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In the present work, we undertake a study of the Schwinger-Dyson equation (SDE) in the Euclidean
formulation of local quantum gauge field theory, with Coulomb gauge condition ∂iAi ¼ 0. We continue a
previous study which kept only instantaneous terms in the SDE that are proportional to δðtÞ in order to
calculate the instantaneous part of the time component of the gluon propagatorDA0A0

ðt; RÞ. We compare the
results of that study with a numerical simulation of lattice gauge theory and find that the infrared critical
exponents and related quantities agree to within 1% to 3%. This raises the question, “Why is the agreement
so good, despite the systematic neglect of noninstantaneous terms?”We discovered the happy circumstance
that all the noninstantaneous terms are in fact zero. They are forbidden by the symmetry of the local action
in Coulomb gauge under time-dependent gauge transformations gðtÞ. This remnant gauge symmetry is not
fixed by the Coulomb gauge condition. The numerical result of the present calculation is the same as in the
previous study; the novelty is that we now demonstrate that all the non-instantaneous terms in the SDE
vanish. We derive some elementary properties of propagators which are a consequence of the remnant
gauge symmetry. Our results support the simple physical scenario in which confinement is the result of a
linearly rising color-Coulomb potential, VðRÞ ∼ σR at large R. We also show that the horizon condition
hHðgAÞi¼ðN2−1ÞdV, and the divergence of the ghost dressing function at k¼0, limjk→0jk2Dcc̄ðkÞ ¼ ∞,
are identical gauge conditions.

DOI: 10.1103/PhysRevD.98.114006

I. INTRODUCTION

While the quest for exotic quantum theories of gravity
captivates many physicists, a much more mundane question
remains unanswered: what is the qualitative mechanism for
the mismatch between the UV degrees of freedom (d.o.f.)
of the standard model (quarks and gluons) and the IR states
we observe in the lab (baryons and mesons). In other
words, an intuitive physical picture of confinement still
illudes us, despite the empirical successes of the standard
model in the UV. Genuinely new physics is unlikely
needed; from lattice simulations, we know that non-
Abelian gauge theory by itself is capable of creating
gluonic flux tubes which confine quark-antiquark pairs
into mesons at low energy [1]. Yet despite our best efforts,
the mathematics behind this phenomenon is unknown. The
ultimate goal of science is not just to reproduce nature, but

rather to understand it, and this goal is what drives the field
of nonperturbative QCD.
The breakdown of perturbation theory at low energies

forces one to face the non-Abelian character of Yang-Mills
theory head on. Various approaches have been made over
the years to use functional methods to extract information
about the fully nonperturbative, dressed propagators and
vertices of QCD. These quantities are crucial to under-
standing confinement. For example, an infrared vanishing
gluon propagator violates reflection positivity and, thus,
implies that the gluon is not an asymptotic field of the
theory. Also, in Landau gauge, the divergence of the ghost
dressing function at k ¼ 0 leads to a well defined global
color charge which is an important part of the Kugo-Ojima
confinement scenario [2,3]. Two techniques that have
greatly increased our understanding of the nonperturbative
sector of QCD, constituting an infinite hierarchy of coupled
equations that can be derived rigorously from the full
quantum effective action, are the functional renormaliza-
tion group equations (FRG) [2,4–6] and the Schwinger-
Dyson equations (SDE) [7–14]. A third technique, exploits
a formal similarity between vacuum expectation values in
the Hamiltonian formalism and correlation functions in
Euclidean quantum field theory. In this approach, an ansatz
is made for the vacuum wave functional which confirms
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results found by other techniques [4,15–20]. The advantage
of the canonical approach is that with Lagrangian methods,
an uncontrolled truncation must be made to complete the
equations. At first glance, it seems that in the Hamiltonian
approach, a truncation is still made even with a non-
Gaussian ansatz: a finite order polynomial is still used for
the vacuum wave functional. However, due to the gap
equation found by varying the energy density, the best
possible coefficients of that finite order polynomial will be
found which minimizes the effect of the truncation [15].
Nonetheless, we will proceed with the approach povided by
the Schwinger-Dyson equations. In contradistinction to the
Hamiltonian operator method, we use a local Euclidean
quantum field theory.
Coulomb gauge is a natural choice for attempting a

qualitative understanding of confinement for two reasons.
First, it is a unitary gauge, where Gauss’s law can be
resolved explicitly by the longitudinal component of
the color electric field, thus only propagating physical
d.o.f. (analogous to the two polarizations of the physical
photon of QED). To interpolate between UV QCD and
phenomenological theories of IR QCD, tracking the physi-
cal d.o.f. is essential. Second, the long-range nature of the
color-Coulomb potential, δðx0 − y0ÞVCoulombðx⃗ − y⃗Þ ¼
hA0ðxÞA0ðyÞi, gives a physical picture of what does the
confining. Despite being a gauge-dependent quantity, the
color-Coulomb potential also gives us insight into the IR
asymptotics of the gauge-invariant Wilson potential by the
following argument, found in detail in [21]. Consider a
quark-antiquark pair at separated points, x⃗ and y⃗ with
R≡ jx⃗ − y⃗j. The correlator of two Wilson lines, GðR; TÞ,
extending an amount T in the time direction is related to the
Hamiltonian and the state jψ q̄qi by

GðR; TÞ ¼
�
1

2
Tr½L†ðx⃗; 0; TÞLðy⃗; 0; TÞ�

�
ð1:1Þ

¼ hψ q̄qje−ðH−E0ÞT jψ q̄qi; ð1:2Þ

where Lðx⃗; 0; TÞ is a Wilson line extending from 0 to T at
point x⃗. Defining the logarithmic derivative,

VðR; TÞ ¼ −
d
dT

log½GðR; TÞ�; ð1:3Þ

one can show that the Coulomb energy is obtained in the
limit T → 0, and the energy of the flux tube ground state is
obtained in the opposite limit, T → ∞. Since the latter is
the ground state, at large R (so one can neglect the self-
energy contribution), VCoulomb ¼ VðR; 0Þ > VðR;∞Þ ¼
VWilson. Thus, the Coulomb potential must be at least
linear (possibly super-linear) in order to reproduce a
linearly rising Wilson potential like the one seen on the
lattice. While a long range Coulomb potential is a necessary
condition for confinement, it isn’t a sufficient one.

Similarly to how charges screen each other to make neutral
molecules despite the presence of the long range Coulomb
potential, the QCD vacuum creates quark-antiquark pairs,
confining color charge despite the presence of a long range
color-Coulomb potential. Thus, even at high temperature,
above the deconfinement phase transition, the long range
Coulomb force is present as seen in [13].
The instantaneous character of the dynamics is of

particular importance to those interested in studying the
so-called quark-gluon plasma at high temperature. The
common wisdom is that at high temperatures, typical
momentum transfer is large, and thus, due to asymptotic
freedom, quarks and gluons will behave like a weakly
interacting plasma. The presence of a long range color-
Coloumb potential at high temperature challenges this
view, and suggests that one might expect a strongly
interacting fluid, despite the approximate Stefan-
Boltzmann like behavior witnessed by Karsch et al. on
the lattice [22]. This isn’t contridictory with the renorm-
alization group; recall that in Coulomb gauge, the physical
quantity g2DA0A0

is a renormalization-group invariant [23].
This phenomenology would be similar to N ¼ 4 super
Yang-Mills (SYM) in the planar limit as pointed out in [24].
The comparison of high temperature QCD toN ¼ 4 SYM,
a strongly-coupled integrable theory, is particularly in-
triguing in light of an article by Dubovsky and Gorbenko
[25] which suggests that at large N, the theory of QCD flux
tubes may also be integrable, evading the no-go theorem in
[26] by possessing a massless pseudoscalar mode in
addition to the usual goldstone modes of a string-like flux
tube embedded in spacetime. If the color-Coulomb poten-
tial is indeed stronger at high temperature than at zero
temperature, as the lattice calculation suggests [21], this
would imply that gluons are more likely to form color
singlets (i.e., glueballs), rather than less, since gluon
configurations not bound into their flux-tube ground state
would be Boltzmann suppressed, making the flux tube
description more relevant. The instantaneous character of
the dynamics is crucial to accessing the physics at high
temperature because it only keeps terms in correlation
functions that dominate at vanishingly small temporal
separation. At high temperatures, the partition function
becomes vanishingly small in the Euclidean-time direction,
thus yielding a dimensionally reduced theory, in addition to
any instantaneous physics inherited from the higher dimen-
sional theory. This heuristic picture is illustrated in [24] and
a rigorous treatment of Gribov-Zwanger theory in Coulomb
gauge at finite temperature can be found in [27].
One objective of this article is to gain a quantitative

handle on the asymptotic behavior of the color-Coulomb
potential. We do this by finding a self-consistent set of
vertices of the full quantum effective action that satisfy the
Schwinger-Dyson equations, continuing the work of [14].
More specifically, in that work, only terms in the SDEs
were kept that are proportional to δðtÞ in order to calculate
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the instantaneous part of DA0A0
, a.k.a., the color-Coulomb

potential. In Sec. XI of the present article, we compare the
infrared critical exponents found [14] with numerical
simulation in lattice gauge theory of SUð2Þ by Langfeld
and Moyaerts [28]. The agreement is striking. There is also
reasonably good agreement with Burgio, Quandt and
Reinhardt [29] for SUð2Þ, and with Nakagawa et al.
[30] for SUð3Þ. This led us to question why the agreement
was so good, in view of the neglect of the noninstantaneous
terms. We have discovered that the noninstantaneous terms
vanish because of the invariance under time-dependent
gauge transformations gðtÞ. These form the remnant gauge
symmetry group of gauge transformations that are not fixed
by the Coulomb gauge condition ∂iAi ¼ 0.

