
 

Hadronic final states in DIS at NNLO QCD with parton showers
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We present a parton-shower matched next-to-next-to-leading-order QCD calculation for hadronic final-
state production in deep-inelastic scattering. The computation is based on the UNLOPS method and is
implemented in the publicly available event generation framework SHERPA. Results are compared to
measurements performed by the H1 Collaboration.
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I. INTRODUCTION

Deep-inelastic lepton-nucleon scattering (DIS) has pre-
sented a formidable challenge to the theoretical high-energy
physics community for some time. On the one hand, the
reaction has provided an extremely precise probe of the
nucleon structure for nearly five decades [1]. QCD correc-
tions to the structure functions have been computed through
third order in perturbation theory [2–6]. On the other hand,
the description of quantities like inclusive jet or dijet
differential cross sections has remained difficult, even with
computations performed at next-to-leading-order (NLO)
QCD [7–9]. Tremendous progress has recently been made
with the fully differential calculation of jet production inDIS
at next-to-NLO (NNLO) QCD accuracy [10–12] and with
the fully differential calculation of inclusive DIS at next-to-
NNLO precision [13]. Several of these results have been
used in experimental analyses and provide amuch improved
description of the measurements [14,15].
In this publication, we present the first Monte Carlo event

generator that combines the fixed-order NNLO QCD pre-
diction for inclusive DIS with a parton shower. Simulations
provided by this tool are fully differential in the kinematics of
any QCD partons and preserve the NNLO accuracy of the
fixed-order calculation for arbitrary infrared-safe observ-
ables. We combine the parton-level simulation with phe-
nomenological models of the hadronization process in order
to obtain fully exclusive predictions at the particle level, i.e.,
at the level of stable hadrons. This allows us to estimate
resummation and hadronization effects at an unprecedented
level of theoretical precision by varying parton-shower
parameters and switching between different hadronization

models or tunes.We implement our simulation in thegeneral-
purpose event generator SHERPA [16,17].
The leading-order QCD configuration corresponding to

the DIS process is shown in Fig. 1(a). The kinematics are
typically parametrized in terms of the exchanged boson’s
virtuality Q2 ¼ −q2 ¼ ðk − k0Þ2 and the Bjørken variable
x ¼ Q2=ð2qPÞ. The jet reconstruction is performed in
the Breit frame, which is defined by the condition
q⃗þ 2xP⃗ ¼ 0⃗. At the leading order, a single final-state
parton, which carries zero transverse momentum, emerges.
The kinematical variables x and Q2 can in principle be
inferred from the incoming and outgoing lepton momenta k
and k0 alone, and the only relevant scale in the problem is
Q2. A measurement of jet production in DIS, however,
introduces additional scales of the order of the jet transverse
momenta and leads to significant challenges in the descrip-
tion of the corresponding final states. The problems are
related to possibly inverted scale hierarchies between Q2

and p2
T , the (squared) transverse energy of the jet(s) in

the Breit frame. While the proton is probed at Q2 when
considering inclusive DIS, the relevant hardness scale for
the QCD Compton process leading to the production
of a hard jet is of the order of Q2 þ p2

T ; see the sketch
in Fig. 1(b). In the extreme case of two resolved hard jets
and small Q2, one must even picture the core reaction as a
2 → 2 pure QCD process, followed by the initial-state
branching of a virtual photon into quarks, with a relevant
hardness scale of H2

T , the total transverse hadronic energy

(a) (b)

FIG. 1. Sketch of kinematics in the Breit frame for DIS at Born
level (a) and for the QCD Compton process (b).
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in the Breit frame. The large available phase space and the
increased scales lead to significantly enhanced multijet
cross sections in the region p2

T=Q
2 ≫ 1. Similar effects

were also observed in other reactions [18]. The problem
was addressed in Ref. [19], using multijet merging.
However, the nonunitary merging technique employed in
the simulation made it difficult to simultaneously predict
exclusive quantities like jet cross sections and inclusive
quantities like the structure functions. In the approach
presented here, this problem is solved by means of a unitary
merging method. Higher-order radiative effects are taken
into account to a good approximation by including the
complete fixed-order NNLO QCD corrections to inclusive
DIS and by choosing an appropriate scale [12].
This paper is organized as follows. Section II presents an

introduction to the UNLOPS matching technique and dis-
cusses the projection-to-Born method used in our study.
Section III presents the numerical validation, assessment of
theoretical uncertainties, and comparison to experimental
data. An outlook is given in Sec. IV.

