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Raza Sabbir Sufian,1 Tianbo Liu,1,2,* Guy F. de Téramond,3 Hans Günter Dosch,4 Stanley J. Brodsky,5

Alexandre Deur,1 Mohammad T. Islam,6 and Bo-Qiang Ma7,8,9

(HLFHS Collaboration)

1Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
2Department of Physics, Duke University, Durham, North Carolina 27708, USA

3Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
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We demonstrate that a nonzero strangeness contribution to the spacelike electromagnetic form factor of
the nucleon is evidence for a strange-antistrange asymmetry in the nucleon’s light-front wave function, thus
implying different nonperturbative contributions to the strange and antistrange quark distribution functions.
A recent lattice QCD calculation of the nucleon strange quark form factor predicts that the strange quark
distribution is more centralized in coordinate space than the antistrange quark distribution, and thus the
strange quark distribution is more spread out in light-front momentum space. We show that the lattice
prediction implies that the difference between the strange and antistrange parton distribution functions,
sðxÞ − s̄ðxÞ, is negative at small-x and positive at large-x. We also evaluate the strange quark form factor
and sðxÞ − s̄ðxÞ using a baryon-meson fluctuation model and a novel nonperturbative model based on light-
front holographic QCD. This procedure leads to a Veneziano-like expression of the form factor, which
depends exclusively on the twist of the hadron and the properties of the Regge trajectory of the vector
meson which couples to the quark current in the hadron. The holographic structure of the model allows us
to introduce unambiguously quark masses in the form factors and quark distributions preserving the hard
scattering counting rule at large-Q2 and the inclusive counting rule at large-x. Quark masses modify the
Regge intercept which governs the small-x behavior of quark distributions, therefore modifying their small-
x singular behavior. Both nonperturbative approaches provide descriptions of the strange-antistrange
asymmetry and intrinsic strangeness in the nucleon consistent with the lattice QCD result.
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I. INTRODUCTION

The unveiling of nucleon structure in terms of funda-
mental quark and gluonic degrees of freedom (d.o.f.) is a
main goal of nuclear and particle physics. The strangeness

distribution of the nucleon is of particular interest since it is
a purely sea-quark distribution. The nonperturbative
dynamics of the strange-antistrange quark asymmetry
sðxÞ − s̄ðxÞ poses a challenging theoretical problem. It
has become of major interest in both experimental and
phenomenological studies, not only because of its impor-
tant role in understanding strong-interaction dynamics but
also because the sðxÞ − s̄ðxÞ asymmetry is an important
input for testing electroweak theory and new physics
models. For example, a precise test of electroweak physics
in neutrino and antineutrino-induced dimuon production
depends in detail on the intrinsic strange and antistrange
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distributions in the nucleon [1]. The intrinsic nonperturba-
tive strangeness distributions and asymmetry also give
insight, via the operator product expansion, into the non-
perturbative physics of the intrinsic charm and bottom
contributions to the nucleon structure functions [2–4].
Lattice QCD calculations [5–7], at the physical pion

mass and extrapolated to the continuum and infinite volume
limits, have provided estimates of the strangeness contri-
bution to the electromagnetic (EM) form factors of the
nucleon with better accuracy than that available from the
global analyses [8–10] of the experimental data. A direct
lattice calculation of sðxÞ − s̄ðxÞ has not as yet been
achieved [11]. However, we shall show that one can
constrain the sðxÞ − s̄ðxÞ asymmetry by comparing the
lattice QCD results for the strange form factor with
predictions based on a baryon-meson fluctuation model
[12]. We will also introduce a new model based on the
structural behavior of the light-front holographic approach
to hadron structure [13], form factors and parton distribu-
tion functions [14]. We shall show that the sðxÞ − s̄ðxÞ
asymmetry in the nucleon can be predicted up to a
normalization factor constrained by lattice results.
Parton distribution functions (PDFs) are interpreted, at