II. LOCAL ON-SHELL FADDEEV-POPOV
ACTION IN COULOMB GAUGE

The Faddeev-Popov quantization of Yang-Mills theory
in Coulomb gauge is defined in phase-space formalism by
the Lagrangian density,

LFP ¼ iπiðD0Ai − ∂iA0Þ þ
1

2
π2i þ ð1=4ÞF2

ij

− ∂ic̄ ·Dicþ i∂ib · Ai; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ þ Aμ × Aν is the Yang-Mills
field strength [23]. The connection Aa

μ as well as the
Nakanishi-Lautrup and Faddev-Popov ghost fields ba, ca

and c̄a are all fields in the adjoint representation of the
global SUðNÞ color group. Color components are repre-
sented by Latin superscripts. To streamline notation we
adopt the convention that X · Y ≡P

a X
aYa and

ðX × YÞa ≡P
bc gf

abcXbYc, where fabc are the suðNÞ
structure constants and g is the gauge coupling. In this
notation, the gauge-covariant derivative in the adjoint
representation is DμX ¼ ∂μX þ Aμ × X. If one integrates
out the canonically conjugate color-electric field πi, one
gets the Coulomb-gauge Faddeev-Popov Lagrangian den-
sity in the second-order formalism,

LFP ¼ 1

2
ðD0Ai − ∂iA0Þ2 þ ð1=4ÞF2

ij

− ∂ic̄ ·Dicþ i∂ib · Ai; ð2:2Þ
Next, we integrate out the b-field, so the gauge condition is
satisfied on-shell, and A is purely transverse,

∂iAi ¼ 0: ð2:3Þ
We separate the transverse and longitudinal parts of π,

πi ¼ τi − ∂iλ; ð2:4Þ
where ∂iτi ¼ 0. The Faddeev-Popov action with the on-
shell gauge condition is given by

S ¼
Z

ddþ1x

�
iτi ·D0Ai þ

1

2
τ2 þ ð1=4ÞF2

ij þ
1

2
ð∂iλÞ2

þ i∂iλ ·DiA0 − ∂ic̄ ·Dic

�
; ð2:5Þ

where we have used
R
ddþ1xτi ·∂iA0¼

R
ddþ1x∂iλ·∂0Ai¼0.

The time derivative appears only in the first term,
τi ·D0Ai ¼ τi · ∂0Ai þ τi · gA0 × Ai.

III. TIME-DEPENDENT GAUGE
TRANSFORMATIONS AND THEIR

CONSEQUENCE FOR PROPAGATORS

The gauge condition ∂iAi ¼ 0 does not fix time-
dependent gauge transformations gðtÞ. Moreover, the
action S is invariant under such gauge transformations,

SðgΦα;g A0Þ ¼ SðΦα; A0Þ; ð3:1Þ

where the fields transform according to

Φαðt;xÞ → gΦαðt;xÞ ¼ g−1ðtÞΦαðt;xÞgðtÞ ð3:2Þ

A0ðt;xÞ→ gA0ðt;xÞ¼ g−1ðtÞA0ðt;xÞgðtÞþg−1ðtÞ∂0gðtÞ;
ð3:3Þ

and Φα ¼ taΦa
α and A0 ¼ ta Aa

0 . The ta are a basis of the
Lie algebra of the gauge structure group, ½ta; tb� ¼ fabctc,
and Φa

α ¼ ðAa
i ; τ

a
i ; λ

a; ca; c̄aÞ represents all fundamental
fields besides Aa

0 . Under these transformations, Fμν and
π transform gauge covariantly, gFμν ¼ g−1Fμνg, and
gπi ¼ g−1πig. (In general, it will be understood that
g ¼ gðtÞ.) A symmetry of the action implies that expect-
ation values are invariant under the same symmetry trans-
formation,

hOðgΦα;g A0Þi ¼ hOðΦα; A0Þi: ð3:4Þ

This symmetry is generally ignored in analytic calculations,
because it is broken in usual approximation schemes. For
example, it is not a symmetry of the tree-level theory.1

However it is a powerful symmetry.
Statement:—Let ϕa

1ðxÞ and ϕa
2ðyÞ be two fields that

transform covariantly under time-dependent gauge trans-
formations. Then their propagator has a δ-function singu-
larity in time

1Indeed, the tree-level Lagrangian density in Coulomb gauge
contains a time derivative in the term 1

2
ð∂0AiÞ2, and only in this

term. Under the infinitesimal time-dependent gauge transforma-
tion δAa

i ¼ fabcAb
i × ωcðtÞ, this term breaks the symmetry,

δ 1
2
ð∂0AiÞ2 ¼ fabc∂0Aa

i A
b
i ∂0ω

cðtÞ ≠ 0. There is no other term
in the tree-level Lagrangian with a time derivative to cancel this.
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hϕa
1ðxÞϕb

2ðyÞi ¼ δabU12ðx − yÞδðx0 − y0Þ: ð3:5Þ

The proof is immediate. The infinitesimal form of the time-
dependent gauge transformation, Eq. (3.2), is

δϕiðxÞ ¼ ωðx0Þ × ϕiðxÞ; ð3:6Þ

where i ¼ 1, 2, and invariance under infinitesimal time-
dependent gauge transformations, Eq. (3.4), reads

hδ½ϕa
1ðxÞϕb

2ðyÞ�i ¼ h½ωðx0Þ × ϕ1ðxÞ�aϕb
2ðyÞ

þ ϕa
1ðxÞ½ωðy0Þ × ϕ2ðyÞ�bi ¼ 0: ð3:7Þ

Global gauge invariance, that is, for g ¼ const, implies that
hϕa

1ðxÞϕb
2ðxÞi ¼ δabDðx − yÞ, and we have

facb½ωcðx0Þ − ωcðy0Þ�Dðx − yÞ ¼ 0: ð3:8Þ

This holds for all ωðtÞ. The general solution to this
condition, which is a well defined distribution, is
Eq. (3.5), as asserted. The proof holds for other nontrivial
representations such as the fundamental representation. It
also extends immediately to the lattice. Propagators whose
time-dependence is given by δðx0 − y0Þ will be called
“instantaneous.”

IV. PROPAGATORS IN COULOMB GAUGE

The scalar fields A0 and λ and the ghost pair c and c̄
appear at most quadratically in the action, Eq. (2.1), with
fixed Ai and τi. To calculate the propagators of these fields,
one may integrate out the fields A0 and λ or c and c̄ by
Gaussian integration, and one obtains the well-known
formulas

δabDcc̄ðx − yÞ ¼ hðM−1ÞabðxÞiδðx0 − y0Þ
δabiDA0λðx − yÞ ¼ hðM−1ÞabðxÞiδðx0 − y0Þ

þ ihAa
0physðxÞλbphysðyÞi

δabDA0A0
ðx − yÞ ¼ hKabðx; yÞiδðx0 − y0Þ

þ hAa
0physðxÞAb

0physðyÞi
δabDλλðx − yÞ ¼ hλaphysðxÞλbphysðyÞi; ð4:1Þ

where

MðAÞ ¼ −DiðAÞ · ∂i ð4:2Þ

is the d-dimensional Faddeev-Popov operator that depends
only on the transverse dynamical field Ai, K is the operator
with kernel

Kabðx; y; y0Þ ¼ ½M−1ð−∇2ÞM−1�abðx; y; y0Þ; ð4:3Þ

and

λaphysðxÞ≡
Z

ddyðM−1Þabðx; y; x0Þρbðy; x0Þ

iA0physðxÞ≡ −
Z

ddyKabðx; y; x0Þρbðy; x0Þ; ð4:4Þ

are the potentials produced by the color charge density
ρ≡ gτi × Ai of the dynamical gluons (and of quarks, if
quarks are present). The Faddeev-Popov operator is her-
mitian, −DiðAÞ∂i ¼ −∂iDiðAÞ, because Ai is transverse,
∂iAi ¼ 0.

