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We extend recently developed methods used for determining the electromagnetic charge radius and aππμ
to obtain a determination of the electromagnetic form factor of the pion, FV

π ðtÞ, in several significant
kinematical regions, using a parametrization-free formalism based on analyticity and unitarity, with the
inclusion of precise inputs from both timelike and spacelike regions. On the unitarity cut, below the first
inelastic threshold, we use the precisely known phase of the form factor, known from ππ elastic scattering
via the Fermi-Watson theorem, and above the inelastic threshold, a conservative integral condition on the
modulus. We also use as input the experimental values of the modulus at several energies in the elastic
region, where the data from eþe− → πþπ− and τ hadronic decays are mutually consistent, as well as the
most recent measurements at spacelike momenta. The experimental uncertainties are implemented by
Monte Carlo simulations. At spacelike values Q2 ¼ −t > 0 near the origin, our predictions are consistent
and significantly more precise than the recent QCD lattice calculations. The determinations at larger Q2

confirm the late onset of perturbative QCD for exclusive quantities. From the predictions of jFV
π ðtÞj2 on the

timelike axis below 0.63 GeV, we obtain the hadronic vacuum polarization (HPV) contribution to the muon
anomaly, aππμ j≤0.63 GeV ¼ ð132.97� 0.70Þ × 10−10, using input from both eþe− annihilation and τ decay,

and aππμ j≤0.63 GeV ¼ ð132.91� 0.76Þ × 10−10 using only eþe− input. Our determinations can be readily
extended to obtain such contributions in any interval of interest lying between 2mπ and 0.63 GeV.

DOI: 10.1103/PhysRevD.98.114015

I. INTRODUCTION

The electromagnetic form factor of the pion, FV
π ðtÞ,

defined by the matrix element

hπþðp0ÞjJelmμ jπþðpÞi ¼ ðpþ p0ÞμFV
π ðtÞ; ð1Þ

where t ¼ q2 and q ¼ p − p0, is a fundamental observable
of the strong interactions and a sensitive probe of the
composite nature of the pion. An expansion near the origin
to linear order in t, FðtÞ ¼ 1þ hr2πit=6 exhibits the
electromagnetic charge radius of the pion, which has
recently been determined at high precision in Ref. [1] by
a formalism based on analyticity and unitarity with phe-
nomenological input. The result for the electromagnetic
charge radius reads rπ ¼

ffiffiffiffiffiffiffiffi
hr2πi

p
¼ ð0.657� 0.003Þ fm,

which reduced the error by a half from previous determi-
nations. The work was achieved by adapting the techniques
introduced in Ref. [2], where the two-pion contribution aππμ
to the anomalous magnetic moment of the muon was
determined in a region where experimental data have
significant lack of agreement. In this work, we adapt the
methods introduced in these studies to the determination of
the form factor itself in several kinematic regions of
interest. In contrast to the prior investigations, where a
single number was determined in each of them, in the
present work we obtain the values of the form factor at a
large number of points.
We recall that there is a large amount of information,

both theoretical and experimental, on the pion vector form
factor, making it one of the most investigated quantity in
hadron physics. The form factor determination at high
precision is of utmost importance to several observables
including the low-energy dipion contribution to the muon
g − 2, and poses a significant challenge to experiment as
well as to theory. Theoretical studies are based at low
energies on nonperturbative approaches and effective theo-
ries of the type first formulated byWeinberg [3], and at large
energies on perturbative QCD. In the framework of chiral
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perturbation theory (ChPT), the effective realization of QCD
at low energies first formulated at one loop order with two
[4] and three light quark flavours [5,6], the pion vector form
factor has been calculated up to two loops [7–11]. Lattice
gauge theory has recently become another useful non-
perturbative tool for the calculation of the form factor at
low energies [12,13].
The form factor is also a probe of energies at which

asymptotic QCD predictions are expected to set in.
Perturbative QCD predicts the behavior at large momenta
along the spacelike axis, where Q2 ≡ −t ≫ 0 [14–19]. The
leading order (LO) asymptotic behavior is

FV;LO
π ð−Q2Þ ∼ 8πF2

παsðQ2Þ
Q2

; Q2 → ∞; ð2Þ

where Fπ ¼ 131 MeV is the pion decay constant and
αsðQ2Þ ¼ 4π=½9 lnðQ2=Λ2Þ� is the running strong coupling
to one loop with three active light quark flavors. NLO
corrections to (2) have been calculated in [20,21].
The experimental information available on the pion form

factor is very rich. This quantity was measured at spacelike
valuesQ2 > 0with increasing precision from electron-pion
scattering [22] and pion electro-production from nucleons
[23–32], the most precise being the recent results of the
JLab Collaboration [31–33]. On the timelike axis, for
t ≥ 4m2

π , where the form factor is complex, its modulus
has been measured from the cross section of the process
eþe− → πþπ− [34–46] and, using isospin symmetry, from
the τ → ππντ decay [47–51].
Due to the extensive experimental and theoretical infor-

mation, the pion vector form factor is, compared with other
hadronic quantities, a well-known function. However, the
precision does not reach the same level for all timelike and
spacelike momenta. A better precision is required on the
spacelike axis, for checking the consistency with exper-
imental data and for testing the calculations provided by
lattice QCD at low momenta and perturbative QCD at
larger momenta. On the timelike axis, at low energies the
phase of the form factor is well known, being equal by
Fermi-Watson theorem [52,53] to the ππ scattering P-wave
phase shift, which has been calculated with high precision
using ChPT and Roy equations [54–56]. However, the
modulus is poorly known, due to the difficulties of the
experimental measurements in this region: only two experi-
ments, BABAR [38] and KLOE [40–42] reported data at
low energies, and unfortunately they are not consistent with
each other.
This situation drastically affects the calculation of the

hadronic vacuum polarization (HVP) contribution to the
muon anomaly, aμ ¼ ðg − 2Þμ=2, a quantity which plays
an important role for testing the standard model and
finding possible signals of new physics. The great interest
in the muon anomaly is motivated by the present dis-
crepancy of about 3 to 4σ between theory and experiment.

New generation measurements of muon g − 2 planned at
Fermilab1 [57] and JPARC [58] are expected to produce
results with experimental errors at the level of 16 × 10−11,
a factor of 4 smaller compared to the Brookhaven
measurement [59]. This requires a precision at the same
level also for the theoretical result: see for instance
Ref. [58] for an updated review, Refs. [60,61] for most
recent phenomenological determinations, and Ref. [62]
for a recent lattice calculation.
Dispersion theory, which exploits analyticity and unitar-

ity, is a powerful tool for performing the analytic continu-
ation of the form factor to energies where it is not precisely
known. The pionvector form factor is an analytic function in
the complex t plane cut along the real axis for t ≥ tþ, where
tþ ¼ 4m2

π is the first unitarity threshold. Moreover, it is
normalized as FV

π ð0Þ ¼ 1, and satisfies the Schwarz reflec-
tion property FV

π ðt�Þ ¼ ðFV
π ðtÞÞ�. It turns out that the

standard dispersion relation, based on the Cauchy integral,
is not suitable forFV

π ðtÞ, since it requires the knowledge of its
imaginary part on the unitarity cut, which is not available in a
straightforward way. On the other hand, as mentioned
above, in the limit of exact isospin symmetry, the Fermi-
Watson theorem [52,53] states that below the first inelastic
threshold, the phase of FV

π ðtÞ is equal to the P-wave phase
shift of ππ elastic scattering, which is better known. Many
dispersion analyses of the pion vector form factor have been
based on the so-called Omnès representation, which
amounts to reconstruct an analytic function from its phase
on the cut. However, this approach involves some assump-
tions on the phase above the inelastic threshold, where it is
not known, and on the positions of the possible zeros in the
complex plane. A related approach uses specific para-
metrizations which implement the analytic properties of
the form factor. Recent analyses based on this approach
are [63,64].
In the present paper, we use a method based on

analyticity and unitarity for calculating the form factor
in kinematical regions where it is not precisely known,
using the more precise input available in other energy
regions. We implement the phase of the form factor along a
part of the unitarity cut, where it is well known, and
information on the modulus on the remaining part of the
cut. Thus, our method is neither a standard dispersive
representation, nor a specific parametrization for the
analytic extrapolation in the complex momentum plane.
The advantage is that we can implement only known input,
avoiding to a large extent model-dependent assumptions
about the behavior of the form factor in regions where it is
less known. The price to be paid was the fact that we do
not obtain definite values for the extrapolated quantity,
but only optimal allowed ranges for it, in terms of the

1The E989 experiment at Fermilab has started its pilot runs and
is gathering data at an accelerated pace.
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phenomenological input. This shortcoming has been over-
come now as described below.
This method, proposed in [65] and presented in detail in

the review [66], has been applied already in several papers
[67–70], where optimal bounds on the pion vector form
factor in various energy regions have been derived. An
important improvement has been achieved by implement-
ing the statistical distribution of the experimental input
by Monte Carlo simulations, which converted the
analytic bounds into allowed intervals with definite con-
fidence levels. This elaborate formalism was applied in
Refs. [2,1] for the calculation with a remarkable accuracy
of the low-energy HVP contribution to muon g − 2 and the
pion charge radius, respectively. In the present paper, we
now complete the task of determining the form factor itself
to equally remarkable accuracy.
The outline of this paper is as follows: in Sec. II we

review the conditions used as input and formulate the
objective of the paper as an extremal problem on a class of
analytic functions. In Sec. III, we give a detailed description
of the information used as input, and in Sec. IV we describe
the calculation of the bounds and the Monte Carlo simu-
lation used for implementing the uncertainties of the input
data. In this section, we also explain the prescription of
combining the predictions from different experiments
applied in our work. Section V contains our results and
Sec. VI a summary and our conclusions. In the Appendix,
we present the solution of the functional extremal problem
formulated in Sec. II, which is the mathematical basis of
our approach.

