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We consider a nonsupersymmetric Hanany-Witten type IIB brane configuration that realizes a three-
dimensional USpð2NÞ gauge theory with quarks in the two-index antisymmetric representation and SOð4Þ
flavor symmetry. Using type IIB S-duality we find the mirror dual, an SOð2N − 1Þ field theory with scalars
in the antisymmetric representation. Analyzing the magnetic dual, we study the vacuum structure of the
USpð2NÞmodel and propose that the SOð4Þ global symmetry is unbroken. In order to support our proposal
we present an SOð4Þ symmetric BIon configuration that describes anti–D3 branes polarizing into
fivebranes in the S-dual Hanany-Witten setup. We also comment on dynamical flavor symmetry breaking
in other QCD3 theories with quarks in two-index representations.
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I. INTRODUCTION

Recently, there has been significant progress in the
understanding of the vacuum structure of QCD3 with
quarks in the fundamental representation [1,2]. There is
a lot of evidence that when the number of flavors Nf is
within a certain regime that depends on the Chern-Simons
level k, k < Nf < N⋆, the quarks condense and the global
flavor symmetry is broken, SUð2NfÞ → SUðNf þ kÞ ×
SUðNf − kÞ [2]. On the other hand, little is known about
the dynamics of multiflavor QCD3 with quarks in two-
index representations, even in the absence of a Chern-
Simons term in the action. Our main motivation is to
examine more closely the possibility of global symmetry
breaking scenarios in such cases. Interestingly, it has
been argued recently in a related four-dimensional setup
with two adjoint fermions that the global SUð2Þ flavor
symmetry may not be broken [3].
In gauge theories with conserved parity symmetry at the

classical level, the Vafa-Witten theorem excludes sponta-
neous breaking of parity [4]. It therefore restricts the
possible patterns of symmetry breaking. In particular, in
QCD3, when the global symmetry is SUð2NfÞ, there is

either breaking to SUðNfÞ × SUðNfÞ or there is no break-
ing. Similarly, when the global symmetry is SOð2NfÞ, the
only possible pattern is SOð2NfÞ → SOðNfÞ × SOðNfÞ.
In this article we address the issue of dynamical

symmetry breaking in a very special setup of three-
dimensional gauge theories with fermions in two-index
representations, where a string theory embedding can be
used to motivate predictions even without supersymmetry.
The starting point of our discussion is a nonsupersym-

metric Hanany-Witten brane configuration, which contains
an orientifold three-plane and anti–D3 branes. The field
theoretic modes on the D3 branes constitute a nonsuper-
symmetric four-dimensional gauge theory on R1;2 × I,
where I is an interval. When the interval size is taken to
zero, we obtain a three-dimensional gauge theory with
symplectic gauge group, USpð2NÞ. There are four Weyl
fermions (quarks) that transform in the two-index anti-
symmetric representation of the gauge group, and the
global symmetry is SOð4Þ. We present evidence that this
global symmetry does not break dynamically.
Our analysis relies heavily on the dynamics of a non-

supersymmetric mirror dual theory, whose existence is
motivated by invoking S-duality in type IIB string theory.
The dual field theory is constructed using the S-dual
Hanany-Witten setup. We explore the dynamics of this
setup and propose a scenario where the global SOð4Þ ∼
SOð3Þ × SOð3Þ is not broken. In this scenario quarks may
confine but there is no dynamical symmetry breaking.
As further partial evidence in favor of this scenario we

construct a D3–D5 BIon solution that describes the mirror
dual brane configuration in the limit of large separation
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between the fivebranes and large three-brane charge. We
present three different types of nonsupersymmetric BIon
solutions in the asymptotic background of an O3− plane.
The first type is a semi-infinite D5 brane funnel that

describes orthogonal anti–D3 branes polarized on anRP2 in
the presence of the O3−. Unlike the usual D3–D5 funnel
solution in flat space, the asymptotic size of the RP2 is
nonzero in the solutions that we discuss and grows with
increasing three-brane charge. The solution describes anti–
D3 branes stabilized at a finite distance away from the
orientifold. As a slight generalization, we demonstrate the
existence of such nonsupersymmetric BIon solutions in
general backgrounds of type IIB supergravity that exhibit
repelling forces with anti–D3 branes at large radial distances.
The second type of D5 brane funnel terminates at a finite

distance, and like other familiar BIon solutions of the
original F1-Dp system [5], it can be glued to a mirror to
construct a funnel interpolating between a D5 and an anti–
D5 brane. There is a third type of BIon solutions that
terminates on a kink that enters deep inside the geometry of
the orientifold. In this case, we have much less technical
control over the solution. We speculate that this type of
solutions could be the basis for the construction of BIons
interpolating between a pair of largely separated D5 branes.
All the BIon solutions that we construct preserve the

SOð4Þ symmetry. We discuss the possibility of alternative,
symmetry-breaking, BIon solutions and the limitations of
the approach.
Although we use a specific setup with SOð4Þ global

symmetry, in the large-N limit there is an equivalence
between USpð2NÞ, SOð2NÞ, and SUðNÞ gauge theories,
often called planar equivalence [6]. There is also an
equivalence between the adjoint/symmetric and antisym-
metric representations. We therefore anticipate that in
QCD3 theories with quarks in two-index representations
there is no dynamical breaking of flavor symmetry.