V. SCHWINGER-DYSON EQUATIONS

We wish to explore the hypothesis that there exists an
asymptotic infrared limit of the DSE which is dominated by
loops containing an instantaneous propagator. Details of
the derivation of the SD equations are given in [14]. (There
is a slight change of notation. The substitutions from [14] to
the present article are ϕ → λ, πTi → τi, AT

i → Ai.)
The time derivative appears in the action Eq. (2.5) only

once, in the canonical term iτ · ∂0Ai, so the fields τi and Ai
propagate in time, and there is no instantaneous term, with
factor δðx0 − y0Þ, in the propagatorsDAiAj

,Dτiτj ,DAiτj . The
only propagators with the instantaneous factor δðx0 − y0Þ
occur in the Eqs. (4.1) for the scalar propagators. In the
DSE, there are some loops that contain at least one factor of
δðx0 − y0Þ, and some loops that contain none. The DSE
holds separately for each of these sets, and we shall retain
only those loops that contain at least one factor of
δðx0 − y0Þ. (It will turn out happily that this gives us a
closed system of equations.) Because the fourier transform
of an instantaneous propagator is independent of k0,

Z
ddxdx0 exp½−iðk0x0þk ·xÞ�DðxÞδðx0Þ¼ D̃ðkÞ; ð5:1Þ

we obtain the instantaneous parts by making the substitu-
tions

DA0A0
ðjkj; k0Þ → DA0A0

ðjkjÞ
iDA0λðjkj; k0Þ → iDA0λðjkjÞ ¼ Dcc̄ðjkjÞ
Dλλðjkj; k0Þ → 0: ð5:2Þ

The SDE is represented graphically in Fig. 1. However
most terms vanish. We discard those, and keep the
remaining terms. The tree-level terms are retained. The
renormalization term (penguin diagram) is canceled by a
mass counter-term. Consider the other one-loop graph
which is the product of two propagators. The possibilities
are: both propagators are instantaneous, or one is instanta-
neous and the other is not, or neither is. If they are both
instantaneous, such as δ2ðx0 − y0ÞDλA0

ðx − yÞDλA0
ðx − yÞ,

there is a terrible divergence, characteristic of the Coulomb
gauge. Fortunately these terms cancel, as we shall
see shortly. If one propagator is instantaneous, such as
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Vðx − yÞδðx0 − y0Þ, and the other, DNðx − yÞ, is nonin-
stantaneous, the product is instantaneous,

DNðx−yÞVðx−yÞδðx0−y0Þ¼Uðx−yÞδðx0−y0Þ ð5:3Þ

where Uðx − yÞ ¼ DNðx − y; x0 − y0 ¼ 0ÞVðx − yÞ, and
gives an instantaneous contribution to Γ. The instantaneous
one-loop graphs are represented in Fig. 2 (where the dressed
3-vertices have been replaced by the tree-level 3-vertices, as
will be discussed shortly). If both propagators in the loop are
noninstantaneous, the result is neglected, because theproduct
does not have a factor of δðx0 − y0Þ, and is not instantaneous.
Now consider the two two-loop graphs in Fig. 1. Both of
these graphs contain a tree-level 4-vertex which originates
from the quartic ðAi × AjÞ2 term in the action Eq. (2.5).2

Three propagators emerge from the tree-level 4-vertex. Each
of these propagators starts from the vector fieldAi so none of
them is instantaneous. It follows that their product is not
instantaneous, and their contribution may be neglected. So
far our calculations are exact. We now make our only
truncation: replace the remaining dressed 3-vertex (in the
graph in Fig. 1) by the corresponding tree-level vertex. The
result is given in Fig. 2 and in the following equations. This
truncation has been explored in depth, and is found to be
robust numerically in both Coulomb and Landau gauge
[2,5–7,10,12,20,31–33]. In particular, for the ghost-gluon
vertex in Coulomb gauge, this results from two properties
[23]: (1) The external ghost momenta factor out of the
corresponding Feynman integrals. This depresses the degree
of convergence of the integrals, so (2) the vertex does not
require renormalization Z̃1 ¼ 1. These properties severely
restrict the allowed form of the complete vertex, and
investigation did not reveal a new acceptable solution of
the SDequation [14]. The sameproperties hold in theLandau
gauge [34,35]. See the literature mentioned above for
numerical support of this truncation for other vertices
(e.g., the three gluon vertex is discussed at length in [5]).

The resulting equations are represented graphically in
Fig. 2, and, analytically by

ΓAAðkÞ ¼ k2 þ Ng2

ð2πÞdþ1

Z
ddþ1p

×

�
d − 2þ ðk̂ · p̂Þ2

d − 1
DττðpÞDA0A0

ðk − pÞ

þ 1 − ðk̂ · p̂Þ2
d − 1

p2ðDA0A0
ðpÞDλλðk − pÞ

þDA0λðpÞDA0λðk − pÞ þDcc̄ðpÞDcc̄ðk − pÞÞ
�

ð5:4Þ

ΓττðkÞ ¼ 1þ Ng2

ð2πÞdþ1

Z
ddþ1p

d − 2þ ðk̂ · p̂Þ2
d − 1

×DAAðpÞDA0A0
ðk − pÞ ð5:5Þ

ΓτAðkÞ ¼ −k0 þ
Ng2

ð2πÞdþ1

Z
ddþ1p

d − 2þ ðk̂ · p̂Þ2
d − 1

×DAτðpÞDA0A0
ðk − pÞ ð5:6Þ

ΓA0A0
ðkÞ ¼ Ng2

ð2πÞdþ1

Z
ddþ1pk2½1 − ðk̂ · p̂Þ2�

×DAAðpÞDλλðp − kÞ ð5:7Þ

ΓλλðkÞ ¼ k2 þ Ng2k2

ð2πÞdþ1

Z
ddþ1p½1 − ðk̂ · p̂Þ2�

×DAAðpÞDA0A0
ðp − kÞ ð5:8Þ

ΓλA0
ðkÞ ¼ ik2 þ Ng2k2

ð2πÞdþ1

Z
ddþ1p½1 − ðk̂ · p̂Þ2�

×DAAðpÞDA0λðp − kÞ ð5:9Þ

ΓλA0
ðkÞ ¼ iΓc̄cðkÞ; ð5:10Þ

where Dcc̄ ¼ Γ−1
c̄c , and k̂ and p̂ are unit vectors. Note that

the vector propagators are functions of p, and the scalar
propagators are functions of k − p. The terms on the left-
hand side Γαβ are the two-point functions of the quantum
effective action and are inverse to the propagators

ΓαβDβγ ¼ δαγ; ð5:11Þ

where the indices run over all d.o.f. As discussed above,
terms on the right-hand side such as DAAðpÞDAAðk − pÞ
(and quark loops if any), where both factors are non-
instantaneous, do not contribute to these SD equations.

FIG. 1. Graphic representation of the SD equation. The
undressed line and vertices represent tree-level quantities. The
circles, triangles and square represent dressed propagators,
dressed 3-vertices, and dressed 4-vertices respectively.

2There is no ðA0 × AiÞ2 term in the action. It is replaced by a
cubic term in iπiF0i.
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As follows from Eq. (5.2), we now set Dλλ ¼ 0 on the
right-hand side of the SD equations where it appears,
namely in the first term of the second line of Eq. (5.4). The
remaining two terms in the second line of Eq. (5.4)
appear to suffer from terrible divergences. In position
space, each is the product of two instantaneous propaga-
tors. For example the second term in that line is
δ2ðx0 − y0ÞDλA0

ðx − yÞDλA0
ðx − yÞ. The second and third

terms contain the divergent integral
R
dp0 ¼ ∞, which is

the momentum-space manifestation of the divergent factor
δ2ðx0 − y0Þ. These are the famous energy divergences of
the Coulomb gauge which cancel between the second and
third term [36–39],

Z
dp0ðDA0λðpÞDA0λðk − pÞ þDcc̄ðpÞDcc̄ðk − pÞÞ ¼ 0;

ð5:12Þ

by virtue of Dcc̄ ¼ iDA0λ, Eq. (5.2). Thus, all three terms in
the second line in Eq. (5.4) are conveniently eliminated.
(This argument is not rigorous because there remain
unresolved ambiguities in the Coulomb gauge [37].)
Each of the remaining terms in the SDE is the product
of an instantaneous propagator and an equal-time
propagator, which together give a finite instantaneous
contribution.