II. EXTREMAL PROBLEM

Our aim is to make precision predictions for the pion
vector form factor in several regions on both spacelike
and timelike axis. In particular, we will be interested in
the modulus jFV

π ðtÞj in the low energy region tþ ≤ t ≤
ð0.63 GeVÞ2 where tþ ¼ 4m2

π , which will allow a new
determination of the pion-pion contribution to the muon
anomaly aμ from this region. We will determine also the
form factor FV

π ðtÞ in the unphysical region 0 ≤ t ≤ tþ and
at spacelike values t < 0.
We summarize below the conditions adopted as input.

We implement first the normalization imposed by gauge
invariance at t ¼ 0, expressed by:

FV
π ð0Þ ¼ 1: ð3Þ

An important ingredient is Fermi-Watson theorem [52,53]
mentioned above. Since this theorem is valid in the exact
isospin limit, we must first remove the main isospin-
violating effect in the pion vector form factor, known to
arise from ω − ρ interference. We shall follow standard
approach [71,72] to do this, by defining a purely I ¼ 1
function FðtÞ as

FðtÞ ¼ FV
π ðtÞ=FωðtÞ; ð4Þ

where FωðtÞ includes the I ¼ 0 contribution due to ω. Then
Fermi-Watson theorem writes as

Arg½Fðtþ iϵÞ� ¼ δ11ðtÞ; tþ ≤ t ≤ tin; ð5Þ

where δ11ðtÞ is the phase-shift of the P-wave of ππ elastic
scattering and tin is the first inelastic threshold.
Above the inelastic threshold tin, where the phase is not

known, we shall use the phenomenological information
available on the modulus at intermediate energies, and
perturbative QCD at high energies. Since the precision is
not enough to impose the condition at each t above tin, we
shall adopt a weaker condition, written as

1

π

Z
∞

tin

dtρðtÞjFV
π ðtÞj2 ≤ I; ð6Þ

where ρðtÞ > 0 is a suitable positive-definite weight, for
which the integral converges and an accurate evaluation of
I from the available information is possible.
We shall use, in addition, the experimental value of the

form factor at one spacelike energy:

FV
π ðtsÞ ¼ Fs � ϵs; ts < 0; ð7Þ

and the modulus at one energy in the elastic region of the
timelike axis, where it is known with precision from
experiment:

jFV
π ðttÞj ¼ Ft � ϵt; tþ < tt < tin: ð8Þ

The aim of our work can be expressed as the following
functional extremal problem: using as input the conditions
(3)–(8), derive optimal upper and lower bounds on jFV

π ðtÞj
on the unitarity cut below 0.63 GeV, and on FV

π ðtÞ on the
real axis for t < tþ.
The solution of the extremal problem and the algorithm

for obtaining the bounds are presented for completeness in
the Appendix. It will be applied in Sec. IV for making
precise predictions on the form factor in the regions of
interest. In Sec. III, we shall describe the phenomenological
information used as input.

III. INPUT IN THE EXTREMAL PROBLEM

For the function FωðtÞ, which accounts for the isospin
violation due to ω resonance, we shall use the parametri-
zation2 proposed in [71,72]:

2An alternative parametrization written as a dispersion relation
in terms of the imaginary part of (9) leads practically to the same
results.
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FωðtÞ ¼ 1þ ϵ
t

ðmω − iΓω=2Þ2 − t
; ð9Þ

with ϵ ¼ 1.9 × 10−3. This function is normalized as
Fωð0Þ ¼ 1 and, due to the small value Γω ¼ 8.49 MeV
[73], is highly peaked around

ffiffi
t

p ¼ mω ¼ 782.65 MeV. In
our treatment, we first converted the experimental values of
FV
π ðtÞ used as input in Eqs. (6), (7), and (8) to the isospin-

conserving function FðtÞ defined in (4), solved the
extremal problem for this function and finally reinserted
the factor FωðtÞ in the results. Actually, since we do not
include the resonance region in our study, the corrections
due to FωðtÞ are very small in all the kinematical regions
considered, and are practically negligible for t ≤ 0.
The first significant inelastic threshold tin for the pion

form factor is due to the opening of the ωπ channel, i.e.,ffiffiffiffiffi
tin

p ¼ mω þmπ ¼ 0.917 GeV. Below this threshold, we
use in (5) the phase shift δ11ðtÞ obtained from dispersion
relations and Roy equations applied to ππ scattering in
Refs. [54,55,56], which we denote as Bern and Madrid
phase, respectively. Actually, in the calculation of the Bern
phase, for the P-wave phase shift some input from previous
data on the form factor was used at the matching point
0.8 GeV, which may raise doubts of a circular calculation
(this problem was discussed recently also in [64]).
However, we note that the Bern value at 0.8 GeV is
practically identical to what has been called “constrained”
fit to data (CFD) solution of the Madrid phase [56], which
we adopt, and which is independent of form factor data.
Actually, the error attached to this input to Bern phase is
larger (more than double) than the uncertainty attached to
the CFD solution, which reduces the possible bias.
Moreover, as we shall explain later, in our determination
we take the simple average of the results obtained with the
two phase-shifts, which reduces further the potential bias
produced by this input and practically avoids the danger of
circularity.
We have calculated the integral (6) using the BABAR

data [38] from tin up to
ffiffi
t

p ¼ 3 GeV, smoothly continued
with a constant value for the modulus in the range
3 GeV ≤

ffiffi
t

p
≤ 20 GeV, and a 1=t decreasing modulus

at higher energies, as predicted by perturbative QCD
[14,15,20,21]. This choice is expected to overestimate
the true value of the integral (see Refs. [67,68,70] for a
detailed discussion), which has the effect of leading to
weaker bounds due to a monotonicity property discussed in
the Appendix. As concerns the weight ρðtÞ, several choices
have been investigated in [70], leading to stable results in
most of the investigated regions. In the present work, we
have adopted the weight ρðtÞ ¼ 1=t, for which the con-
tribution of the range above 3 GeV to the integral (6) is only
of 1%. The value of I obtained with this weight is [70]

I ¼ 0.578� 0.022; ð10Þ

where the uncertainty is due to the BABAR experimental
errors. In the calculations we have used as input for I the
central value quoted in Eq. (10) increased by the error,
which leads to the most conservative bounds due to the
monotonicity property mentioned above.
On the spacelike axis at moderate and large Q2 the form

factor is extracted indirectly, from experimental measure-
ments of the pion electro-production from a nucleon target,
where a virtual photon couples to a pion in the cloud
surrounding the nucleon. As a consequence, there are
uncertainties associated with the off-shellness of the struck
pion and the consequent extrapolation to the physical pion
mass pole, which leads to uncertainties in the extraction of
the form factor. The errors appear to be under control in the
most recent determinations of Fπ Collaboration at JLab
[31,32], as shown in the subsequent analysis [33]. Therefore,
as spacelike input (7) we have used the values [31,32]

FV
π ð−1.60 GeV2Þ ¼ 0.243� 0.012þ0.019

−0.008 ;

FV
π ð−2.45 GeV2Þ ¼ 0.167� 0.010þ0.013

−0.007 : ð11Þ

We mention that we do not use as input the data on the
spacelike axis near the origin, obtained from eπ scattering
by NA7 Collaboration [22]. We shall however compare our
predictions for this region with the NA7 data and with the
lattice calculations [12].
A major role in increasing the strength of the bounds is

played by condition (8). We shall take 0.65 GeV ≤ffiffiffi
tt

p
≤ 0.71 GeV, since in this region the modulus mea-

sured by various experiments exhibits smaller variations
than in other energy regions and a higher degree of mutual
consistency. Moreover, this region is close to the region of
interest and therefore has a stronger effect on improving the
bounds than the input from higher energies. The eþe− data
are taken below 0.705 GeV and the τ-decay data below
0.710 GeV, with the exception of one datum from CLEO
that corresponds to an energy of 0.712 GeV. Since this last
datum is at an energy that is only marginally higher than the
upper limit of the aforementioned energy range, it is
included in the analysis.
The numbers of experimental points from various experi-

ments, used as input in our analysis, are summarized in
Table I. We emphasize that in this region the eþe−-
annihilation and τ-decay experiments are fully consistent,
so it is reasonable to use all the experiments on an equal
footing.
The extraction of the values of timelike modulus jFV

π ðtÞj
from the cross-section of the process eþe− → πþπ− and the
spectral function measured in τ-decay experiments requires
the application of several corrections, described in detail in
Appendix B of [2]. In particular, for the eþe− experiments
the isospin correction due to ω has been applied as
discussed above, and the vacuum polarization has been
removed from the data.
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IV. DETERMINATION OF THE FORM FACTOR
AND ITS UNCERTAINTY

Using the algorithm presented in the Appendix, we
obtain an allowed range for the value of FV

π ðtÞ (or jFV
π ðtÞj)

at an arbitrary point t < tin for every set of specific values
of the input quantities. However, with the exception of the
exact condition FV