II. MIRROR SYMMETRY

Consider a Hanany-Witten brane configuration [7],
which consists of two parallel NS5 branes, whose world
volume is along the 012345 directions; an O3þ orientifold
plane,1 whose world volume is along the 0126 directions;
and N anti–D3 branes and their mirrors, whose world
volume is along the 0126 directions. The anti–D3 branes
are suspended between the two NS5 branes in the 6
direction. The mutual presence of the orientifold and the
antibranes breaks supersymmetry. The brane configuration
is depicted in Fig. 1.
The classical field theory on the brane is a USpð2NÞ

gauge theory with three real scalars in the symmetric
representation and four Weyl fermions in the antisym-
metric representation. We refer to this theory as the

“electric theory.” This gauge theory may be obtained
by dimensional reduction of six-dimensional USpð2NÞ
QCD with antisymmetric quarks. The global symmetry
(similar to the R-symmetry in the corresponding super-
symmetric theory) is SUð2ÞV × SUð2ÞH. It is realized as
SOð3ÞV × SOð3ÞH, and it is associated with rotations along
the directions 345 and 789, respectively. The matter content
and charges of the gauge theory are listed in Table I.
Type IIB string theory is believed to admit an exact

S-duality. Let us apply it on each component of the brane
configuration. The anti–D3 branes are invariant under the
duality. The NS5 branes become D5 branes. TheO3þ plane
is transformed into an Õ3− plane, which is morally a bound
state of anO3− plane and a D3 brane. As a result, we expect
a tachyonic mode between anti–D3 branes when they
overlap with the Õ3− plane. Similar to [8,9] we anticipate
that the condensation of this mode will lead to N − 1
anti–D3 branes (and their mirror) plus an additional
anti–D3 brane stuck on top of the O3− plane. The brane
configuration is depicted in Fig. 2.
The resulting “magnetic” theory at low energies admits a

classical global SOð2N − 1Þ symmetry.2 It contains four
real scalars and four Weyl fermions. The scalars transform
in the antisymmetric representation of SOð2N − 1Þ while
the fermions transform in the symmetric representation of
SOð2N − 1Þ. The low energy matter content of this theory,
which follows from classical open string theory, is listed in
Table II. σ is a real boson, and ϕ is a triplet of real bosons.
As we explained, we may view both the electric and

the magnetic theories as four-dimensional gauge theories,
formulated on an interval. In the limit where the interval’s
size goes to zero we obtain the theories listed in Tables I
and II. From a four-dimensional point of view there is a
global triangle anomaly that has to be matched. On the
electric side the antisymmetric fermions contribute
4 × 2Nð2N − 1Þ, and on the magnetic side the symmetric
fermions contribute 4 × ð2N − 1Þ × ð2N − 1þ 1Þ.

NS5 NS5

N D3 branes

O3+

FIG. 1. Brane configuration realizing the electric theory. It is a
nonsupersymmetric USpð2NÞ gauge theory with antisymmetric
quarks (and symmetric scalars).

1The orientifold changes sign as it crosses an NS5 brane.

2Viewed as a four-dimensional theory on an interval, the
SOð2N − 1Þ symmetry is a gauge symmetry, with heavy gauge
bosons.
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We propose that the electric and magnetic theories form
a nonsupersymmetric dual pair. In fact, in the ’t Hooft
large-N limit (with the UV cutoff kept finite), the electric
and the magnetic theories become supersymmetric, due
to planar equivalence [6], and the above duality is the
Intriligator-Seiberg mirror symmetry [10]. A scenario for
the finite N dynamics of the magnetic theory in the next
section will lead to a corresponding conjecture for the
vacuum structure of the finite N electric theory.

III. DYNAMICS OF THE ELECTRIC AND
MAGNETIC PAIR

Let us start with the electric theory. The gauge
theory is nonsupersymmetric. The scalars acquire a
Coleman-Weinberg potential. As in the corresponding
four-dimensional (4D) theory [8], the generated mass2 of
the scalars is positive. In order to see that, let us calculate
the one-loop contribution to the generated mass [a very
similar calculation was carried out recently in the context of
a nonsupersymmetric three-dimensional (3D) Seiberg dual-
ity [11]]. Both the bosonic and fermionic contributions are
proportional to the quadratic Casimir of the corresponding
representation. The bosonic contribution is positive while
the fermionic contribution is negative. The total contribu-
tion is

M2
Φ ¼ g2eΛð2N þ 2Þ − g2eΛð2N − 2Þ > 0; ð3:1Þ

with ge the electric gauge coupling and Λ the UV cutoff. In
the string theory context it is natural to identify Λ2 with 1

α0.

The same information can be extracted from the Möbius
amplitude which represents the interaction between the
anti–D3 branes and the orientifold plane. The attraction
potential between the branes and the orientifold plane is
identified with the attractive Coleman-Weinberg potential
for the scalars.
When the field theory limit α0 → 0 is taken, the scalars

become infinitely massive and decouple. The low energy
theory is simply a USpð2NÞ QCD3 theory with four
antisymmetric quarks.
The 3D gauge theory is expected to confine. The main

purpose of this article is to address the issue of the vacuum
structure and in particular to ask whether the quarks
condense. We will focus on N > 1.3

Let us consider the quark bilinear hΨα _αΨβ _βi. The Lorentz
SOð2; 1Þ indices are contracted by using the epsilon
symbol and are omitted for brevity. α; β are SUð2ÞV indices
and _α; _β are SUð2ÞH indices. A priori, we find three
possibilities

(i) hΨα _αΨβ _βi ¼ vδαβδ _α _β. Such a condensate breaks
SUð2ÞV × SUð2ÞH → SOð2ÞV × SOð2ÞH.

(ii) hΨα _αΨβ _βi ¼ μδα _βδ _αβ. Such a condensate breaks
SUð2ÞV × SUð2ÞH → SUð2ÞD.

(iii) hΨα _αΨβ _βi ¼ 0. The global SUð2ÞV × SUð2ÞH is
unbroken.

