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A significant contribution to the electromagnetic radiation by a fast electric charge moving in anisotropic
chiral matter arises from spontaneous photon radiation due to the chiral anomaly. While such a process,
also known as the “vacuum Cherenkov radiation”, is forbidden in the QED vacuum, it can occur in chiral
matter, where it is more appropriate to call it the “chiral Cherenkov radiation.” Its contribution to the
radiation spectrum is of order α2 compared to α3 of the bremsstrahlung. I derive the frequency spectrum and
the angular distribution of this radiation in the high energy limit. The quantum effects due to the hard
photon emission and the fermion mass are taken into account. The obtained spectra are analyzed in the case
the quark-gluon plasma and a Weyl semimetal.
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I. INTRODUCTION

Electromagnetic radiation by fast particles in chiral matter
has a number of unique features that make it a useful tool to
investigate the chiral anomaly. The precision of experiments,
especially in condensed matter physics, requires a quanti-
tative description of the radiation. It can be derived by
applying the standard machinery of the quantum field theory
to the effective low energy Maxwell-Chern-Simons
Lagrangian (1). The chiral anomaly is encoded in the
Chern-Simons term that couples electrodynamics to the
pseudoscalar field θ which reflects the material topological
properties. In quark-gluon plasma θ describes the gluon
topological number fluctuations and the associated sphaleron
transitions. In Weyl semimetals its gradient is proportional to
the splitting between the Weyl nodes. The Chern-Simons
term induces a number of novel phenomena such as the
chiral magnetic effect and the anomalous Hall effect [1–5].
The first calculation of the electromagnetic radiation due

to the θ-term was done in [6,7] who dubbed it the “vacuum
Cherenkov radiation” and proposed as a test of the physics
beyond the Standard Model. Specifically, it was proposed
to be a test of the Lorentz symmetry violation [8–13]. A
phenomenon closely related to the vacuum Cherenkov
radiation is the chiral transition radiation which is emitted
by fast particles crossing the boundary between the chiral
matter and vacuum [14,15].
The main goal of this paper is to rederive the photon

spectrum using the Lagrangian (1) with the from of the

θ-field dictated by the applications in condensed matter and
nuclear physics. To this end, the calculation method of [14]
is employed which allows one to take account of the
quantum corrections due to the hard photon emission and
the fermion mass. The paper is structured as follows. In
Sec. II the effective Lagrangian is introduced. The resulting
Maxwell-Chern-Simons equations effectively describe the
free electromagnetic field in an anisotropic matter. It is
assumed that cAθ, where cA is the anomaly coefficient, is of
order unity and thus the Chern-Simons F̃F term is of the
same order of magnitude as the usual FF term of the
Maxwell theory. The field is then quantized in Sec. III and
its properties, in particular the polarization, are discussed.
The radiation rate is computed in Sec. IV in the leading
order in the perturbation theory. Since in practical appli-
cations fermions are ultrarelativistic, I employ the high-
energy (or ultrarelativistic) approximation in Sec. V, which
allows me to derive simple expressions for the photon
spectra. The main results are given by (37), (41), (42), and
(46). Figures 2–4 and 5–6 represent an application of the
obtained results to a sample Weyl semimetal and to the
quark-gluon plasma, respectively. The summary is pre-
sented in Sec. VII.

II. MAXWELL-CHERN-SIMONS
EFFECTIVE THEORY

The CP-odd domains in the chiral matter can be
described by a pseudoscalar field θ whose interaction
with the electromagnetic field Fμν is governed by the
Lagrangian1 [16–19]
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1Throughout the paper the natural rationalized units
ℏ ¼ c ¼ 1, α ¼ e2=4π ≈ 1=137 are used.
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L ¼ −
1