II. COMPUTATIONAL SETUP

The starting point of our simulation is a fully differential
calculation of the inclusive DIS process at NNLO QCD
using the projection-to-Born method [20]. This technique
relies on a map Fb that uniquely assigns any given flavor
and momentum configuration in the one-emission phase
spaceΦ1 and in the double-real emission phase spaceΦ2 to
a point in the Born phase space Φ0. Given such a map, we
define the Born-differential NNLO cross section as

¯̄BðΦ0Þ ¼ B0ðΦ0Þ þ V0ðΦ0Þ þ VV0ðΦ0Þ

þ
Z

dΦ1ðB1ðΦ1Þ þ V1ðΦ1ÞÞδð2ÞðFBðΦ1Þ −Φ0Þ

þ
Z

dΦ2B2ðΦ2Þδð2ÞðFBðΦ2Þ −Φ0Þ: ð1Þ

In this context, Bn are the Born differential cross sections for
DIS plus n partons, and Vn and VV0 are the corresponding
UV renormalized virtual and double-virtual corrections,
including the appropriate collinear mass factorization coun-
terterms. This cross section is free of divergences if FB is an
infrared-safe observable, i.e., if it maps a Born phase space
point supplemented by infinitely soft gluons and/or collinear
parton branchings to the same Born phase space point. In
DIS, the construction of FB is straightforward: We require
the mapping to preserve the lepton momenta. This choice
uniquely determines the kinematics of the corresponding
Born configuration, where the momentum of the incoming
QCD parton is then set to p ¼ xP and the momentum of the
outgoing QCD parton is given by pþ q.
In terms of the Born-differential NNLO cross section,

any infrared-safe observable O can now be calculated as
follows:

hOiðNNLOÞ ¼
Z

dΦ0
¯̄BðΦ0ÞOðΦ0Þ

þ
Z

dΦ1ðB1ðΦ1ÞþV1ðΦ1ÞÞ

× ½OðΦ1Þ−OðFBðΦ1ÞÞ�

þ
Z

dΦ2B2ðΦ2Þ½OðΦ2Þ−OðFBðΦ2ÞÞ�: ð2Þ

While the first line of Eq. (2) generates the observable
dependence correctly in theBornphase space, the second and
third lines correct for its dependence in the single and double
emission phase space. They are generated by events in the
single and double emission phase space with the appropriate
flavor and momentum configurations [corresponding to the
OðΦ1Þ and OðΦ2Þ terms]. For each event, a duplicate event
with inverted weight and Born-projected flavor-kinematics
structure is added [corresponding to the OðFBðΦ1ÞÞ and
OðFBðΦ2ÞÞ terms]. Since the events in the single and
double emission phase space correspond to a regular NLO
calculation of the jet-associated Born process, any of the
well-established techniques for the computation of virtual
corrections and infrared subtraction at NLO can be used. In
our work, we employ the BLACKHAT library [21–23] for the
computation of the virtual corrections and Catani-Seymour
dipole subtraction [24] as implemented in thematrix element
generator AMEGIC [25,26]. Our implementation of the
generic NNLO corrections in Eq. (1) is based on the two-
loop DIS structure functions available in the literature [2–4].
We match the fixed-order computation in the projection-

to-Born method to a parton shower using the UNLOPS

algorithm [27,28]. The UNLOPS method is constructed
such that when the matched prediction for an arbitrary
infrared -safe observable is expanded to order α2s, the
result of the fixed-order NNLO calculation is recovered.
Logarithmically enhanced higher-order corrections are
implemented consistently with the structure of the resum-
mation encoded in the parton shower.
The effect of additional emissions generated in the

parton-shower approach can be described using a generat-
ing functional, which is recursively defined for an n-parton
final state and the observable O as