Now let us consider the dynamics of the magnetic
dual (the mirror theory). On the magnetic side the scalars
acquire a negative mass2, namely a tachyonic mass, due to
the self-coupling to antisymmetric scalars and the coupling
to symmetric fermions [11],

M2
σ;ϕ ¼ g2mΛðð2N − 1Þ − 2Þ − g2mΛðð2N − 1Þ þ 2Þ < 0:

ð3:2Þ

As a result, the scalars are expected to develop a vacuum
expectation value (VEV). The manifestation of the
tachyonic mass in the brane picture is a repulsion between
the anti–D3 branes and the orientifold O3− plane. This
suggests that the N − 1 anti–D3 branes move away from
the orientifold (we will study this phenomenon in more
detail in the next section). If this happens, the scalars ϕ of

TABLE I. The matter content of the electric theory.

Electric theory

USpð2NÞ SUð2ÞV SUð2ÞH
Aμ • •
Φ •

Ψ

TABLE II. The matter content of the magnetic theory.

Magnetic theory

SOð2Nc − 1Þ SUð2ÞV SUð2ÞH
σ • •

ϕ •

ψ

D5D5

N−1 D3 branes

O3
−

FIG. 2. Brane configuration realizing the magnetic theory. It is
a nonsupersymmetric SOð2N − 1Þ theory with antisymmetric
scalars (and symmetric fermions).

3The case N ¼ 1 is trivial. For USpð2Þ ∼ SUð2Þ the antisym-
metric quarks decouple from the dynamics.
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the magnetic theory acquire a VEV and the fermions
naturally become massive, due to Yukawa couplings,
and decouple. As a result, the low energy dynamics is
dictated by the behavior of the scalars.
A priori, there are several possibilities. In all of them the

SOð3ÞH symmetry, associated with rotations along the
directions 789, is unbroken:
(a) The branes attract each other, move away together, and

sit at a minimum at a finite distance away from the
orientifold plane. In this scenario SOð3ÞV×SOð3ÞH→
SOð2ÞV×SOð3ÞH.

(b) The branes move away and repel each other. They
spread away from the orientifold. SOð3ÞV×SOð3ÞH→
SOð3ÞH.

(c) The branes form a fuzzy sphere. In that case SOð3ÞV ×
SOð3ÞH remains unbroken.

Options (a) and (b) are not compatible with the expected
dynamics of the electric theory. In scenarios (i) and (ii) on
the electric side, where a breaking of the global symmetry
occurs, SOð3ÞH is broken. The only logically accepted
option seems to be option (c) on the magnetic side, which
corresponds to option (iii) on the electric side, namely that
there is no breaking of the global SOð3ÞV × SOð3ÞH
symmetry. This implies that there is no quark condensate
on the electric side.
Let us elaborate a little further on scenario (c). We follow

the analogous 4D scenario described in [8], where it was
proposed that the branes are distributed in such a way that
they preserve SOð4Þ ⊂ SOð6Þ. In the present 3D setup the
global symmetry is SOð4Þ and the same distribution of
branes does not break the symmetry further. We propose
that due to the repulsion between the orientifold and the
anti–D3 branes, the latter forms a configuration of spherical
anti–D5 branes. We will attempt to find evidence in favor
of this scenario with an independent analysis in the next
section.
In terms of the scalar expectation values we propose,

similar to [8], that the scalars of the magnetic theory fϕi; σg
admit a VEV

hϕii ¼ cJiðN−1Þ; ð3:3Þ

hσi ¼ c0; ð3:4Þ

where JiðN−1Þ are generators of the SUð2Þ algebra with

spin N − 1. Such a configuration preserves the full
SOð3Þ × SOð3Þ symmetry. Note that c, c0 are not constants,
but a function of the distance between the fivebranes. We
omit this dependence in the limit when the interval size is
short. In the next section, we describe what happens when
the interval is long and a BIon configuration is formed.
Evidence in favor of an SOð4Þ symmetric D3–D5 BIon
configuration is presented.
Since we do not have complete control over the dynamics

of the magnetic theory, we cannot prove rigorously the above

scenario. The fact that there exists a configuration, which is
consistent with mirror symmetry, is reassuring.

IV. D3–D5 ANTI-BIONS IN ORIENTIFOLD
BACKGROUNDS AND GENERALIZATIONS

In this section we perform a more detailed study of the
mirror brane setup in Fig. 2 from the perspective of the D5
branes. We analyze D3–D5 BIon solutions that describe
semi-infinite polarized anti–D3 branes ending on D5
branes as well as configurations, which are proposed to
describe anti–D3s suspended between a D5‐D5 pair, or a
D5-D5 pair. The analysis of the D3–D5 BIon solutions that
we perform in this section is based on the classical Dirac-
Born-Infeld (DBI) action of the D5 brane on the super-
gravity background of an O3− plane. This analysis is
expected to be valid in the asymptotic flat space region far
away from the orientifold source. We will show that the
BIon configurations stabilize in this region when the
induced anti–D3 brane charge is sufficiently large.
There are several approximations that validate this

analysis. In the asymptotic region the gradients of the
supergravity fields are small and for the most part so are the
gradients of the DBI fields. Small gradients are required for
the validity of the effective actions that we use (super-
gravity and DBI). In addition, in the asymptotic region we
expect that the backreaction effects of the D5 branes to the
supergravity background are subleading and will not alter
the qualitative features of the solutions we will find. In
particular, we could have performed the same analysis for a
large number of overlapping D5 branes in the supergravity
regime treating the D5 branes themselves as supergravity
solutions. Such a treatment is possible in a regime of long-
wavelength approximations using blackfold methods [12].
In this manner, we would indeed find that the leading
effects are captured by precisely the same configurations as
the one we find with the Abelian D5 DBI approach in the
present work.
When contrasted with a treatment based on the effective

action of the anti–D3 branes,4 one of the immediate benefits
of the classical D5 brane perspective is that it incorporates
automatically the leading nonsupersymmetric one-loop
quantum effects on the D3 branes. Some of these effects
manifest themselves via the forces that are exerted on the
D3–D5 BIon by the background orientifold.

