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In this paper, we test the self-consistencies of the standard and the covariant light-front quark model and
study the zero-mode issue via the decay constants of pseudoscalar (P), vector (V) and axial-vector (A)
mesons, as well as the P → P weak transition form factors. With the traditional type-I correspondence
between the manifestly covariant and the light-front approach, the resulting fV as well as f1A and f3A

obtained with the λ ¼ 0 and λ ¼ � polarization states are different from each other, which presents a
challenge to the self-consistency of the covariant light-front quark model. However, such a self-consistency
problem can be “resolved” within the type-II scheme, which requires an additional replacement M → M0

relative to the type-I case. Moreover, the replacement M → M0 is also essential for the self-consistency of
the standard light-front quark model. In the type-II scheme, the valence contributions to the physical
quantities (Q) considered in this paper are always the same as that obtained in the standard light-front quark
model, ½Q�val ¼ ½Q�SLF, and the zero-mode contributions to fV;1A;3A and f−ðq2Þ exist only formally but
vanish numerically, which further implies that ½Q�val _¼ ½Q�full. In addition, the manifest covariance of the
covariant light-front quark model is violated in the traditional type-I scheme, but can be recovered by taking
the type-II correspondence.

DOI: 10.1103/PhysRevD.98.114018

I. INTRODUCTION

The standard light-front (SLF) quark model [1–4]
based on the light-front (LF) formalism [5] provides a
conceptually simple but phenomenologically feasible
framework for calculating the non-perturbative quantities
of hadrons, such as the decay constants, transition form
factors, distribution amplitudes and so on [6–27]. In the
SLF approach, the constituent quark and antiquark in a
bound-state are required to be on their respective mass-
shells, the physical quantities are computed directly in
three-dimensional LF momentum space, and the plus
component (μ ¼ þ, the so-called “good” component) of
the current matrix elements is usually taken in order to

avoid the zero-mode contribution. Obviously, the Lorentz
covariance of the matrix elements obtained in the SLF
quark model is lost. Moreover, the usual recipe to avoid the
zero-mode contributions by taking the plus component is in
fact always invalid for many cases, for instance, the
composite spin-1 systems [28]. While the zero-mode issue
is highly nontrivial and deserves careful analyses [29], the
SLF quark model is powerless for determining the zero-
mode contributions by itself. Because of these shortcom-
ings, the SLF quark model was soon superseded by the
manifestly covariant light-front (CLF) quark model.
The CLF quark model was firstly exploited by Jaus [28],

Choi and Ji [29], as well as Cheng et al. [30], with the help
of the manifestly covariant Bethe-Salpeter (BS) approach
[31,32], and has been further studied in Refs. [33–39].
Compared to the SLF approach, the CLF quark model is
characterized by the following two distinguished features:
it provides a systematic way to explore the zero-mode
effects; the results obtained are guaranteed to be covariant
after the spurious contribution proportional to the light-like
four-vector ω ¼ ð0; 2; 0⊥Þ is canceled by the inclusion of
zero-mode contributions [28]. Because of these two advan-
tages, the CLF quark model has been used extensively to
study the weak and radiative decays, as well as the other
features of hadrons; see, for instance, Refs. [40–63].
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However, we should notice that there still exist some
debates about the self-consistency of the CLF quark model.
A known example is the vector meson decay constant, fV ,
for which the calculation has to be made with a given
polarization state of the vector meson. Unfortunately, it was
found that the resulting ½fV �λ¼0

CLF and ½fV �λ¼�
CLF , extracted

respectively with the longitudinal (λ ¼ 0) and the trans-
verse (λ ¼ �) polarization state, are not consistent with
each other [34],

½fV �λ¼0
CLF ≠ ½fV �λ¼�

CLF ; ð1Þ

because ½fV �λ¼0
CLF receives an additional contribution char-

acterized by the coefficient Bð2Þ
1 , which provides about 10%

correction to fV numerically [33]. This inconsistency can
be easily found from the formulae and numerical results
given, for instance, in Refs. [28,33].
A possible resolution to the “½fV �CLF inconsistency

puzzle” exhibited by Eq. (1) has been discussed in
Ref. [39] by modifying the correspondence between the
manifestly covariant BS approach and the LF quark model.
Traditionally, the LF covariant vertex function χV and the
factor DV;con ¼ M þm1 þm2 appearing in the vertex
operator are replaced by the wave function (WF) ψV and
the factor DV;LF ¼ M0 þm1 þm2, respectively, via [39]

ffiffiffiffiffiffiffiffi
2Nc

p χVðx; k⊥Þ
1 − x

→
ψVðx; k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

M̂0

;

DV;con → DV;LF; ðtype-IÞ ð2Þ

where M0 is the kinetic invariant mass of the vector
meson, and M̂0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 − ðm1 −m2Þ2
p

. The type-I corre-
spondence has been widely used to connect the two
different approaches in most of previous works,1 claiming
that some results obtained in the SLF quark model, such
as ½fV �SLF, are not trustworthy due to the lack of zero-
mode contributions [33,34]. However, this correspondence
would result in the inconsistency problem demonstrated
by Eq. (1).
The correspondence between χ and ψ in Eq. (2) has been

derived by matching the CLF expressions to the SLF ones
for some quantities that are free of the zero-mode effects,
such as the pseudoscalar meson decay constant fP and the
weak transition form factor fP→Pþ ðq2Þ [28,34,46]. However,
the validity of the replacement DV;con → DV;LF has not yet
been clarified explicitly in the same framework. This
motivates Choi and Ji [39] to advocate the replacement
M → M0 in each and every term containing M in the
integrand of ½fV �λ¼0

CLF and ½fV �λ¼�
CLF , rather than only in the D

factor. As a result, the correspondence given by Eq. (2)
should be generalized to [39]

ffiffiffiffiffiffiffiffi
2Nc

p χVðx; k⊥Þ
1 − x

→
ψVðx; k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

M̂0

;

M → M0: ðtype − IIÞ ð3Þ
It is interesting to note that, under this scheme for the
replacements, one gets numerically [39]

½fV �λ¼0
CLF ¼ ½fV �λ¼�

CLF ¼ ½fV �SLF; ð4Þ

which implies that the “½fV �CLF inconsistency puzzle” can
be “resolved” and, moreover, a valid connection is estab-
lished between the CLF and the SLF quark model.
From the above observations, one may conclude that the

type-II correspondence specified by Eq. (3) might provide a
self-consistent scheme in connecting the manifestly covar-
iant and the LF approach. However, before making such a
solid conclusion, it is necessary to further test such an
interesting scheme via other quantities in addition to fV ,
such as the decay constants of axial-vector mesons 3A and
1A with quantum numbers 2Sþ1LJ ¼ 3P1 and 1P1, as well as
the weak transition form factor fP→P

− ðq2Þ, which are all
plagued by the zero-mode effects. We shall show later that
f3A and f1A in the traditional CLF quark model also suffer
the self-consistency problem as in the case of fV . In
addition, it should be noted that ½fV �SLF given in Eq. (4)
is actually obtained with λ ¼ 0, i.e., ½fV �λ¼0

SLF. So, in order to
claim the self-consistencies of LF quark models, one
should also check carefully whether the SLF results for
fV obtained with λ ¼ 0 and λ ¼ �, ½fV �λ¼0

SLF and ½fV �λ¼�
SLF ,

are consistent with each other. In this paper, besides the
issues mentioned above, we shall also investigate the
covariance of the CLF quark model, which in fact is
possibly violated when the LF vertex function is used [28].
Our paper is organized as follows. In Sec. II, we

recapitulate the SLF and CLF quark models. In Sec. III,
our theoretical results are presented for the decay constants
of pseudoscalar, vector and axial-vector mesons, as well
as the P → P weak transition form factors; the self-
consistencies, the zero-mode contributions, as well as the
covariance of the LF quark models are also discussed in
detail. Finally, our conclusions are made in Sec. IV.

II. THEORETICAL FRAMEWORK

A. SLF quark model

In this subsection, we give a brief overview of the SLF
approach for calculating the current matrix elements, details
of which could be found, for instance, in Refs. [3,4,8].
For a meson bound-state with total momentum p and

consisting of a quark q1 with mass m1 and an antiquark q̄2
with mass m2, we can represent the momenta of q1 and q̄2
in terms of the LF relative momentum variables (x, k⊥) as

1In some literatures (see, for instance, Refs. [28,33,34]),
the convention for the vertex function hV ¼ χVN̂V , with
N̂V ¼ xðM2 −M2

0Þ, is used instead.
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kþ1 ¼ kþ ¼ xpþ; k1⊥ ¼ xp⊥ þ k⊥; ð5Þ

kþ2 ¼ pþ − kþ1 ¼ x̄pþ; k2⊥ ¼ x̄p⊥ − k⊥; ð6Þ

where x̄ ¼ 1 − x, k⊥ ¼ ðkx; kyÞ, and p⊥ ¼ ðpx; pyÞ. One
can take p⊥ ¼ 0 when assuming that the meson moves
along the z axis. In the LF formalism, such a meson
bound-state can be expanded, in the leading Fock-state
approximation, as

jMi ¼
X
h1;h2

Z
dkþd2k⊥

ð2πÞ32 ffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

þ
2

p Ψh1;h2ðkþ; k⊥Þjq1∶kþ1 ;

k1⊥; h1ijq̄2∶kþ2 ; k2⊥; h2i; ð7Þ
where h1ð2Þ denotes the helicity of the (anti)quark,
Ψh1;h2ðkþ; k⊥Þ is the momentum-space WF, and the one-

particle states jq1i and jq̄2i are defined by jq1i ¼ffiffiffiffiffiffiffiffi
2kþ1

p
b†j0i and jq̄2i ¼

ffiffiffiffiffiffiffiffi
2kþ2

p
d†j0i, respectively. The

particle creation and annihilation operators satisfy the
equal-LF-time anticommutation relations

fb†hðkÞ; bh0 ðk0Þg ¼ fd†hðkÞ; dh0 ðk0Þg
¼ ð2πÞ3δðkþ − k0þÞδ2ðk⊥ − k0⊥Þδhh0 : ð8Þ

The momentum-space WF in Eq. (7) satisfies the
normalization condition

X
h1;h2

Z
dxd2k⊥
2ð2πÞ3 jΨh1;h2ðx; k⊥Þj2 ¼ 1; ð9Þ

and can be expressed as [3]

Ψh1;h2ðx; k⊥Þ ¼ Sh1;h2ðx; k⊥Þψðx; k⊥Þ; ð10Þ

where the radial WF ψðx; k⊥Þ describes the momentum
distributions of the constituent quarks in the bound-state,
and the spin-orbital one Sh1;h2ðx; k⊥Þ constructs a state with
definite spin (S, Sz) out of the LF helicity eigenstates (h1,
h2).