π ð0Þ ¼ 1, the input quantities are known
only with some uncertainties. One of the key aspects of our
calculation is the proper statistical treatment of the errors.
This is achieved by randomly sampling each of the input
quantities with specific distributions: the phase of FV

π ðtÞ,
which is the result of a theoretical calculation, is assumed
to be uniformly distributed, while for the spacelike and
the timelike data, which are known from experimental

measurements, we adopt Gaussian distribution with the
measured central value as mean and the quoted error (the
biggest error for spacelike data where the errors are
asymmetric) as standard deviation.
For each point from the input statistical sample, if the

input values are compatible, we calculate from Eq. (A16)
upper and lower bounds on FV

π ðtÞ (or jFV
π ðtÞj). Since all the

values between the extreme points are equally allowed, we
uniformly generate values of FV

π ðtÞ (or jFV
π ðtÞj) in between

the bounds. For convenience, the minimal separation
between the generated points was set at 10−3 and for
allowed intervals smaller than this limit no intermediate
points were created. In this way, for each input from one
spacelike ts < 0 and one timelike tt in the region
ð0.65–0.71Þ GeV, we obtain a large sample of values of
FV
π ðtÞ (or jFV

π ðtÞj). The results proved to be stable against
the variation of the size of the random sample and the
minimal separation mentioned above.
In Fig. 1, we present for illustration the distributions of

the output values of the form factor at several points of
interest (two spacelike points in the upper panel, and two
timelike points, one below and the other above the unitarity
threshold, in the lower panel). The histograms have been
obtained using as input the Bern phase, the value at the
spacelike point ts ¼ −1.6 GeV2, and the modulus at one
timelike point measured by BABAR [38]. Similar results
have been obtained using as input the Madrid phase and
other experimental data. One can see that the distributions
are very close to a Gaussian and allow the extraction of
the mean value and the standard deviation (defined as the
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FIG. 1. Statistical distributions of the output values of the form factor at two spacelike points (upper panel) and two timelike points,
one below and the other above the unitarity threshold tþ (lower panel). In the calculation, we used the Bern phase, the input from the
spacelike point ts ¼ −1.6 GeV2, and the modulus at the timelike point

ffiffiffi
tt

p ¼ 0.699 GeV measured by BABAR [38]. The vertical lines
indicate the 68.3% confidence limit (CL) intervals).

TABLE I. Number of points in the region 0.65 GeV ≤
ffiffi
t

p
≤

0.71 GeV where the modulus is measured by the eþe− annihi-
lation and τ-decay experiments considered in the analysis.

Experiment Number of points

CMD2 [34] 2
SND [37] 2
BABAR [38,39] 26
KLOE 2011 [41] 8
KLOE 2013 [42] 8
BESIII [46] 10

CLEO [47] 3
ALEPH [48,49] 3
OPAL [50] 3
Belle [51] 2
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68.3% confidence limit (CL) intervals) for the values of
interest FV

π ðtÞ or its modulus.
The next step is to take the average of the results

obtained with input from various measurements. Since
the degrees of correlations between the measurements at
different energies are expected to vary from one experiment
to another, we perform first the average of the values
obtained with input from each experiment. As argued
in [74], the most robust average of a set of n measurements
ai is the weighted average

ā ¼
Xn
i¼1

wiai; wi ¼
1=δa2iP
n
j¼1 1=δa

2
j
; ð12Þ

where δai is the error of ai.
For the best estimation of the error in the case of

unknown correlations, the prescription proposed in [74]
is to define a function χ2ðfÞ

χ2ðfÞ ¼
Xn
i;j¼1

ðai − āÞðCðfÞ−1Þijðaj − āÞ ð13Þ

in terms of the covariance matrix CðfÞ with elements

Cij ¼
�
δaiδai if i ¼ j;

fδaiδaj if i ≠ j:
ð14Þ

The parameter f denotes the fraction of the maximum
possible correlation: for f ¼ 0 the measurements are treated
as uncorrelated, for f ¼ 1 as fully (100%) correlated.
If χ2ð0Þ < n − 1, the data might indicate the existence of

a positive correlation. The prescription proposed in [74]
is to increase f until χ2ðfÞ ¼ n − 1. With the solution f
of this equation, the standard deviation σðāÞ of ā is
determined from the variance [74]

σ2ðāÞ ¼
�Xn

i;j¼1

ðCðfÞ−1Þij
�−1

: ð15Þ

On the other hand, a value χ2ð0Þ > n − 1 is an indication
that the individual errors are underestimated. If the ratio
χ2ð0Þ=ðn − 1Þ is not very far from1, the procedure suggested
in [73,74] is to rescale the variance σ2ðāÞ calculatedwith (15)
by the factor χ2ð0Þ=ðn − 1Þ.
In our work, this procedure was applied first for

combining the results obtained with a definite input phase,
a specified input (11) from the spacelike region, and
different measurements in the timelike region available
from each experiment listed in Table I. In most cases, a
large degree of error correlation between the results
obtained with different timelike energies was found, as
indicated by values close to 1 of the parameter f derived
from data. Then the results obtained with the two phases,
Bern and Madrid, were combined in a conservative way by

taking the simple average of the central values and of the
uncertainties. The same conservative average was used for
combining the results obtained with the two spacelike
data (11).
The last step was to combine the individual values

obtained with measurements by the different experiments
listed in Table I. Again, the error correlation for these
values is difficult to assess a priori. Therefore, we have
applied the same data-driven procedure described above for
finding the correlations. Since, as discussed in [2], the data
from eþe−-annihilation and τ-decay experiments are con-
sistent in the region 0.65–0.71 GeV, the results from all the
10 experiments in Table I can be combined into a single
central value and standard deviation which we quote as
the error.

V. RESULTS

We have applied the procedure described above for
deriving central values and standard deviations for FV

π ðtÞ
in three energy regions: small spacelike momenta Q2 ¼
−t ≤ 0.25 GeV2, where measurements are available from
NA7 experiment [22], larger spacelike momenta, up to
Q2 ≤ 8.5 GeV2, and the unphysical timelike region 0 <
t < tþ below the unitarity threshold. We have also derived
central values and standard deviations for the modulus
jFV

π ðtÞj in the region above the unitarity threshold, belowffiffi
t

p ¼ 0.63 GeV, and have used these results for a new
determination of the HVP contribution from energies below
0.63 GeV to the muon g − 2. In the following subsections,
we present the results for each kinematical region, namely
small spacelike momenta, large spacelike momenta,
unphysical timelike momenta, and timelike momenta on
the unitarity cut below 0.63 GeV. The implications of these
determinations are also studied in each of these subsections.

A. Small spacelike momenta

At small spacelike momenta squared, Q2 ≤ 0.25 GeV2,
the pion form factor has been measured from ep elastic
scattering by the NA7 experiment [22], considered for a
long time a landmark experiment. Recently, the ETM
Collaboration [12] reported the most precise lattice calcu-
lations of FV

π ð−Q2Þ for small Q2. The comparison with the
lattice results has been actually the main motivation for
choosing this kinematical region in our study. It turns
out that our predictions for the form factor in this region
are very precise: the errors, obtained by the procedure
described in the previous section, vary from 0.0005 near the
origin to 0.003 at the end of the region.
In Fig. 2, we present the values of the form factor

calculated in this work at a number of spacelike points
below 0.25 GeV2. Also shown are the experimental data
from Ref. [22] and the results of the lattice calculation
reported in Ref. [12], shown as a band which includes all
the uncertainties. One can see that our results are consistent
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with the lattice values, and are much more precise. It is a
challenge for the future lattice calculations to increase the
precision to the level reached by the phenomenological
determination based on analyticity and unitarity.
It may be noted that our procedure can be extended

further as there is no real constraint on the range of values
to be probed in this sector, but for practical purposes, our
determination has been limited to the same range as in the
lattice study and in the NA7 experiment.

B. Large spacelike momenta and the onset
of perturbative QCD

It has long been known that in the case of the pion form
factor the asymptotic regime described by the dominant
term (2) of perturbative QCD sets in quite slowly, due to
the complexity of soft, nonperturbative processes in QCD
in the intermediate Q2 region. Several nonperturbative

approaches have been proposed for the study of the pion
form factor, including QCD sum rules [75], quark-hadron
local duality [76–79], extended vector meson dominance
[80], light-cone sum rules [81–83], sum rules with nonlocal
condensates [84–86], AdS/QCD models [87,88], kT fac-
torization method [89], dispersion relations treatment [90],
covariant spectator theory [91], and Dyson-Schwinger
equation framework [92]. In particular, the onset of the
asymptotic regime in the presence of Sudakov corrections
[93] and large Nc Regge approaches [94] is expected to be
quite slow. Constructing a fully valid model to describe the
form factor at intermediate energies in fundamental QCD
still remains a major theoretical challenge.
Measurements of the spacelike form factor for spacelike

momenta are reported in Refs. [23–32], the most precise
being the recent results of the JLab Collaboration [31,32]
quoted in Eq. (11). The lack of precise experimental data in
the higher Q2 region is a major obstacle to confirm or
discard the theoretical models available. The calculation
presented in this work provides an alternative way for
testing the onset of the asymptotic QCD regime and the
validity of various theoretical models proposed for inter-
mediate energies.
In the left panel of Fig. 3, the predictions of this work for