leading twist, as distributions of quarks and gluons carrying
the light-front momentum fraction x of the nucleon’s
momentum at fixed light-front time τ ¼ tþ z=c. The
global QCD analysis of PDFs is based on factorization
theorems of physical observables, such as the cross section
of deep inelastic lepton-nucleon scattering [15]. Although
equal numbers of s and s̄ are required by their nonvalence
nature in the nucleon,

hs − s̄i ¼
Z

1

0

dx½sðxÞ − s̄ðxÞ� ¼ 0; ð1Þ

no fundamental principles prohibit different sðxÞ and s̄ðxÞ
distributions. A nonzero sðxÞ − s̄ðxÞ has also been allowed
for in global analyses of PDFs [16–18]. Furthermore, the
first moment of the difference of PDFs,

hS−i≡ hxðs − s̄Þi ¼
Z

1

0

dx x½sðxÞ − s̄ðxÞ�; ð2Þ

can also be used to quantify the sðxÞ − s̄ðxÞ asymmetry.
The strange-quark sea in the nucleon has both “extrinsic”

and “intrinsic” components [2–4]. The extrinsic one is
produced by gluon splitting g → ss̄ triggered by a hard
probe, e.g., the virtual photon exchanged between the
lepton and the nucleon in a deep inelastic scattering
process. Since the QCD coupling αs is small at high
momentum scale, the extrinsic strange-sea derived from
the splitting function can be calculated perturbatively. The
nonperturbative intrinsic strange-sea encoded in the nucle-
on’s nonvalence light-front (LF) Fock state wave function
can in principle be obtained by solving the LF Hamiltonian
eigenvalue problem [19]; e.g., by matrix diagonalization.
However, to capture the nonperturbative dynamics in the

bound state equations, one should integrate out all higher
Fock states, corresponding to an infinite number of d.o.f., a
formidable problem.
The strange-antistrange asymmetry in the nucleon orig-

inates in QCD from the difference between quark-quark
versus quark-antiquark interactions. Since the nucleon car-
ries nonzero quark number—the number of quarks minus the
number of antiquarks—the interaction of the strange quark
with the spectators of the nonvalence Fock states is different
from that of the antistrange quark with the remaining quarks,
thus leading to different s and s̄ distributions. The extrinsic
strange-antistrange asymmetry in the nucleon PDF arises
from perturbative QCD evolution at high orders due to the
difference between quark-to-strange quark splitting function
Pqs and quark-to-antistrange quark splitting function Pqs̄.
Since the strange-antistrange pair is generated from a non-
strange quark at next-to-leading order, and the interaction
between the strange/antistrange quark and the nonstrange
quark is mediated by additional gluon exchange, this pQCD
effect arises at the three-loop level. An explicit calculation
has been performed in [20].
In addition to PDFs, one can also obtain information on

nucleon structure from elastic form factors, which relate to
the transverse coordinate space distributions at fixed LF time
via a Fourier transform [21]. The nucleon spin-preserving
amplitude is described by the Dirac form factor, which can
be expressed as:

F1ðQ2Þ ¼
X
q

eqF
q
1ðQ2Þ; ð3Þ

where Q2 is the momentum transfer squared, and the flavor
form factor Fq

1ðQ2Þ, with q ¼ u; d; s;…, measures the
q-flavor quark contribution minus the q̄-flavor antiquark
contribution due to the opposite charge of the quark and
antiquark. Therefore a nonvanishing Fs

1ðQ2Þ at Q2 ≠ 0

indicates a strange-antistrange asymmetry in LF coordinate
space. The constraint Fs

1ð0Þ ¼ 0 is fixed by the sum rule (1).
Lattice QCD results for Fs

1ðQ2Þ, obtained in the con-
tinuum limit [5–7], are shown in Fig. 2 with systematic and
statistical uncertainties added in quadrature. The lattice
QCD analyses are described in the Appendix A.
There have been a number of phenomenological studies

