m2

C2
F

g4B
16π2

�

×
g2B
4π

1

ϵ

1

jkj−4ϵ þ � � � : ðA12Þ

Note that the term proportional to jkj1þ2ϵ in the first line
gives a contribution to the potential RG equation through
potential loops. It is equivalent to generating a new 1=m3

potential. The other two terms in the first line do not
contribute to the potential RG equation. Looking at the
second line, it is also interesting to see that there is a kind of
soft contribution, which nevertheless has ultrasoft in the on-
shell scheme. The second term in the second line can also
be interpreted as a pure-soft contribution. This brings the
interesting observation that even if the potential RG
equation can be written in a matching-scheme-independent
way, the implicit scheme dependence of the potentials
allows for a mixing with the soft computation (at least in the
on-shell scheme). Finally, for the dots in the third line we

refer to extra contributions to h̃ð4ÞON , generated by the field
redefinitions, which nevertheless do not contribute to the
running.
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