F nðtn; O;ΦnÞ ¼ Πnðtc; tn;ΦnÞOðΦnÞ

þ
Z

tn

tc

dΦ̂1KnðΦn; Φ̂1ÞΠnðt̂; tn;ΦnÞ

× F nþ1ðt̂; O;Φnþ1Þ; ð3Þ

where t̂ ¼ tðΦ̂1Þ and where the parton-shower no-branch-
ing probability is given by

Πnðt; t0;ΦnÞ ¼ exp

�
−
Z

t0

t
dΦ̂1KnðΦn; Φ̂1Þ

�
: ð4Þ
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Here, dΦ̂1 is the differential one-emission phase space,
which is parametrized in terms of the evolution and splitting
variables t and z as dΦ̂1 ¼ dtdzdϕ=ð2πÞJðt; z;ϕÞ, with
J a possible Jacobian factor. The starting scale of the
evolution is given by tn, while tc denotes the cutoff scale.
Kn is the evolution kernel for then-parton state. In the case of
DGLAP evolution of the DIS process, it can be written
as [29,30]

KnðΦn; Φ̂1Þ ¼
X
b¼q;g

αs
2π

PbaðzÞ
fbðx=z; tÞ
zfaðx; tÞ

Θðz − xÞ

þ
Xnout
i¼1

X
b¼q;g

αs
2π

PaibðzÞ; ð5Þ

where the first term corresponds to initial-state radiation
and the second term corresponds to final-state radiation.
The matching to a fixed-order higher-order calculation is
achieved by exploiting the factorization of tree-level matrix
elements, which implies schematically that Bnþ1 → BnKn in
the soft or collinear limit. Note that in processes with a more
complicated color structure or external gluons, spin and color
correlations between the underlying Born configuration, Bn,
and the splitting kernels in Kn must be taken into account. In
our simulation of the DIS dijet topologies, these correlations
are includedbymeans of anNLOmatching in theS-MC@NLO

method [31,32].
The NNLO matching in the UNLOPS method proceeds in

two steps. In order to reproduce the logarithmic coefficients
of the parton-shower resummation, the real emission terms
in the fixed-order calculation are reweighted. The nominal
accuracy of the fixed-order NNLO calculation is then
restored by subtracting the fixed-order expansion of the
reweighted result to the second order in the strong coupling
so as to remove the overlap with the exact NNLO result. In
Eq. (9), we quote only the final formula. The details of the
matching procedure are given in Refs. [27,28]. The only
modifications of the original method that lead to Eq. (9) are
due to our NNLO fixed-order input being computed in the
projection-to-Born method, rather than the qT-cutoff
technique.
We start with the one-jet differential NLO cross sections

for standard events (B̃1) and hard events (H1) as defined in
the S-MC@NLO method [31,33],

B̃1ðΦ1Þ ¼ B1ðΦ1Þ þ Ṽ1ðΦ1Þ þ I1ðΦ1Þ

−
Z
tc

dΦ̂1S1ðΦ1; Φ̂1ÞΘðt2ðΦ̂1Þ − t1ðΦ1ÞÞ;

H1ðΦ2Þ ¼ B2ðΦ2Þ − S1ðΦ2ÞΘðt1ðΦ2Þ − t2ðΦ2ÞÞ: ð6Þ

The termsB1 and Ṽ1 correspond to theBorndifferential cross
section of the one-jet final state and the corresponding UV
renormalized virtual corrections. The differential infrared
subtraction terms are denoted byS1. In our approach, they are
constructed using the method of Catani and Seymour [24],
adapted so that the space-time dependent part of the insertion
operators matches the splitting kernels used in the parton
shower. The integral of the differential subtraction term
appears as I1 in Eq. (6). The additional integral in the first line
arises from the restricted phase space filled by the parton
shower in S-MC@NLO standard events. It is finite and can
therefore be evaluated in four dimensions using a forward-
branching Monte Carlo event generator [31,34].
The generating functional formatching the one-jet process

at NLO is given in terms of dipole subtraction terms, S1, and
the underlying Born differential cross sections, B1, as