[12,22–27] of the sðxÞ − s̄ðxÞ distribution. In the baryon-
meson fluctuation model [12], the nonperturbative strange
sea is generated from the fluctuation of the nucleon valence
state to the lightest mass hadronic state with strangeness;
i.e., a kaon and a hyperon ðΛ or ΣÞ. The different distri-
butions of the strange quark in the hyperon and the
antistrange quark in the kaon yield a nonvanishing sðxÞ −
s̄ðxÞ distribution. In this model, a meson-baryon configu-
ration, e.g., the KþΛ0 state, creates different radially
separated distributions of the s and the s̄ quarks from
the center of mass. Since the kaon is lighter than the
hyperon, one expects that the kaon—and thus the s̄ quark—
to be at a larger radial distance from the center of mass than
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the hyperon and its s quark. This picture leads to Fs
1ðQ2Þ >

0 at Q2 > 0, consistent with the lattice QCD results [5–7].
As we will discuss below, a positive value of Fs

1ðQ2Þ at
Q2 > 0 indicates that the strange quark distribution is more
centralized in coordinate space than the antistrange quark
distribution, and results in an sðxÞ − s̄ðxÞ asymmetry in
momentum space. A narrower distribution in coordinate
space corresponds to a wider one in momentum space, and
therefore the lattice QCD result Fs

1ðQ2Þ > 0 implies a
negative sðxÞ − s̄ðxÞ distribution at small-x and a positive
distribution at large-x.
We will also examine in this article the behavior of

Fs
1ðQ2Þ and sðxÞ − s̄ðxÞ using the nonperturbative structure

of light-front holographic QCD (LFHQCD), a semiclass-
ical approach to relativistic bound state equations which
follows from the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [28–33]. This approach incorporates a
nontrivial connection to the hadron spectrum and therefore
to the Regge trajectories predicted by the model.
In Sec. II, we will describe the strange-antistrange

asymmetries in coordinate and momentum spaces in the
boost invariant light-front formalism, together with quali-
tative discussions. We will perform quantitative calcula-
tions of sðxÞ − s̄ðxÞ and Fs

1ðQ2Þ in Sec. III using the
baryon-meson fluctuation model, and in Sec. IV using

the structural framework of LFHQCD. We will analyze the
constraints imposed from lattice QCD for these two non-
perturbative models. We will also use the lattice QCD data
to quantitatively constrain each model in order to obtain
more precise predictions. The procedures discussed here
can be applied to other approaches, e.g., by deriving
constraints on the wave functions predicted by meson
cloud and chiral quark models. Final discussions and
conclusions are presented in Sec. V.

II. STRANGE-ANTISTRANGE ASYMMETRY
IN THE NUCLEON

Hadrons are eigenstates of the QCD LF Hamiltonian
HQCD

LF jΨi ¼ M2jΨi [34]. The hadronic light-front wave
functions are the projection of the eigenstate on the basis of
free Fock states. Taking a complete basis of LF Fock states
with quarks and gluons as the d.o.f., a nucleon state with
four-momentum Pμ ¼ ðPþ; P−;P⊥Þ and total spin Sz can
be expanded as

jN;Pþ;P⊥; Szi ¼
X
n;fλig

Z
½dx�½d2k⊥�ψn=Nðxi;ki⊥; λiÞ

× jn; xiPþ; xiP⊥ þ ki⊥; λii; ð4Þ

where

½dx�½d2k⊥�¼16π3δ

�
1−

X
j

xj

�
δð2Þ

�X
j

kj⊥
�Y

i

dxid2ki⊥
2

ffiffiffiffi
xi

p ð2πÞ3 : ð5Þ

The index n ¼ qqq; qqqg; qqqqq̄;…, represents the con-
stituents of the Fock state, the internal LF variables xi, ki⊥,
and λi are the longitudinal momentum fraction, the intrinsic
transverse momentum, and the spin carried by the ith
constituent, respectively, and ψn=N is the light-front wave
function (LFWF). It gives the probability of the n-particle
LF Fock state and represents the transition amplitude of the
on-shell nucleon eigenstate to the quark and gluon Fock
states of the free LF Hamiltonian which are off-shell in
invariant mass. All nucleon properties are encoded in the
LFWFs, which in principle could be obtained by solving
the LF Hamiltonian eigenvalue problem. Aiming at a first-
principle calculation of the LFWFs, calculational methods
based on matrix diagonalization, such as discretized LF
quantization [35], the transverse lattice method [36] and the
basis LF quantization [37], have been proposed.
In this paper, we will focus on the s and s̄ quark