2 For the former, we shall adopt the Gaussian-type
WFs [66]

ψ sðx; k⊥Þ ¼ 4
π

3
4

β
3
2

ffiffiffiffiffiffiffi∂kz
∂x

r
exp

�
−
k2z þ k2⊥
2β2

�
;

for s-wave meson ð11Þ

ψpðx; k⊥Þ ¼
ffiffiffi
2

p

β
ψ sðx; k⊥Þ; for p-wave meson ð12Þ

where β is the variational parameter and can be determined,
e.g., from the meson spectroscopy, while kz is the relative
momentum in the z-direction and takes the form

kz ¼
�
x −

1

2

�
M0 þ

m2
2 −m2

1

2M0

; ð13Þ

with the kinetic invariant mass squared given by

M2
0 ¼

m2
1 þ k2⊥
x

þm2
2 þ k2⊥
x̄

: ð14Þ

The spin-orbital WF Sh1;h2ðx; k⊥Þ can be obtained from the
ordinary equal-time static one with assigned quantum
number JPC through the interaction-independent Melosh
transformation [3,65]. It is more convenient to use the
covariant form, which, after applying the equations of
motion on spinors, can be written explicitly as [4,21,34,67]

Sh1;h2 ¼
ūh1ðk1ÞΓ0vh2ðk2Þffiffiffi

2
p

M̂0

; ð15Þ

with M̂0 already defined below Eq. (2), and the vertex
operators Γ0 given, respectively, as

Γ0
P ¼ γ5; for Pmeson

Γ0
V ¼ −=̂ϵþ ϵ̂ · ðk1 − k2Þ

DV;LF
; DV;LF ¼ M0 þm1 þm2;

for Vmeson

Γ0
1A ¼ −

ϵ̂ · ðk1 − k2Þ
D1A;LF

γ5; D1A;LF ¼ 2; for 1Ameson

Γ0
3A ¼ −

M̂2
0

2
ffiffiffi
2

p
M0

�
=̂ϵþ ϵ̂ · ðk1 − k2Þ

D3A;LF

�
γ5;

D3A;LF ¼
M̂2

0

m1 −m2

; for 3Ameson ð16Þ

where the longitudinal and transverse polarization vectors
are given, respectively, by

ϵ̂μλ¼0 ¼
1

M0

�
pþ;

p2⊥ −M2
0

pþ ; p⊥
�
; ð17Þ

ϵ̂μλ¼� ¼
�
0;

2

pþ ϵ⊥ · p⊥; ϵ⊥
�
; with ϵ⊥≡ ∓ ð1;�iÞffiffiffi

2
p :

ð18Þ

2It should be noted that no state with a fixed number of
constituents can be an eigenstate of the angular momentum
operator J2, because J2 is interaction-dependent on the LF and
not diagonal in particle number. For now, there is not a practical
way to construct an eigenstate of J2 purely in the LF dynamics
without any approximation. As illustrated in Ref. [64], the WF for
a q1q̄2 bound-state can be chosen to be a simultaneous eigen-
function of the mass operator M̂2 and the angular momentum
operators Ĵ2 and Ĵ3, only when the angular condition (Eq. (2.20)
in Ref. [64]) is satisfied. However, in order to satisfy this
condition, the interaction part of the mass operator M̂2 must
be a function of scalar products of momenta, relative angular
momentum and spin operators, but otherwise is not restricted at
all. For more details, the readers are referred to Refs. [1,3,64,65].
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Equipped with all the formulae given above, we can now
express the matrix element for a general M → 0 transition,
A≡ h0jq̄2Γq1jMðpÞi, as

A ¼
ffiffiffiffiffiffi
Nc

p X
h1;h2

Z
dxd2k⊥

ð2πÞ32 ffiffiffiffiffi
xx̄

p ψðx; k⊥ÞSh1;h2ðx; k⊥Þ

× Ch1;h2ðx; k⊥Þ; ð19Þ

where Ch1;h2ðx; k⊥Þ≡ v̄h2ðkþ2 ;−k⊥ÞΓuh1ðkþ1 ; k⊥Þ. On the
other hand, the matrix element for a general M0 → M00
transition, B≡ hM00ðp00Þjq̄001Γq01jM0ðp0Þi, can be written as

B¼
X

h0
1
;h00

1
;h2

Z
dk0þd2k0⊥

ð2πÞ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0þk00þ

p ψ 00�ðk00þ; k̄00⊥Þψ 0ðk0þ; k0⊥Þ

×S00†h00
1
;h2
ðk00þ; k00⊥ÞCh00

1
;h0

1
ðk00þ; k00⊥;k0þ; k0⊥ÞS0h0

1
;h2
ðk0þ; k0⊥Þ;

ð20Þ

whereCh00
1
;h0

1
ðk00þ;k00⊥;k0þ;k0⊥Þ≡ ūh00

1
ðk00þ;k00⊥ÞΓuh01ðk0þ;k0⊥Þ.

In practice, we usually work in the qþ ¼ 0 frame, which
leads to q2 ¼ ðp0 − p00Þ2 ¼ −q2⊥ ≤ 0, implying that the
transition form factors are known only for space-like
momentum transfer. The transition form factors in the
time-like region can be obtained by making an additional
q2 extrapolation. In Eq. (20), the incoming-quark momen-
tum, (k0þ, k0⊥), has already been given in Eq. (5) but
now with an additional superscript “0”, and the outgoing-
quark momentum is given by (k00þ ¼ k0þ ¼ xp0þ,
k00⊥ ¼ k0⊥ − q⊥) in the qþ ¼ 0 frame. In addition, the kinetic
invariant mass of the outgoing meson takes the form

M00
0
2 ¼ m00

1
2 þ k̄00⊥2

x
þm2

2 þ k̄00⊥2

x̄
; ð21Þ

where k̄00⊥ ≡ k0⊥ − x̄q⊥. We shall use the formulae for
the matrix elements A, Eqs. (19), and B, (20), to extract
the decay constant and weak transition form factors,
respectively.

B. CLF quark model

In contrast to the SLF approach, the CLF quark model
provides a systematical way of dealing with the zero-mode
contribution, and a physical quantity can be calculated in
terms of Feynman momentum loop-integrals that are
manifestly covariant. In this paper, we shall employ the
same formalism proposed by Jaus [28], Choi and Ji [29], as
well as Cheng et al. [34].
The Feynman diagrams for the matrix elements A and B

are shown in Figs. 1(a) and 1(b), respectively. From these
one-loop diagrams and using the Feynman rules for the
meson-quark-antiquark vertices given in Refs. [28,34], we
can write A and B, respectively, as

A ¼ Nc

Z
d4k
ð2πÞ4

HM

N1N2

SA; ð22Þ

B ¼ Nc

Z
d4k0

ð2πÞ4
HM0HM00

N0
1N

00
1N2

iSB; ð23Þ

where d4kð0Þ ¼ 1
2
dkð0Þ−dkð0Þþd2kð0Þ⊥ , and HM;M0;M00 are the

bound-state vertex functions. The trace terms SA and SB
associated with the fermion loops are given, respectively, by

SA ¼ Tr½Γð=k1 þm1ÞðiΓMÞð−=k2 þm2Þ�; ð24Þ

SB ¼Tr½Γð=k01þm0
1ÞðiΓ0

MÞð−=k2þm2Þðiγ0Γ00†
M γ0Þð=k001þm00

1Þ�;
ð25Þ

with explicit forms of the vertex operators Γð0;00Þ
M for different

types of mesons listed as [34]

iΓP ¼ −iγ5; iΓV ¼ i
�
γμ −

ðk1 − k2Þμ
DV;con

�
;

iΓ1A ¼ i
ðk1 − k2Þμ
D1A;con

γ5; iΓ3A ¼ i

�
γμ þ ðk1 − k2Þμ

D3A;con

�
γ5:

ð26Þ

Integrating out the minus component of the loop
momentum, one goes from the covariant calculation to
the LF one. Assuming that HM;M0;M00 are analytic within the
contour and closing the contour in the upper complex k−

(k0−) plane, one picks up a residue at k22 ¼ k̂22 ¼ m2
2,

corresponding to putting the spectator antiquark on its
mass shell. This manipulation forces us to make the
following replacements in Eqs. (22) and (23) [28,34]:

N1 → N̂1 ¼ xðM2 −M2
0Þ;