A. A class of supergravity backgrounds

As we explained in Sec. II after S-duality theO3þ-plane,
which stretches between a pair of NS5 branes, converts into
a Õ3− plane between a pair of D5 branes. A crucial step of

4A direct treatment from the viewpoint of the anti–D3 branes
should produce fuzzy brane solutions of the form (3.3). In this
approach, it is not obvious how to determine the effective
interactions of the scalars.
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the construction of Sec. II involves the condensation of a
tachyonic instability for a single anti–D3 brane that over-
laps with the Õ3− plane. The condensation of this insta-
bility converts this plane to an orientifold that is morally a
bound state of an O3− plane with a half anti–D3.
In Sec. IV C we will argue that the half anti–D3 brane

becomes magnetic flux on the D5 brane. As a result,
we have to consider D5 brane configurations in the back-
ground of the O3− plane. In itself the O3− plane is a
supersymmetric configuration. However, in this section we
would like to make our analysis a little more general and
consider instead a wider class of supergravity backgrounds,
which may or may not be supersymmetric. This extension
helps demonstrate that there is a general mechanism of
stabilization of polarized anti–D3s when the appropriate
repulsive forces are present.
To preserve the obvious symmetries of interest we will

consider solutions of the type IIB supergravity equations of
motion with a metric of the form (in the Einstein frame)

ds2 ¼ H1ðrÞηabdxadxb þH2ðrÞðdr2 þ r2ds2RP5Þ;
a; b ¼ 0; 1; 2; 6; ð4:1Þ

a self-dual Ramond-Ramond 5-form field strength

F5 ¼ Qð1þ �ÞVolðRP5Þ; ð4:2Þ

and a potentially nontrivial dilaton

eϕ ¼ H3ðrÞ: ð4:3Þ

Q is a constant (the RR charge of the solution). The
functions H1, H2, H3 in this ansatz are all functions that
depend solely on the radial coordinate r.
Interestingly, this general type of solutions has been

considered in some generality in the past (mainly with the
transverse RP5 replaced by S5, but that does not affect
the equations of motion and the corresponding form of the
solutions). We refer the reader to [13–15] for references
and [16] for some more recent discussions.
Our approach will be the following. Our primary purpose

is to establish the existence of nonsupersymmetric BIon
solutions near the asymptotic flat space region with
sufficiently large induced D3 brane charge. Hence, we
will focus mainly on the flat space asymptotics of solutions
of the form (4.1)–(4.3). The solutions of [13] are well suited
to this purpose. They are described by a number of free
parameters controlling the mass, dilaton charge, and RR
charge, and have the most general monopole asymptotics of
the above-mentioned supergravity fields. There is only one
constraint that we will put on these parameters, which will
be considered in the next subsection.
The specifics of the supergravity solutions that we will

consider are the following. In the Einstein frame [13,15]

ds2E ¼ F−1=2ðrÞηabdxadxb þ F1=2ðrÞðHþðrÞH−ðrÞÞ1=2
× ðdr2 þ r2ds2RP5Þ; ð4:4Þ

F5 ¼ Qð1þ �ÞVolðRP5Þ; ð4:5Þ

eϕ ¼
�
Hþ
H−

�
δ

: ð4:6Þ

The functions that appear in these expressions are

FðrÞ ¼
�
Hþ
H−

�
α

cosh2 ω −
�
Hþ
H−

�
−α

sinh2 ω; ð4:7Þ

H�ðrÞ ¼ 1� R4

r4
: ð4:8Þ

The 5-form field strength includes the components
F0126r ¼ QF−2ðHþH−Þ−1r−5, which follow from the com-
ponents of the 4-form RR potential

C0126 ¼
Q

16R4α cosh4 ω
1

ðr4þR4

r4−R4Þ2α − tanh2 ω

−
Q

16R4α cosh2 ω
: ð4:9Þ

The solutions are parametrized by the constant param-
etersQ, α, R, δ, ω, but not all of them are independent. The
supergravity equations of motion force the following
relations among them:

Q ¼ 8R4α sinhð2ωÞ; α2 þ δ2 ¼ 5

2
: ð4:10Þ

That leaves three independent parameters, say α, ω, R. As
we see in the next paragraph, each of them controls the
asymptotics of the three nontrivial fields in the game: the
metric, the dilaton, and the 4-form RR potential.
Before we proceed further, a few comments about this

general solution are in order. As far as we know, there is no
clean interpretation of these solutions in terms of D3 branes
(or O3 planes in our context). It is interesting that H−
introduces a singularity at r ¼ R. One of the implications of
this singularity is that it obstructs the application of
Birkhoff’s theorem. For our purposes we are not particu-
larly interested in the physics of the singularity, because we
only care about the asymptotic large-r region. Moreover,
for a solution of small RR charge (as in our case) the
curvature (and potentially the dilaton) increases as r
become smaller and the usual classical supergravity
approximations are invalidated.
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In the asymptotic large-r region the above solutions
behave as follows:

ds2E ≃
�
1 −

αR4 coshð2ωÞ
r4

�
ηabdxadxb

þ
�
1þ αR4 coshð2ωÞ

r4

�
ðdr2 þ r2ds2RP5Þ þOðr−8Þ;