contributions to the nucleon nonvalence LF Fock state
wave functions, ψ s=Nðxs;ks⊥; λsÞ and ψ s̄=Nðxs̄;ks̄⊥; λs̄Þ,
where the sum over other d.o.f. is implied. The s and s̄
quark PDFs expressed in terms of the LFWFs are

sðxÞ ¼
X
λs

Z
d2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2; ð6Þ

s̄ðxÞ ¼
X
λs̄

Z
d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2: ð7Þ

The sum rule (1) requires the normalization

X
λs

Z
dxsd2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2

¼
X
λs̄

Z
dxs̄d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2 ¼ Is; ð8Þ

where Is gives the number of intrinsic strange/antistrange
quarks in the nucleon. Perturbative QCD evolution needs to
be performed to include contributions from the extrinsic sea
and to compare with the PDFs extracted from high energy
scattering experiments.
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The EM form factors of the nucleon are defined as [38]

hP0; S0jJμð0ÞjP; Si

¼ ūðP0; S0Þ
�
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

�
uðP; SÞ; ð9Þ

where Jμ ¼ P
q eqψ̄qγ

μψq is the current operator, M is the
nucleon mass, F1ðQ2Þ and F2ðQ2Þ are the Dirac and Pauli
form factors, respectively. Comparing with the decompo-
sition (3), one observes that Fs

1ðQ2Þ and Fs
2ðQ2Þ are given

by the matrix elements of the current operator Jμs ¼ ψ̄ sγ
μψ s.

In the LF formalism, F1ðQ2Þ and F2ðQ2Þ can be calculated
from the overlap of spin-conserving and spin-flip
matrix elements of the þ component of the current,
respectively, [39]:

�
P0;↑j J

þð0Þ
2Pþ jP;↑

�
¼ F1ðq2Þ; ð10Þ

�
P0;↑j J

þð0Þ
2Pþ jP;↓

�
¼ −

q1 − iq2
2M

F2ðq2Þ; ð11Þ

with qμ ¼ ðqþ; q−;q⊥Þ and transferred momentum
squared q2 ¼ t ¼ ðP0 − PÞ2 ¼ −Q2.
The Drell-Yan-West (DYW) frame [40,41]

q ¼
�
0;

q2

2Pþ ;q⊥
�
; ð12Þ

P ¼
�
Pþ;

M2

2Pþ ; 0⊥
�
; ð13Þ

with q2 ¼ −q2⊥, can be used to avoid off-diagonal con-
tributions n → n0 ¼ n� 2 from Fock states with different
constituents. Here q⊥ is the Fourier conjugate of the
transverse LF coordinate a⊥. From (10) and the Fock state
expansion (4), the Dirac form factor, in terms of the
LFWFs, is given by the DYW expression [40,41]

Fs
1ðQ2 ¼ q2⊥Þ ¼

X
λs

Z
dxsd2ks⊥
16π3

ψ�
s=Nðxs;ks⊥ þ ð1 − xsÞq⊥; λsÞψ s=Nðxs;ks⊥; λsÞ

−
X
λs̄

Z
dxs̄d2ks̄⊥
16π3

ψ�
s̄=Nðxs̄;ks̄⊥ þ ð1 − xs̄Þq⊥; λs̄Þψ s̄=Nðxs̄;ks̄⊥; λs̄Þ

¼ ρsðq⊥Þ − ρs̄ðq⊥Þ; ð14Þ

where ρs=s̄ðq⊥Þ represents the effective strange/antistrange
density. The relative minus sign in (14) arises from the
opposite strange and antistrange charges.
The density ρs=s̄ðq⊥Þ is the inverse Fourier transform of

the distribution ρ̃ða⊥Þ,

ρs=s̄ðq⊥Þ ¼
Z

d2a⊥
ð2πÞ2 e

iq⊥·a⊥ ρ̃s=s̄ða⊥Þ: ð15Þ

Following the normalization (8) or the sum rule (1), we
require

Z
d2a⊥ρ̃sða⊥Þ ¼

Z
d2a⊥ρ̃s̄ða⊥Þ ¼ Is; ð16Þ

and thus Fs
1ð0Þ ¼ 0.