N0ð00Þ
1 → N̂0ð00Þ

1 ¼ N̂1½M → M0ð00Þ;M0 → M0ð00Þ
0 �; ð27Þ

and

FIG. 1. Feynman diagrams for the matrix elements A (a) and B
(b) in the one-loop approximation.
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χM ¼ HM=N1 → hM=N̂1; DM;con → DM;LF; ðtype-IÞ
ð28Þ

together with similar replacements for χM0 and χM00 as for
χM. Explicit forms of the factors DM;LF for P, V, 1A and 3A
mesons have already been given by Eq. (16), and the LF
forms of the vertex functions hM for these types of mesons
are given, respectively, as [34]

hP=N̂1 ¼ hV=N̂1 ¼
1ffiffiffiffiffiffiffiffi
2Nc

p
ffiffiffī
x
x

r
ψ s

M̂0

; ð29Þ

h1A=N̂1 ¼
1ffiffiffiffiffiffiffiffi
2Nc

p
ffiffiffī
x
x

r
ψp

M̂0

; ð30Þ

h3A=N̂1 ¼
1ffiffiffiffiffiffiffiffi
2Nc

p
ffiffiffī
x
x

r
M̂2

0

2
ffiffiffi
2

p
M0

ψp

M̂0

: ð31Þ

It is noted that Eq. (28) with hV=N̂1 given by Eq. (29) is
exactly the same as Eq. (2), i.e., the type-I replacement for
vector meson. This means that Eq. (28) with hP;1A;3A=N̂1

given by Eqs. (29), (30), and (31) should be the tradi-
tional type-I correspondence for P, 1A, and 3A mesons.
Accordingly, corresponding to Eq. (3), we get the gener-
alized type-II correspondence

χM ¼ HM=N1 → hM=N̂1; M → M0: ðtype-IIÞ ð32Þ

For simplicity, our following derivation and theoretical
results are given only with the traditional type-I correspon-
dence unless otherwise specified. The ones with the
type-II correspondence can be obtained with an additional
replacement M → M0.
After integrating out the k− (k0−) component, we can

reduce the matrix elements A, Eq. (22), and B, Eq. (23), to
the LF forms,

Â ¼ Nc

Z
dkþd2k⊥
2ð2πÞ3

−ihM
x̄pþN̂1

ŜA; ð33Þ

B̂ ¼ Nc

Z
dk0þd2k0⊥
2ð2πÞ3

hM0hM00

x̄p0þN̂0
1N̂

00
1

ŜB: ð34Þ

As noted already in Refs. [28,34], the LF matrix elements
Â and B̂ obtained in this way receive additional spurious
contributions proportional to the lightlike four-vector
ωμ ¼ ð0; 2; 0⊥Þ, which can however be eliminated after
including the zero-mode contributions. As shown in
Ref. [28], the inclusion of zero-mode contributions to
the matrix elements in practice amounts to some proper
replacements in ŜA;B under the integration. Specifying to
the quantities considered in this paper, we need [28,34]

k̂μ1 → xpμ;

k̂μ1k̂
ν
1 → −gμν

k2⊥
2

þ pμpνx2 þ pμων þ pνωμ

ω · p
Bð2Þ
1 ;

N̂2 → Z2 ¼ N̂1 þm2
1 −m2

2 þ ðx̄ − xÞM2; ð35Þ

for Â, and

k̂0μ1 → PμAð1Þ
1 þ qμAð1Þ

2 ;

k0μ1 N̂2 → qμ
�
Að1Þ
2 Z2 þ

q · P
q2

Að2Þ
1

�
;

Z2 ¼ N̂0
1 þm02

1 −m2
2 þ ðx̄ − xÞM02

þ ðq2 þ q · PÞ k
0
1⊥ · q⊥
q2

; ð36Þ

for B̂, where P ¼ p0 þ p00, and the coefficients Að1Þ
1;2, A

ð2Þ
1

and Bð2Þ
1 are given, respectively, by [28]

Að1Þ
1 ¼ x

2
; Að1Þ

2 ¼ x
2
−
k01⊥ · q⊥

q2
;

Að2Þ
1 ¼ −k021⊥ −

ðk01⊥ · q⊥Þ2
q2

;

Bð2Þ
1 ¼ Að1Þ

1 Cð1Þ
1 − Að2Þ

1 ¼ x
2
Z2 þ

k2⊥
2
: ð37Þ

It should be noted that, although the coefficient Bð2Þ
1 does

not vanish and is combined with ωμ, there is no zero-mode

contribution associated with Bð2Þ
1 due to xN̂2 ¼ 0 [28].

However, we shall show later that the contributions related

to nonvanishing Bð2Þ
1 would result in the self-consistency

problem of CLF quark model with the traditional type-I
correspondence.
Using the formulas given above, one can then obtain the

full results for Â and B̂ in the CLF quark model, and further
extract the physical quantities like the decay constants and
transition form factors. Explicitly, for a given quantity Q,
its full result (Qfull) can be expressed as a sum of the
valence (Qval) and the zero-mode (Qz:m:) contribution [39]:
Qfull ¼ Qval þQz:m:. In order to evaluate the zero-mode
effect, one needs to calculate Qz:m:. or the difference
Qfull −Qval. A simple way to calculate Qval. is to assume
that kþ2 ≠ 0 and kþ1 ≠ 0, which ensure that the poles of N2

and N1 are safely located inside and outside, respectively,
the contour of k− (k0−) integral (i.e., the poles of N2 and N1

are both finite) and imply that the zero-mode contributions
are absent. In this case, the replacements for k̂μ1 and N̂2

given above need not be applied anymore. Instead, one just
needs to directly use the on-mass-shell condition for the
spectator antiquark, k22 ¼ m2

2, and the four-momentum
conservation at each vertex. For example, after integrating
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out k−, one should take N̂2 ¼ 0, and the nonindependent
minus component of k̂1 is given by

k̂−1 ¼ p− − k̂−2 ¼ p− −
m2

2 þ k2⊥
k̂þ2

¼ p−
�
1 −

m2
2 þ k2⊥
x̄M2

�
:

ð38Þ

The resulting ½fV �val obtained in this way is exactly the
same as that obtained by Choi and Ji [39], which will be
clearly seen in the next section.

III. RESULTS AND DISCUSSIONS

A. Decay constants of P and V mesons

The decay constants of P and V mesons are defined,
respectively, by

h0jq̄2γμγ5q1jPðpÞi ¼ ifPpμ; ð39Þ

h0jq̄2γμq1jVðp; λÞi ¼ fVMVϵ
μ
λ : ð40Þ

For the P meson, with the theoretical formulas given in the
last section, the resulting fP in the SLF and CLF quark
models are given, respectively, as3

½fP�SLF ¼
ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψ sðx; k⊥Þffiffiffiffiffi
xx̄

p 2ffiffiffi
2

p
M̂0

ðx̄m1 þ xm2Þ;

ð41Þ

½fP�full ¼ ½fP�val ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χP
x̄
2ðx̄m1 þ xm2Þ; ð42Þ

which agree with the ones obtained in the previous works,
for instance, Refs. [6,28,34,39]. The finding ½fP�full ¼
½fP�val implies that fP is free of the zero-mode contribution.
This is also the reason why one usually uses fP to deter-
mine the LF vertex function, hP or χP. Finally, it can be
easily found that the SLF and CLF results for fP are also
consistent with each other,

½fP�SLF ¼ ½fP�val ¼ ½fP�full; ð43Þ

under both the type-I and the type-II correspondence.
Before proceeding to discuss fV , we firstly determine the

Gaussian parameter β appearing in Eqs. (11) and (12),
which is the key input for the LF quark models. Thanks

to the self-consistencies of the LF quark models for and
the available precision data on fP, we shall perform χ2-fits
on β by using the data on fP collected in Table I,4

along with the constituent quark masses muðdÞ;s;c;b ¼
ð0.25; 0.50; 1.5; 4.8Þ GeV. Our fitting results are given in
Table II, from which one can see that these values are
generally in agreement with that obtained by the variational
principle [68], and will be therefore used in our following
numerical calculations. In addition, we assume that the
parameter β is universal for a given (q1q̄2) bound-state
system.
For the V meson, taking the λ ¼ 0 and λ ¼ � polari-

zation states, respectively,5 we obtain

½fV �λ¼0
SLF ¼

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψ sðx; k⊥Þffiffiffiffiffi
xx̄

p 2ffiffiffi
2

p
M̂0

×

�
x̄m1 þ xm2 þ

2k2⊥
DV;LF

�
; ð44Þ

½fV �λ¼�
SLF ¼

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψ sðx; k⊥Þffiffiffiffiffi
xx̄

p 2ffiffiffi
2

p
M̂0

×

�
M̂2

0

2MV
−

k2⊥
DV;LF

M0

MV

�
; ð45Þ

in the SLF quark model, in which ½fV �λ¼0
SLF is usually given,

while ½fV �λ¼�
SLF is always ignored in previous works due to

the traditional bias that μ ¼ ⊥ is not a “good” component
as is μ ¼ þ. By employing the CLF approach, on the other
hand, we obtain

½fV �λ¼0
full ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χV
x̄

2

MV

�
xM2

0 −m1ðm1 −m2Þ

−
�
1 −

m1 þm2

DV;con

�
ðk2⊥ − 2Bð2Þ

1 Þ
�
; ð46Þ

½fV �λ¼�
full ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χV
x̄

2

MV

�
xM2

0 −m1ðm1 −m2Þ

−
�
1 −

m1 þm2

DV;con

�
k2⊥

�
; ð47Þ

and

½fV �λ¼0
val ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χV
x̄

2

MV

�
k2⊥ þ xx̄M2

V þm1m2

þ x̄2M2
V −m2

2 − k2⊥
x̄DV;con

ðx̄m1 − xm2Þ
�
; ð48Þ

3In the extraction of ½fP�SLF and ½fP�val, we have to take the
μ ¼ þ component, which is the only choice because, on the one
hand, μ ¼ − is not an independent component and, on the other
hand, Eq. (39) would become an identity 0 ¼ 0 when taking μ ¼
⊥ in the P-meson rest frame. In addition, it has been known that
μ ¼ þ is a “good” component for calculating fP as mentioned in
the Introduction.