FIG. 2. Diagrammatic representation of the SDE. The shaded circle represents an instantaneous propagator and the empty circle an
equal-time propagator. The instantaneous propagators are straight lines and the equal-time propagators are wavy.
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With these results the DSE simplifies to

ΓAAðkÞ ¼ k2 þ Ng2

ð2πÞdþ1

Z
ddþ1p

d − 2þ ðk̂ · p̂Þ2
d − 1

×DττðpÞDA0A0
ðk − pÞ ð5:13Þ

ΓττðkÞ ¼ 1þ Ng2

ð2πÞdþ1

Z
ddþ1p

d − 2þ ðk̂ · p̂Þ2
d − 1

×DAAðpÞDA0A0
ðk − pÞ ð5:14Þ

ΓτAðkÞ ¼ −k0 þ
Ng2

ð2πÞdþ1

Z
ddþ1p

d − 2þ ðk̂ · p̂Þ2
d − 1

×DAτðpÞDA0A0
ðk − pÞ ð5:15Þ

ΓA0A0
ðkÞ ¼ 0 ð5:16Þ

ΓλλðkÞ ¼ k2 þ Ng2k2

ð2πÞdþ1

Z
ddþ1p½1 − ðk̂ · p̂Þ2�

×DAAðpÞDA0A0
ðk − pÞ ð5:17Þ

ΓλA0
ðkÞ ¼ ik2 þ Ng2k2

ð2πÞdþ1

Z
ddþ1p½1 − ðk̂ · p̂Þ2�

×DAAðpÞDA0λðk − pÞ: ð5:18Þ

VI. EQUAL-TIME PROPAGATOR FROM
THE LOOP INTEGRAL

Consider the loop integral for ΓAAðkÞ. The only appear-
ance of p0 in the integrand occurs inDττðp0;pÞ, so the loop
integral over p0 takes the form

Z
dp0

2π
Dττðp0;pÞ ¼ DET

ττ ðpÞ; ð6:1Þ

where the right-hand side is the equal-time propagator.
Indeed, it is a special case of the fourier transform,

D̃ττðt;pÞ ¼
Z

dp0

2π
expðip0tÞDττðp0;pÞ; ð6:2Þ

at t ¼ 0, DET
ττ ðpÞ ¼ D̃ττð0;pÞ. The remaining integrationR

ddp is an integral over the space dimension d. The same
is true for all the loop integrals.
We now show that

ΓτAðk0;kÞ ¼ −k0: ð6:3Þ

is a solution of Eq. (5.15). Indeed, suppose this is true.
It gives

�
Dττðk0;kÞ DτAðk0;kÞ
DAτðk0;kÞ DAAðk0;kÞ

�

¼
�ΓττðkÞ −k0

k0 ΓAAðkÞ

�−1

¼ 1

k20 þ ΓττðkÞΓAAðkÞ
�ΓAAðkÞ k0

−k0 ΓττðkÞ

�
; ð6:4Þ

which implies

Z
dp0

2π
DAτðp0;pÞ ¼ 0; ð6:5Þ

becauseDAτðp0;pÞ is odd in p0. It follows that the integral
in Eq. (5.15) vanishes, which gives ΓτAðk0;kÞ ¼ −k0 so
Eq. (5.15) is satisfied. (There may also be a nonperturbative
solution which cannot be expressed as a power series
in g.) □

The SD equations now read

ΓAAðkÞ ¼ k2 þ Ng2

ð2πÞd
Z

ddp
d − 2þ ðk̂ · p̂Þ2

d − 1

×DET
ττ ðpÞDA0A0

ðk − pÞ ð6:6Þ

ΓττðkÞ ¼ 1þ Ng2

ð2πÞd
Z

ddp
d − 2þ ðk̂ · p̂Þ2

d − 1

×DET
AAðpÞDA0A0

ðk − pÞ ð6:7Þ

ΓτAðkÞ ¼ −k0 ð6:8Þ

ΓA0A0
ðkÞ ¼ 0 ð6:9Þ

ΓλλðkÞ ¼ k2 þ Ng2k2

ð2πÞd
Z

ddp½1 − ðk̂ · p̂Þ2�

×DET
AAðpÞDA0A0

ðk − pÞ ð6:10Þ

ΓλA0
ðkÞ ¼ ik2 þ Ng2k2

ð2πÞd
Z

ddp½1 − ðk̂ · p̂Þ2�

×DET
AAðpÞDA0λðk − pÞ: ð6:11Þ

Upon close inspection of Eq. (6.4), something may seem
amiss. The k0 dependence in the propagators implies that
these propagators are noninstantaneous, which violates the
symmetry discussed in Sec. III. A brief calculation with a
power-law ansatz is provided in Appendix C to show that in
the infrared limit, this symmetry is restored, exhibiting a
remarkable self consistency of the approach.

VII. REDUCTION TO THREE UNKNOWNS

The propagators and inverse propagators, DrsΓst ¼ δrt,
of the scalar fields are related by
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�
DλλðkÞ DλA0

ðkÞ
DA0λðkÞ DA0A0

ðkÞ
�

¼
� ΓλλðkÞ ΓλA0

ðkÞ
ΓA0λðkÞ ΓA0A0

ðkÞ
�−1

¼
�

0 ½ΓA0λðkÞ�−1
½ΓλA0

ðkÞ�−1 −ΓλλðkÞ½ΓλA0
ðkÞ�−2

�
; ð7:1Þ

where we have used ΓA0A0
ðkÞ ¼ 0. This gives DλλðkÞ ¼ 0,

in accordance with Eq. (5.2).
Correspondingly for the dynamical propagators, we have

Eq. (6.4), which gives for the equal-time propagators

�
DET

ττ ðkÞ DET
τAðkÞ

DET
Aτ ðkÞ DET

AAðkÞ

�
¼

Z
dk0
2π

1

k20 þ ΓττðkÞΓAAðkÞ

×

�ΓAAðkÞ k0
−k0 ΓττðkÞ

�
ð7:2Þ

�
DET

ττ ðkÞ DET
τAðkÞ

DET
Aτ ðkÞ DET

AAðkÞ

�

¼ 1

2

� ðΓAA=ΓττÞ1=2ðkÞ 0

0 ðΓττ=ΓAAÞ1=2ðkÞ

�
: ð7:3Þ

Note that DτAðk0;kÞ is odd in k0 which gives DET
τAðkÞ ¼R

dk0DτAðk0;kÞ ¼ 0, as claimed.
From the last equation we have the simple identity,

4DET
ττ ðkÞDET

AAðkÞ ¼ 1; ð7:4Þ

which determines DET
ττ . There remain only three indepen-

dent unknown functions DET
AAðkÞ, DA0A0

ðkÞ and DA0λðkÞ.
We also have from Eq. (7.3),

½DET
AAðkÞ�2 ¼

ΓττðkÞ
4ΓAAðkÞ

: ð7:5Þ

The last two equations give

ΓAAðkÞ
DET

ττ ðkÞ
¼ ΓττðkÞ

DET
AAðkÞ

: ð7:6Þ

We now substitute the right-hand side of the SDE for
ΓAAðkÞ and ΓττðkÞ, Eqs. (6.6) and (6.7), into the last
equation, which gives

4k2DET
AAðkÞ − ½DET

AAðkÞ�−1

¼ g2N
Z

ddp
ð2πÞd

d − 2þ ðp̂ · k̂Þ2
d − 1

�
DET

AAðpÞ
DET

AAðkÞ
−
DET

AAðkÞ
DET

AAðpÞ
�

×DA0A0
ðp − kÞ ð7:7Þ

DA0A0
ðkÞ½Dcc̄ðkÞ�−2

¼ k2 þNg2k2

ð2πÞd
Z

ddp½1− ðk̂ · p̂Þ2�DET
AAðpÞDA0A0

ðk− pÞ

ð7:8Þ

½Dcc̄ðkÞ�−1 ¼ k2 −
Ng2k2

ð2πÞd
Z

ddp½1 − ðk̂ · p̂Þ2�

×DET
AAðpÞDcc̄ðk − pÞ; ð7:9Þ

where the last two equations come from Eqs. (6.10) and
(6.11), and we have used

ΓλA0
¼ iΓc̄c ¼ i½Dcc̄�−1 ¼ ½DλA0

�−1: ð7:10Þ

Altogether there are three equations for the three
propagators DET

AAðkÞ, Dcc̄ðkÞ and DA0A0
ðkÞ. These three

quantities are invariant under the remnant gauge symmetry
gðtÞ. Suppose the three equations are solved, so these three
quantities are known. Then one can recover a fourth
quantity, DET

ττ ðkÞ, from 4DET
ττ ðkÞDET

AAðkÞ ¼ 1. These four
quantities are all that appear on the right-hand side of
Eqs. (6.6) through (6.11), from which one can recover all
Γαβ and hence all propagators Dβγ .

