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We consider confining strings in pure gluodynamics and its extensions with adjoint (s)quarks. We argue
that there is a direct map between the set of bulk fields and the worldsheet degrees of freedom. This
suggests a close link between the worldsheet S-matrix and parton scattering amplitudes. We report an
amusing relation between the Polchinski–Strominger amplitude responsible for the breakdown of

integrability on the string worldsheet and the Yang–Mills β-function b0 ¼ Dcr−Dph

6
: Here b0 ¼ 11=3 is

the one-loop β-function coefficient in the pure Yang–Mills theory, Dcr ¼ 26 is the critical dimension of
bosonic strings andDph ¼ 4 is the dimensionality of the physical space-time we live in. A natural extension
of this relation continues to hold in the presence of adjoint (s)quarks, connecting two of the most celebrated
anomalies—the scale anomaly in quantum chromodynamics (QCD) and the Weyl anomaly in string theory.
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Our description of strong interactions is embarrassingly
incomplete without understanding of strings (flux tubes)
responsible for quark confinement. The stringy nature of
the real world QCD manifests itself through the existence
of Regge trajectories—families of hadrons following a
quadratic relation between the spin J and the mass M,

M2 ≃ J=l2
s þ const;

where 1=l2
s is the string tension. Critical string theory was

born exactly 50 years ago [1] as an effort to explain this
behavior. Theoretical and lattice studies of confining strings
are natural to perform in a more pristine environment
obtained by eliminating dynamical quarks in the fundamen-
tal representation of the gauge group SUðNcÞ. As a result,
strings do not break and one may study dynamics of an
isolated infinitely long flux tube. In lattice simulations a long
string state is created by the Polyakov loop operator [2]

OP ¼ TrPei
H

A; ð1Þ

wrapped around one of the spatial directions.
In the planar limit [3], Nc → ∞, the worldsheet excita-

tions decouple from bulk degrees of freedom and define a
microscopic two-dimensional theory. Importantly, the
worldsheet theory itself remains interacting even in the

strict planar limit. Furthermore, there is mounting evidence
that the worldsheet dynamics is not described by a conven-
tional local quantum field theory, but rather exhibits
characteristic features of a gravitational theory [4].
Much of the recent progress is triggered by identification

of the worldsheet S-matrix as a primary fundamental
observable [5]. This S-matrix is a natural theoretical target
and at the same time has proven itself as an indispensable
tool for the analysis of lattice data [6,7].
Current lattice results [8–13] (see [14,15] for reviews) for

bothD ¼ 4 andD ¼ 3 gluodynamics can be summarized by
the axionic string ansatz (ASA) [16,17]. According to the
ASA the only stable asymptotic degrees of freedom on the
confining string are massless Goldstone excitations Xi

(i ¼ 1;…; D − 2) associated with spontaneous breaking
of translations in the presence of a long string. In addition,
worldsheet scattering at D ¼ 4 exhibits a metastable
resonance—the worldsheet axion [6]. The axion is a pseu-
doscalar both with respect to the Oð2Þ group of rotations in
the transverse plane, andwith respect to the two-dimensional
Poincaré symmetry ISOð1; 1Þ along the worldsheet.
Both at D ¼ 3 and D ¼ 4 this is a matter content of an

integrable theory enjoying the nonlinearly realized target
space Poincaré symmetry ISOð1; D − 1Þ. The correspond-
ing integrable phase shift coincides with the Dray–’t Hooft
[18] gravitational shock wave phase shift

e2iδðsÞ ¼ eil
2
ss=4: ð2Þ

Exactly this phase shift describes integrable scattering on
the worldsheet of critical (super)strings [19]. It is also
associated with a maximally chaotic behavior [20].
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Both at D ¼ 4 and D ¼ 3 the integrability is not exact.
At D ¼ 4 the absence of particle production requires the
axion to be massless which is proven not to be the case by
the lattice [13]. At D ¼ 3 one also finds clear deviations
from integrability [7,17] both in the flux tube data [9,11]
and in the glueball spectra [12].
On the other hand, the leading order coupling of the

axion determined from the lattice data [6] within theoretical
and lattice uncertainties (i.e., at∼10% level) agrees with the
value required for integrability [16]. This suggests that the
UV asymptotics of the worldsheet scattering may be
governed by the shock wave phase shift (2).
This proposal has a natural physical interpretation.