ð4:11Þ

C0126 ≃ −
Q
4r4

þOðr−8Þ; ð4:12Þ

ϕðrÞ ≃ 2δR4

r4
þOðr−12Þ: ð4:13Þ

We note that the supersymmetric solution of the O3−

plane is recovered in the limit R → 0, jωj → ∞ with
R4 coshð2ωÞ kept fixed. It is apparent from the expressions
(4.7) and (4.8) that in this limit the precise values of α and δ
do not matter and that the solution is expressed in terms
of the parameter Q. The only information in α that plays
a role is its sign. More specifically, in units where the
D3 brane charge is 1, theO3− charge is − 1

4
. Hence, in these

units the parameter Q is a negative number of order 1 [see
Eq. (4.12)]. Since Q is proportional to α sinhð2ωÞ, it is
negative when αω < 0. The asymptotic form of the metric
(4.11) and the antigravitating nature of the O3− plane
implies that α < 0 and therefore also ω > 0. We will see
that these signs are consistent with the results of the next
subsection.
The DBI computation requires the metric in the

string frame, ds2S ¼ eϕ=2ds2E, which is listed here for
completeness,

ds2s ¼ F−1=2ðrÞ
�
Hþ
H−

�
δ=2

ηabdxadxb

þ F1=2ðrÞðHþðrÞH−ðrÞÞ1=2
�
Hþ
H−

�
δ=2

× ðdr2 þ r2ds2RP5Þ: ð4:14Þ

B. Implications of asymptotic repulsion
on anti–D3 branes

We know that far away from the O3− plane the anti–D3
branes are repelled. In this section we examine what
conditions are imposed on the parameters α, ω, R by this
requirement.
We consider the DBI action for an anti–D3 brane in the

background metric (4.14), the background dilaton (4.6),
and the background RR 5-form flux (4.5), part of whose
components are

F0126r ¼ ∂rC0126 ¼ QF−2ðHþH−Þ−1r−5 ð4:15Þ

with large-r asymptotics (4.12). The D3 brane is placed
parallel to the orientifold source at the transverse position
y1 ≡ y, y2 ¼ y3 ¼ y4 ¼ y5 ¼ y6 ¼ 0, i.e., at

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy1Þ2 þ ðy2Þ2 þ ðy3Þ2 þ ðy4Þ2 þ ðy5Þ2 þ ðy6Þ2

q
¼ y:

We allow y ¼ yðtÞ to be a function of the world volume
time. Then, the induced metric is

γabdσadσb

¼
�
Hþ
H−

�
δ=2

½ð−F−1=2 þ F1=2ðHþH−Þ1=2ðy0Þ2Þdt2

þ F−1=2ððdx1Þ2 þ ðdx2Þ2 þ ðdx6Þ2Þ�; ð4:16Þ

where the prime in this subsection denotes a derivative with
respect to time. The DBI action for the anti–D3 brane
reads5

SDBI ¼ −
Z

dt½e−ϕ ffiffiffiffiffiffi
−γ

p þ C0126�

¼ −
Z

dt
�
F−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðHþH−Þ1=2ðy0Þ2

q
þ C0126

�

¼ −
Z

dt

�
−
1

2
ðHþH−Þ1=2ðy0Þ2 þ F−1

þ C0126 þOððy0Þ4Þ
�
: ð4:17Þ

In the asymptotic region, r ¼ y → ∞,

SDBI ¼ −
Z

dt

�
−
1

2
ðy0Þ2 þ 1 −

1

4

8R4α coshð2ωÞ þQ
y4

þOðy−8Þ þOððy0Þ4Þ
�

¼ −
Z

dt

�
−
1

2
ðy0Þ2 þ 1 −

Q
4

cothð2ωÞ þ 1

y4

þOðy−8Þ þOððy0Þ4Þ
�
: ð4:18Þ

The leading potential for the transverse scalar y in the
asymptotic region is therefore

VðyÞ ≃ 1 −
Q
4

cothð2ωÞ þ 1

y4
: ð4:19Þ

Since we are interested in backgrounds with negative RR
charge, Eq. (4.12) implies that Q < 0; hence there is

5We are ignoring the overall tension factor in these expressions
for the DBI action. The fact that we have an antibrane is reflected
in the sign in front of the C0126 coupling which is − instead of the
þ for D3s.
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attraction if cothð2ωÞ þ 1 < 0, i.e., ω < 0, and repulsion if
cothð2ωÞ þ 1 > 0, i.e., ω > 0. We want to capture a
situation where the latter happens; hence we take

ω > 0: ð4:20Þ

Since Q ¼ 8R4α sinhð2ωÞ < 0, we must also take α < 0.
This is consistent with the negative sign of α that was
argued for the O3− plane in the previous subsection.

C. BIon solutions

The Abelian DBI action for a D5 brane is

SDBI ¼ −T5

Z
d6σe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðγab þ Bab þ 2πα0FabÞ

p

þ μ5

Z
d6σ

X
p

Cðpþ1Þ ∧ e2πα
0FþB: ð4:21Þ

γab is the induced metric, Fab the Abelian gauge field on
the D5 brane, Bab the pullback of the background Kalb-
Ramond field, and Cðpþ1Þ the background of (pþ 1)-form
potentials. In the case of the supergravity solutions of
Sec. IVA, the only nonvanishing background fields are the
dilaton and the 4-form C4.
The planar D5 brane is oriented along the spacetime

coordinates 012345. Let us parametrize the 345 plane in
spherical coordinates as

ðdx3Þ2 þ ðdx4Þ2 þ ðdx5Þ2 ¼ dρ2 þ ρ2ðdψ2 þ sin2 ψdθ2Þ:
ð4:22Þ

The coordinates ðψ ; θÞ parametrize the RP2; hence they
obey the discrete identification