VIII. GAUGE CONDITION ON THE LATTICE
AND IN THE CONTINUUM

Beside imposing the Coulomb gauge condition,
∂iAi ¼ 0, we must also address the nonperturbative issue
of Gribov copies [40,41], [42,43].
A gauge choice that is accessible to numerical simulation

is implemented by minimizing (the lattice analog of) the
spatial Hilbert norm,

FAðgÞ≡
Z

ddþ1x
Xd
i¼1

ðgAb
iÞ2; ð8:1Þ

with respect to gauge transformations gðxÞ, where Aμ ¼
1
2
iτbAb

μ and gAμ ¼ g−1Aμgþ g−1∂μg. At a global or local
minimum, the gauge condition ∂iAi ¼ 0 is satisfied, and all
eigenvalues of the Faddeev-Popov operator MðAÞ are non-
negative λnðgAÞ ≥ 0. The set of continuum configurations
that satisfy these conditions is designated byΩ and is called
the “(first) Gribov region.” It is a convex region in
configuration space (A-space) that is bounded in every
direction. Its boundary, ∂Ω, is called the “Gribov horizon.”
At large volume V,Ω is specified byHðgAÞ ≤ ðN2 − 1ÞdV,
where the “horizon function,”HðgAÞ, is defined in Eq. (A2)
[44]. The actual lattice simulation with which we shall
compare was gauge-fixed by finding one local minimum of
the minimizing functional for each gauge orbit.3

3There are various gauge choices possible within Ω.
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The set Λ of absolute minima of the minimizing func-
tional provides a complete gauge fixing. It would be nice if
we could perform the (functional) integral over Λ, but we
cannot, because we do not have an explicit description of Λ
in the physical limit of large volume V, as we do for Ω.4 In
this situation, we make the approximation which consists in
integrating over Ω instead of Λ. This approximation
introduces a certain “gauge-fixing error,” and the total
error of the present calculation is the compound of this
gauge-fixing error with the error introduced by the trunca-
tion of terms in the SDE.
In the limit of large volume V, the functional integral

over the Gribov region Ω gets concentrated on its
surface ∂Ω,5 and the cut-off at the Gribov horizon is
replaced by insertion of the factor δ½ðN2 − 1ÞdV −H�,
which enforces the “horizon condition.”6 In Appendix A,
it is shown that the horizon condition hHi ¼ ðN2 − 1ÞdV,
and the maximum-b condition, limjkj→0bðkÞ ¼ ∞, are
equivalent, where bðkÞ≡ k2Dcc̄ðkÞ is the ghost dressing
function.7

The maximum-b condition states that the ghost propa-
gator is of longer range than the electrostatic potential,
which is the same as requiring that the ghost propagator
Dcc̄ðkÞ be more singular than 1

k2 at k ¼ 0, or equivalently
that the inverse ghost propagator Γc̄cðkÞ ¼ D−1

cc̄ ðkÞ vanish
more rapidly than k2. This is done by subtracting the term
of order k2 on the right-hand side of the SD equation for
Γc̄c, so it reads

Γc̄cðkÞ ¼ ½Dcc̄ðkÞ�−1

¼ −g2Nk2

Z
ddp
ð2πÞd ½1 − ðp̂ · k̂Þ2�

×DET
AAðpÞ½Dcc̄ðpþ kÞ −Dcc̄ðpÞ�: ð8:2Þ

There is an overall coefficient k2, and the integrand
vanishes at k ¼ 0, so the right-hand side vanishes faster

than k2. It is not obvious whether the last integral is
positive for all k, as it should be if MðAÞ is a positive
matrix, so it is a nice check that when it is evaluated below,
Iðα; γÞ, given in Eq. (10.7), it is in fact positive.

IX. THREE EQUATIONS FOR THREE
CRITICAL EXPONENTS

A. First SD equation for critical exponents

We now assume that the propagators approach an
asymptotic limit at small k ¼ jkj which is a power law,
with critical exponents defined in Table I. We substitute this
power-law ansatz into Eq. (7.7),

4k2c
kγ

−
g2kγ

c
¼N

Z
ddp
ð2πÞd

d−2þðp̂ · k̂Þ2
d−1

�
kγ

pγ−
pγ

kγ

�
d̄

jp⃗−kjδ :

ð9:1Þ

For this to yield a bona fide solution, the loop integral
must converge. There is a singularity due to the color-
Coulomb potential, 1=jp − kjδ. However the factor kγ

pγ − pγ

kγ

vanishes at p ¼ k like ðp − kÞ2, so the integral converges
at p ¼ k provided δ < dþ 2. There is a singularity at
p ¼ 0 due to the terms pγ and p−γ, so the integral does not
converge at p ¼ 0 unless d > jγj. The loop integral must
also converge at high p. Suppose γ is positive γ > 0. In this
case, the highest power of p in the last integrand comes
from the power pγ in the second term in the parenthesis,
and the integral will not converge at high p unless
dþ γ < δ. Now suppose instead that γ is negative,
γ < 0. In this case, the highest power of p comes from
the first term in parenthesis 1=pγ , and the loop integral will
not converge unless d − γ < δ, and we have established,

d < dþ jγj < δ < dþ 2: ð9:2Þ

By power-counting one sees that the right-hand side of
Eq. (9.1) is proportional to kd−δ. The inequalites just
obtained imply that in the infrared asymptotic limit,
k → 0, the right-hand side is dominant over each term
on the left-hand side. Indeed, it dominates the first term in
this limit provided δ − d > γ − 2, that is, if δ > dþ γ − 2,
which holds by virtue of Eq. (9.2). Likewise it dominates
the second term on the left provided δ − d > −γ, that is, if
δ > d − γ, which is also true. Therefore in the infrared
asymptotic limit only the right-hand side survives, and the
first SDE reads,

TABLE I. Critical exponents defined in the infrared asymptotic
limit.

Dcc̄ ⇒ ak−α

g2DET
AA ⇒ ck−γ

g2DA0A0
⇒ d̄k−δ

4However it is known (a) that Λ is also a bounded, convex
region, which is contained in the Gribov region, Λ ⊂ Ω, (b) that
part of the boundary of Λ coincides with part of the boundary of
Ω, and (c) that there are relative minima that are Gribov copies
inside Ω.

5This is easily understood. The integral over a unit ball
0 ≤ r ≤ 1 in a space of dimension N has radial measure
rN−1dr. In the limit of large N → ∞, the radial measure gets
concentrated on the surface δð1 − rÞ.

6This can be converted to a local action, at the cost of
introducing additional bose and fermi ghosts [45].

7Observe that for all the different values of k, the correspond-
ing eigenvalues all change sign at the same surface
hHðgAÞi ¼ ðN2 − 1ÞdV. This has been called “all horizons are
one horizon” [45]. This analytic result is consistent with lattice
study in Coulomb gauge of Nakagawa et al. [46] who state “Our
result is consistent with the hypothesis in the Gribov-Zwanziger
scenario that the measure of the path integral is concentrated on
the part of the horizon where “all horizons are one horizon.” This
has also been observed in Landau gauge [47].
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0 ¼
Z

ddp
ð2πÞd

d − 2þ ðp̂ · k̂Þ2
d − 1

�
kγ

pγ −
pγ

kγ

�
d̄

jp − kjδ : ð9:3Þ

The inequality δ > d, just derived, is none other than the
condition in space dimension d, for the color-Coulomb
potential to be confining, limr→∞VCðrÞ ¼ ∞, for we have8

VCðrÞ ¼
Z

ddpð2πÞ−d expðip · xÞDA0A0
ðpÞ

∼
Z

ddp expðip · xÞ=pδ ∼ rδ−d: ð9:4Þ

Thus, Eq. (9.3) is a sufficient condition for the color-
Coulomb potential to be confining.