Q2 < 4 GeV2, represented as a cyan bandwhich includes the
full error, are compared with some of the experimental data.
We recall that in our calculation the only input from the
spacelike axis consists of the points given inEq. (11), denoted
as Horn in Fig. 3. The increased precision of our determi-
nations is due to the timelike information. One can see that,
except for a few points, the experimental measurements are in
general agreement with our determinations.
At higher spacelike momenta, the precision of our

predictions starts to diminish, since the extrapolation is
more sensitive to the values of the form factor at inter-
mediate timelike energies, for which no precise information
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FIG. 2. The predictions for the pion form factor in the spacelike
region near the origin derived in this work, compared with the
experimental results of the NA7 Collaboration [22] and the lattice
calculations of the ETM Collaboration [12].
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is available. To account for this, we have adopted the
conservative, weaker condition (6). Up to Q2 around
8 GeV2, the precision nevertheless is acceptable, allowing
us to probe the onset of the asymptotic regime predicted by
factorization and perturbative QCD. In the right panel of
Fig. 3, we compare our predictions shown in cyan band
with perturbative QCD at LO and NLO, and with some
theoretical models. The gray band corresponds to the NLO
result obtained by varying the renormalization scale in
suitable range following [21].
At first sight we note that perturbative QCD at LO can not

reliably describe the form factor at Q2 ≤ 7 GeV2. Though
the description improves at NLO it is still unreliable
for Q2 ≤ 5.5 GeV2. We limit ourselves only to these
conservative statements, since precisely at the energies
where the NLO and our predictions start to become
compatible, our procedure meets its natural limitations.
This can be seen in the fact that our band hits the x axis
in right panel of Fig. 3, while there are strong arguments
(cf. for instance Ref. [71]) that this form factor cannot have
zeros on the spacelike axis. Therefore, we refrain from
making definite statements for higherQ2, in view of the fact
that this is the region where our method lacks the precision
that it has in the other three regimes considered in this work.
As we discussed above, there are many theoretical

models in the literature for addressing the properties of
the form factors in this region. For illustration, we have
considered the predictions from four of these as typical
examples. For instance, the theoretical models proposed
in [78,82] appear to be consistent with the phenomeno-
logical band, while the predictions of [88,94] appear to be
too high.
We note finally that the results derived in this work are

consistent with those derived in our previous work [67],
being more precise, since we now included information
on the modulus of the form factor on the timelike axis and
used extensive Monte Carlo simulations for the error
analysis.

C. Unphysical timelike region

No experimental information or QCD lattice calculations
are available for the pion form factor in the unphysical
timelike region between the origin and the unitarity thresh-
old tþ. For this region our method allows to make very
precise predictions. In Table II, we list the central values

and the errors on FV
π ðtÞ at several unphysical timelike

points. This region cannot be accessed by experiment, but it
can be by the lattice, in principle, so our results can be
viewed as a benchmark for lattice predictions in the future.
In this region, the predictions of chiral perturbation

theory are expected to be most accurate. The precise
determinations in Table II can be used to determine the
curvature c and higher shape parameter d of the Taylor
expansion FV

π ðtÞ ¼ 1þ hr2πit=6þ ct2 þ dt3 þOðt4Þ.

D. Low energies above the unitarity threshold
and the contribution to muon g− 2

As mentioned in the Introduction, above the unitarity
threshold, where the form factor is a complex function, its
modulus is extracted from the cross section of the eþe− →
πþπ− process, or, using isospin symmetry, from the
hadronic decay of the τ lepton. The τ decay has been
for a long time the most precise source of information, in
spite of the nontrivial corrections that are required to
convert the measured spectral functions into genuine values
of jFV

π ðtÞj. However, the accuracy of the eþe− experiments
improved gradually, the extraction of the modulus being
based at present almost exclusively on them.
At low energies, the modulus of the form factor is

poorly known, due to the difficulties of the experimental
measurements in this region: only two experiments,
BABAR [38] and KLOE [40–42] reported data at low
energies, and unfortunately they are not consistent among
them. Our method allows a precise determination of jFV

π ðtÞj
at low energies. In Fig. 4, we present our results, together
with the experimental values of BABAR [38] and KLOE
[41,42]. For convenience, we show the values of the
modulus squared, which enter directly into the calculation
of the two-pion contribution to the muon magnetic
anomaly. One can see that our predictions are much more
precise than the available experimental results, especially at
energies below 0.5 GeV.

TABLE II. Central values and errors on FV
π ðtÞ in the timelike

region below the unitarity threshold
ffiffiffiffiffi
tþ

p ¼ 2mπ .ffiffi
t

p
GeV FV

π ðtÞ
0.140 1.037� 0.001
0.197 1.078� 0.001
0.242 1.124� 0.001
0.279 1.176� 0.002
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FIG. 4. Our predictions for the modulus squared of the pion
form factor on the cut below 0.63 GeV, compared with BABAR
and KLOE experimental data.
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For completeness, we list in Table III the central values
and the uncertainties of the modulus squared of the form
factor at several energies below 0.63 GeV.
We shall use now these results for making a new

determination of the low-energy pion-pion contribution
to the muon anomaly. The leading order (LO) two-pion
contribution to aμ from energies below

ffiffiffiffiffiffi
tup

p
, which does

not contain the vacuum polarization but includes one-
photon final-state radiation (FSR), is expressed in terms of
FV
π ðtÞ as

aππμ j≤ ffiffiffiffiffi
tup

p ¼ α2m2
μ

12π2

Z
tup

tþ

dt
t
KðtÞβ3πðtÞFFSRðtÞjFV

π ðtÞj2: ð16Þ

In this relation, β3πðtÞ ¼ ð1 − 4mπ=tÞ3=2 is the two-pion
phase space relevant for eþe− → πþπ− annihilation,

KðtÞ ¼
Z

1

0

duð1 − uÞu2ðt − uþm2
μu2Þ−1 ð17Þ

is the QED kernel function [95], which exhibits a drastic
increase at low t, and

FFSRðtÞ ¼
�
1þ α

π
ηπðtÞ

�
ð18Þ

is the FSR correction, calculated in scalar QED [96,97].
Using the central values of jFV

π ðtÞj2 given in Table III,
the integral (16) gives ð132.97� 0.07Þ × 10−10, where we
quoted an uncertainty due to the method of integration. In
order to estimate the statistical error σaμ of this result, we
shall apply the standard error propagation, expressed in our
case as

σaμ ¼
�Z

tup

tþ

Z
tup

tþ
dtdt0Covðt; t0ÞWðtÞWðt0Þ

�
1=2

; ð19Þ

where

WðtÞ ¼ α2m2
μ

12π2
KðtÞ
t

β3πðtÞFFSRðtÞ; ð20Þ

and Covðt; t0Þ is the covariance matrix describing the
correlation of the errors on jFV

π j2 at two points t and t0.
For a most conservative estimate, we assume fully corre-
lated errors, which means that we take

Covðt; t0Þ ¼ σðtÞσðt0Þ; ð21Þ

where σðtÞ is the error on jFV
π ðtÞj2, determined by the

procedure described in Sec. IV. Then the integral (19) gives
an error of 0.69 × 10−10. Adding to this the integration
error quoted above, we finally obtain

aππμ j≤0.63 GeV ¼ ð132.97� 0.70Þ × 10−10: ð22Þ

For further comparison, we quote also the result obtained
using the timelike input on the modulus in the range
(0.65–0.71) GeV only from the eþe− experiments:

aππμ j≤0.63 GeV ¼ ð132.91� 0.76Þ × 10−10: ð23Þ

The values (22) and (23) are fully consistent with our
previous results ð133.26� 0.72Þ × 10−10 and ð133.02�
0.77Þ × 10−10, respectively, obtained in [2] for the same
quantities with a slightly different method. The difference
stems from the fact that in Ref. [2] we generated the
statistical distribution of the integral (16) directly from
Monte Carlo simulations, without deriving the modulus
squared of the form factor at each energy below 0.63 GeV.
We quote also the result aππμ j≤0.63 GeV ¼ 132.5ð1.1Þ ×

10−10 of the recent analysis [64], which exploits analyticity
and unitarity by using an extended Omnès representation of
the form factor in a global fit of the phenomenological data
on eþe− → πþπ− from energies below 1 GeVand the NA7
experiment. We note also that the direct integration of the
interpolation of the eþe− data below 0.63 GeV, proposed
in [61], gives3 aππμ j≤0.63 GeV ¼ ð131.12� 1.03Þ × 10−10.
It may be noted that the explicit values listed in Table III

for this region allow an evaluation of the dipion contribu-
tion to the muon anomaly in any interval of interest.