4
F2
μν −

cA
4
θF̃μνFμν þ ψ̄ðiγμDμ −mÞψ ; ð1Þ

where F̃μν ¼ 1
2
ϵμνλρFλρ is the dual field tensor and

cA ¼ Nc
P

fq
2
fe

2=2π2 is the chiral anomaly coefficient.
In many applications, such as the Weyl semimetals, θ is
time-independent and has constant spatial gradient
∇θ ¼ b=cA. The same model can describe the spatially
inhomogeneous CP-odd domains in the quark-gluon
plasma [20]. We will use this model throughout the paper.
The field equations of electrodynamics in chiral electrically
neutral and nonconducting matter read

∇ · B ¼ 0; ∇ · E ¼ −b · B; ð2Þ

∇ × E ¼ −∂tB; ∇ × B ¼ ∂tEþ b × E: ð3Þ

The monochromatic Fourier components of the electric and
magnetic fields satisfy the equations [21]

∇ · B ¼ 0; ∇ · D ¼ 0 ð4Þ

∇ × E ¼ iωB; ∇ × B ¼ −iωD: ð5Þ

where the displacement field Di ¼ εijEj is given by

D ¼ Eþ i
ω
b × E ¼ 0: ð6Þ

Equations (4) and (5) describe free electromagnetic field in
an anisotropic matter with the dielectric tensor

εij ¼ δij − iϵijkbk=ω: ð7Þ

Generally, the dispersive matter supports the transverse
and longitudinal electromagnetic waves. However, since
the dielectric tensor (7) does not depend on k, there is no
spatial dispersion and hence no longitudinal waves. The
frequencies of the transverse waves can be found using the
Fresnel equation

jkikj − k2δij þ ω2
kλεijðωkλÞj ¼ 0: ð8Þ

Substituting (7) into (8) one finds [using e.g., (18)]

ω2
kλ ¼ k2 þ b2

2
− λsgnðb · kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4

4
þ ðb · kÞ2

r
; ð9Þ

where λ ¼ �1 is the right/left-handed photon polariza-
tions.2 The corresponding group velocity is

vkλ ¼
∂ωkλ

∂k ¼ k
ωkλ

�
1þ ðk̂ · bÞ2

ω2
kλ − k2 − b2=2

�
: ð10Þ

It is clearly different for the two photon polarizations.

III. PHOTONWAVE FUNCTION IN ANISOTROPIC
DISPERSIVE MEDIUM

The electromagnetic field in anisotropic dispersive
medium was quantized in [23]. The corresponding expres-
sion in the radiation gauge is

Aðx; tÞ ¼
X
kλ

ðakλAkλ þ a†kλA
�
kλÞ þ

X
kν

ðakνAkλ þ a†kνA
�
kλÞ:

ð11Þ

where λ runs over the transverse polarizations whereas ν
over the longitudinal ones. The corresponding wave func-
tions read

Akλ ¼ ekλ

�
kvkλ

2ω2
kλεije

�
kλiekλjV

�
1=2

eik·x−iωkλt; ð12Þ

Akν ¼ k̂

�
k2

ω2
kνkikj∂εij=∂ωkνV

�
1=2

eik·x−iωkνt: ð13Þ

The creation and annihilation operators in (11) satisfy the
usual bosonic commutation relations

½akλ;a†k0λ0 �¼δkk0δλλ0 ; ½akν;a†k0ν0 �¼δkk0δνν0 ; ½akλ;a†k0ν�¼0:

ð14Þ

As indicated in Sec. II, a matter with the dielectric tensor
(7) does not support the longitudinal waves. Therefore the
second term in (11), which is the vector potential operator
of the longitudinal waves, vanishes.
As for the transverse waves, for a given photon momen-

tum k, the transverse polarization vectors obey the system
of equations

½kikj − k2δij þ ω2
kλεijðωkλÞ�ekλj ¼ 0: ð15Þ

They has nontrivial solutions labeled by λ only if the
Fresnel equation (9) is satisfied. The transverse polarization
vectors ekλ satisfy the following conditions

εijkiekλj ¼ 0; ð16Þ

εijkie�kλiekλ0j ¼ εijkie�kλiekλjδλλ0 ; ð17Þ

instead of the usual k · ekλ ¼ 0 and ekλ · e�kλ0 ¼ δλλ0 .
Equation (16) indicates that the displacement field D is
orthogonal to the wave vector k, whereas generally
E · k ≠ 0.