B. Second SD equation for critical exponents

Insertion of the power laws into (8.2) yields

Γc̄cðkÞ¼ ½Dcc̄ðkÞ�−1

⇒
kα

a
¼−Nk2

Z
ddp
ð2πÞd ½1−ðp̂ · k̂Þ2� c

jpjγ
�

a
jp−kjα−

a
jpjα

�
:

ð9:5Þ

By counting powers of k and p on the left- and right-hand
sides, we obtain α ¼ 2þ d − γ − α, which gives the “sum
rule”

2αþ γ ¼ dþ 2: ð9:6Þ

Moreover, the right-hand side has a coefficient k2, and an
integrand that vanishes with k, so the right-hand side
vanishes with k more rapidly than k2. We conclude that
α > 2, so the ghost propagator is more singular than the
free propagator.9 This was imposed by the horizon con-
dition. We require that the loop integral (9.5) converges at
high p. This yields the inequality d < γ þ αþ 2. Indeed,
the subtraction term cancels the leading term in 1=p at high
p, and the next power is killed by angular integration, so the
subtraction term increases the power of 1=p by 2. We
substitute

γ ¼ dþ 2 − 2α ð9:7Þ

into the last inequality and obtain α < 4 and, thus,

2 < α < 4: ð9:8Þ

C. Third SD equation for critical exponents

Upon insertion of the power ansatz into Eq. (7.8) we
obtain

ΓλλðkÞ⇒
d̄k2α

a2kδ
¼k2þN

Z
ddp
ð2πÞd

p2k2−ðp ·kÞ2
p2

c
jpjγ

d̄
jp−kjδ :

ð9:9Þ

The integral converges provided d − γ − δ < 0, which
agrees with the confinement bound, Eq. (9.2). In this case,
the tree-level term is negligible compared to the loop term
in the infrared asymptotic limit, and this ISD simplifies to

kdþ2−γ−δ

a2
¼N

Z
ddp
ð2πÞd

p2k2− ðp ·kÞ2
p2

c
jpjγ

1

jp−kjδ : ð9:10Þ

X. DETERMINATION OF THE INFRARED
CRITICAL EXPONENTS

From Eq. (9.5), we obtain

1

a2c
¼ Iðα; γÞ: ð10:1Þ

where

Iðα; γÞ≡ −Njkjαþγ−d
Z

ddp
ð2πÞd ½1 − ðp̂ · k̂Þ2�

×
1

jpjγ
�

1

jpþ kjα −
1

jpjα
�
: ð10:2Þ

Likewise from Eq. (9.10) we obtain

1

a2c
¼ Lðδ; γÞ: ð10:3Þ

where

Lðδ; γÞ≡ Njkjδþγ−d
Z

ddp
ð2πÞd ½1 − ðp̂ · k̂Þ2� 1

jpjγ
1

jpþ kjδ ;

ð10:4Þ

which gives

Iðα; γÞ ¼ Lðδ; γÞ: ð10:5Þ

One has

Lðδ; γÞ ¼ Nðd− 1Þ
2ð4πÞd=2

×
Γ½ðδþ γ − dÞ=2�Γ½ðdþ 2− δÞ=2�Γ½ðd − γÞ=2�
Γ½ðγ þ 2Þ=2�Γ½δ=2�Γ½ð2dþ 2− δ− γÞ=2� ;

ð10:6Þ

8A linearly rising color-Coulomb potential, which is favored
by lattice calculations in Coulomb gauge [48], corresponds to
δ ¼ dþ 1.

9The case d ¼ 2 is singular. We deal with this by continuing in
dimension to d > 2, and for the case d ¼ 2, we take the limit
d → 2 at the end of the calculation.
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The integral Iðα; γÞ was evaluated in (A.17) of [49], with
IðαÞ ¼ IGðαGÞ and α ¼ 2þ 2αG, with the result10

Iðα; γÞ ¼ −Lðα; γÞ

¼ −
Nðd− 1Þ
2ð4πÞd=2

×
Γ½ðαþ γ − dÞ=2�Γ½ðdþ 2− αÞ=2�Γ½ðd− γÞ=2�
Γ½ðγ þ 2Þ=2�Γ½α=2�Γ½ð2dþ 2− α− γÞ=2� :

ð10:7Þ

[Iðα; γÞ is positive because αþ γ − d ¼ 2 − α < 0, pro-
vided that α < 4, which holds by Eq. (9.8).] We have

−Lðα; γÞ ¼ Lðδ; γÞ: ð10:8Þ

which gives

Γ½ðδþ γ − dÞ=2�Γ½ðdþ 2 − δÞ=2�
Γ½δ=2�Γ½ð2dþ 2 − δ − γÞ=2�

¼ −
Γ½ðαþ γ − dÞ=2�Γ½ðdþ 2 − αÞ=2�

Γ½α=2�Γ½ð2dþ 2 − α − γÞ=2� : ð10:9Þ

A third relation between the critical exponents is
provided by Eq. (9.3). An obvious solution to that equation
is provided by

γ ¼ 0: ð10:10Þ

We have searched diligently for another solution, but we
have not found any. This solution and the sum rule (9.7)
then give

α ¼ 1

2
ðdþ 2Þ; ð10:11Þ

and we finally obtain the following condition, expressed
with a new parameter, θ≡ δ − d − 1,

Eðθ; dÞ ¼ FðdÞ; ð10:12Þ

where

Eðθ; dÞ≡ π

cosðπθ
2
ÞΓðdþ1þθ

2
ÞΓðdþ1−θ

2
Þ ;

FðdÞ≡ −
Γð2−d

4
Þ

Γð3dþ2
4
Þ : ð10:13Þ

We have used ΓðxÞΓð1 − xÞ ¼ π= sinðπxÞ. The change of
variable from δ to θ is convenient because Eðθ; dÞ is even in
θ, Eðθ; dÞ ¼ Eð−θ; dÞ.

For a given space dimension d, let θðdÞ be a solution to
Eq. (10.12), then the critical exponent of the color-
Coulomb potential δ is recovered from

δðdÞ ¼ dþ 1þ θðdÞ: ð10:14Þ

The function Eðθ; dÞ is finite and positive for θ in the
interval −1<θ<1 (which corresponds to d < δ < dþ 2),
and is divergent at the end-points, θ ¼ �1, where
cosðπθ=2Þ, which is in the denominator, vanishes,
cosðπθ=2Þ ¼ 0. Since Eðθ; dÞ is even in θ, if θðdÞ is a
solution to Eq. (10.12), then so is −θðdÞ, and the solutions
to (10.12) form two branches θþðdÞ and θ−ðdÞ ¼ −θþðdÞ
as shown in Fig. 3.
We are interested in integer space dimensions d ¼ 2 and

d ¼ 3. However it is helpful to take d to be a continuous
variable in the interval 2 < d < 3. The function FðdÞ
diverges in the limit d → 2 which tells us that
θð2Þ ¼ �1, for we have just seen that Eðθ; dÞ is divergent
at θ ¼ �1.11 These values of θ correspond to
δðd ¼ 2Þ ¼ dþ 1� 1 ¼ 3� 1, so for d ¼ 2, there are
two solutions δ−ð2Þ ¼ 2 and δþð2Þ ¼ 4. One sees in
Fig. 4 that, as d increases from d ¼ 2, the two branches,
θþðdÞ and θ−ðdÞ approach each other monotonically, and at
a critical dimension,

dc ¼ 2.9677…; ð10:15Þ

they merge at θ ¼ 0, which corresponds to δðθ ¼ 0Þ ¼
dc þ 1 [14].
With the problem as stated, there is no solution for space

dimension above the critical value d > dc. However,
2.9677 is tantalizingly close to 3, and it may be that there
is a solution for d ¼ 3 (a) if the gauge-fixing error noted
above were corrected, (b) if the truncation error were
corrected, or (c) if perhaps the true asymptotic behavior

FIG. 3. A near miss at space dimension d ¼ 3. As d decreases
below dc, the curved line intersects the straight horizontal
line twice.

10This result is the same as ignoring the subtraction term in
(10.2) and continuing Lðδ; γÞ analytically from δ to α, at fixed γ.