4The lattice QCD (LQCD) results for fηs;ηb and fBs;Bc
are used

in the fits because of the lack of the corresponding experimental
data.

5Because of the same reason as in the case of fP, the
component μ ¼ þ (μ ¼ ⊥) has to be taken for extracting
½fV �λ¼0ð�Þ

SLF;val , as well as the decay constants of 1A and 3A mesons.
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½fV �λ¼�
val ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χV
x̄

2

MV

�
x̄M2

V þ xM2
0 − ðm1 −m2Þ2
2

−
�
1−

m1 þm2

DV;con

�
k2⊥

�
: ð49Þ

Our CLF results given above agree with the ones obtained
in the previous works; for instance, Eqs. (46) and (47) have
been obtained in Refs. [33] and [28,34], respectively, while
Eqs. (48) and (49) have been given in Ref. [39]. In order to
clearly separate the contributions related to the coefficient

Bð2Þ
1 (i.e., the difference between ½fV �λ¼0

full and ½fV �λ¼�
full ), we

define

ΔM
fullðxÞ≡ d½fM�λ¼0

full

dx
−
d½fM�λ¼�

full

dx
; ð50Þ

where M ¼ V, 1A, or 3A. Specifying to the vector meson,
from Eqs. (46) and (47), we obtain

ΔV
fullðxÞ ¼ Nc

Z
d2k⊥
ð2πÞ3

χV
x̄

2

MV

DV;con −m1 −m2

DV;con
2Bð2Þ

1 :

ð51Þ
Similarly, in order to discuss the difference between ½fV �λ¼0

SLF

and ½fV �λ¼�
SLF , we define

ΔM
SLFðxÞ≡ d½fM�λ¼0

SLF

dx
−
d½fM�λ¼�

SLF

dx
: ð52Þ

For convenience of analyses and discussions about the
relations among the decay constants given by Eqs. (44)–
(49), we take the ρ andD� mesons as examples, and present
our numerical results in Table III by using the best-fit
values of inputs given in Table II. In addition, we show in

Fig. 2 the dependence of ΔV
fullðxÞ, ΔV

SLFðxÞ and d½fV �λ¼0
z:m:=dx

(where V ¼ ρ orD�, and ½fV �z:m: ¼ ½fV �full − ½fV �val) on the
momentum fraction x. Based on these numerical results
and the theoretical formulas given above, the following
discussions and findings can be made:6

(i) As pointed out by Cheng et al. in Ref. [34], the CLF
results for fV extracted via the λ ¼ 0 and λ ¼ �
polarization states are different from each other due to
the additional contribution to ½fV �λ¼0

full characterized by

the coefficient Bð2Þ
1 , which can be clearly seen from

Eqs. (46) and (47). Numerically, it is found from

Figs. 2(a),2(b) and Table III that the Bð2Þ
1 term gives a

nonzero contribution and results in about Oð10%Þ
correction to ½fV �full within the type-I scheme, which
means that the CLF approach with the traditional
type-I correspondence suffers the self-consistency
problem, ½fV �λ¼0

full ≠ ½fV �λ¼�
full (type-I). However,

within the type-II scheme, the positive ΔV
full at small

x and the negative one at large x can exactly cancel
each other, resulting in

R
dxΔV

full ¼ 0. This interesting
observation can be roughly seen from Figs. 2(a)
and 2(b). As a consequence, we find that

½fV �λ¼0
full _¼ ½fV �λ¼�

full ; ðtype-IIÞ ð53Þ

where the symbol “ _¼ ” used throughout this paper
denotes that the two quantities are equal to each other
only numerically but not formally. This confirms the
findings of Ref. [39] and implies that the type-II

TABLE II. Fitting results for the parameter β (in unit of MeV), where q ¼ u, d. See text for details.

βqq̄ βsq̄ βss̄ βcq̄ βcs̄

This work 314.1þ0.5
−0.5 342.8þ1.3

−1.4 365.8þ1.2
−1.8 464.1þ11.2

−10.8 537.5þ9.0
−8.7

Ref. [68] 365.9 388.6 412.8 467.9 501.6

βcc̄ βbq̄ βbs̄ βbc̄ βbb̄

This work 654.5þ143.3
−132.4 547.9þ9.9

−10.2 601.4þ7.3
−7.3 947.0þ11.2

−10.9 1391.2þ51.6
−48.2

Ref. [68] 650.9 526.6 571.2 936.9 1145.2

TABLE I. Available experimental data and LQCD results for the decay constants fP (in unit of MeV).

fπ fK fηs fD fDs

Exp data 130.50� 0.13[69] 155.72� 0.51[69] � � � 203.7� 4.7[69] 257.8� 4.1[69]
LQCD 130.2� 1.4[70] 155.6� 0.4[70] 181.1� 0.6[71] 212.2� 1.4[70] 248.8� 1.3[70]

fηc fB fBs
fBc

fηb

Exp data 335� 75[69,72] 188� 25[69] � � � � � � � � �
LQCD 387� 7[73] 186� 4[70] 224� 5[70] 427� 6[74] 667� 6[74]

6Here it should be emphasized that all these findings based on
the ρ and D� mesons are also applicable for the other vector
mesons unless stated otherwise.
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correspondence might be a self-consistency scheme
for the CLF approach.

(ii) As is the case for the CLF quark model with the
type-I correspondence, the traditional SLF quark
model also encounters the self-consistency problem,
½fV �λ¼0

SLF ≠ ½fV �λ¼�
SLF , which can be easily found by

comparing Eqs. (44) with (45). Inspired by the self-
consistent results achieved by the type-II replace-
ments in the CLF quark model, we now test whether
the self-consistency of the SLF quark model also
requires the replacement M → M0. In analogous to

the discussions in the CLF approach, we name
the traditional SLF approach and the one with an
additional M → M0 replacement in the integrand
as the type-I and the type-II scheme, respectively.
From Figs. 2(c),2(d) and Table III, it can be seen
that ½fV �λ¼0

SLF < ½fV �λ¼�
SLF in the traditional SLF quark

model (type-I), while, after making the replacement
M → M0,

½fV �λ¼0
SLF _¼ ½fV �λ¼�

SLF ; ðtype-IIÞ ð54Þ

type I

type II
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x
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D

(b)

type I

type II
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(c)

type I

type II
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FIG. 2. Dependence of ΔV
fullðxÞ, ΔV

SLFðxÞ, and d½fV �λ¼0;�
z:m: =dx on the momentum fraction x. See text for details.
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because
R
dxΔV

SLF ¼ 0. This implies that the replace-
ment M → M0 is also required by the self-consis-
tency of the SLF quark model.

(iii) Comparing Eqs. (44) and (45) with Eqs. (48) and
(49), we do not find any relations between ½fV �λ¼0;�

SLF

and ½fV �λ¼0;�
val within the type-I scheme; however,

employing the type-II scheme and making some
simplifications on these formulas, we find surpris-
ingly that the SLF results are exactly the same as the
valence contributions in the CLF approach,

½fV �λ¼0
SLF ¼ ½fV �λ¼0

val and ½fV �λ¼�
SLF ¼ ½fV �λ¼�

val ;

ðtype-IIÞ ð55Þ

which can also been seen from the numerical results
given in Table III.

(iv) The effect of the zero-mode contributions to fV ,
½fV �zm, are shown in Figs. 2(e)–2(h). It can be found
that, within the type-I scheme, the zero-mode effect
presents a sizable positive correction to fV , but its
contributions to fλ¼0

V and fλ¼�
V are different from

each other, with ½fV �λ¼0
z:m: < ½fV �λ¼�

z:m: numerically.
Within the type-II scheme, however, although
existing formally, the zero-mode contributions
vanish numerically, ½fV �λ¼0;�

z:m: _¼ 0. A very obvious
example is the ρmeson shown in Figs. 2(e) and 2(g).
This in turn implies that

½fV �λ¼0
full _¼ ½fV �λ¼0

val and ½fV �λ¼�
full _¼ ½fV �λ¼�

val ;

ðtype-IIÞ ð56Þ

which have also been demonstrated by the numerical
results given in Table III.

Combining all the findings given above, we can finally
conclude that

½fV �λ¼0
SLF ¼ ½fV �λ¼0

val _¼ ½fV �λ¼0
full _¼ ½fV �λ¼�

full _¼ ½fV �λ¼�
val

¼ ½fV �λ¼�
SLF ; ðtype-IIÞ ð57Þ

within the type-II scheme, in which ½fV �λ¼0
SLF _¼ ½fV �λ¼�

SLF and
½fV �λ¼0

full _¼ ½fV �λ¼�
full reflect the self-consistencies of SLF and

CLF quark models, respectively. However, none of these
relations holds within the type-I scheme. Finally, using the
inputs listed in Table II and employing the self-consistent
type-II scheme, we present in Table IV our updated
predictions for fV in the LF approach. It can be easily
found that our updated results are generally in consistence
with the experimental data as well as the theoretical results
obtained in the LQCD [73,75–78]and QCD sum rules
(QCDSR) [73,79–83] approaches.