The phase shift (2) corresponds to a time delay proportional
to the collision energy, which may be taken as the most
basic geometric property of a relativistic string. Given
the underlying gauge theory is asymptotically free it is
natural to assume that the high energy limit of the
worldsheet scattering is largely determined by these geo-
metric considerations.
To test the ASA further one needs to understand how

asymptotic freedom of the bulk theory translates into the
properties of the high energy worldsheet scattering. As
phrased so far the worldsheet dynamics appears to be rather
disconnected from perturbative QCD.
Recently a progress in this direction was achieved via the

analysis of theD ¼ 2 case [4]. A pure Yang–Mills theory at
D ¼ 2 is topological and exactly solvable even at finite Nc
[21–26]. To introduce local dynamics one considers,
following [27–29], a version of the model with additional
massive adjoint (s)quarks. At heavy (s)quark masses,
mls ≫ 1, the model can be treated perturbatively. The
worldsheet theory arises as a subsector in a discrete
θ-vacuum [30]. Each adjoint (s)quark field ψ maps into
a color singlet excitation on the worldsheet. The color flux
of (s)quarks can be thought to be screened by infinitely
heavy fundamental charges at spatial infinity, which pro-
duce a flux tube. Multiparticle states on the worldsheet are
created by single trace operators of the form

On ¼ TrPei
H

Aψ1…ψn; ð3Þ

where n is the number of particles. High energy scattering
on the worldsheet is indeed dominated by time delays
proportional to the collision energy. The scattering pro-
ceeds through the formation of zigzag configurations, see
Fig. 1, which are responsible for the geometric time delay.
When an elusive gravitational description of the worldsheet
dynamics is achieved zigzags are expected to map into
black holes.
Focusing on the worldsheet dynamics brings in an

advantage that the worldsheet theory always lives in two
dimensions independently of the dimensionality D of an
underlying gauge theory. This makes it straightforward to
uplift the knowledge gained in the analytically tractable

D ¼ 2 case into higher dimensions. Of course, the presence
of massless gluons precludes a direct perturbative analysis
at D ¼ 3, 4 in certain regimes. However, it is not unrea-
sonable to expect the major qualitative features present in
the perturbative regime to survive also at strong coupling.
In particular, analogously to (3), in D > 2 pure glue

theories the wordsheet excitations are created by inserting
the gluon field strength inside the Polyakov loop. Let us
consider a long confining string stretched along z direction
in the D ¼ 4 case. Then one expects to find one-particle
excitations corresponding to operators

Oi ¼ TrPei
H
z
AFzi; Oa ¼ TrPei

H
z
AFij; ð4Þ

where i ¼ x, y label transverse spatial directions. Oi
operators match quantum numbers of the Goldstone modes
and are guaranteed to produce massless worldsheet exci-
tations. The Oa operator matches the quantum numbers of
the worldsheet axion. The corresponding excitation is not
protected and expected to acquire a mass and to be
unstable. In the lattice description operators (4) are
obtained by inserting into the Polyakov loop either a
plaquette along one of the longitudinal directions (Oi’s),
or in the transverse plane (Oa). At D ¼ 3 one is left with a
single longitudinal plaquette.
This largely demystifies the ASA—it reduces to the

statement that the wordsheet theory has the minimal
excitation spectrum compatible with the bulk matter con-
tent. This also provides a dual view of the Goldstone
modes. Low energy Goldstone modes, as well as their
coherent multiparticle excitations, are most appropriately
described by geometric deformations of the string world-
sheet. On the other hand, hard one-particle Goldstone
excitations can be thought of as gluons. The geometric
phase shift (2) arises in both descriptions, even though the
detailed underlying pictures are a bit different. In the
Goldstone language the time delay corresponding to (2)
arises as a consequence of the linear relation between the
energy of a string segment and its proper length L [19],

L ¼ l2
sE:

hard collision

zigzag

time

FIG. 1. High energy worldsheet scattering at D ¼ 2 proceeds
through a hard collision followed by a prolonged zigzag phase.
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In the gluon description it comes about in the same way as
in the D ¼ 2 case—hard gluons overshoot each other,
proceed through the zigzag stage, and eventually get turned
back by a long string stretched between them. This again
results in a time delay proportional to the collision energy.
Both mechanisms are semiclassical in nature, however,
they are quite different. In particular, the first one corre-
sponds to a pure transmission, while the latter is a total
reflection. This difference is not observable for identical
particles. However, if we replace one of the gluons with
an adjoint (s)quark the difference becomes physically
detectable.
To see yet another distinction consider, for simplicity, the