VI. DISCUSSION AND CONCLUSIONS

In the present work, we have obtained high-precision
predictions for the pion electromagnetic form factor in
several kinematical regions of interest. We have used a
method based on analyticity and unitarity, which does not
involve standard dispersion relations or specific paramet-
rizations. The input, summarized in Sec. II, consists of the
phase of the form factor on a part of the unitarity cut and a
conservative integral condition on the modulus squared on

TABLE III. Central values and errors on jFV
π ðtÞj2 in the range

from two-pion threshold to 0.63 GeV.
ffiffi
t

p
GeV jFV

π ðtÞj2
ffiffi
t

p
GeV jFV

π ðtÞj2
0.281 1.389� 0.004 0.437 2.485� 0.014
0.283 1.397� 0.004 0.455 2.712� 0.016
0.285 1.405� 0.004 0.472 2.978� 0.019
0.291 1.431� 0.004 0.490 3.291� 0.022
0.297 1.456� 0.004 0.507 3.664� 0.025
0.314 1.536� 0.005 0.525 4.111� 0.028
0.332 1.626� 0.006 0.542 4.653� 0.031
0.349 1.728� 0.007 0.560 5.318� 0.034
0.367 1.842� 0.008 0.577 6.144� 0.036
0.384 1.972� 0.009 0.595 7.174� 0.031
0.402 2.120� 0.011 0.612 8.498� 0.028
0.419 2.290� 0.012 0.630 10.177� 0.005

3We thank T. Teubner for this calculation.
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the remaining part. The experimental values at some
discrete points on the timelike and the spacelike axes are
also included.
Using the solution of a functional extremal problem

formulated in Sec. II and discussed in the Appendix, we
have derived optimal upper and lower bounds on the values
of the form factor (or its modulus) in the regions of interest,
which are expressed only in terms of the adopted input and
involve no model-dependent assumptions. A key element
of our method is the determination of the central values and
the errors from statistical distributions obtained from a
large set of pseudodata, and the conservative combination
of the results from various experiments using data-driven
error correlations. We emphasize that, since we do not use a
specific parametrization for the form factor and the analytic
bounds do not involve model-dependent assumptions, there
are no additional systematic errors in our approach. Thus,
the Monte Carlo simulations described in Sec. IV give the
full errors of our predictions for the form factor.
We mention that the same technique has been applied

in [1] for a precise extraction of the pion electromagnetic
charge radius, and in [2] for a direct calculation of the two-
pion low-energy contribution to muon g − 2.
The high-precision determinations of the form factor (or

its modulus) in several significant kinematical regions are
presented in Sec. V. In particular, on the spacelike axis at
low Q2 our results are much more precise than the recent
lattice calculations [12], and at larger Q2 we confirm our
previous conclusion [67] that the asymptotic regime of
perturbative QCD is away from the region Q2 ≤ 7 GeV2.
On the timelike axis, we derived high-precision values of

the modulus squared of the form factor on the unitarity cut
below 0.63 GeV, shown in Fig. 4 and Table III. Our
predictions are much more precise than the experimental
values available in this region from BABAR and KLOE
experiments, especially below 0.5 GeV. Also, in Sec. V, the
determinations we provide in the unphysical timelike
region could serve as a benchmark for theoretical probes
in this region.
From the precise values given in Table III, we have

performed a new determination of the two-pion contribu-
tion from low energies to the muon g − 2. Our results for
aππμ j≤0.63 GeV are given in Eqs. (22) and (23), where the first
uses the input from both eþe− and τ experiments, and the
second only from eþe− experiments. These results are
consistent with the values derived in our previous work [2],
where the technique of rigorous analytic bounds and
Monte Carlo simulations has been applied in a slightly
different way, by deriving a statistical distribution directly
for the quantity aππμ j≤0.63 GeV.
As seen from the values quoted at the end of the previous

section, our results are consistent with the prediction of the
recent analysis [64] based on analyticity and unitarity,
while the result obtained from the direct integration of the
data [61] is slightly lower. We emphasize that we do not use

as input experimental data from energies below 0.63 GeV
or from NA7 experiment. Thus, our prediction for
aππμ j≤0.63 GeV is to a certain extent complementary to the
determination of the analysis performed in [64], which
exploits analyticity and unitarity in a different way and uses
as input low-energy data.
This work represents the state of the art in an important

low-energy sector of the Standard Model, which is going to
be tested at the upcoming Fermilab experiment E969. In
contrast to our prior publications [1,2], which were focused
on the determination of a single number, here we have
obtained an extensive tabulation of the values of the
electromagnetic form factor in several significant kinemati-
cal regions. Using these determinations, the value of the
dipion contribution to the muon anomaly remains consis-
tent with the value reported earlier, proving the robustness
of the approach.
The present work combines strong theoretical inputs

with modern Monte Carlo methods along with high
precision experimental information and phase shift infor-
mation in regions where experiments are in agreement to
shed light on regions where either experiments do not have
sufficient precision or where there are significant disagree-
ments, or regions which are not directly accessible by
experiment. It also offers a test to theoretical predictions
based on very different approaches to strong interaction
phenomenology.
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APPENDIX: SOLUTION OF THE
EXTEMAL PROBLEM

Using the approach proposed in [65], the extremal
problem formulated at the end of Sec. II can be reduced
to a standard analytic interpolation problem [98] (also
known as a Meiman problem [99]). We review in what
follows the main steps of the proof. As discussed in Sec. III,
we first remove from the form factor the isospin-violating
correction FωðtÞ, so in what follows we shall consider the
function FðtÞ defined in (4). The next step is to introduce a
function hðtÞ by writing

FðtÞ ¼ OðtÞhðtÞ; ðA1Þ

where OðtÞ is the Omnès function defined as
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OðtÞ ¼ exp

�
t
π

Z
∞

tþ
dt0

δðt0Þ
t0ðt0 − tÞ

�
: ðA2Þ

In this relation, δðtÞ is equal to δ11ðtÞ at t ≤ tin and is an
arbitrary smooth (Lipschitz continuous) function above tin,
which approaches asymptotically π.
From the Fermi-Watson theorem (5), it follows that hðtÞ

is real on the real axis below tin, since the phase of FðtÞ is
exactly compensated by the phase of OðtÞ. Taking into
account the fact that hðtÞ satisfies the Schwarz reflection
property, this implies that it is holomorphic on the real axis
below tin, having a branch cut only for t ≥ tin.
In terms of hðtÞ, the equality (6) can be written as

1

π

Z
∞

tin

dtρðtÞjOðtÞj2jhðtÞj2 ≤ I: ðA3Þ

This relation can be written in a canonical form if we
perform the conformal transformation,

z̃ðtÞ ¼
ffiffiffiffiffi
tin

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p
ffiffiffiffiffi
tin

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
tin − t

p ; ðA4Þ

and express the factors multiplying jhðtÞj2 in terms of an
outer function, i.e., a function analytic and without zeros in
the unit disk jzj < 1. In practice, it is convenient to
construct it as a product of two outer functions [65,66]:
the first one, denoted as wðzÞ, has the modulus equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðtÞjdt=dz̃ðtÞjp

. For the choice ρðtÞ ¼ 1=t, it is given by
the simple expression

wðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − z
1þ z

r
: ðA5Þ

The second outer function, denoted as ωðzÞ, has the
modulus equal to jOðtÞj, and can be calculated by the
integral representation

ωðzÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tin − t̃ðzÞp

π

Z
∞

tin

ln jOðt0Þjdt0ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 − tin

p
ðt0 − t̃ðzÞÞ

�
: ðA6Þ

If we define the function gðzÞ by

gðzÞ ¼ wðzÞωðzÞhðt̃ðzÞÞ; ðA7Þ

where t̃ðzÞ is the inverse of z ¼ z̃ðtÞ defined in Eq. (A4),
the condition (A3) can be written with no loss of informa-
tion as

1

2π

Z
2π

0

dθjgðζÞj2 ≤ I; ζ ¼ eiθ: ðA8Þ

This condition leads to rigorous correlations among the
values of the analytic function gðzÞ and its derivatives at
points inside the holomorphy domain, jzj < 1 (for a proof

and earlier references see Ref. [66]) In particular, in our
case this amounts to the positivity condition

D ≥ 0 ðA9Þ

of the determinant D defined as

D ¼

������������

I − gð0Þ2 ξ1 ξ2 ξ3

ξ1
z2
1

1−z2
1

z1z2
1−z1z2

z1z3
1−z1z3

ξ2
z1z2

1−z1z2
z2
2

1−z2
2

z2z3
1−z2z3

ξ3
z1z3

1−z1z3
z2z3

1−z2z3
z2
3

1−z2
3

������������
; ðA10Þ

where the real values zn ∈ ð−1; 1Þ are defined as

zn ¼ z̃ðtnÞ; ðA11Þ

in terms of the two points t1 ¼ ts and t2 ¼ tt used as input
and the value t3 where we want to calculate bounds on the
form factor, and

ξn ¼ gðznÞ − gð0Þ; 1 ≤ n ≤ 3: ðA12Þ

The inequality (A9) defines an allowed domain for the
real values gðznÞ. For n ¼ 1 and n ¼ 3 with t < tþ, we
have from Eqs. (A1) and (A7)

gðznÞ ¼ wðznÞωðznÞFðtnÞ=OðtnÞ; ðA13Þ

while for n ¼ 2 and n ¼ 3 with t > tþ

gðznÞ ¼ wðznÞωðznÞjFðtnÞj=jOðtnÞj; ðA14Þ

where the modulus jOðtÞj of the Omnès function is
obtained from (A2) by the principal value (PV) Cauchy
integral

jOðtÞj ¼ exp

�
t
π
PV

Z
∞

tþ
dt0

δðt0Þ
t0ðt0 − tÞ

�
: ðA15Þ

One can show that for each specific input, the determi-
nant (A10) is a concave quadratic function of the unknown
value Fðt3Þ for t3 < tþ, or the modulus jFðt3Þj for t3 > tþ,
so the inequality (A9) can be written as

Ax2 þ 2Bxþ C ≥ 0; A ≤ 0; ðA16Þ

where x ¼ Fðt3Þ or x ¼ jFðt3Þj. This inequality leads to a
definite allowed range for x if B2 − AC ≥ 0 and has no
solution if B2 − AC < 0. The latter case occurs when
the phenomenological input adopted is inconsistent with
analyticity.
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From the inequality (A16), one can obtain upper and
lower bounds on Fðt3Þ (or jFðt3Þj), expressed in terms of
the adopted input. Finally, the isospin correction is applied
back according to (4), for obtaining the desired bounds on
the form factor FV

π ðtÞ.
One can prove [65,66], that the bounds are optimal

and their values do not depend on the unknown phase of
the form factor above the inelastic threshold tin [the

dependence of the Omnès function (A2) on the arbitrary
phase δðtÞ for t > tin is compensated exactly by the
corresponding dependence of the outer function (A6)].
Furthermore, for a fixed weight ρðtÞ in (6), the bounds
become stronger/weaker when the value of the value of I is
decreased or increased, respectively. These properties make
the formalism model independent and robust against the
uncertainties from the high energy region.