B. Decay constants of 1A and 3A mesons

The decay constants of axial-vector mesons are
defined by

TABLE III. Numerical results for the decay constants (in unit of MeV) of ρ and D� mesons based on
Eqs. (44)–(49) and within the type-I and the type-II scheme.

½fρ�λ¼0
SLF ½fρ�λ¼�

SLF ½fρ�λ¼0
full ½fρ�λ¼�

full ½fρ�λ¼0
val ½fρ�λ¼�

val

Type-I 211.1 226.9 248.7 288.9 229.1 212.1
Type-II 211.1 211.1 211.1 211.1 211.1 211.1

½fD� �λ¼0
SLF ½fD� �λ¼�

SLF ½fD� �λ¼0
full ½fD� �λ¼�

full ½fD� �λ¼0
val ½fD� �λ¼�

val

Type-I 252.6 273.5 275.3 305.6 244.6 258.9
Type-II 252.6 252.6 252.6 252.6 252.6 252.6

TABLE IV. Updated predictions for fV (in unit of MeV) in the LF approach, where the errors are due to the
uncertainties of the parameter β given in Table II obtained by fitting to the available data on fP. The experimental
data as well as the LQCD and QCDSR predictions are also shown for comparision.

Data LQCD QCD SR This work

fρ 210� 4[84] 199� 4[76] 206� 7[79] 211� 1

fK� 204� 7[84] � � � 222� 8[79] 223� 1
fϕ 228.5� 3.6[75] 238� 3[75] 215� 5[79] 236� 1

fD� � � � 223.5� 8.4[77] 250� 8[80] 253� 7
fD�

s
301� 13[85] 268.8� 6.6[77] 290� 11[80] 314� 6

fJ=ψ 411� 5[72] 418� 9[73] 401� 46[73] 382� 96

fB� � � � 185.9� 7.2[77] 210� 6[80] 205� 5
fB�

s
� � � 223.1� 5.4[77] 221� 7[80] 246� 4

fB�
c

� � � 422� 13[78] 453� 20[80] 465� 7

fϒð1SÞ 708� 8[86] � � � � � � 713� 34
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h0jq̄2γμγ5q1j3ð1ÞAðp; λÞi ¼ f3ð1ÞAM3ð1ÞAϵ
μ
λ : ð58Þ

Using the theoretical formulas given in Sec. II and taking the λ ¼ 0 and λ ¼ � polarization states respectively, we obtain the
SLF results:

½f1A�λ¼0
SLF ¼ −

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψpðx; k⊥Þffiffiffiffiffi
xx̄

p 1ffiffiffi
2

p
M̂0

2

M0

ðx̄m1 þ xm2Þ½ðx̄ − xÞk2⊥ þ x̄2m2
1 − x2m2

2�
xx̄D1A;LF

; ð59Þ

½f1A�λ¼�
SLF ¼ −

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψpðx; k⊥Þffiffiffiffiffi
xx̄

p 1ffiffiffi
2

p
M̂0

2

M1A

m1 −m2

D1A;LF
k2⊥; ð60Þ

for the 1A meson, and

½f3A�λ¼0
SLF ¼

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψpðx; k⊥Þffiffiffiffiffi
xx̄

p 1ffiffiffi
2

p
M̂0

M̂2
0

2
ffiffiffi
2

p
M0

2

M0

�
2k2⊥ þ ðm1 −m2Þðx̄m1 − xm2Þ

−
ðx̄m1 þ xm2Þ½ðx̄ − xÞk2⊥ þ x̄2m2

1 − x2m2
2�

xx̄D3A;LF

�
; ð61Þ

½f3A�λ¼�
SLF ¼

ffiffiffiffiffiffi
Nc

p Z
dxd2k⊥
ð2πÞ3

ψpðx; k⊥Þffiffiffiffiffi
xx̄

p 1ffiffiffi
2

p
M̂0

M̂2
0

2
ffiffiffi
2

p
M0

2

M3A

�
k2⊥ − 2x̄xk2⊥ þ ðx̄m1 − xm2Þ2

2x̄x
−
k2⊥ðm1 −m2Þ

D3A;LF

�
; ð62Þ

for the 3A meson. Employing the CLF approach, on the other hand, we obtain

½f1A�λ¼0
full ¼ −Nc

Z
dxd2k⊥
ð2πÞ3

χ1A

x̄
2

M1A

m1 −m2

D1A;con
ðk2⊥ − 2Bð2Þ

1 Þ; ð63Þ

½f1A�λ¼�
full ¼ −Nc

Z
dxd2k⊥
ð2πÞ3

χ1A

x̄
2

M1A

m1 −m2

D1A;con
k2⊥; ð64Þ

for the 1A meson, and

½f3A�λ¼0
full ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χ3A

x̄
2

M3A

�
xM2

0 −m1ðm1 þm2Þ −
�
1þm1 −m2

D3A;con

�
ðk2⊥ − 2Bð2Þ

1 Þ
�
; ð65Þ

½f3A�λ¼�
full ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χ3A

x̄
2

M3A

�
xM2

0 −m1ðm1 þm2Þ −
�
1þm1 −m2

D3A;con

�
k2⊥

�
; ð66Þ

for the 3A meson. At the same time, the valence contributions in the CLF approach are given, respectively, by

½f1A�λ¼0
val ¼ −Nc

Z
dxd2k⊥
ð2πÞ3

χ1A

x̄
2

M1A

M2
1Ax̄

2 −m2
2 − k2⊥

x̄D1A;con
ðx̄m1 þ xm2Þ; ð67Þ

½f1A�λ¼�
val ¼ −Nc

Z
dxd2k⊥
ð2πÞ3

χ1A

x̄
2

M1A

m1 −m2

D1A;con
k2⊥; ð68Þ

for the 1A meson, and

½f3A�λ¼0
val ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χ3A

x̄
2

M3A

�
k2⊥ þ xx̄M2

3A −m1m2 −
M2

3Ax̄
2 −m2

2 − k2⊥
x̄D3A;con

ðx̄m1 þ xm2Þ
�
; ð69Þ

½f3A�λ¼�
val ¼ Nc

Z
dxd2k⊥
ð2πÞ3

χ3A

x̄
2

M3A

�x̄M2
3A þ xM2

0 − ðm1 þm2Þ2
2

−
�
1þm1 −m2

D3A;con

�
k2⊥

�
; ð70Þ

for the 3A meson.
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Again, for convenience, we take the (qq̄) and (cq̄)
(q ¼ u, d) bound-states as examples to analyze and
discuss the relations among the decay constants given
above; here, 1Aðqq̄Þ, 3Aðqq̄Þ, 1Aðcq̄Þ and 3Aðcq̄Þ are interpreted,
respectively, as b1ð1235Þ, a1ð1260Þ, D1ð2420Þ, and
D1ð2430Þ mesons [69]. Note that all the following find-
ings and conclusions are also applicable for the other
axial-vector mesons. Numerical results for these decay
constants obtained with the best-fit values of β are
collected in Table V, and the dependences of ΔA

fullðxÞ,
ΔA

SLFðxÞ and d½fA�λ¼0;�
z:m: =dx on the momentum fraction x

are shown in Figs. 3 and 4. Based on these numerical
results and the theoretical formulae given above, we have
the following discussions and findings:

(i) Because of m1 ¼ m2 in the isospin-symmetry limit,
the 1Aðqq̄Þ meson is not ideal for testing the self-
consistencies of LF quark models, as the corre-
sponding decay constants, except ½f1Aðqq̄Þ �λ¼0

SLF and

½f1Aðqq̄Þ �λ¼0
val , are all proportional to m1 −m2 and

hence identically zero. Moreover, ½f1Aðqq̄Þ �λ¼0
SLF with

m1 ¼ m2 is also equal to zero because its integrand
is anti-symmetric under the exchange x ↔ x̄. On the
other hand, ½f1Aðqq̄Þ �λ¼0

val is nonzero only in the type-I
but vanishes numerically in the type-II scheme,
which can be found from Table V and clearly seen
from Fig. 4(d). Thus, in our following analyses for
the 1A mesons, we shall focus mainly on the general
case with m1 ≠ m2, such as the (cq̄) bound-states.

(ii) Comparing Eqs. (63) with (64) for 1A and Eqs. (65)
with (66) for 3A, one can easily found that the
CLF results for f1ð3ÞA extracted via the λ ¼ 0

and λ ¼ � polarization states are formally different
from each other, due to the additional contributions to

½f1ð3ÞA�λ¼0
full characterized by the coefficient Bð2Þ

1 . Nu-
merically, it can be found from Table V, Figs. 3(a),
3(b) and Fig. 4(a) that ½f1ð3ÞA�λ¼0

full ≠ ½f1ð3ÞA�λ¼�
full in the

type-I scheme, which means that the CLF approach
with the type-I correspondence also suffers the self-
consistency problem when applied to f1ð3ÞA; in the
type-II scheme, we can however obtain self-consistent
results,

½f1ð3ÞA�λ¼0
full _¼ ½f1ð3ÞA�λ¼�

full ; ðtype-IIÞ ð71Þ

due to
R
dxΔ

1ð3ÞA
full ¼ 0. These findings for the 1A

and 3A mesons in the CLF quark model are
exactly the same as what we have found for the V
meson. The same conclusion is also applied to
the SLF quark model; explicitly, we find that
j½f1ð3ÞA�λ¼0

SLFj < j½f1ð3ÞA�λ¼�
SLF j within the traditional

type-I scheme, while

½f1ð3ÞA�λ¼0
SLF _¼ ½f1ð3ÞA�λ¼�

SLF ; ðtype-IIÞ ð72Þ

within the type-II scheme, due to
R
dxΔ

1ð3ÞA
SLF ¼ 0,

which can be seen from Table V, Figs. 3(c),3(d) and
Fig. 4(b). Thus, the above findings, Eqs. (71) and (72),
reinforce our conclusion obtained in the fV case that
the replacement M → M0 is required to give self-
consistent results for the decay constants in both the
CLF and the SLF quark model.