2In the limit k ≪ b, the dispersion relation (9) has a gapped
ωk− ¼ b and a gapless ωkþ ¼ k sin β branches, where cos β ¼
b̂ · k̂ (assumed to be positive). Only when β ¼ 0, one recovers the
“nonrelativistic photon” ωkþ ¼ k2=b reported in [22].
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To find the explicit from of the polarization vectors,
consider a Cartesian frame with z-axis pointing in the
direction of b. The dielectric tensor (7) takes form

ε ¼

0
B@

1 −ib=ωkλ 0

ib=ωkλ 1 0

0 0 1

1
CA: ð18Þ

Its eigenvalues are 1� b=ω and 1 with the corresponding
eigenvectors—the principal dielectric directions—given by
x̂1 ¼ ðx̂þ iŷÞ= ffiffiffi

2
p

, x̂2 ¼ ðŷþ ix̂Þ= ffiffiffi
2

p
and x̂3 ¼ ẑ. To diag-

onalize the dielectric tensor we transform it to the “princi-
pal coordinate system” span by these eigenvectors.
Transformation matrix P is given by

P ¼

0
B@

1=
ffiffiffi
2

p
i=

ffiffiffi
2

p
0

i=
ffiffiffi
2

p
1=

ffiffiffi
2

p
0

0 0 1

1
CA: ð19Þ

One can verify that ε̃ ¼ P−1εP is diagonal. In the principal
coordinate system (15) reads [21]

½k�i kj − k2δij þ ω2
kλε̃ijðωkλ; kÞ�ẽkλj ¼ 0; ð20Þ

where i, j ¼ 1, 2, 3 label the orthogonal directions and
we defined k1 ¼ ðkx − ikyÞ=

ffiffiffi
2

p
, k2 ¼ ðky − ikxÞ=

ffiffiffi
2

p
,

k3 ¼ kz. In particular, k2 ¼ k�1k1 þ k�2k2 þ k23. The frequen-
cies ωkλ are of course still given by (9). The corresponding
set of polarization vectors is

ẽkλ ¼ Ckλ

0
BBB@

k1=k
ðk=ωkλÞ2−1−b=ωkλ

k2=k
ðk=ωkλÞ2−1þb=ωkλ

k3=k
ðk=ωkλÞ2−1

1
CCCA: ð21Þ

The polarization vectors in (12) are normalized so that
ẽ�kλ · ẽkλ ¼ 1. This fixes the normalization constant Ckλ. We
won’t need the explicit expression for Ckλ as it cancels out
in the final expression for the photon spectrum. The
polarization vectors in the original coordinate system
are ekλ ¼ Pẽkλ.

IV. RADIATION RATE

The scattering matrix element for the transverse photon
radiation fðpÞ → fðp0Þ þ γðkÞ by a fermion of massm and
electric charge Q is given by

S ¼ −ieQ
Z

ψ̄p0s0=A�
kλψpsd4x: ð22Þ

Substituting the transverse photon wave function (12) and
the electron wave function