[1] B. Ananthanarayan, I. Caprini, and D. Das, Electromagnetic
Charge Radius of the Pion at High Precision, Phys. Rev.
Lett. 119, 132002 (2017).

[2] B. Ananthanarayan, I. Caprini, D. Das, and I. Sentitemsu
Imsong, Precise determination of the low-energy hadronic
contribution to themuon g − 2 from analyticity and unitarity:
An improved analysis, Phys. Rev. D 93, 116007 (2016).

[3] S. Weinberg, Phenomenological Lagrangians, Physica
(Amsterdam) 96A, 327 (1979).

[4] J. Gasser and H. Leutwyler, Chiral perturbation theory to
one loop, Ann. Phys. (N.Y.) 158, 142 (1984).

[5] J. Gasser and H. Leutwyler, Chiral perturbation theory:
Expansions in the mass of the strange quark, Nucl. Phys.
B250, 465 (1985).

[6] J. Gasser and H. Leutwyler, Low-energy expansion of
meson form-factors, Nucl. Phys. B250, 517 (1985).

[7] J. Gasser and U. G. Meissner, Chiral expansion of pion
form-factors beyond one loop, Nucl. Phys. B357, 90
(1991).

[8] G. Colangelo, M. Finkemeier, and R. Urech, Tau decays
and chiral perturbation theory, Phys. Rev. D 54, 4403
(1996).

[9] J. Bijnens, G. Colangelo, and P. Talavera, The vector and
scalar form factors of the pion to two loops, J. High Energy
Phys. 05 (1998) 014.

[10] J. Bijnens and P. Talavera, Pion and kaon electromagnetic
form factors, J. High Energy Phys. 03 (2002) 046.

[11] J. Bijnens, G. Colangelo, and P. Talavera, The vector and
scalar form-factors of the pion to two loops, J. High Energy
Phys. 05 (1998) 014.

[12] C. Alexandrou et al. (ETM Collaboration), Pion vector form
factor from lattice QCD at the physical point, Phys. Rev. D
97, 014508 (2018).

[13] S. Aoki et al., Review of lattice results concerning low-
energy particle physics, Eur. Phys. J. C 77, 112 (2017).

[14] G. P. Lepage and S. J. Brodsky, Exclusive processes in
quantum chromodynamics: Evolution equations for had-
ronic wave functions and the form factors of mesons, Phys.
Lett. B 87, 359 (1979).

[15] G. R. Farrar and D. R. Jackson, The Pion Form Factor, Phys.
Rev. Lett. 43, 246 (1979).

[16] G. P. Lepage and S. J. Brodsky, Exclusive processes in
perturbative quantum chromodynamics, Phys. Rev. D 22,
2157 (1980).

[17] A. V. Efremov and A. V. Radyushkin, Factorization and
asymptotical behavior of pion form-factor in QCD, Phys.
Lett. 94B, 245 (1980).

[18] V. L. Chernyak and A. R. Zhitnitsky, Asymptotic behavior
of hadron form-factors in quark model (In Russian), Pisma
Zh. Eksp. Teor. Fiz. 25, 544 (1977) [JETP Lett. 25, 510
(1977)].

[19] V. L. Chernyak and A. R. Zhitnitsky, Asymptotic Behavior
of Exclusive Processes in QCD, Phys. Rep. 112, 173 (1984).

[20] B. Melic, B. Nizic, and K. Passek, Complete next-to-leading
order perturbative QCD prediction for the pion form-factor,
Phys. Rev. D 60, 074004 (1999).

[21] B. Melic, B. Nizic, and K. Passek, On the PQCD prediction
for the pion form-factor, arXiv:hep-ph/9908510.

[22] S. R. Amendolia et al. (NA7 Collaboration), A measure-
ment of the space-like pion electromagnetic form-factor,
Nucl. Phys. B277, 168 (1986).

[23] C. N. Brown, C. R. Canizares, W. E. Cooper, A. M. Eisner,
G. J. Feldman, C. A. Lichtenstein, L. Litt, W. Lockeretz,
V. B. Montana, and F. M. Pipkin, Coincidence electropro-
duction of charged pions and the pion form-factor, Phys.
Rev. D 8, 92 (1973).

[24] C. J. Bebek et al., Further measurements of forward-
charged-pion electroproduction at large κ2, Phys. Rev. D
9, 1229 (1974).

[25] C. J. Bebek, C. N. Brown, M. Herzlinger, S. D. Holmes,
C. A. Lichtenstein, F. M. Pipkin, S. Raither, and L. K.
Sisterson, Measurement of the pion form-factor up to q2 ¼
4-GeV2 from single-charged-pion electroproduction, Phys.
Rev. D 13, 25 (1976).

[26] H. Ackermann, T. Azemoon, W. Gabriel, H. D. Mertiens,
H. D. Reich, G. Specht, F. Janata, and D. Schmidt, Deter-
mination of the longitudinal and the transverse part in πþ

electroproduction, Nucl. Phys. B137, 294 (1978).
[27] C. J. Bebek et al., Electroproduction of single pions at low

epsilon and a measurement of the pion form-factor up to
q2 ¼ 10 GeV2, Phys. Rev. D 17, 1693 (1978).

[28] P. Brauel, T. Canzler, D. Cords, R. Felst, G. Grindhammer,
M. Helm, W.-D. Kollmann, H. Krehbiel, and M. Schädlich,
Electroproduction of πþn, π−n and KþΛ, KþΣ0 final states
above the resonance region, Z. Phys. C 3, 101 (1979).

[29] J. Volmer et al. (Jefferson Lab Fπ Collaboration), New
Results for the Charged Pion Electromagnetic Form-Factor,
Phys. Rev. Lett. 86, 1713 (2001).

ANANTHANARAYAN, CAPRINI, and DAS PHYS. REV. D 98, 114015 (2018)

114015-12

https://doi.org/10.1103/PhysRevLett.119.132002
https://doi.org/10.1103/PhysRevLett.119.132002
https://doi.org/10.1103/PhysRevD.93.116007
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(85)90492-4
https://doi.org/10.1016/0550-3213(85)90493-6
https://doi.org/10.1016/0550-3213(91)90460-F
https://doi.org/10.1016/0550-3213(91)90460-F
https://doi.org/10.1103/PhysRevD.54.4403
https://doi.org/10.1103/PhysRevD.54.4403
https://doi.org/10.1088/1126-6708/1998/05/014
https://doi.org/10.1088/1126-6708/1998/05/014
https://doi.org/10.1088/1126-6708/2002/03/046
https://doi.org/10.1088/1126-6708/1998/05/014
https://doi.org/10.1088/1126-6708/1998/05/014
https://doi.org/10.1103/PhysRevD.97.014508
https://doi.org/10.1103/PhysRevD.97.014508
https://doi.org/10.1140/epjc/s10052-016-4509-7
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1016/0370-2693(79)90554-9
https://doi.org/10.1103/PhysRevLett.43.246
https://doi.org/10.1103/PhysRevLett.43.246
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1016/0370-2693(80)90869-2
https://doi.org/10.1016/0370-1573(84)90126-1
https://doi.org/10.1103/PhysRevD.60.074004
http://arXiv.org/abs/hep-ph/9908510
https://doi.org/10.1016/0550-3213(86)90437-2
https://doi.org/10.1103/PhysRevD.8.92
https://doi.org/10.1103/PhysRevD.8.92
https://doi.org/10.1103/PhysRevD.9.1229
https://doi.org/10.1103/PhysRevD.9.1229
https://doi.org/10.1103/PhysRevD.13.25
https://doi.org/10.1103/PhysRevD.13.25
https://doi.org/10.1016/0550-3213(78)90523-0
https://doi.org/10.1103/PhysRevD.17.1693
https://doi.org/10.1007/BF01443698
https://doi.org/10.1103/PhysRevLett.86.1713


[30] V. Tadevosyan et al. (Jefferson Lab Fπ Collaboration),
Determination of the pion charge form factor for
Q2 ¼ 0.60–1.60 GeV2, Phys. Rev. C 75, 055205 (2007).

[31] T. Horn et al. (Jefferson Lab Fπ Collaboration), Determi-
nation of the Charged Pion Form Factor at Q2 ¼ 1.60 and
2.45 ðGeV=cÞ2, Phys. Rev. Lett. 97, 192001 (2006).

[32] G. M. Huber et al. (Jefferson Lab Fπ Collaboration),
Charged pion form factor between Q2 ¼ 0.60 and
2.45 GeV2. II. Determination of, and results for, the pion
form factor, Phys. Rev. C 78, 045203 (2008).

[33] G. M. Huber et al. (Jefferson Lab Fπ Collaboration),
Separated Response Function Ratios in Exclusive, Forward
π� Electroproduction, Phys. Rev. Lett. 112, 182501 (2014).