(iii) Employing the type-II scheme and then making some
simplifications on Eqs. (59)–(62) and (67)–(70),
we find that

TABLE V. Numerical results for the decay constants (in unit of MeV) of 1ð3ÞAðqq̄Þ and 1ð3ÞAðcq̄Þ mesons given by Eqs. (59)–(70) and
within the type-I and the type-II scheme.

½f1Aðqq̄Þ �λ¼0
SLF ½f1Aðqq̄Þ �λ¼�

SLF ½f1Aðqq̄Þ �λ¼0
full ½f1Aðqq̄Þ �λ¼�

full ½f1Aðqq̄Þ �λ¼0
val ½f1Aðqq̄Þ �λ¼�

val

Type-I 0 0 0 0 −47.4 0
Type-II 0 0 0 0 0 0

½f1Aðcq̄Þ �λ¼0
SLF ½f1Aðcq̄Þ �λ¼�

SLF ½f1Aðcq̄Þ �λ¼0
full ½f1Aðcq̄Þ �λ¼�

full ½f1Aðcq̄Þ �λ¼0
val ½f1Aðcq̄Þ �λ¼�

val

Type-I −78.5 −84.6 −78.4 −84.6 −65.2 −84.6
Type-II −78.5 −78.5 −78.5 −78.5 −78.5 −78.5

½f3Aðqq̄Þ �λ¼0
SLF ½f3Aðqq̄Þ �λ¼�

SLF ½f3Aðqq̄Þ �λ¼0
full ½f3Aðqq̄Þ �λ¼�

full ½f3Aðqq̄Þ �λ¼0
val ½f3Aðqq̄Þ �λ¼�

val

Type-I 218.7 223.6 260.6 223.6 263.1 263.1
Type-II 218.7 218.7 218.7 218.7 218.7 218.7

½f3Aðcq̄Þ �λ¼0
SLF ½f3Aðcq̄Þ �λ¼�

SLF ½f3Aðcq̄Þ �λ¼0
full ½f3Aðcq̄Þ �λ¼�

full ½f3Aðcq̄Þ �λ¼0
val ½f3Aðcq̄Þ �λ¼�

val

Type-I 231.7 256.7 244.7 256.7 228.5 228.5
Type-II 231.7 231.7 231.7 231.7 231.7 231.7
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½f1ð3ÞA�λ¼0
SLF ¼ ½f1ð3ÞA�λ¼0

val and

½f1ð3ÞA�λ¼�
SLF ¼ ½f1ð3ÞA�λ¼�

val ; ðtype-IIÞ ð73Þ

which can also be seen clearly from the numerical
results given in Table V. Among these relations, only
½f1A�λ¼�

SLF ¼ ½f1A�λ¼�
val holds in the type-I scheme (see

Eqs. (60) and (68)). The relations given by Eq. (73)
are direct generalizations of Eq. (55) from the vector
to the axial-vector mesons.

(iv) For the 1A meson, it can be found by comparing
Eqs. (64) with (68) that

½f1A�λ¼�
full ¼ ½f1A�λ¼�

val ; ð74Þ

which implies that there is no zero-mode contribu-
tion, ½f1A�λ¼�

z:m: ¼ 0; while, from Eqs. (63) and (67),
one can see that the zero-mode contribution, ½f1A�λ¼0

z:m:,
exists formally and, moreover, ½f1A�λ¼0

z:m:≠0 numeri-
cally within the type-I scheme, which can be clearly
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FIG. 3. Dependence of Δ
3A
fullðxÞ, Δ

3A
SLFðxÞ and d½f3A�λ¼0;�

z:m: =dx on the momentum fraction x for (qq̄) and (cq̄) bound-states. See text
for details.
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seen from Figs. 4(c) and 4(d). This means that the
existence or absence of ½f1A�z:m. depend on the choice
of the polarization state λ. Within the type-II scheme,
however, although existing formally, ½f1A�λ¼0

z:m: van-
ishes numerically, and we have therefore again

½f1A�λ¼0
full _¼ ½f1A�λ¼0

val ; ðtype-IIÞ ð75Þ

which can be seen from the numerical results given in
Table V.

(v) For the 3A meson, from Figs. 3(e)–3(h) and Table V,
we find that the zero-mode contributions ½f3A�λ¼0;�

z:m:

always exist formally, and do not vanish numerically
in the type-I scheme. However, in the type-II
scheme, ½f3A�λ¼0

z:m: ∝ ðm1 −m2Þ and hence vanishes
for the quarkonia, which explains the red line shown
in Fig. 3(e); moreover, the zero-mode contributions
vanish numerically for the other cases shown by
Figs. 3(f)–3(h). Therefore, we have

½f3A�λ¼0
full _¼ ½f3A�λ¼0

val and ½f3A�λ¼�
full _¼ ½f3A�λ¼�

val ;

ðtype-IIÞ ð76Þ

in which the symbol “ _¼ ” in the first equation
should be replaced by “¼” for the quarkonia. These
relations can also be found directly from the
numerical results given in Table V.

Combining all the above findings for the axial-vector
mesons, we can extend the conclusion, Eq. (57), for the
vector meson to the more general form

½Q�λ¼0
SLF ¼ ½Q�λ¼0

val _¼ ½Q�λ¼0
full _¼ ½Q�λ¼�

full _¼ ½Q�λ¼�
val

¼ ½Q�λ¼�
SLF ; ðtype-IIÞ ð77Þ

where Q ¼ fV , f1A and f3A, and the first and the last “ _¼”
should be replaced by “¼” for the 3Aðqq̄Þ and 1A mesons,
respectively. These relations reflect the self-consistencies
of the SLF and CLF quark models in the type-II scheme.
Finally, using the inputs listed in Table II and employing
the self-consistent type-II scheme, we present in Table VI
our updated predictions for f1A and f3A in the LF
approach.

C. Form factors in P → P weak transition

In the last two subsections, we have tested the self-
consistencies of LF quark models via the mesonic decay
constants, and found that both the CLF and the SLF quark
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FIG. 4. Dependence of Δ
1Aðcq̄Þ
full ðxÞ, Δ1Aðcq̄Þ

SLF ðxÞ, d½f1Aðcq̄Þ �λ¼0
z:m:=dx, and d½f1Aðqq̄Þ �λ¼0

z:m:=dx on the momentum fraction x. The quantities

Δ
1Aðqq̄Þ
full ðxÞ, Δ1Aðqq̄Þ

SLF ðxÞ, d½f1Aðqq̄Þ �λ¼�
z:m: =dx, and d½f1Aðcq̄Þ �λ¼�

z:m: =dx are all equal to zero and hence not shown here. See text for details.

TABLE VI. Updated predictions for f1A and f3A (in unit of
MeV) in the LF approach. The other captions are the same as in
Table IV.

fqq̄ fsq̄ fss̄ fcq̄ fcs̄
1A 0 −27� 1 0 −78� 2 −62� 2
3A 220� 1 219� 2 203� 2 231� 8 257� 8

fcc̄ fbq̄ fbs̄ fbc̄ fbb̄
1A 0 −95� 3 −88� 2 −86� 3 0
3A 250� 90 176� 6 180� 5 281� 7 353� 25
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model within the type-II scheme can give self-consistent
results for the decay constants of vector and axial-vector
mesons, i.e., ½Q�λ¼0

full _¼ ½Q�λ¼�
full and ½Q�λ¼0

SLF _¼ ½Q�λ¼�
SLF . More

interestingly, we have also found that the results of the SLF
quark model are consistent with both the full and the
valence result of the CLF quark model, i.e.,

½Q�SLF ¼ ½Q�val _¼ ½Q�full; ðtype-IIÞ ð78Þ

where the second relation is due to the fact that the
zero-mode contributions exist only formally but vanish
numerically within the type-II scheme. It is known that,
besides the decay constant, another ideal quantity for
studying the zero-mode effect is the transition form factor.
To this end, we shall test in this subsection whether the
relations, Eq. (78), still hold for the P → P weak transition
form factors.
The form factors for P → P weak transition are

defined by

hP00ðp00Þjq̄001γμq01jP0ðp0Þi ¼ fþðq2ÞPμ þ f−ðq2Þqμ; ð79Þ

where qμ ¼ p0μ − p00μ and Pμ ¼ p0μ þ p00μ. In the qþ ¼ 0
frame, multiplying both sides of Eq. (79) by ωμ and qμ,
respectively, one gets

fþðq2Þ ¼
Bþ

Pþ ; f−ðq2Þ ¼
q · B − ðq · PÞfþðq2Þ

q2
;

ð80Þ

where Bμ denotes the l.h.s of Eq. (79) and can be calculated
in the SLF and CLF approaches.