F̃ 1ðt; O;Φ1Þ ¼ Π̃1ðtc; t1;Φ1ÞOðΦ1Þ

þ
Z
tc

dΦ̂1

S1ðΦ1; Φ̂1Þ
B1ðΦ1Þ

Π̃1ðt̂; t1;Φ1Þ

× F 2ðt̂; O;Φ2Þ: ð7Þ
The no-emission probability is defined as in Eq. (4) with
K1 → S1=B1. Events are generated above the parton-shower
cutoff scale, tc, belowwhich theDIS process is considered to
be inclusive. We introduce a regular and an exceptional part
of the S-MC@NLO hard remainder function,

HR
1 ðΦ2Þ ¼ H1ðΦ2ÞΘðt1 − t2ÞΘðt2 − tcÞ;

HE
1 ðΦ2Þ ¼ H1ðΦ2Þ − HR

1 ðΦ2Þ: ð8Þ
Exceptional contributions appear in regions of phase space
forwhichno ordered parton-shower history can be identified.
The prime examples are configurations where the transverse
momenta of jets in the Breit frame are much larger than Q2,
cf. the sketch in Fig. 1(b).
The final UNLOPS matching formula at NNLO accu-

racy reads

hOiðUNLOPSÞ ¼
Z

dΦ0
¯̄B0ðΦ0ÞOðΦ0Þþ

Z
tc

dΦ1Π0ðt1;μ2QÞðw1ðΦ1Þþwð1Þ
1 ðΦ1ÞþΠð1Þ

0 ðt1;μ2QÞÞB1ðΦ1Þ½F̃ 1ðt1;O;Φ1Þ−OðΦ0Þ�

þ
Z
tc

dΦ1Π0ðt1;μ2QÞB̃R
1 ðΦ1Þ½F̃ 1ðt1;O;Φ1Þ−OðΦ0Þ�þ

Z
tc

dΦ2Π0ðt1;μ2QÞHR
1 ðΦ2Þ½F 2ðt2;O;Φ2Þ−OðΦ0Þ�

þ
Z
tc

dΦ2HE
1 ðΦ2ÞF 2ðt2;O;Φ2Þ: ð9Þ
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We have defined B̃R
1 ¼ B̃1−B1 and introduced the UNLOPS

matching weight, w1, which is given by [27]

w1ðΦ1Þ¼
αsðt1Þ
αsðμ2RÞ

faðxa;t1Þ
faðxa;μ2FÞ

fa0 ðxa0 ;μ2FÞ
fa0 ðxa0 ; t1Þ

�
1þδaa0

αsðt1Þ
2π

K

�
:

ð10Þ

faðxaÞ and fa0 ðxa0 Þ denote the parton distribution functions
(PDFs) associatedwith the external and intermediate parton,
respectively, and the constant K ¼ ð67=18− π2=6ÞCA−
10=9TRnf is the two-loop cusp anomalous dimension,
which restores the physical coupling in soft-gluon emis-
sions [35,36]. The subtraction terms for the no-branching
probability of the parton shower, and for the weight w1, are
given by

Πð1Þ
0 ðt;t0Þ¼

Z
t0

t
dΦ̂1

αsðμ2RÞ
αsðt̂Þ

�
1þδaa0

αsðt1Þ
2π

K

�
−1
K1ðΦ1;Φ̂1Þ

wð1Þ
1 ðΦ1Þ¼

αsðμ2RÞ
2π

�
β0 ln

baa0t1
μ2R

− ln
t1
μ2F

X
c

�Z
1

x

dz
z
PcaðzÞ

fcðx=z;μ2FÞ
faðx;μ2FÞ

−
Z

1

x0

dz
z
Pca0 ðzÞ

fcðx0=z;μ2FÞ
fa0 ðx0;μ2FÞ

��
; ð11Þ

where baa0 ¼ expf−δaa0K=β0g.