D ¼ 3 case when the worldsheet carries a single stable (and
massless) excitation, and write a dispersion relation for the
corresponding two-particle S-matrix S2ðsÞ,

I
ds

S02ðsÞ
sS2ðsÞ

¼ 2πi
X
zeros

1

s
: ð5Þ

Here the integration contour goes around the upper half-
plane of the Mandelstam variable s, and the sum in the r.h.s.
is over zeros of S2 there, see Fig. 2. Very similar dispersion
relations appear in the derivation of the superluminality
bound [31], in the proof of the a-theorem [32] and in the
recent work on the S-matrix bootstrap [33,34]. The integral
in (5) receives contributions from the pole at s ¼ 0 where

S2ðs → 0Þ ≈ 1þ il2
IRs=4þ…;

from the cut along the real axis and from the semicircle at
infinity, where

S2ðs → ∞Þ ∼ eil
2
UVs=4:

Altogether, (5) translates into the following positivity
bound,

l2
IR − l2

UV ¼ −
4

π

Z
∞

0

log jS2j2
s2

þ 8i
X
zeros

1

s
≥ 0: ð6Þ

The inequality in (6) follows from unitarity (implying that
the integral term is non-negative) and from crossing
symmetry, which ensures that each zero at s0 is either

purely imaginary or accompanied by another one at −s�0
(implying that the sum term is non-negative).
We see that the time delay due to hard zigzag scattering

(controlled by l2
UV) is always shorter than the time delay

characterizing scattering of soft semiclassical modes of the
same total energy (controlled by l2

IR). At first sight this
mismatch is inconsistentwith the simple geometric picture of
scattering advocated above, where the time delay is always
controlled by the tension of a long string (i.e., by l2

IR).
However, the discrepancy arising due to the integral term

in (6) has a natural physical interpretation. The integral
term is related to particle production, which may force
colliding gluons to turn around earlier than in a purely
elastic regime. This may lead to a faster termination of the
zigzag stage.
Interestingly, the string length l2

s in the D ¼ 3 Yang–
Mills, determined by fitting the slope of the leading Regge
trajectory of low lying glueballs, is significantly (by a factor
of ∼1.27) smaller than the value of l2

s measured from the
ground state energy of a long flux tube [17]. However, the
latter corresponds to l2

IR, while the former is more naturally
associated with l2

UV, so the bound (6) suggests a natural
resolution of this puzzle.
It will be interesting to see what this implies for the

spectrum of particle produced in the worldsheet scattering.
It should be possible to estimate its properties given that the
zigzag stage is characterized by a long period of constant
acceleration, suggesting the possibility of a quasithermal
spectrum. This is another clear call for a gravitational
reformulation of the theory.
Let us point out yet another geometric source of soft

particle production, which should also be possible to
account for. At D > 2 one does not expect the hard
collision to be exactly collinear. There always will be a
(small) scattering angle. As a result the zigzag is not
precisely aligned with the string, which translates in a
certain emission spectrum of soft Goldstones.
On the other hand, it appears impossible to accommodate

the zeros’ contribution in (6) into a geometric description of
scattering. In fact, as proven in [16], zeros are absent in the
integrable case, leaving the shock wave S-matrix as the
only option for an integrable D ¼ 3 S-matrix compatible
with the nonlinearly realized Poincaré symmetry. It will be
interesting to see whether zeros may be excluded from first
principles also in a nonintegrable case. If so, this will
provide a sharp version of the D ¼ 3 ASA, which is
actually well supported by the glueball spectroscopy [17].
Note that the D ¼ 3 k-string lattice data [10] does show

the presence of massive resonances [7]. However, these
should disappear in the planar limit, when the worldsheet
theory becomes UV complete. In the planar limit a k-string
reduces simply to k decoupled copies of a fundamental
string (assuming k is kept fixed; it is unclear whether
Nc → ∞ limit with fixed k=Nc gives rise to a microscopic
2d theory).