Employing the theoretical framework and formulas of
the SLF quark model introduced in Sec. II, we finally
obtain

½fþðq2Þ�SLF ¼
Z

dxd2k0⊥
ð2πÞ3

ψ 00�
s ψ 0

s

xx̄
1

2M̂0
0M̂

00
0

× ½k0⊥ · k̄00⊥ þ ðx̄m0
1 þ xm2Þðx̄m00

1 þ xm2Þ�;
ð81Þ

½f−ðq2Þ�SLF ¼ ½fþðq2Þ�SLF þ
Z

dxd2k0⊥
ð2πÞ3

ψ 00�
s ψ 0

s

xx̄
x̄

2M̂0
0M̂

00
0

×

�
q⊥ · k0⊥
q2⊥

½ðm0
1 −m00

1Þ2 þ q2⊥�

þ q⊥ · ðk0⊥ − q⊥Þ
q2⊥

ðx̄m0
1 þ xm2Þ2 þ k02⊥

xx̄

þ q⊥ · k0⊥
q2⊥

ðx̄m00
1 þ xm2Þ2 þ k̄002⊥

xx̄

�
: ð82Þ

The form factor fþðq2Þ in the SLF approach, Eq. (81), has
been first obtained in Ref. [3], while f−ðq2Þ, Eq. (82), is
given for the first time in this paper.
In the CLF quark model, on the other hand, using the

theoretical formulas given in Sec. II, we obtain

½fþðq2Þ�full ¼ Nc

Z
dxd2k0⊥
ð2πÞ3

χP0χP00

2x̄
½xM02

0 þ xM002
0 þ x̄q2

− xðm0
1 −m2Þ2 − xðm00

1 −m2Þ2
− x̄ðm0

1 −m00
1Þ2�; ð83Þ

½f−ðq2Þ�full ¼ Nc

Z
dxd2k0⊥
ð2πÞ3

χP0χP00

2x̄

�
−2xx̄M02 − 2k02⊥ − 2m0

1m2 þ 2ðm00
1 −m2Þðx̄m0

1 þ xm2Þ − 2
k0⊥ · q⊥
q2

½ðx − x̄ÞM02

þM002 − x̄ðq2 þ q · PÞ þ 2xM02
0 − 2ðm0

1 þm00
1Þðm0

1 −m2Þ� þ 4
P · q
q2

�
k02⊥ þ 2

ðk0⊥ · q⊥Þ2
q2

�
þ 4

ðk0⊥ · q⊥Þ2
q2

�
;

ð84Þ

which agree with the results given in the literatures, for instance, Refs. [28,34]. Furthermore, for the valence contributions in
the CLF quark model, we obtain

½fþðq2Þ�val ¼ ½fþðq2Þ�full; ð85Þ

½f−ðq2Þ�val ¼ ½fþðq2Þ�val þ Nc

Z
dxd2k0⊥
ð2πÞ3

χP0χP00

2x̄

�
½−2x̄M02 − 2xM02

0 þ 2ðm0
1 −m2Þ2�

− 2
k0⊥ · q⊥
q2

½M02 þM002 − q2 þ 2ðm0
1 −m2Þðm2 −m00

1Þ�
�
: ð86Þ
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Based on the results given above, we have the following
discussions and findings:

(i) For the vector form factor fþðq2Þ, as has already
been known from the previous studies [28,34], it is
free of the zero-mode effect, i.e., ½fþðq2Þ�z:m: ¼ 0,
which can be found from Eq. (85). Moreover, it is
found that, after the replacement χP → hP=N̂1 to-
gether with some simplifications, the valence con-
tribution, ½fþðq2Þ�val, given by Eq. (85) is exactly
the same as the SLF result, ½fþðq2Þ�SLF, given by
Eq. (81). We can, therefore, conclude that

½fþðq2Þ�SLF ¼ ½fþðq2Þ�val ¼ ½fþðq2Þ�full; ð87Þ

both in the type-I and in the type-II scheme.
(ii) For the form factor f−ðq2Þ, on the other hand, one

can easily find that ½f−ðq2Þ�SLF ≠ ½f−ðq2Þ�val within
the type-I scheme, by comparing Eqs. (86) with (82);
however, taking the type-II scheme and making
some further simplifications, we find that

½f−ðq2Þ�SLF ¼ ½f−ðq2Þ�val; ðtype-IIÞ ð88Þ

which confirms again the first relation in Eq. (78).
(iii) In contrast to fþðq2Þ, the form factor f−ðq2Þ

obviously suffers the zero-mode effect, which can
be found from Eqs. (86) and (84). In order to clearly
demonstrate the zero-mode contribution, we take
the D → π transition as an example and show in
Fig. 5 the dependence of d½f−ðq2Þ�z:m:=dx on the
momentum fraction x at q2⊥ ¼ 0, 0.5 and 1 GeV2,
respectively. It can be seen that the zero-mode
contribution to ½f−ðq2Þ� is sizable in the type-I,
but vanishes numerically in the type-II scheme due
to

R
dxd½f−ðq2Þ�z:m: ¼ 0 at the chosen q2⊥ points.

This means that

½f−ðq2Þ�val _¼ ½f−ðq2Þ�full; ðtype-IIÞ ð89Þ

and confirms again the last relation in Eq. (78).
Therefore, combining the above findings, we can con-

clude that the relations given by Eq. (78) also hold for the
P → P weak transition form factors.

D. Covariance of CLF quark model

In the last subsections, we have discussed the
self-consistencies of LF quark models in detail. In this
subsection, we shall test the manifest covariance of
the CLF quark model with the type-I and the type-II
correspondence.
As has already been shown in Ref. [28], a peculiar

property of the LF matrix elements Â, Eq. (33) and B̂,
Eq. (34) is that their dependence on the lightlike four vector
ωμ ¼ ð0; 2; 0⊥Þ, which can be explicitly revealed by their
decomposition into four vectors.7 Taking the V → 0 LF
matrix element as an example, we have

Âμ
V ¼ MVðϵμfV þ ωμgVÞ; ð90Þ

where gV is the unphysical constant related toωμ. Asωμ is a
fixed vector, Âμ

V is obviously not covariant unless when
gV ¼ 0. As has been demonstrated in Ref. [28], after the
zero-mode contributions are properly taken into account,
the spurious ω dependence of Âμ

V can be eliminated, and
hence the final result is guaranteed to be covariant. This is
an important feature of the CLF quark model.
Although the main ω dependence is associated with the

C coefficients and can be totally eliminated by the zero-
mode contributions [28], there are, however, still some
residual ω dependences in Â and B̂ due to the nonvanishing
B coefficients. Therefore, the manifest covariance of the
CLF results can be claimed only after these residual ω
dependences are proven to be spurious too. As the zero-
mode effect does not affect terms associated with the B
coefficients [28], we have to invoke a different mechanism
to “neutralize” their effect. It has been found that the
remainingω dependence, although being minimal, does not
totally vanish when using the light-front vertex function
given by Eq. (28) (type-I) [28], which implies that the CLF
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FIG. 5. Dependence of d½fD→π
− ðq2Þ�z:m:=dx on the momentum fraction x at q2⊥ ¼ 0, 0.5 and 1 GeV2, respectively.

7In order to treat the complete Lorentz structure of a hadronic
matrix element, the authors of Refs. [87–90] have developed a
basically different method to identify and separate the spurious
contributions and to determine the physical contributions to the
hadronic form factors and coupling constants. Here we shall
follow the Jaus’ prescription [28] in which a manifestly covariant
BS approach is used as a guide to deal with this problem.
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results for some quantities with the traditional type-I
correspondence are not strictly covariant. Concerning the
quantities discussed in this paper, we find that such an issue
is mainly involved in the spin-1 systems, especially for the
λ ¼ 0 polarization state.
In order to illustrate explicitly the ω dependence and

search for possible solutions, we still take the V → 0 LF
matrix element as an example. After integrating out the k−

component and taking into account the zero-mode con-
tributions, we can decompose the trace term ŜA in the
integrand of Eq. (33) as

ŜμV ¼ 4

�
2

�
1 −

m1 þm2

DV;con

�
ω · ϵ
ω · p

pμBð2Þ
1 þ ϵμ½� � ��

�
; ð91Þ

where the first term proportional to Bð2Þ
1 involves the

ω-dependent part, while the second term proportional to
ϵμ gives the physical contribution to fV . For the λ ¼ �
polarization states, the first term can be dropped directly
due to ω · ϵ� ¼ 0, and hence the ω dependence vanishes
in this case. For the λ ¼ 0 polarization state, in order to
separate the physical and unphysical contributions, we use
the identity [33]

pμ ϵ · ω
ω · p

¼ ϵμ −
ωμ

ω · p

�
ϵ · p − ϵ · ω

p2

ω · p

�

−
iλ

ω · p
εμναβωνϵαpβ: ð92Þ

Here, the third term is equal to zero for λ ¼ 0, and the first
term gives an additional contribution to fV that results
in the self-consistency problem and has been discussed
in Sec. III A, while the second term is the residual
ω-dependent part that contributes to the unphysical con-
stant gV and may violate the Lorentz covariance. Explicitly,
using Eq. (92), we obtain the unphysical constant, gV , as

½gV �λ¼0 ¼ Nc

2

Z
dxd2k⊥
ð2πÞ3

χVðx; k2⊥Þ
x̄

4

�
1 −

m1 þm2

DV;con

�

×
2

ω · p
Bð2Þ
1 : ð93Þ

Similarly, for the 3A and 1A mesons, we obtain

½g3A�λ¼0 ¼ Nc

2

Z
dxd2k⊥
ð2πÞ3

χ3Aðx; k2⊥Þ
x̄

4

�
1þm1 −m2

D3A;con

�

×
2

ω · p
Bð2Þ
1 ; ð94Þ

½g1A�λ¼0 ¼ Nc

2

Z
dxd2k⊥
ð2πÞ3

χ1Aðx; k2⊥Þ
x̄

4
m1 −m2

D1A;con

2

ω · p
Bð2Þ
1 :

ð95Þ

Based on the theoretical results given above, we have the
following discussions and findings:

(i) The manifest covariance of the CLF quark model
requires that ½gV �λ¼0 ¼ ½g3ð1ÞA�λ¼0 ¼ 0, which are
equivalent to the conditions that

Z
dxd2k⊥

χMðx; k2⊥Þ
x̄

Bð2Þ
1 ¼ 0;

Z
dxd2k⊥

χMðx; k2⊥Þ
x̄

Bð2Þ
1

DM;con
¼ 0; ð96Þ

where M ¼ V or 3ð1ÞA. The first equation is exactly
the covariance condition presented in Ref. [28], but
has been found to be violated when the LF vertex
function is used (i.e., when the type-I replacement is
applied) [28]. At the same time, we find that the
second condition is also violated in this scheme. But
interestingly, both of them can be satisfied by taking
the additional M → M0 replacement, which implies
that the covariance can be recovered within the
type-II scheme. This can be clearly seen from the
numerical examples shown in the next item.