ψ ↔ ψ ; θ ↔ π − θ for x3 → −x3;

ψ ↔ ψ ; θ ↔ −θ for x4 → −x4;

ψ ↔ π − ψ ; θ ↔ θ for x5 → −x5: ð4:23Þ

We want to find spike/funnel solutions that describe D3
branes emerging orthogonally out of the D5 brane world
volume in the directions 0126. Therefore, we make the
following ansatz for the world volume coordinates in
static gauge:

X0 ¼ σ0; X1 ¼ σ1; X2 ¼ σ2;

ψ ¼ σ3; θ ¼ σ4; ρ ¼ σ5: ð4:24Þ

We activate only one of the transverse scalars, X6, which
will be called for convenience X. We set

X ¼ XðρÞ ð4:25Þ

and denote the derivative of X with respect to ρ as X0. The
D5 brane is positioned at X7 ¼ X8 ¼ X9 ¼ 0. With these
specifications the induced metric is

γabdσadσb ¼
�
Hþ
H−

�
δ=2

½F−1=2ð−ðdσ0Þ2þðdσ1Þ2þðdσ2Þ2Þ

þF1=2ðHþH−Þ1=2ρ2ðdψ2þ sin2ψdθ2Þ
þðF1=2ðHþH−Þ1=2þF−1=2ðX0Þ2Þdρ2�:

ð4:26Þ

A D3 brane charge can be induced by turning on the
following gauge field strength on the D5 brane world
volume,

F ¼ g
2πα0

sinψdψ ∧ dθ: ð4:27Þ

This is the field strength of a magnetic monopole. The
constant g controls the induced D3 brane charge. It is
straightforward to check that this ansatz satisfies the DBI
equations of motion for the Abelian gauge field on the
D5 brane.
Since the second Stiefel-Whitney class of RP2 is non-

trivial, it has been argued [17] (see also [18] for related
discussions) that the flux of

R
RP2 F is quantized in half-

integer units in the background of the O3− plane. That
means that the half anti–D3 brane, which is part of the
Õ3− plane in Fig. 2 should be treated as flux on the D5
brane solution that we are looking for.6 Henceforth, we
assume that the constant g in (4.27) is quantized in this
fashion. In addition, the O3− plane has trivial discrete
torsion for the NSNS 3-form field strength; hence we
consider no contributions to the DBI action arising from the
Kalb-Ramond 2-form field B2.
With the above ansatz we obtain the following effec-

tive action for the transverse scalar XðρÞ from the DBI
action:

S ¼ −
Z

dρ

�
F−1

��
Hþ
H−

�
δ

HþH−Fρ4 þ g2
�
1=2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðHþH−Þ1=2 þ ðX0Þ2

q
þ gC0126ðρÞX0

�
: ð4:28Þ

In this expression we have omitted a trivial overall
tension factor and C0126ðρÞ is given by the formula (4.9),
which can also be written as

C0126 ¼
sinh θ
cosh3ω

1

ðρ4þR4

ρ4−R4Þ2α − tanh2ω
− tanhω: ð4:29Þ

6We thank Shigeki Sugimoto for discussions related to this
point.
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Varying with respect to XðρÞ we obtain the equation of
motion

X0ðρÞ¼� ðc−gC0126ÞF1=2ðHþH−Þ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F−2ððHþ

H−
Þδ=2HþH−Fρ4þg2Þ−ðc−gC0126Þ2

q ;

ð4:30Þ

where c is an integration constant.

1. Semi-infinite spikes

The first type of solution to (4.28) that we are looking
for is a solution that describes a semi-infinite spike that
stretches along X6 ≡ X ∈ ½0;þ∞Þ. For this type of sol-
ution we require the boundary conditions

lim
ρ→∞

XðρÞ ¼ 0: ð4:31Þ

In analogy with the original F1-Dp BIons of [5] the generic
solution with this boundary condition will not be a spike
stretching across the whole semi-infinite positive X-line. It
will terminate at some X for a specific ρ. What happens
depends on the roots of the quantity

G≡ F−2
��

Hþ
H−

�
δ=2

HþH−Fρ4 þ g2
�
− ðc − gC0126Þ2

ð4:32Þ

under the square root in the denominator of (4.30). In cases
where G has a simple root the solution will terminate at a
finite ρ� and a finite X�. Near this point the solution
behaves as X ∼ X� þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρ�

p
for some constant a. If

there is a double root at ρ�, then the spike will go all the way
to infinity where it will behave logarithmically as
X ∼ a logðρ − ρ�Þ. In this subsection we are exclusively
interested in the possibility of this latter behavior. The
question is whether we can tune the integration constant c
to obtain a double root of G.
We can be more explicit about this question in the

asymptotic region, which is also the region of main interest.
At large ρ

G ≃
1

ρ4
ðρ8 þ Aρ4 þ BÞ þOðρ−8Þ; ð4:33Þ

where

A ¼ −c2 þ g2 þ δR4 − 2αR4 coshð2ωÞ; ð4:34Þ

B ¼ R4

4
ð−8αð2g2 þ δR4Þ coshð2ωÞ

þ R4ð1 − 2α2 þ 8α2 coshð4ωÞÞ − 16cgα sinhð2ωÞÞ:
ð4:35Þ

Hence, G will exhibit a double root in the asymptotic
region when the discriminant of x2 þ Axþ B vanishes, i.e.,
when