For our studies we use the DIRE parton shower [37].
Comparing the radiation pattern of DIRE in higher-
multiplicity events to fixed-order predictions, we find that
the simulation can be improved by changing the evolution
variables for dipoles with an initial-state emitter and final-
state spectator or vice versa. Specifically, we set

t ¼ 2ðpapjÞðpjpkÞ
papj þ papk

; ð12Þ

where pj, pa, and pk denote the momenta of the emitted
parton and the momenta of the initial- and final-state partons
forming the emitting dipole, respectively. Choosing (12) as
the evolution variable amounts to including an additional
factor of 1=z compared to the definition given in Ref. [37].
The importance of scale choices in higher-order pertur-

bative QCD calculations has been in the focus of interest
recently [38,39]. In order to reflect the dynamics of the DIS
dijet and trijet processes in the high transverse momentum
region, we select a scale similar to the one proposed in
Ref. [12]. Instead of the jet transverse momenta, we employ
the total transverse hadronic energy in the Breit frame, HT .
The central renormalization and factorization scale in our
fixed-order calculations is then given by

μ2R=F ¼ Q2 þ ðHT=2Þ2
2

: ð13Þ

Equation (13) smoothly interpolates between the regions of
normal scale hierarchies,whereQ is larger than the transverse

FIG. 2. Comparison of NNLO cross sections, differential in x and Q2, between our dedicated implementation in SHERPA and the
publicly available APFEL library [43].
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momenta of jets in theBreit frame, and the regions of inverted
scale hierarchies, where the transverse momenta are much
larger thanQ. This corresponds to the two situations sketched
in Fig. 1. Our scale choice Eq. (13) effectively selects the
largest scale in the reaction in both cases. Accordingly, we set
the resummation scale in Eq. (9) to μ2Q ¼ maxðt1; Q2Þ.

III. RESULTS

In this section, we present numerical results of our
calculation, quantitative assessments of the theoretical

uncertainties, and comparisons to experimental data. We
use the publicly available event generation framework
SHERPA [16,17], modified to include the changes described
in Sec. II. We use the CT14nnlo PDF set [40] and choose the
strong coupling accordingly. Analyses of the simulated
events are performed with the help of RIVET [41,42].
In order to validate our implementation of the Born-

differential NNLO cross section, we compare fixed-order
predictions for the reduced cross section to results obtained
with the publicly available APFEL library [43]. The reduced
cross section is defined as

FIG. 3. Inclusive jet, dijet, and trijet cross section differential in Q2 as a function of pT;j compared to experimental data from the H1
Collaboration [14]. We show separate error bars for the reported statistical and systematic uncertainties. We compare NLO fixed-order
predictions corrected for hadronization effects (green) and parton-shower matched NNLO predictions at the particle level (red). The light
green and light red uncertainty bands are obtained from a correlated variation of the renormalization and factorization scales. The hatched
blue uncertainty band combines the fixed-order uncertainties and parton-shower uncertainties in quadrature. See the main text for details.
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σr ¼
d2σ

dxdQ2

Q4x
2πα2Yþ

; ð14Þ

where Yþ ¼ ð1þ ð1 − yÞ2Þ and y ¼ Q2=ðsxÞ with s the
center-of-mass energy of the collider. As shown in Fig. 2,
where we show a comparison differentially inQ2 and x, we
observe good agreement within the statistical uncertainties.
Note that for this cross-check, we set the renormalization
and factorization scale to μ2R=F ¼ Q2.