(ii) From Eqs. (93)–(95), it can be found that ½gV �λ¼0 and
½gA�λ¼0 are both proportional to 1=ðω · pÞ ¼ 1=pþ,
and hence their values, if being nonzero, would be
reference-frame dependent. This implies that the size
of covariance violation within the type-I scheme is
in fact out of control. For convenience of numerical
analyses, we take here the rest frame of mesons,
which gives pþ ¼ M. Then, comparing ½gV;A�λ¼0

with ½fV;A�λ¼0;�
full (or ΔM

fullðxÞ), one can easily find that

½gV;A�λ¼0 ¼ ½fV;A�λ¼0
full − ½fV;A�λ¼�

full ¼
Z

dxΔV;A
full ðxÞ;

ð97Þ

From the figures for ΔV;A
full ðxÞ shown in the last

subsections, one can easily judge whether
½gV;A�λ¼0 ¼ 0 within the type-I and the type-II
scheme. Explicitly, using the results given in
Tables III and V, one can also obtain the following
numerical results:

½gρ;D�;1Aðcq̄Þ;3Aðqq̄Þ;3Aðcq̄Þ �λ¼0

¼ ð−40.2;−30.3; 6.2; 37.0;−12.0Þ MeV ≠ 0;

ðtype-IÞ ð98Þ

½gρ;D�;1Aðcq̄Þ;3Aðqq̄Þ;3Aðcq̄Þ �λ¼0 ¼ 0; ðtype-IIÞ ð99Þ

which confirms the findings presented in the last
item. Here, it should be emphasized that the value of
½gV;A�λ¼0 within the type-I scheme is reference-frame
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dependent but is nonzero; while, the result
½gV;A�λ¼0 ¼ 0 within the type-II scheme is indepen-
dent of the reference frame. From the above analyses
and numerical results, we can conclude that the
problems of self-consistency and covariance of the
CLF quark model within the type-I scheme might
have the same origin, and both of them can be
resolved simultaneously within the type-II scheme.

(iii) In the heavy-quark limit, M ∼mQ ≫ mq̄, the mo-
mentum fractions carried by the constituents can be
taken as x ∼mQ=M and x̄ ∼mq=M. Keeping further
in mind that the contributions to fV;A and gV;A are
dominated by the momentum region jk⊥j ≲ 1 GeV,
one can find that M0 ≃M would be a good approxi-
mation. Therefore, in the heavy-quark limit, the
covariance of CLF results within the type-I scheme
can be recovered, which has been found in Ref. [28],
and moreover, the CLF results in the type-I scheme
would approach to that in the type-II scheme, which
could be roughly inferred by comparing the numeri-
cal results ½gρ�λ¼0 with ½gD� �λ¼0, or ½g3Aðqq̄Þ �λ¼0 with

½g3Aðcq̄Þ �λ¼0, given in Eq. (98).
The self-consistency problem of the CLF quark model is

also correlated with the ambiguous decomposition of the
hadronic matrix element. For the λ ¼ � polarization states,
instead of usingω · ϵ� ¼ 0, one can also decompose the first
term of Eq. (91) by using Eq. (92) in the same manner as for
the λ ¼ 0 mode. In this case, the self-consistency problem
does not appear, but at the expense of introducing more
unphysical decay constants related to the second and the last
term in Eq. (92). Such an ambiguous decomposition becomes
trivial only when the integrals related to the B functions are
zero, which can be achieved only in the type-II scheme.
From the above findings, one may find that the replace-

ment M → M0 in the type-II scheme plays an important
role in dealing with the problems of self-consistency, strict
covariance and ambiguous decomposition of the hadronic
matrix element. Possible reasons underlying such a replace-
ment have been discussed in Refs. [39,47–49]. In the CLF
quark model [28], a manifestly covariant BS approach is
used to guide the corresponding light-front calculation, but
still using the same vertex functions as employed in the
SLF quark model, because it is quite difficult to determine
these functions by solving the QCD bound-state equation.
A significant difference between the covariant BS approach
and the SLF quark model is that the constituent quarks of a
bound-state are allowed to be off mass-shell in the former,
but must be on their respective mass-shell in the latter. In
addition, the vertex operator used in the CLF quark model
is in fact the Dirac structure of the spin-orbit WF in the SLF
quark model, which can be clearly seen by comparing
Eqs. (26) with (16). Note that the spin-orbit WF in the SLF
quark model is obtained via the Melosh transformation and
by assuming that the “free” and “dressed” constituents are

on their respective mass-shell, implying therefore only the
invariant mass squared of the constituentsM2

0 appears in the
spin-orbit WF. Thus, once the vertex functions and operators
mentioned above are used in the CLF quark model, it is quite
reasonable to employ the replacement M → M0 for con-
sistence, which reflects the fact that all the constituents are
required to be on their respective mass-shell.
In other words, after the replacement M → M0 is

applied, the CLF quark model with the LF vertex operators
given by Eq. (26) can be regarded as a covariant expression
for the SLF quark model but with the zero-mode contri-
butions taken properly into account. If this statement is
correct, the valence contribution of the CLF quark model
should be the same as the SLF one not only numerically but
also formally, Oval ¼ OSLF, which is exactly confirmed in
this paper. Besides of the reasons discussed above, the
nontrivial role ofM → M0 in improving the covariance and
self-consistency of CLF quark model is also a strong but
indirect evidence for the validity of this replacement.
Finally, we should point out that the LF vertex operators
given in Eq. (26) as well as the corresponding vertex
functions employed in this work are not the only option
for the CLF quark model. Explicit forms of the vertex
operators are generally model-dependent, and hence the
replacement M → M0 would possibly be less or even not
essential in other cases.

IV. SUMMARY

In this paper, we have studied the self-consistency and
covariance of SLF and CLF quark models via the decay
constants of pseudoscalar, vector and axial-vector mesons,
as well as the P → P weak transition form factors. For
the CLF quark model, the type-I and the type-II corre-
spondence [denoted by Eqs. (28) and (32), respectively]
between the manifestly covariant approach and the LF
quark model have been tested in detail. The main difference
between these two schemes resides in whether the replace-
ment M → M0 is applied only in the D factor or in each
and every term in the integrand. Our main findings and
conclusions can be summarized as follows:

(i) In the traditional type-I scheme, the CLF predictions
for the decay constants of vector and axial-vector
mesons suffer the self-consistency problem, which
means that the results obtained via the λ ¼ 0 and
λ ¼ � polarization states are different from each
other, due to the additional contributions character-

ized by the coefficient Bð2Þ
1 . A similar problem also

exists in the traditional SLF quark model, with the
findings that ½fV;1A;3A�λ¼0

SLF ≠ ½fV;1A;3A�λ¼�
SLF (type-I).

(ii) The CLF quark model with the type-II correspon-
dence can, however, give self-consistent results for
the decay constants, ½fV;1A;3A�λ¼0

full _¼ ½fV;1A;3A�λ¼�
full

and ½fV;1A;3A�λ¼0
val _¼ ½fV;1A;3A�λ¼�

val (type-II), because
the integrations over terms associated with the

SELF-CONSISTENCY AND COVARIANCE OF LIGHT- … PHYS. REV. D 98, 114018 (2018)

114018-17



coefficient Bð2Þ
1 vanish numerically after taking the

replacement M → M0. At the same time, the same
replacement is also required to obtain self-consistent
results in the SLF quark model, ½fV;1A;3A�λ¼0

SLF _¼
½fV;1A;3A�λ¼�

SLF (type-II).
(iii) For the decay constants and form factors studied in

this paper, it is found that fP and fþðq2Þ are free of
the zero-mode contaminations; fV;3A and f−ðq2Þ
always receive the zero-mode contributions; but
for f1A, the existence or absence of the zero-mode
contributions depend on the choice of the polariza-
tion state λ.

(iv) In the type-II scheme, the SLF quark model always
gives identical results as the valence contributions of
the CLF approach, ½Q�SLF ¼ ½Q�val. The zero-mode
contributions to fV;1A;3A and f−ðq2Þ exist only
formally but vanish numerically, leading therefore
to ½Q�val _¼ ½Q�full.

(v) The manifest covariance of the CLF quark model is
violated within the type-I scheme due to the same

reason as for the self-consistency problem, but
remarkably, can be recovered by taking the type-II
correspondence. These two schemes are also con-
sistent with each other in the heavy-quark limit.

The main findings in the type-II scheme mentioned
above have been clearly summarized by Eqs. (77) and (78),
as well as ½gV;A�λ¼0;� ¼ 0. It is expected that such a self-
consistent and covariant scheme can be applied to discuss
the other properties of hadrons, which will be exploited in
the future.
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