Δ≡ A2 − 4B ¼ 0: ð4:36Þ

This is a quartic polynomial equation on the integration
constant c. We expect to have a solution that terminates at
large ρ when g is large (which is verified by the numerics).
At large g, and all the other background parameters
fixed, we find that the discriminant of the quartic equa-
tion (4.36) behaves at leading order like 65536 R8α2g8;
hence it is positive. In the special case of the O3− plane,
where R → 0, ω → þ∞ with Q fixed, the discriminant
goes like −128g8Q3 in the large g limit; hence it is again
positive. As a result, Eq. (4.36) has either four distinct real
roots or two pairs of complex-conjugate roots. Let the
quartic Eq. (4.36) be of the form

ax4 þ bx3 þ cx2 þ dxþ e ¼ 0: ð4:37Þ

To determine which case is realized one should compute the
quantities

P≡ 8ac − 3b2;

D≡ 64a3e − 16a2c2 þ 16ab2c − 16a2bd − 3b4: ð4:38Þ

If P < 0 andD < 0, then all four roots are real and distinct.
If P > 0 or D > 0, then all the roots are complex. In the
large-g limit we find

P ≃ −16g2; D ≃ 256αg2R4 coshð2ωÞ: ð4:39Þ

Both of these expressions take a finite negative value in
the limit of parameters relevant for the O3− case.
Consequently, we conclude that there are real values of
c for which we get semi-infinite BIons with a finite size
core when α < 0. In contrast, there are no solutions of this
type for real c when α > 0. This is precisely what one
would naturally anticipate. A semi-infinite BIon with a
finite size core exists when the asymptotic force on an anti–
D3 brane is repulsive. Notice that in flat space the well
known semi-infinite D3–D5 BIon is a spike with vanishing
S2 radius at infinity. Here the solutions have an RP2 with
nonvanishing radius at infinity.
Another noteworthy feature of the above solutions for

α < 0 is that for any given value of g there are two values
of c that give a semi-infinite BIon on the negative X axis
and two values of c that give a semi-infinite BIon on the
positive X axis. We will not attempt to determine which of
these solutions is energetically favorable since our main
purpose in this paper is to exhibit the existence of these
solutions. It would be interesting, however, to examine
more closely the stability properties of these solutions. On
physical grounds we anticipate that at least one of them is
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metastable as a result of the competing effects of the
repulsion from the orientifold source and the attractive
nature of the D5 tension.
We have verified the above statements with explicit

numerical computations. In Fig. 3 we present the shape of
the semi-infinite BIon solution for a particular choice of
parameters.

2. Solutions describing anti–D3s
suspended between D5s

The solutions of the previous subsection describe semi-
infinite anti–D3 branes ending orthogonally on a single D5
brane. In this paper we are interested in solutions that
describe anti–D3 branes suspended between two D5 branes
separated by a finite distance. For that purpose we need to
examine what happens to the solutions of Eq. (4.30) for
integration constants c different from the critical values c�
that lead to double roots in G. Let us call ρdouble the double
root at c�.
When we deform c away from c�, the solution exhibits

two qualitatively different behaviors. Decreasing c below
c� removes all roots (double or simple) in the vicinity
of ρdouble. In Fig. 4 we depict what happens to the semi-
infinite spike of Fig. 3 when we shift c from the critical
double-root value c ¼ −108 − 1.21306127 slightly away to
c ¼ −108 − 1.21306126. For a very large range of X values
the solution behaves as a semi-infinite BIon with a finite
RP2 size, but at some large finite X the size of the RP2

decreases dramatically and the D5 funnel moves deeply
toward the center of the background geometry. When this
happens, we lose control of the approximations that were

assumed in the beginning. Let us call this type of solutions
type I. We will return to these solutions in a moment.
The second possibility is to increase the value of c above

c�. In that case the double root of G breaks up into two
simple roots. The solution terminates at a size ρ which
coincides with the larger of the two simple roots. As we
mentioned previously, the solution behaves near that simple
root as X ∼ X� þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρ�

p
for some constant a. In this

manner we obtain a BIon with a finite RP2 size that
terminates at a finite distance X away from the D5. We will
call this type of solution type II. Figure 5 demonstrates an

FIG. 4. The shape of a semi-infinite BIon solution for the
parameters α ¼ −1, ω ¼ 0.5, g ¼ 108. The plot depicts the RP2

size of the BIon, ρ, as a function of the transverse distance X.
In this particular case we used c ¼ −108 − 1.21306126. The
size of the BIon funnel reduces drastically around X ≃ 5 × 106.
To get the numerical solution we used the boundary condition
Xð2000Þ ¼ 0 as an approximation to (4.31). Solutions of this type
also exist in the O3− case.

FIG. 5. The shape of a semi-infinite BIon solution for the
parameters α ¼ −1, ω ¼ 0.5, g ¼ 108. The plot depicts theRP2

size of the BIon, ρ, as a function of the transverse distance X. In
this particular case we used c ¼ −108 − 200. The BIon funnel
terminates at X ≃ 281100, where ρ ≃ 447.25. The red vertical
line denotes the termination point. To get the numerical
solution we used the boundary condition Xð10000Þ ¼ 0 as
an approximation to (4.31). Solutions of this type have been
verified also in the O3− case.