[34] R. R. Akhmetshin et al. (CMD-2 Collaboration), High-
statistics measurement of the pion form factor in the rho-
meson energy range with the CMD-2 detector, Phys. Lett. B
648, 28 (2007).

[35] R. R. Akhmetshin et al. (CMD-2 Collaboration), Reanalysis
of hadronic cross-section measurements at CMD-2, Phys.
Lett. B 578, 285 (2004).

[36] V. M. Aulchenko et al., Measurement of the eþe− →
πþπ− cross section with the CMD-2 detector in the
370–520-MeV c:m: energy range, Pisma Zh. Eksp. Teor.
Fiz. 84, 491 (2006) [JETP Lett. 84, 413 (2006)].

[37] M. N. Achasov et al., Update of the eþe− → πþπ− cross-
section measured by SND detector in the energy region
400-Mev <

ffiffiffi
s

p
< 1000-MeV, Zh. Eksp. Teor. Fiz. 130, 437

(2006) [J. Exp. Theor. Phys. 103, 380 (2006)].
[38] B. Aubert et al. (BABAR Collaboration), Precise Measure-

ment of the eþe− → πþπ− (γ) Cross Section with the Initial
State Radiation Method at BABAR, Phys. Rev. Lett. 103,
231801 (2009).

[39] J. P. Lees et al. (BABAR Collaboration), Precise measure-
ment of the eþe− → πþπ−ðγÞ cross section with the initial
state radiation method at BABAR, Phys. Rev. D 86, 032013
(2012).

[40] F. Ambrosino et al. (KLOE Collaboration), Measurement of
σðeþe− → πþπ−γðγÞÞ and the dipion contribution to the
muon anomaly with the KLOE detector, Phys. Lett. B 670,
285 (2009).

[41] F. Ambrosino et al. (KLOE Collaboration), Measurement of
σðeþe− → πþπ−Þ from threshold to 0.85 GeV2 using initial
state radiation with the KLOE detector, Phys. Lett. B 700,
102 (2011).

[42] D. Babusci et al. (KLOE Collaboration), Precision meas-
urement of σðeþe− → πþπ−γÞ=σðeþe− → μþμ−γÞ and
determination of the πþπ− contribution to the muon
anomaly with the KLOE detector, Phys. Lett. B 720, 336
(2013).

[43] R. R. Akhmetshin et al., Current status of luminosity
measurement with the CMD-3 detector at the VEPP-2000
eþe− collider, J. Instrum. 9, C09003 (2014).

[44] V. M. Aulchenko et al. (SND Collaboration), Measurement
of the eþe− → ηπþπ− cross section in the center-of-mass
energy range 1.22–2.00 GeV with the SND detector at the
VEPP-2000 collider, Phys. Rev. D 91, 052013 (2015).

[45] G. V. Fedotovich et al., Preliminary results of measurements
of hadronic cross sections with the CMD-3 detector at the
VEPP-2000 electron-positron collider, Yad. Fiz. 78, 635646
(2015) [Phys. At. Nucl. 78, 591 (2015)].

[46] M. Ablikim et al. (BESIII Collaboration), Measurement
of the eþe → πþπ cross section between 600 and 900 MeV
using initial state radiation, Phys. Lett. B 753, 629
(2016).

[47] S. Anderson et al. (CLEO Collaboration), Hadronic struc-
ture in the decay τ− → π−π0ντ, Phys. Rev. D 61, 112002
(2000).

[48] S. Schael et al. (ALEPH Collaboration), Branching ratios
and spectral functions of τ decays: Final ALEPH measure-
ments and physics implications, Phys. Rep. 421, 191
(2005).

[49] M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan, and Z.
Zhang, Update of the ALEPH non-strange spectral func-
tions from hadronic τ decays, Eur. Phys. J. C 74, 2803
(2014).

[50] K. Ackerstaff et al. (OPAL Collaboration), Measurement of
the strong coupling constant alpha(s) and the vector and
axial vector spectral functions in hadronic tau decays, Eur.
Phys. J. C 7, 571 (1999).

[51] M. Fujikawa et al. (Belle Collaboration), High statistics
study of the τ− → π−π0ντ decay, Phys. Rev. D 78, 072006
(2008).

[52] E. Fermi, Lectures on pions and nucleons, Nuovo Cimento
2S1, 17 (1955); Riv. Nuovo Cimento 31, 1 (2008).

[53] K. M. Watson, Some general relations between the photo-
production and scattering of π mesons, Phys. Rev. 95, 228
(1954).

[54] B. Ananthanarayan, G. Colangelo, J. Gasser, and H.
Leutwyler, Roy equation analysis of ππ scattering, Phys.
Rep. 353, 207 (2001).

[55] I. Caprini, G. Colangelo, and H. Leutwyler, Regge analysis
of the ππ scattering amplitude, Eur. Phys. J. C 72, 1860
(2012).

[56] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. R. de Elvira,
and F. J. Yndurain, The pion-pion scattering amplitude. IV:
Improved analysis with once subtracted Roy-like equations
up to 1100 MeV, Phys. Rev. D 83, 074004 (2011).

[57] G. Venanzoni (Muon g-2 Collaboration), The new muon
g − 2 experiment at Fermilab, Nucl. Phys. B, Proc. Suppl.
225–227, 277 (2012).

[58] T. Mibe (J-PARC g-2 Collaboration), Measurement of muon
g-2 and EDM with an ultra-cold muon beam at J-PARC,
Nucl. Phys. B, Proc. Suppl. 218, 242 (2011).

[59] G.W. Bennett et al. (Muon g-2 Collaboration), Final report
of the muon E821 anomalous magnetic moment measure-
ment at BNL, Phys. Rev. D 73, 072003 (2006).

[60] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Reevaluation of the hadronic vacuum polarisation contri-
butions to the Standard Model predictions of the muon g − 2

and αðm2
ZÞ using newest hadronic cross-section data, Eur.

Phys. J. C 77, 827 (2017).
[61] A. Keshavarzi, D. Nomura, and T. Teubner, Muon g − 2 and

αðM2
ZÞ: A new data-based analysis, Phys. Rev. D 97,

114025 (2018).
[62] T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C.

Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang
(RBC and UKQCD Collaborations), Calculation of the
Hadronic Vacuum Polarization Contribution to the Muon
Anomalous Magnetic Moment, Phys. Rev. Lett. 121,
022003 (2018).

PION ELECTROMAGNETIC FORM FACTOR AT HIGH … PHYS. REV. D 98, 114015 (2018)

114015-13

https://doi.org/10.1103/PhysRevC.75.055205
https://doi.org/10.1103/PhysRevLett.97.192001
https://doi.org/10.1103/PhysRevC.78.045203
https://doi.org/10.1103/PhysRevLett.112.182501
https://doi.org/10.1016/j.physletb.2007.01.073
https://doi.org/10.1016/j.physletb.2007.01.073
https://doi.org/10.1016/j.physletb.2003.10.108
https://doi.org/10.1016/j.physletb.2003.10.108
https://doi.org/10.1134/S0021364006200021
https://doi.org/10.1134/S106377610609007X
https://doi.org/10.1103/PhysRevLett.103.231801
https://doi.org/10.1103/PhysRevLett.103.231801
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1016/j.physletb.2008.10.060
https://doi.org/10.1016/j.physletb.2008.10.060
https://doi.org/10.1016/j.physletb.2011.04.055
https://doi.org/10.1016/j.physletb.2011.04.055
https://doi.org/10.1016/j.physletb.2013.02.029
https://doi.org/10.1016/j.physletb.2013.02.029
https://doi.org/10.1088/1748-0221/9/09/C09003
https://doi.org/10.1103/PhysRevD.91.052013
https://doi.org/10.1134/S1063778815040043
https://doi.org/10.1016/j.physletb.2015.11.043
https://doi.org/10.1016/j.physletb.2015.11.043
https://doi.org/10.1103/PhysRevD.61.112002
https://doi.org/10.1103/PhysRevD.61.112002
https://doi.org/10.1016/j.physrep.2005.06.007
https://doi.org/10.1016/j.physrep.2005.06.007
https://doi.org/10.1140/epjc/s10052-014-2803-9
https://doi.org/10.1140/epjc/s10052-014-2803-9
https://doi.org/10.1007/s100520050430
https://doi.org/10.1007/s100520050430
https://doi.org/10.1103/PhysRevD.78.072006
https://doi.org/10.1103/PhysRevD.78.072006
https://doi.org/10.1007/BF02746078
https://doi.org/10.1007/BF02746078
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1103/PhysRev.95.228
https://doi.org/10.1016/S0370-1573(01)00009-6
https://doi.org/10.1016/S0370-1573(01)00009-6
https://doi.org/10.1140/epjc/s10052-012-1860-1
https://doi.org/10.1140/epjc/s10052-012-1860-1
https://doi.org/10.1103/PhysRevD.83.074004
https://doi.org/10.1016/j.nuclphysbps.2012.02.058
https://doi.org/10.1016/j.nuclphysbps.2012.02.058
https://doi.org/10.1016/j.nuclphysbps.2011.06.039
https://doi.org/10.1103/PhysRevD.73.072003
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevD.97.114025
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevLett.121.022003


[63] C. Hanhart, S. Holz, B. Kubis, A. Kupść, A. Wirzba, and
C.W. Xiao, The branching ratio ω → πþπ− revisited,
Eur. Phys. J. C 77, 98 (2017); Erratum 78, 450 (2018).