A nonzero Fs
1ðQ2Þ is equivalent to an asymmetric

distribution ρ̃sða⊥Þ ≠ ρ̃sða⊥Þ based on the uniqueness of
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FIG. 1. Nonzero form factor F1ðQ2Þ (right panel) from asymmetric sea quark and antiquark distributions in transverse LF coordinate
space (left panel). The dashed-dotted curves (blue) represent the quark, the dashed curves (red) represent the antiquark, and the
continuous curves (black) represent q − q̄. The quark/antiquark number is normalized to 1 in this figure.
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the Fourier transform. As illustrated in Fig. 1 for a simple
Gaussian distribution, if the s (or s̄) quarks are more
concentrated at small transverse separation than the s̄ (or s)
quarks, one obtains a positive (or negative) form factor
Fs
1ðQ2Þ at Q2 > 0. A similar concept based on the locality

defined in the instant form was presented in [42].
The strange-antistrange asymmetries in LF coordinate

space and LF momentum space are correlated. To show
this, we express ρs=s̄ðq⊥Þ in terms of the transverse impact
variable b⊥ using the Fourier transform of the k⊥-space
LFWFs following Ref. [43],

ρs=s̄ðq⊥Þ ¼
X
λs=s̄

Z
dxs=s̄d2b⊥ expðið1 − xs=s̄Þb⊥ · q⊥Þ

× jψ̃ s=s̄ðxs=s̄;b⊥; λs=s̄Þj2: ð17Þ

The coordinate space distribution is then

ρ̃s=s̄ða⊥Þ ¼
Z

d2q⊥e−iq⊥·a⊥ρs=s̄ðq⊥Þ

¼
X
λs=s̄

Z
dxs=s̄

ð1− xs=s̄Þ2
				ψ̃ s=s̄

�
xs=s̄;

a⊥
1− xs=s̄

; λs=s̄

�				
2

:

ð18Þ

Here, b⊥ is not the usual LF transverse coordinate variable
but related according to a⊥ ¼ ð1 − xÞb⊥.
As they are related by a Fourier transform, the strange-

antistrange asymmetry in b⊥-space is equivalent to the
asymmetry of the transverse momentum k⊥ distribution.
Since there is no privileged direction for an unpolarized
nucleon, one should have a nonvanishing strange-
antistrange asymmetry of the longitudinal momentum
distribution if the asymmetry of the transverse momentum
distribution is nonzero. A positiveFs

1ðQ2Þ implies that the s
quarks in the nucleon sea are more centralized in coordinate
space than the s̄ quarks and are therefore more spread out in
momentum space. This leads to a negative sðxÞ − s̄ðxÞ
distribution at small-x and a positive one at large-x.

III. THE BARYON-MESON
FLUCTUATION MODEL

We first evaluate the sðxÞ − s̄ðxÞ distribution in the
nucleon using the baryon-meson fluctuation model of
Ref. [12]. As in Ref. [44], we shall focus on the fluctuation
of the proton to the KþΛ0 state, the lightest kaon-hyperon
configuration and thus the state with the minimum off-
shellness in invariant mass. In this nonperturbative
approach the momentum distribution of the constituents
is maximal at minimum off-shellness; i.e., at equal rapidity:
xi ≃m2⊥i=

P
N
j m2⊥j. Thus the mean LF momentum fraction

of each constituent is proportional to its transverse
mass: m⊥i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥i þm2

i

p
.