Figures 3 and 4 show the inclusive jet cross section, the
dijet cross section, and the trijet cross section in the high
and low Q2 regions as predicted by our simulations in
comparison to experimental data from Refs. [14,15]. The
shaded uncertainty bands display the estimated theoretical
uncertainties at fixed order and are obtained from a
correlated variation of the renormalization and factorization
scale by factors of 2 up and down. The hatched uncertainty
band is a combination of the fixed-order uncertainties and
the estimated parton-shower uncertainty, which is obtained

FIG. 4. Inclusive jet cross section differential in Q2 as a function of pT;j compared to experimental data from the H1 Collaboration
[15]. See Fig. 3 and the main text for details.
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by varying the scales at which the strong coupling and the
PDF are evaluated in the parton shower by factors of

ffiffiffi
2

p
up

and down, using the technique in Ref. [44]. The parton-
shower starting scale μQ is set toQ2. Variations of this scale
have a minor effect on our predictions, because the
dominant hierarchy in the measurement phase space is
such that pT > Q. The predictions shown in green are
obtained from a fixed-order NLO calculation for inclusive

jet production. They have the same fixed-order accuracy
as our parton shower matched simulations because the
Born configurations of inclusive DIS do not contribute to
the observables at fixed order. In the fixed-order predic-
tions, we account for hadronization effects using the
correction factors tabulated in Refs. [14,15]. They are
obtained in the usual fashion, i.e., by comparing leading-
order parton-shower Monte Carlo simulations before and

FIG. 5. Hadronization corrections determined using the UNLOPS simulation of DIS. Predictions from the Lund string model (red) are
compared to results from the cluster fragmentation as implemented in SHERPA (blue) and to results computed by the H1
Collaboration [14,15].
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after hadronization. The corresponding ratios are typically
applied as multiplicative corrections to fixed-order calcu-
lations at the level of the observables. The predictions
shown in red are obtained using our UNLOPS matched
calculation supplemented with the string hadronization
model [45,46]. We observe good agreement between the
matched calculation and the fixed-order prediction, which
indicates that the QCD evolution and hadronization effects
are well under control. Our results test and confirm, for the
first time at this level of theoretical precision, the validity of
the approach outlined above, where hadronization correc-
tions are extracted from parton-shower Monte Carlo sim-
ulations and then multiplicatively applied to the fixed-order
calculation.
We quantify the size and uncertainty of the hadronization

corrections in our simulations in Fig. 5. We plot the ratio
between the particle-level predictions, with hadronization
and hadron decays applied, to the prediction obtained after
parton showering. We show two different results, one
obtained using the Lund string fragmentation model
[45,46] as implemented in PYTHIA6.4 [47] and one obtained
using the cluster fragmentation model [48,49] as imple-
mented in SHERPA [50]. The perturbative inputs to the two
simulations are identical; hence, we quote their difference
as the estimated hadronization uncertainty. We note that the
hadronization corrections in our approach agree well with
the results computed by H1, which are based on compu-
tations using DJANGOH [51] and RAPGAP [52]. These two
generators both include the exact expressions for the QCD
Compton process at leading order, but DJANGOH uses the
Lund dipole cascade model of ARIADNE [53] to simulate
higher-order radiative corrections, while RAPGAP is based
on collinear parton evolution. Both make use of the Lund

string fragmentation model. It is encouraging that in our
approach, using both a higher-order perturbative input and
a different parton-shower model, the sizes of the hadroni-
zation corrections are very similar. In addition, the hadro-
nization uncertainties are small, except for the very low
transverse momentum region in the trijet cross section.

IV. CONCLUSIONS

We have presented the first parton-shower matched
calculation of hadronic final-state production in DIS at
NNLO QCD precision. The techniques needed to perform
the simulation are implemented in the publicly available
program SHERPA and can be used for event generation at the
particle level. In contrast to earlier calculations using
nonunitary multijet merging techniques, we are able to
predict both jet production rates and inclusive quantities
like structure functions within a single calculation. The
agreement with recent analyses by the H1 Collaboration is
good. Since our calculation is based on collinear factori-
zation, it can provide the basis for the reliable extraction of
hadronization corrections needed in the comparison to
fixed-order calculations.
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