[64] G. Colangelo, M. Hoferichter, and P. Stoffer, Two-pion con-
tribution to hadronic vacuum polarization, arXiv:1810.00007.

[65] I. Caprini, Dispersive and chiral symmetry constraints on
the light meson form-factors, Eur. Phys. J. C 13, 471 (2000).

[66] G. Abbas, B. Ananthanarayan, I. Caprini, I. Sentitemsu
Imsong, and S. Ramanan, Theory of unitarity bounds and
low energy form factors, Eur. Phys. J. A 45, 389 (2010).

[67] B. Ananthanarayan, I. Caprini, and I. S. Imsong, Spacelike
pion form factor from analytic continuation and the onset of
perturbative QCD, Phys. Rev. D 85, 096006 (2012).

[68] B. Ananthanarayan, I. Caprini, D. Das, and I. S. Imsong,
Model independent bounds on the modulus of the pion form
factor on the unitarity cut below the ωπ threshold, Eur. Phys.
J. C 72, 2192 (2012).

[69] B. Ananthanarayan, I. Caprini, D. Das, and I. Sentitemsu
Imsong, Parametrisation-free determination of the shape
parameters for the pion electromagnetic form factor, Eur.
Phys. J. C 73, 2520 (2013).

[70] B. Ananthanarayan, I. Caprini, D. Das, and I. S. Imsong,
Two-pion low-energy contribution to the muon g − 2 with
improved precision from analyticity and unitarity, Phys.
Rev. D 89, 036007 (2014).

[71] H. Leutwyler, Electromagnetic form factor of the pion, in
Continuous Advances in QCD 2002, edited by K. A. Olive,
M. A. Shifman, and M. B. Voloshin (World Scientific,
Singapore, 2003), p. 2340.

[72] C. Hanhart, A new parameterization for the pion vector form
factor, Phys. Lett. B 715, 170 (2012).

[73] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[74] M. Schmelling, Averaging correlated data, Phys. Scr. 51,
676 (1995).

[75] B. L. Ioffe andA. V. Smilga, Pion form-factor at intermediate
momentum transfer in QCD, Phys. Lett. 114B, 353 (1982).

[76] V. A. Nesterenko and A. V. Radyushkin, Sum rules and pion
form-factor in QCD, Phys. Lett. 115B, 410 (1982).

[77] A. V. Radyushkin, Quark-hadron duality and intrinsic trans-
verse momentum, Acta Phys. Pol. B 26, 2067 (1995).

[78] A. V. Radyushkin, QCD calculations of pion electromag-
netic and transition form-factors, arXiv:hep-ph/0106058.

[79] V. Braguta, W. Lucha, and D. Melikhov, Pion form-factor at
spacelike momentum transfers from local-duality QCD sum
rule, Phys. Lett. B 661, 354 (2008).

[80] C. A. Dominguez, Electromagnetic form-factor of the pion:
Vector mesons or quarks?, Phys. Rev. D 25, 3084 (1982).

[81] V. M. Braun and I. E. Halperin, Soft contribution to the pion
form-factor from light cone QCD sum rules, Phys. Lett. B
328, 457 (1994).

[82] V. M. Braun, A. Khodjamirian, and M. Maul, Pion form-
factor in QCD at intermediate momentum transfers, Phys.
Rev. D 61, 073004 (2000).

[83] J. Bijnens and A. Khodjamirian, Exploring light cone sum
rules for pion and kaon form-factors, Eur. Phys. J. C 26, 67
(2002).

[84] A. P. Bakulev and A. V. Radyushkin, Nonlocal condensates
and QCD sum rules for the pion form-factor, Phys. Lett. B
271, 223 (1991).

[85] A. P. Bakulev, K. Passek-Kumericki, W. Schroers, and N. G.
Stefanis, Pion form factor in QCD: From nonlocal con-
densates to NLO analytic perturbation theory, Phys. Rev. D
70, 033014 (2004); Erratum, Phys. Rev. D 70, 079906(E)
(2004).

[86] A. P. Bakulev, A. V. Pimikov, and N. G. Stefanis, QCD sum
rules with nonlocal condensates and the spacelike pion form
factor, Phys. Rev. D 79, 093010 (2009).

[87] H. R. Grigoryan and A. V. Radyushkin, Pion form-factor in
chiral limit of hard-wall AdS/QCD model, Phys. Rev. D 76,
115007 (2007).

[88] S. J. Brodsky and G. F. de Teramond, Light-front dynamics
and AdS/QCD correspondence: The pion form factor in the
space- and timelike regions, Phys. Rev. D 77, 056007
(2008).

[89] S. Cheng and Z. J. Xiao, Time-like pion electromagnetic
form factors in kT factorization with the next-to-
leading-order twist-3 contribution, Phys. Lett. B 749, 1
(2015).

[90] M. Gorchtein, P. Guo, and A. P. Szczepaniak, Asymptotic
behavior of Pion form factors, arXiv:1106.5252.

[91] E. P. Biernat, F. Gross, T. Pea, and A. Stadler, Pion
electromagnetic form factor in the Covariant Spectator
Theory, Phys. Rev. D 89, 016006 (2014).

[92] L. Chang, I. C. Clot, C. D. Roberts, S. M. Schmidt, and P. C.
Tandy, Pion Electromagnetic Form Factor at Spacelike
Momenta, Phys. Rev. Lett. 111, 141802 (2013).

[93] T. Gousset and B. Pire, Timelike form-factors at high-
energy, Phys. Rev. D 51, 15 (1995).

[94] E. Ruiz Arriola and W. Broniowski, Pion electromagnetic
form factor, perturbative QCD, and large-NðcÞ Regge
models, Phys. Rev. D 78, 034031 (2008).

[95] A. Czarnecki and W. J. Marciano, The muon anomalous
magnetic moment: A harbinger for ‘new physics’, Phys.
Rev. D 64, 013014 (2001).

[96] H. Czyz, A. Grzelinska, J. H. Kuhn, and G. Rodrigo, The
radiative return at Φ and B-factories: FSR for muon pair
production at next-to-leading order, Eur. Phys. J. C 39, 411
(2005).

[97] Y. M. Bystritskiy, E. A. Kuraev, G. V. Fedotovich, and F. V.
Ignatov, The cross sections of the muons and charged pions
pairs production at electron-positron annihilation near the
threshold, Phys. Rev. D 72, 114019 (2005).

[98] P. Duren, Theory of Hp Spaces (Academic Press, New York,
1970).

[99] N. N. Meiman, Analytic expressions for upper limits of
coupling constants in quantum field theory, Sov. Phys. JETP
17, 830 (1963).

ANANTHANARAYAN, CAPRINI, and DAS PHYS. REV. D 98, 114015 (2018)

114015-14

https://doi.org/10.1140/epjc/s10052-017-4651-x
https://doi.org/10.1140/epjc/s10052-018-5941-7
http://arXiv.org/abs/1810.00007
https://doi.org/10.1007/s100520000308
https://doi.org/10.1140/epja/i2010-11010-5
https://doi.org/10.1103/PhysRevD.85.096006
https://doi.org/10.1140/epjc/s10052-012-2192-x
https://doi.org/10.1140/epjc/s10052-012-2192-x
https://doi.org/10.1140/epjc/s10052-013-2520-9
https://doi.org/10.1140/epjc/s10052-013-2520-9
https://doi.org/10.1103/PhysRevD.89.036007
https://doi.org/10.1103/PhysRevD.89.036007
https://doi.org/10.1016/j.physletb.2012.07.038
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1088/0031-8949/51/6/002
https://doi.org/10.1016/0370-2693(82)90361-6
http://arXiv.org/abs/hep-ph/0106058
https://doi.org/10.1016/j.physletb.2008.02.025
https://doi.org/10.1103/PhysRevD.25.3084
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1016/0370-2693(94)91505-9
https://doi.org/10.1103/PhysRevD.61.073004
https://doi.org/10.1103/PhysRevD.61.073004
https://doi.org/10.1140/epjc/s2002-01042-1
https://doi.org/10.1140/epjc/s2002-01042-1
https://doi.org/10.1016/0370-2693(91)91304-E
https://doi.org/10.1016/0370-2693(91)91304-E
https://doi.org/10.1103/PhysRevD.70.033014
https://doi.org/10.1103/PhysRevD.70.033014
https://doi.org/10.1103/PhysRevD.70.079906
https://doi.org/10.1103/PhysRevD.70.079906
https://doi.org/10.1103/PhysRevD.79.093010
https://doi.org/10.1103/PhysRevD.76.115007
https://doi.org/10.1103/PhysRevD.76.115007
https://doi.org/10.1103/PhysRevD.77.056007
https://doi.org/10.1103/PhysRevD.77.056007
https://doi.org/10.1016/j.physletb.2015.07.038
https://doi.org/10.1016/j.physletb.2015.07.038
http://arXiv.org/abs/1106.5252
https://doi.org/10.1103/PhysRevD.89.016006
https://doi.org/10.1103/PhysRevLett.111.141802
https://doi.org/10.1103/PhysRevD.51.15
https://doi.org/10.1103/PhysRevD.78.034031
https://doi.org/10.1103/PhysRevD.64.013014
https://doi.org/10.1103/PhysRevD.64.013014
https://doi.org/10.1140/epjc/s2004-02103-1
https://doi.org/10.1140/epjc/s2004-02103-1
https://doi.org/10.1103/PhysRevD.72.114019