Instead of expanding directly in terms of quarks and
gluons as in Eq. (4), the expansion in the fluctuation model
is performed using a two-level convolution approach [44]
in which the proton state is expanded as the valence state
plus the baryon-meson state jBMi. The component baryon
and the meson wave functions are then further expanded
into their quark and gluon Fock states. This LF cluster-
decomposition procedure [45] for the baryon LFWF is
similar to the expansion in the meson cloud model [46–49].
Considering only the fluctuation to the jBMi ¼ jΛKi state,
the expansion yields

jpi ¼
Z

dxΛd2kΛ⊥
2

ffiffiffiffiffi
xΛ

p ð2πÞ3
dxKd2kK⊥
2

ffiffiffiffiffiffi
xK

p ð2πÞ3 16π
3δð1− xΛ − xKÞ

× δð2ÞðkΛ⊥ þkK⊥ÞΨðxΛ;kΛ⊥; xK;kK⊥ÞjΛKi þ � � � ;
ð19Þ

where “� � �” represents states other than jΛKi in the
expansion, xΛ=K is the longitudinal LF momentum fraction
carried by the Λ=K, and kΛ=K⊥ is the intrinsic transverse
momentum of the Λ=K.
The wave function is normalized to the probability of the

fluctuation:

Z
dxΛd2kΛ⊥

16π3

Z
dxKd2kK⊥

16π3
16π3δð1 − xΛ − xKÞ

×δð2ÞðkΛ⊥ þ kK⊥ÞjΨðxΛ;kΛ⊥; xK;kK⊥Þj2 ¼ Is; ð20Þ

where Is is the intrinsic strange quark number in (8).
The intrinsic distribution sðxÞ is then expressed as a

convolution of the strange distribution qs=Λ in the Λ and the
Λ distribution fΛ=ΛK in the baryon-meson state,

sðxÞ ¼
Z

1

x

dxΛ
xΛ

fΛ=ΛKðxΛÞqs=Λ
�
x
xΛ

�
: ð21Þ

Likewise, the intrinsic distribution s̄ðxÞ is

s̄ðxÞ ¼
Z

1

x

dxK
xK

fK=ΛKðxKÞqs̄=K
�

x
xK

�
: ð22Þ

The Λ and K distributions in the baryon-meson state are

fΛ=ΛKðxΛÞ ¼
Z

d2kΛ⊥
16π3

jψΛKðxΛ;kΛ⊥Þj2; ð23Þ

fK=ΛKðxKÞ ¼
Z

d2kK⊥
16π3

jψKΛðxK;kK⊥Þj2; ð24Þ

where
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ψΛKðxΛ;kΛ⊥Þ ¼
Z

dxKd2kK⊥δð1 − xΛ − xKÞ

× δð2ÞðkΛ⊥ þ kK⊥ÞΨðxΛ;kΛ⊥; xK;kK⊥Þ;
ð25Þ

ψKΛðxK;kK⊥Þ ¼
Z

dxΛd2kΛ⊥δð1 − xΛ − xKÞ

× δð2ÞðkΛ⊥ þ kK⊥ÞΨðxΛ;kΛ⊥; xK;kK⊥Þ:
ð26Þ

One can observe that

ψΛKðx;k⊥Þ ¼ ψKΛð1 − x;−k⊥Þ; ð27Þ

which leads to the relation

fΛ=ΛKðxÞ ¼ fK=ΛKð1 − xÞ: ð28Þ

The equal numbers of strange and antistrange quarks in the
nucleon, i.e., Eq. (1), is satisfied by the sum rules