11The reader who wishes to avoid equating infinite quantities
may prefer to solve the equation ½Eðθ; dÞ�−1 ¼ ½FðdÞ�−1.
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isn’t a pure power-law, but rather dominated by a power
with multiplicative log corrections. We shall suppose one of
these possibilities is in effect, and we consider that it is an
approximation to replace the physical value d ¼ 3 by
d ¼ dc, which is a difference of about 1%. For d ¼ 3
and θ ¼ 0, we have

Eðθ ¼ 0; d ¼ 3Þ ¼ π ¼ 3.14159265…

Fðd ¼ 3Þ ¼ 64=21 ¼ 3.04761905…: ð10:16Þ

Instead of an equality, there is a difference of about 3%.
The color-Coulomb potential,

VCðrÞ ∼
Z

ddk expðik · xÞ c
kδ

∼ rδ−d; ð10:17Þ

is linear at large r for δ ¼ dþ 1, and super-linear for
δ > dþ 1. As space dimension d increases from d ¼ 2 to
d¼dc, on the upper branch θþðdÞ decreases from θþð2Þ¼1
to θþðdcÞ ¼ 0 and is everywhere positive, θþðdÞ ≥ 0. It
follows that δðdÞ, satisfies δðdÞ ¼ dþ 1þ θþðdÞ ≥ dþ 1.
We conclude that on the upper branch the color-Coulomb
potential VcoulðRÞ is everywhere superlinear, except at d ¼
dc where it is linear. The lower branch is everywhere
sublinear. VcoulðRÞ is linear at the critical dimension, dc,
where δðdcÞ ¼ dc þ 1. Thus, the upper branch accords
with the exact theorem [50] which asserts that the color-
Coulomb potential VcoulðRÞ is bounded below by the
gauge-invariant Wilson potential VWðRÞ that is linear at
large R

VcoulðRÞ ≥ VWðRÞ ¼ σR; ð10:18Þ

whereas the lower branch does not. (Both branches accord
with the exact bound δ > 2α − 2 ¼ d [48].)
The most natural choice between the two branches is to

take the upper branch to be the physical solution because it
satisfies the last inequality. In d ¼ 2 space dimensions, the
calculation reported here yields, δðd ¼ 2Þ ¼ 4, which
corresponds to a color-Coulomb potential that rises like
r2 at large r. This is an unexpectedly steep rise. One might

speculate that the physical solution is a superposition or
mixture of the two branches, so that the physical solution
corresponds to a value of theta that lies between the two
branches. If so, then θ must also satisfy θ ≥ 0, correspond-
ing to δ ≥ dþ 1, to be consistent with the last inequality,
and because linear rise corresponds to δ ¼ dþ 1. Finally
we note that linear rise is energetically favorable compared
to superlinear. A lattice calculation in two space dimen-
sions (if it is not already in the literature) would throw some
light on this matter.
In any case, the comparison we shall make with lattice

gauge theory is with critical dimension dc ¼ 2.9677…,
which corresponds uniquely to linear rise, δ ¼ dþ 1.

XI. CONCLUSION

A. Comparison with lattice gauge theory

Lattice calculations have been reported for SU(2) [28,29]
and SU(3) [30]. In Table II, we compare our results with
Langfeld and Moyaerts [28]. In the first column of Table II
are the critical exponents, α, γ, and δ, of the propagators of
the ghost, the spatial gluon, and the temporal gluon
respectively, that are defined in Table I. In the second
column, the values of these exponents found in the present
article are expressed in terms of the dimension of space d.
In the third column, the critical exponents defined in the
present article are expressed, for the reader’s convenience,
in terms of the parameters defined by [28]. (δLM is the
infrared exponent designated δ in [28].) The fourth column
gives the numerical values of the critical exponents for the
critical dimension found above, dc ¼ 2.9677….12 The final
column is result of the numerical simulation [28]. These
authors do not give a numerical value for the infrared
exponent of the transverse equal-time gluon propagator, γ,
but state “At small momentum, the propagator becomes
roughly momentum-independent and seems to approach a
constant in the IR limit jpj → 0.” This is consistent with our
result, which gives for this infrared exponent, γ ¼ 0. If it is
not accidental, the agreement between the fourth and the
fifth column is remarkable for the accuracy of both the
lattice simulation and the SD equation.

B. Features of gluodynamics in the asymptotic
infrared limit

We summarize the basic features of gluodynamics in the
asymptotic infrared limit, under the assumption that the
agreement between the SDE and the lattice gauge calcu-
lation is not accidental.

(i) The dynamics occurs in a single time slice. More
precisely, the ghost and temporal gluon propagators,
Dcc̄ and DA0A0

are both instantaneous, that is,
proportional to δðx0 − y0Þ, and the spatial gluon

FIG. 4. Plot of the two solutions θ�ðdÞ. The critical exponent of
the color-Coulomb potential is given by δ ¼ dþ 1þ θ�ðdÞ.

12The numbers in the fourth column are close to the fractions
5=2; 0; 4. which correspond to d ¼ 3.
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propagator is taken at equal time, DET
AAðx − yÞ ¼

DAAðt;x; t; yÞ. This is due to the fact that in the
Coulomb gauge, Gauss’s law, Diπi ¼ ρquark, is a
constraint that is satisfied as an equation of motion.

(ii) In the asymptotic infrared limit, these propagators
are fit by power laws with critical exponents whose
values are given in the table.
(a) Compared to the tree-level propagator 1=jkj2,

the ghost propagator is moderately long range.
(b) The color-Coulomb propagator is long-range,

corresponding to a linear rise in r, or close to it.
(c) The infrared limit of the equal-time spatial gluon

propagator has critical exponent 0 or close to 0.13

(iii) The horizon condition hHðgAÞi ¼ ðN2 − 1ÞdV, and
the divergence of the ghost dressing function,
limjk→0jk2Dcc̄ðkÞ ¼ ∞, are identical gauge condi-
tions. This is shown in Apppendix A, and applied in
Sec. VIII where the gauge condition is imposed by
subtracting the k2 term in the SDE.

(iv) There is a shadow cast on these considerations
because we have found no solution to the SDE at
space dimension d ¼ 3, but only close to it, at
d ¼ dc ¼ 2.9677…. We must figure out what
mechanism, if any, acts so there is a solution at
d ¼ 3. A small effect in the right direction would be
sufficient. This could be provided by a dressed
vertex replacing a tree-level vertex.

(v) In Appendix B, the contribution of gluon propagators
to theWilson loopW ¼ N−1TrP expðH igtbAb

μdxμÞ is
calculated. It is found that the spatial gluon propagator
DAiAj

does not contribute at all. Only the instanta-
neous temporal gluon propagator contributes, which
moreover exponentiates, Eq. (B2). Consequently the
calculation of the contribution of thegluon propagator
to the path-ordered exponential is particularly simple
in Coulomb gauge as compared to Lorentz-covariant
gauges. This may be true for other expectation values.
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APPENDIX A: EQUIVALENCE OF HORIZON
CONDITION AND THE MAXIMUM

B-CONDITION

The boundary of the (first) Gribov region ∂Ω is a set of
transverse configurations ∂iAi ¼ 0 that satisfy the “horizon
condition” [41],

hHðgAÞi ¼ ðN2 − 1ÞdV; ðA1Þ

where V ¼ Ld is the spatial volume, the horizon function is
defined by

HðgAÞ≡
Z

ddxddyDab
ixD

ac
iy ðM−1Þbcxy; ðA2Þ

and MabðgAÞ ¼ −Dab
i ðgAÞ∂i is the Faddeev-Popov (FP)

operator. The functional integral over the Gribov region Ω
is equivalent to the functional integral over its boundary,14

the Gribov horizon ∂Ω, and may be evaluated by insertion
of δ½H − ðN2 − 1ÞdV� [51].
We shall make use of two recent results [48]:
(1) The eigenvalues of the Faddeev-Popov operator

MabðgAÞ in the asymptotic infrared region k → 0
are given by

λjkjðgAÞ ¼ k2

�
1 −

HðgAÞ
ðN2 − 1ÞdV þ jjkjðgAÞ

�
; ðA3Þ

where λjkjðgAÞ is the eigenvalue that emerges from
λjkjð0Þ ¼ k2 at A ¼ 0, and jjkjðgAÞ vanishes as k
tends to 0,

lim
k→0

jjkjðgAÞ ¼ 0: ðA4Þ

(2) In the asymptotic infrared region, the ghost pro-
pagator in an external gauge potential Gðk; gAÞ ¼
hk⃗jM−1ðgAÞjk⃗i is given by

Gabðk; gAÞ ¼ δab

λjkjðgAÞ
: ðA5Þ

The horizon function is an instance of a bulk or extensive
quantity in thermodynamics which, as explained in [41],
Eq. (2.193), may be written as the integral of a density.
Typically the mean and variance of a bulk quantity satisfy,

hHðgAÞi ¼ OðVÞ; H2 − hHi2 ¼ OðVÞ: ðA6Þ

TABLE II. Comparison of Schwinger-Dyson equations to
lattice.