Re s

Im s

FIG. 2. An integration contour for the dispersion relation (5).
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We see that a copious production of soft particles is
likely to play an important role in understanding the
worldsheet scattering. This is especially natural in view
of the following reformulation of the gluon/Goldstone
duality.1 It is instructive to think of a long string as a very
special highly symmetric hadronic state. Hard colliding
gluons (and adjoint (s)quarks, if present) are nothing but
valent partons of this hadron. The ground state of an
infinitely long string corresponds to a special hadron with
no valent dynamical partons at all (apart from the external
charges at infinity). Given the crucial importance of soft
and collinear gluon emission in hadron physics it is hardly
surprising that soft inelastic processes play an important
role on the worldsheet. This mapping between the pertur-
bative QCD partons and worldsheet degrees of freedom is
the main result of the present paper.
Given that the Goldstone amplitudes are IR finite, a yet

another way to think about the present setup is that in the
planar limit a Wilson line at infinity, associated with a pair
of external charges, provides a very special IR regulator
enforcing strictly collinear kinematics. In this language
massless Goldstones correspond to jets of hard gluons
dressed by collinear radiation, while soft gluons form the
string worldsheet.
All of these viewpoints strongly suggest that the world-

sheet scattering is related to perturbative QCD (including,
in particular, gluon scattering amplitudes and soft and
colliniear splitting functions) in a very direct way. We feel
that a detailed understanding of this relation is the next
natural step in solving the riddle of confining strings.
As a first step in this direction let us revisit two-particle

scattering on the worldsheet with an eye on a possible
connection to perturbative QCD. The key characteristic
feature of the tree level 2 → 2 scattering in the D ¼ 4
Nambu–Goto theory is the absence of annihilations and
reflections—the tree level 2 → 2 S-matrix describes pure
transmission [5]. It is natural to reformulate this property in
the helicity basis. Let us introduce complex combinations
of the Goldstone fields

X ¼ Xx þ iXy; X̄ ¼ Xx − iXy;

where as before we are considering a long string stretched
in z direction. Then ∂þX and ∂−X̄ correspond to helicity
plus string excitations, and ∂þX̄ and ∂−X to helicity minus
(here ∂� ¼ ∂t � ∂z). As a consequence of pure trans-
mission the ∂þX∂−X̄ → ∂−X∂þX̄ amplitude vanishes.
Interestingly, the tree level 2 → 2 gluon amplitude also
exhibits the same property (see, e.g., [35] for a review),

Atree
4 ðþ;þ;þ;þÞ ¼ 0:

At the moment it is hard to tell whether this similarity is
coincidental or not. Clearly, the two calculations have very
different regimes of applicability. The Goldstone calcula-
tion applies at the leading order in derivative expansion,
while the gluon result is a tree level approximation
applicable at high energies when the gauge theory descrip-
tion is weakly coupled. Note that multiparticle tree-level
Nambu–Goto amplitudes are integrable (i.e., there is no
particle production). It will be interesting to understand
what is the counterpart of this integrability in the multi-
gluon scattering, if any.
The Nambu–Goto integrability is broken at the one-loop

order by a universal rational term [5]. This term is closely
related to the Weyl anomaly of noncritical strings [36] and
was first derived by Polchinski and Strominger (PS) [37],
even though at the time it was not recognized as a
contribution to the scattering amplitude (a modern expo-
sition of the PS formalism is presented in [38], and its
precise relation to the worldsheet scattering is explained
in [17]). At the level of two-particle scattering this term
translates into the following annihilation amplitude (we use
the same normalization as in [7]),

Aann ¼
26 −D
24π

l4
ss2

16
: ð7Þ

Given the present context it is impossible to ignore that at
D ¼ 4 the prefactor in (7) coincides with the gluonic
contribution into the QCD β-function [39,40],

βðαsÞ ¼ −
22 − nsc − 4nf

24π
CAα

2
s ; ð8Þ

where we used the PDG conventions [41] and included also
a contribution from nsc Hermitian adjoint squarks and nf
Weyl adjoint quarks. As a zeroth order check that this
coincidence is not an obvious numerology let us see
whether massless adjoint (s)quarks affect the PS amplitude
in the same way as the β-function.
Following the mapping (3) a Hermitian adjoint

squark translates into an additional real scalar field ϕ on
the worldsheet. Its leading order interactions with the
Goldstones are