ψpsðx; tÞ ¼
1ffiffiffiffiffiffiffiffi
2εV

p upseip·x−iεt; ð23Þ

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
one obtains

S ¼ −ieQð2πÞ4δðωþ ε0 − εÞδðkþ p0 − pÞ

×
ūp0s0=e�kλupsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8εε0ωV3

p
�

kvkλ
ωεije�kλiekλj

�
1=2

; ð24Þ

where we employed a shorthand notation ω ¼ ωkλ and
ε0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

p
. The radiation probability can be com-

puted as

dw ¼ 1

2

X
λss0

jSj2 Vd
3p0

ð2πÞ3
Vd3k
ð2πÞ3 ; ð25Þ

implying that the rate is

dW ¼ 1

2ð2πÞ2 e
2Q2

X
λ

δðωþ ε0 − εÞδðkþ p0 − pÞ

×
1

8εε0ω
kvkλ

ωεije�kλiekλj

X
ss0

jM0j2d3p0d3k; ð26Þ

whereX
ss0

jM0j2¼Tr½ð=pþmÞ=e�kλð=p0 þmÞ=ekλ�

¼4e�kλiekλj½pip0
jþpjp0

iþδijðεε0−p ·p0−m2Þ�:
ð27Þ

The spectrum of photons emitted in a solid angle dΩ is

dW
dΩdω

¼ αQ2

16π

X
λ

δðωþ ε0 − εÞ k3

εε0ω2εije�kλiekλj

X
ss0

jM0j2:

ð28Þ

V. HIGH ENERGY LIMIT

In practical applications it is useful to consider the high
energy limit of the photon spectrum. The asymptotic form of
the polarization vectors is obtained by expanding (21) in the
limit b ≪ kz. One finds in the principle coordinate system

ẽkλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2z
2k2

s 0
BB@

k1
kz−λk

k2
kzþλk

1

1
CCA: ð29Þ

One can verify that, up to the terms proportional to the
inhomogeneity parameter b, ẽkλ · k ¼ 0 as it must be in a
homogenous matter. Transforming back to the original
coordinate system yields

ekλ ¼ Pẽkλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2z
2k2

s 0
BB@

kxkz−iλkky
k2z−k2

kzkyþiλkkx
k2z−k2

1

1
CCA: ð30Þ
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Taking now, e.g., k ≈ kx ≫ ky; kz one obtains ek�≈
ϵk� ¼ ðẑ ∓ iŷÞ= ffiffiffi

2
p

, i.e., a pair of mutually orthonormal
circular polarization vectors. Using the relation ϵ�k� ¼ ϵk∓
and the fact that the expression in the square brackets in (27)
is symmetric in i, j, one obtains in the high energy limit

e�k�iek�j→
1

2
ðϵ�k�iϵk�jþϵ�k�jϵk�iÞ

¼1

2
ðϵ�k�iϵk�jþϵ�k∓iϵk∓jÞ¼

1

2

�
δij−

kikj
k2

�
: ð31Þ

Substitution into (27) yields

X
ss0

jM0j2 ¼ 4

�
εε0 −m2 −

ðk · pÞðk · p0Þ
k2

�
: ð32Þ

In view of (31) and since εije�kλiekλj ≈ 1, the dependence of
the photon radiation rate (28) on b arises entirely from the
energy conserving delta-function.
Let n be a unit vector in the direction of the incident

momentum: p ¼ pn, kn ¼ k · n. In the high energy limit
k⊥, μ ≪ kn and p0⊥; m ≪ p0

n, where μ2 ≈ −λωb cos β [see
(35) below] and k⊥ · n ¼ p0⊥ · n ¼ 0. Expanding

kn ≈ω

�
1−

k2⊥ þ μ2

2ω2

�
; p0

n ≈ ε0
�
1−

p02⊥ þm2

2ε02

�
ð33Þ

and using the notation x ¼ ω=ε one derives

X
ss0

jM0j2 ¼
2

x2ð1 − xÞ ½k
2⊥ð2 − 2xþ x2Þ þm2x4�: ð34Þ

In the same approximation the delta-function can be written
as

δðωþ ε0 − εÞ ≈ 2xð1 − xÞεδðk2⊥ þ μ2ð1 − xÞ þm2x2Þ;
ð35Þ

where the photon emission angle is, see Fig. 1,

cosϑ ¼ k · p
kp

≈ 1 −
k2⊥

2xkp
; ð36Þ

so that ϑ ≈ k⊥=ω. Using these equations in (28) yields

dW
dΩdω

¼ αQ2x
2π

δðx2ε2ϑ2 þ κλÞ

×

�
λεb cos β

�
1 − xþ x2

2

�
−m2x

�
θð−κλÞ; ð37Þ

where θ is the step function and

κλ ¼ μ2ð1 − xÞ þm2x2 ¼ −xð1 − xÞλεb cos β þm2x2:

ð38Þ

The parameter κλ is negative if the following two conditions
are satisfied: λ cos β > 0 and x < xmax where

xmax ¼
�
1þ m2

λεb cos β

�−1
: ð39Þ

Thus, the photon polarization depends on the incidence
angle, which is approximately the same as the angle β
between the photon direction and b: at 0 < β < π=2 it is
right-handed, while at −π=2 < β < 0 it is left-handed. The
spectrum of the right-handed photons at a given incidence
angle β is the same as that of the left-handed ones at the
incidence angle π − β.
To illustrate the main features of the photon spectrum, I

will choose a semimetal reported in [24,25] that has
b ¼ ðα=πÞ80 eV. The photon radiation rate in a unit solid
angle per unit frequency interval (37) is exhibited in Fig. 2
as a function of the emission angle. The sharp peaks
correspond to the emission angles of photon with different
frequencies and are located at

ϑ0 ¼
ffiffiffiffiffiffiffiffi−κλ

p
ω

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λb cos β

ω

r
; ð40Þ

for small enough x.
Integration over the solid angle dΩ ¼ πdϑ2 produces the

energy spectrum

dW
dx

¼ αQ2

4ε

1

x2ð1 − xÞ ½−ðμ
2ð1 − xÞ þm2x2Þð2 − 2xþ x2Þ

þm2x4�θð−κλÞ

¼ αQ2

2εx

�
λεb cos β

�
1 − xþ x2

2

�
−m2x

�
θð−κλÞ ð41Þ

in agreement with the earlier results [14,15]. It is plotted in
Fig. 3 for different incident angles β. The spectrum is

FIG. 1. The geometry of the photon radiation. Since
ϑ ≈ k⊥=ω ≪ 1, the incident fermion and photon direction β with
respect to b is almost the same.
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dominated by soft photons x ≪ 1 and terminates at
x ¼ xmax, which varies with β.
The rate of photon emission into a solid angle is obtained

by integrating (37) over the photon energies3

dW
dΩ

¼ αQ2x0
2πλbcosβ

�
λεbcosβ

�
1−x0þ

x20
2

�
−m2x0

�
θð−κλÞ;

ð42Þ

where the emitted photon energy is fixed at

x0 ¼
�
1þm2 þ ε2ϑ2

λεb cos β

�−1
: ð43Þ

One can verify that the rate (42) is proportional to ðm2 þ
ε2ϑ2 þ bελ cos βÞ−3 implying that most of radiation is
emitted into a cone with the opening angle

ϑ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bελ cos β þm2

ε2

s
: ð44Þ

Since for the parameters of the benchmark model bε ≪ m2,
the radiation is emitted into a cone with the opening angle
ϑ < m=ε. This is shown in Fig. 4.
As a different example, consider electromagnetic radi-

ation by an ultrarelativistic u-quark in the quark-gluon
plasma. The spatial gradients of θ can be reasonably
estimated to be of order π=R ∼ 1 GeV, where R is domain
linear size. The corresponding spectra are shown in Fig. 5.

The total photon radiation rate is derived by integrating
(41) over x. The upper limit of integration is xmax that
ensures that κλ < 0. The lower limit xmin can be determined
by recalling that the high energy approximation employed
in this section assumes that ω ≫ jμj. This implies that

xmin ¼
bjλ cos βj

ε
: ð45Þ

One therefore obtains in the logarithmic approximation
(i.e., in the limit x ≪ 1)

W ¼
Z

xmax

xmin

dx
dW
dx

¼ 1

2
αQ2bjλ cos βj ln

�
m2

ε2
þ bjλ cos βj

ε

�−1
: ð46Þ

The rate is only logarithmically dependent on the fermion
energy ε.