Critical exponents LM notation SDE at dc Lattice calculation

α ¼ ðdþ 2Þ=2 = 2κ þ 2 = 2.4839 ≈ 2.490(10)
γ ¼ 0 = 0 ≈ 0
δ ¼dþ1þθ�ðdÞ = 2δLM þ 2 = 3.9677 ≈ 4.10(10)

13(a) and (b) are consistent with the Gribov confinement
scenario. (c), on the other hand, is quite different. In the Gribov
confinement scenario, the gluon propagator vanishes at k ¼ 0,
which would automatically remove the gluon from the physical
spectrum by having an unphysical spectral density. A non-
vanishing, but constant propagator is, however, well supported
in the lattice literature, despite the challenges of extracting
infrared behavior on a finite lattice. 14See footnote above.
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We assume that the horizon function behaves this way, and
we easily find

HðgAÞ ¼ hHðgAÞi þOð1Þ: ðA7Þ

The fluctuations are down by order 1=V compared to the
mean, hHi. Thus, in the infinite-volume limit, V → ∞, the
horizon function HðgAÞ may be replaced by its expect-
ation-value hHðgAÞi, and the formula for the eigenvalues
simplifies to

λjkjðgAÞ ¼ k2

�
1 −

hHðgAÞi
ðN2 − 1ÞdV þ jjkjðgAÞ

�
: ðA8Þ

We observe that when the horizon condition, Eq. (A1), is
satisfied, the term of order k2 is precisely killed, so

λjkjðgAÞ ¼ k2jjkjðgAÞ; ðA9Þ

which gives

δabbðkÞ≡δabk2GðkÞ¼k2hGabðk;gAÞi¼ δab
�

1

jjkjðgAÞ
�
:

ðA10Þ

Thus, if the horizon condition is satisfied, the ghost
dressing function is divergent at k ¼ 0,

bðk ¼ 0Þ ¼ ∞: ðA11Þ

We call this the maximum-b condition. The converse is also
true: if the maximum-b condition is satisfied, then the
horizon condition holds. We conclude that, in the Ω-theory,
the horizon condition and the maximum b-condition
bð0Þ ¼ ∞, are equivalent. Thus, it is justified to subtract
the k2 term in the equation for the inverse ghost propa-
gator G−1ðkÞ.

APPENDIX B: CONTRIBUTION OF COULOMB
GLUON PROPAGATORS TO WILSON LOOP

We calculate the contribution of propagators to the
Wilson loop, a gauge-invariant quantity.
Consider the expansion of the Wilson loop

W ¼ N−1Tr P exp

�
ig
I

taAa
μdxμ

�

¼ N−1
X∞
n¼0

1

n!
Tr P

�
ig
I

taAa
μdxμ

�
n
; ðB1Þ

in terms of connected and disconnected graphs. Let us set
to zero all connected graphs that have three or more legs,
so the Wilson loop is expressed as a sum of products
of temporal and spatial gluon propagators Dμνðx − yÞ.

We shall show that under this simplifying assumption,
(i) the spatial gluon propagators do not contribute to the
Wilson loop, so only the color-Coulomb potential contrib-
utes to the forces on the Wilson loop, and (ii) the Wilson
loop has the value

W ¼ exp
�
−g2C

Z
dx0V½Rðx0Þ�

�
; ðB2Þ

where Rðx0Þ is the width of the Wilson loop as a function of
Euclidean time. This situation is illustrated in Fig. 5, where
all diagrams are ladder diagrams, and the (Euclidean) time
direction is upward. This formula is the same as in an
Abelian gauge theory, apart from the Casimir. Moreover, it
implies that the contribution from the parallel parts of the
Wilson loop (if any) isWparallel ¼ exp½−g2CVðRÞT�, where
the parallel parts are a distance R apart for a time T.
Proof:—Recall that the temporal and spatial propagators

vanish away from the time slice x0 − y0 ¼ 0,

Dμνðx − yÞ ¼ 0 for x0 − y0 ≠ 0; ðB3Þ

but the temporal propagatorDA0A0
ðx−yÞ¼ δðx0−y0ÞVðx−yÞ

has the factor δðx0 − y0Þ, whereas the spatial propagator
DAiAj

ðx − yÞ is finite at x0 − y0 ¼ 0, DAiAj
ð0;x − yÞ ¼

DET
AiAj

ðx − yÞ. Consequently, when the line integralR
dxμDAμAν

ðx0 − y0;x − yÞ at fixed y, crosses the time-
slice x0 ¼ y0, it receives a finite contribution if the gluon
propagator is temporal (μ ¼ 0), but it receives no

FIG. 5. Temporal gluon propagators form the rungs of Wilson
loop, ladder diagrams.
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contribution when the gluon propagator is spatial (μ ¼ 1,
2, 3).15 Thus, the spatial gluon propagators do not con-
tribute to the Wilson loop, as asserted. The remaining
temporal propagators form the horizontal rungs of ladder
diagrams, as illustrated in Fig. 5. The path-ordering makes
the two ends of the lowest rung adjacent to each other so,
for the lowest rung, the Lie algebra gives taδabtb ¼ CF,
where CF is the Casimir in the fundamental representation.
Since it is proportional to the identity matrix, it may be
removed from the path ordering. The same is then true for
the next lowest rung etc., so path ordering gives a factor of
Cn=2
F . The combinatorics are then such that the propagators

exponentiate exactly,16 and we obtain

W ¼ exp

�
−
1

2
g2CF

I
dxμδμ0

I
dyνδν0δðx0 − y0ÞVðx− yÞ

�

ðB4Þ
from which Eq. (B2) follows, as asserted. The important
point is that the spatial gluon propagators have dropped out,
and only the color-Coulomb potential contributes to the
force on the Wilson loop. This is entirely consistent
with numerical simulation [52] according to which the
color-Coulomb electric field falls off exponentially. The
last formula states that the color-Coulomb potential is
the whole story. There is no contribution from the spatial
gluon propagator.
In Lorentz-covariant gauges, such as the Landau gauge,

the gluon propagator is not instantaneous, and whereas in
Coulomb gauge the propagators form the horizontal rungs
of a ladder and the path ordering is easily evaluated, as we
have just seen, in a Lorentz-covariant gauge, the would-be
rungs run every which way, and one does not know how
to disentangle the path ordering. For this problem, calcu-
lation in the Coulomb gauge is simpler than in a Lorentz-
covariant gauge.

APPENDIX C: WIDTH OF THE
NONINSTANTANEOUS GLUON PROPAGATOR

VANISHES IN THE INFRARED LIMIT

Suppose the critical exponents satisfy γ ¼ 0 and δ ¼
dþ 1. Then by Eqs. (6.6) and (6.7) we have

ΓAA ¼ c1jkjd−δ ¼ c1jkj−1
Γττ ¼ c2jkjd−δ ¼ c2jkj−1; ðC1Þ

where c1 > 0 and c2 > 0, which gives, by Eq. (6.4),

�
Dττðk0;kÞ DτAðk0;kÞ
DAτðk0;kÞ DAAðk0;kÞ

�

¼ 1

k20 þ c2=k2

�
c1=jkj k0
−k0 c2=jkj

�
; ðC2Þ

where c≡ ðc1c2Þ1=2. Upon taking the fourier transform, we
obtain

�
Dττðt;kÞ DτAðt;kÞ
DAτðt;kÞ DAAðt;kÞ

�

¼ 1

2

� ðc1=c2Þ1=2 sgnðtÞ
−sgnðtÞ ðc2=c1Þ1=2

�
expð−cjtj=jkjÞ: ðC3Þ

By comparison with hEj expð−HtÞjEi ¼ hEj expð−EtÞjEi,
we see that the state of a gluon of momentum k has
energy

E ¼ c=jkj: ðC4Þ

Our power-law ansatz is valid only in the infrared limit
k → 0. The transverse gluon propagator has a peak of width
w ∼ jkj=c, which vanishes in the infrared limit, w → 0,
which corresponds to an instantaneous propagator atk ¼ 0.
This resolves the apparent paradox mentioned in Sec. VI,
that the time dependence of the propagators violate
the remnant symmteries of Coulomb gauge. While our
approximation scheme seems to break this symmetry, any
inferences wemake about the infrared dynamics will be free
of this concern since the symmetry is restored at long
distances.
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