FIG. 3. The shape of a semi-infinite BIon solution for the
parameters α ¼ −1, ω ¼ 0.5, g ¼ 108. The plot depicts the RP2

size of the BIon, ρ, as a function of the transverse distance X. In
this particular case we used one of the critical values of c,
c ≃ −108 − 1.21306127. The size of the BIon funnel at X → ∞ is
ρ ≃ 104.95. To get the numerical solution we used the boundary
condition Xð2000Þ ¼ 0 as an approximation to (4.31). Very
similar solutions exist in the O3−, where R → 0, ω → þ∞ with
R4 coshð2ωÞ are kept fixed.
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example. This is similar to the finite throat solutions that
one finds in F1–D3 [5] or D3–D5 BIon solutions in
flat space.
As in [5] it is straightforward to glue two mirror type II

solutions to obtain a wormhole BIon connecting a D5–anti-
D5 pair. In this case there is an Abelian F2 flux along a
single D5 brane whose strength is proportional to g

2πα0. This
factor is constant throughout the solution.
The construction of a BIon configuration that describes

D3s suspended between a D5-D5 pair is less straightfor-
ward. One of the issues has to do with the F2 flux. Gluing
together two mirror BIon solutions requires that the
constant g is positive on the left half of the configuration
and negative on the right half. As a result, if theRP2 size of
the BIon throat is everywhere nonvanishing, then the F2

flux cannot vanish either and the passage from g to −g
along the X direction will be discontinuous. This suggests
that a continuous configuration requires a kink in the
middle of the interval between the D5s, where the RP2

size of the BIon vanishes and, in a naive sense, the BIon
touches the orientifold. We notice that the type I BIon
solutions that we found above have exactly this feature.
Therefore, it is very tempting to propose that D3 branes
suspended between a pair of separated D5 branes are
described by gluing together two mirror type I BIon
solutions. The parameter c in these solutions would control
the separation of the D5 branes.
The fate of this proposal relies on the details of the

configuration close to the orientifold. Unfortunately, this is
a regionwheremost of our approximations in this paper break
down. This includes both the supergravity approximations
and the approximations that lead to the DBI action. As we
see for example in Fig. 4, in the limit of large separation
between theD5 branes the dangerous effects of the kink in the
middle of the configuration are concentrated in a small region
whose size becomes smaller and smaller as the separation
of the D5 branes increases. It is impossible with current
techniques to check explicitlywhat happens in this region and
whether one can validate a solution with this behavior.
The above solutions are constructed with an ansatz that

respects the SOð3Þ × SOð3Þ symmetry. It is interesting to
ask whether there are other solutions that violate this
symmetry. For example, one can try to solve the DBI
equations for a D5 with magnetic flux (4.27) with an ansatz
that activates a more general combination of the transverse
scalars X6, X7, X8, X9. Such an ansatz would describe
polarized anti–D3 branes stretching between two D5 branes
along a curved line inside the 6789 plane. Independent of
the details of this curve, one would still have to face the
issue of the previous paragraphs. Since the flux on the D5
brane has to change sign at some point, there will be a
region where the funnel has to shrink and curve toward the
core of the background geometry. We have not established
the existence of such solutions, but even if we did, it would
be unclear if they would be energetically dominant or

subdominant compared to the solutions along X6 that we
presented above.

V. DISCUSSION

In this short article we used mirror symmetry to argue
that the global SOð4Þ flavor symmetry is not broken in our
model, for all values of the gauge group rank N. We used
S-duality in type IIB string theory to motivate a non-
supersymmetric mirror symmetry duality in field theory.
We argued that the mere statement of duality puts con-
straints on potential patterns of spontaneous symmetry
breaking. The most plausible scenario seems to be one that
favors the lack of spontaneous breaking of the global
symmetry. In this scenario the scalars of the dual magnetic
theory cannot condense in an arbitrary way if they are to
match natural expectations about mirror symmetry and the
dynamics of the electric theory.
The existence of SOð4Þ symmetric D3–D5 BIon con-

figurations in the S-dual brane setup that describe polarized
anti–D3 branes stabilized at a finite distance away from
the orientifold appears to add some evidence in the same
direction, but it is not conclusive. The analysis of such
solutions in Sec. IV was performed in a limit of large
induced three-brane charge and large D5 brane separation.
The SOð4Þ symmetric semi-infinite spike solutions with a
finiteRP2 radius in Sec. IV C 1 are on solid ground in these
limits and were established for a large class of supergravity
backgrounds. They exhibit that a mechanism of stabiliza-
tion of polarized anti-D3s away from the orientifold exists.
Unfortunately, the case of BIon solutions that interpolate
between two parallel D5 branes is more subtle. In that case,
one cannot avoid a region of space where the validity of our
approximations breaks down. The hard technical issues
associated with this issue have not allowed us to establish
conclusively that anti–D3 branes suspended between two
parallel D5 branes polarize in an SOð4Þ symmetry way.
A conclusive resolution of this problem would be interest-
ing per se as a result about nonsupersymmetric dynamics in
string theory.
Finally, in this paper we addressed the issue of symmetry

breaking in a special setup with four Weyl antisymmetric
quarks. Let us assume that the lack of flavor symmetry
breaking is correct and persists in similar USpð2NÞ three-
dimensional gauge theories with Nf antisymmetric quarks.
In that case, such a breaking of the flavor symmetry will not
occur also in large-N SOð2NÞ or SUðNÞ gauge theories with
quarks in either the symmetric/antisymmetric or the adjoint
representations. The reason is planar equivalence [6]: all
these representations and gauge groups become equivalent in
the large-N limit. It is possible that such a breaking does not
occur at finite N as well. It would be interesting to explore
this possibility in more detail in the future.
The question about the relation between dynamical

flavor symmetry breaking and confinement is also fasci-
nating. In four dimensions there exists an argument due to
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Casher that links chiral symmetry breaking with confine-
ment [19]. In three dimensions there is no notion of
chirality, and hence Casher’s argument does not apply to
3D. It is therefore possible that in a 3D gauge theory quarks
will confine, but will not condense. That may be the case
when the quarks are in two-index representations. This is
another interesting question for future investigations.
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