FIG. 2. Angular distribution of the right-hand photons
with energies ω ¼ xε emitted by electron of energy ε ¼
10 GeV moving through a chiral material with b ¼ 0.19 eV
parallel to b (β ¼ 0). The left-hand photons are not emitted. The
delta-function in (37) is approximated by a Lorentzian of
width 0.01ω. The maximum possible photon energy fraction is
xmax ¼ 7.4 × 10−3, see (39).

FIG. 3. Spectra of the right-handed photons radiated by
electron of energy 10 GeV moving through a chiral material
with b ¼ 0.19 eV at different angles to b. The same exactly
spectra for left-handed photons are obtained at angles β ¼
2π=3; 3π=4; π (left to right).

FIG. 4. Angular distribution of the photon radiation produced
by electron of energy 10 GeV moving through a chiral material
with b ¼ 0.19 eV at the same angles β to b as in Fig. 3. The
maximum is at ϑ ≈m=ε.

3Assuming that (9) holds throughout the entire photon
spectrum.
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VI. TRANSITION RADIATION

When a fermion radiating the electromagnetic radiation
crosses the boundary between the chiral matter and
vacuum, it emits the chiral transition radiation discussed
recently in [14,15]. Assuming that the fermion is incident at
the normal angle to the boundary and that there are no
surface currents on it, the spectrum of the radiated photons
of a given polarization λ is given by

dNλ

d2k⊥dx
¼ αQ2

2π2x

��
x2

2
− xþ 1

�
k2⊥ þ x4m2

2

�

×
�

1

k2⊥ þ κλ
−

1

k2⊥ þm2x2

�
2

; ð47Þ

which coincides with the spectrum of the ordinary tran-
sition radiation when κλ > 0 [26,27]. The spectrum (47)
has a resonance at k⊥ ¼ −κλ corresponding to the delta-

function in (37). Thus, the formulas for the spectra of the
photon radiation derived in the previous section describe
this resonant behavior. In Fig. 6 one can see both the
Cherenkov radiation peaks, which are the same as the peaks
seen on Fig. 5(b), and the transition radiation continuum.
Unlike the chiral Cherenkov radiation, the chiral transition
radiation is a boundary effect.

VII. SUMMARY

The most important features of the photon spectrum
observed in Figs. 2–6 are

(i) The angular distribution dW=dΩdω peaks at certain
emission angles ϑ0 that depends on photon energy ω
and direction β with respect to b, in agreement with
the earlier observations [6,7].

(ii) The spectrum is always circularly polarized; the
polarization direction (right or left) depends on
whether the angle β is acute of obtuse.

(iii) The spectrum dW=dx terminates when the photon
carries the maximum allowed fraction xmax, given by
(39), of the fermion energy.

(iv) The total rate is proportional to b, but only loga-
rithmically depends on the fermion energy.

I believe that these observations can make possible the
experimental measurements of the novel electromagnetic
radiation process in chiral materials. In particular, it can
prove the existence of the CP-odd domains in quark-gluon
plasma.
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(a) (b)

FIG. 5. Photon spectrum produced by a u-quark of energy 10 GeV and thermal mass 0.2 GeV moving in quark-gluon plasma.
(a) Integrated over the photon emission angle for different incident angles β. (b) Angular distribution of the radiation for a fixed photon
energy. In both plots the radiation is right-hand polarized.

FIG. 6. Photon spectrum emitted by a u-quark of energy
10 GeV and thermal mass 0.2 GeV moving in quark-gluon
plasma at β ¼ 0. Solid lines: right-handed photons, dashed lines:
left-handed photons.
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