Sϕ ¼ −
1

2

Z ffiffiffiffiffiffi
−h

p
hαβ∂αϕ∂βϕ; ð9Þ

where hαβ is the induced metric. The corresponding XXϕϕ
vertices are the same as one would get from expanding the
Nambu–Goto action in Dþ 1 dimensions. Hence, the
calculation of the one-loop scattering of Goldstones pro-
ceeds exactly as in [5]. In this calculation ϕ acts now as an
additional spatial dimension, shifting D into Dþ 1 in (7).
This agrees with (8).
In general, fermions can be incorporated on the world-

sheet following the coset construction [42]. However, given
1We thank Riccardo Rattazzi for suggesting this very instruc-

tive viewpoint.
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that in the case at hand they come in complete multiplets of
the target space Poincaré group, one can take a shortcut
and immediately write the corresponding leading order
action as

SΨ ¼
Z ffiffiffiffiffiffi

−h
p

Ψ̄Γμ∂αXμ∂βΨhαβ: ð10Þ

The fastest way to see that bulk fermions affect (7) in the
same way as (8) is to note that for the N ¼ 4 super-
conformal Yang–Mills (so that β ¼ 0) the mapping (3)
gives rise to the same matter content on the worldsheet as
for the critical type IIB superstrings, where the PS
interaction vanishes. This fixes also the fermionic contri-
bution into (7) to be the same as in (8). The same
conclusion follows also from a direct one-loop calculation
presented in [42].
Given that the sign of the β-function is related to

asymptotic freedom it will be interesting to see whether
the sign of (7) can also be constrained from a dispersion
relation similar to (6).
Note that at D ¼ 3 where the gauge theory does not

exhibit any logarithmic running, the PS amplitude is also
identically zero for kinematical reasons.
If not a random coincidence, what is the possible

physical origin for the agreement between (7) and (8)?
At first sight, this relation has suggestive similarities with
the anomaly matching. The one-loop β-function controls
the leading logarithmic violation of the scale invariance at
high energies, and the PS interaction is related to the Weyl
anomaly in the low energy effective theory on the world-
sheet. Note, however, that the combination ðns þ 4nfÞ is
not equal to the central charge of the low energy theory on
the worldsheet. The PS amplitude would be proportional to
the central charge if the worldsheet fermions were singlets
under the OðD − 2Þ group of transverse rotations (as it
happens for the nonsupersymmetric sector of heterotic
strings in the fermionic description). Contribution of non-
singlet fermions to the PS interaction is different, which in
this language explains, for instance, why the critical central
charge for superstrings is c ¼ 15 rather than c ¼ 26.
An even more important point is that conformal sym-

metry is broken by the RG flow, so at least as far as this
symmetry is concerned, one does not expect to find
anomaly matching, but rather an inequality at best, with
a- and c-theorems [32,43,44] serving as the celebrated
examples. Somewhat related to this, even though massless
bulk and worldsheet (s)quarks affect the one-loop β-
function and the PS amplitude in the same way, generically

(say, without supersymmetry) they will not stay massless
on the worldsheet, making it hard to make a sharp non-
perturbative statement.
For these reasons, it appears more natural to look for the

explanation of the agreement between (7) and (8) in the
perturbative dynamics directly related to the asymptotic
freedom, which would actually be in line with the earlier
logic which lead us here. In this regard, note that the one-
loop β-function appears as a prefactor in front of δð1 − xÞ
contribution into the leading order Altarelli–Parisi gluon
splitting function (see, e.g., [45]). Given that the worldsheet
scattering is closely related to collinear physics, this looks
as a natural dynamical route for the QCD β-function to
propagate into the PS amplitude.
As phrased inititally the PS=β-function equality appears

as the agreement between an UV quantity (one-loop β-
function) and an IR quantity (the PS amplitude). However,
in view of this discussion it is probably more appropriate to
consider it as the agreement between two UV quantities.
This provides the sharpest formulation of the equality.
Namely, it states that the PS amplitude calculated in
the worldsheet theory with matter content determined by
the mapping (3) and all masses set to zero (turning this
into a UV statement) is equal to the one-loop β-function
coefficient.
Note that the coincidence between the one-loop β-

function coefficient and the worldsheet Weyl anomaly
has been observed previously in [46–48]. The logic of
these works is very different though. There the connection
arises by embedding the gauge theory into a string theory
and taking the α0 → 0 limit. Here, instead, it is a statement
about two calculations done intrinsically within QCD.
To conclude, there are multiple reasons to expect a close

connection between the worldsheet scattering and pertur-
bative QCD. Understanding the details of this relation
looks as a natural continuation of the confining string saga.
We anticipate it to be as exciting as the path which brought
us to the present point.
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