Z
1

0

dxqs=ΛðxÞ ¼ 1; ð29Þ

Z
1

0

dxqs̄=KðxÞ ¼ 1: ð30Þ

However, the distribution sðxÞ − s̄ðxÞ remains nontrivial.
We now calculate Fs

1ðQ2Þ. For definitive predictions we
adopt the approach used in Ref. [50], in which the s quark
wave function is evaluated from the strange quark-scalar
diquark configuration jsDi of the Λ, and the s̄ quark is
evaluated from the antistrange quark-spectator quark con-
figuration js̄qi of the K. Similar to the expansion (19), the
Λ and K states are expressed as

jΛi¼
Z

dxsd2ks⊥
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xsð1−xsÞ

p ψ sDðxs;ks⊥ÞjsDiþ �� � ; ð31Þ

jKi¼
Z

dxs̄d2ks̄⊥
16π3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs̄ð1−xs̄Þ

p ψ s̄qðxs̄;ks̄⊥Þjs̄qiþ �� � : ð32Þ

Then Fs
1ðQ2Þ can be expressed in terms of the LFWFs as

Fs
1ðQ2Þ ¼ F s=ΛðQ2ÞFΛ=pðQ2Þ − F s̄=KðQ2ÞFK=pðQ2Þ;

ð33Þ

where

F s=ΛðQ2Þ ¼
Z

dxsd2ks⊥
16π3

ψ�
sDðxs;ks⊥ þ ð1 − xsÞq⊥Þψ sDðxs;ks⊥Þ; ð34Þ

FΛ=pðQ2Þ ¼
Z

dxΛd2kΛ⊥
16π3

ψ�
ΛKðxΛ;kΛ⊥ þ ð1 − xΛÞq⊥ÞψΛKðxΛ;kΛ⊥Þ; ð35Þ

F s̄=KðQ2Þ ¼
Z

dxs̄d2ks̄⊥
16π3

ψ �̄
sqðxs̄;ks̄⊥ þ ð1 − xs̄Þq⊥Þψ s̄qðxs̄;ks̄⊥Þ; ð36Þ

FK=pðQ2Þ ¼
Z

dxKd2kK⊥
16π3

ψ�
KΛðxK;kK⊥ þ ð1 − xKÞq⊥ÞψKΛðxK;kK⊥Þ: ð37Þ

For the phenomenological description of the LFWFs, we
choose the Brodsky-Huang-Lepage prescription [51,52] as
utilized in Ref. [44],

ϕðx;k⊥Þ ¼ N exp

�
−

1

8β2

�
k2⊥

xð1 − xÞ þM2
12

��
; ð38Þ

with invariant mass

M2
12 ¼

m2
1

x
þ m2

2

1 − x
; ð39Þ

where m1 and m2 are the masses of the two components.
The sðxÞ − s̄ðxÞ asymmetry has been calculated with

this LFWF in Ref. [12] and reproduced in Ref. [50]
with the parameters mq ¼ 0.330 GeV, ms ¼ 0.480 GeV,
mD ¼ 0.600 GeV, and the universal momentum scale
β ¼ 0.330 GeV. A determination from the data of extended
observables indicates 0.24 < β < 0.37 GeV [53]. For the
masses of Λ and K, we use the values given in Ref. [54].
Alternative LFWFs have been assumed for the study of the
sðxÞ − s̄ðxÞ asymmetry using the same baryon-meson
fluctuation picture in Ref. [50].
Taking the fluctuation probability Is ¼ 1.27% from

Ref. [24], we calculate Fs
1ðQ2Þ. The results are shown in

Fig. 2 along with the lattice QCD results [5]. This result is
consistent with lattice QCD using the original parameters
assumed in Ref. [12].
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To further constrain the baryon-meson fluctuation
model, we will match its predictions to the lattice
QCD data by taking β and Is as free parameters. The
result is shown in Fig. 3, with β ¼ 0.31ð11Þ GeV and
Is ¼ 1.06ð51Þ%. These values are consistent with the
original choice in Ref. [12] and the value determined
in Ref. [53].
If we take the model parameters determined by the fits,

we obtain a model-based phenomenological constraint on
the sðxÞ − s̄ðxÞ distribution based on the baryon-meson
fluctuation approach. A comparison with global PDF fits is
shown in Fig. 4. The factorization scale is not specified in
this nonperturbative model, so the comparison has been
done assuming μ ¼ 1 GeV. The PDF uncertainties are
commonly represented in two ways: the Hessian matrix and
the Monte Carlo samplings. In Fig. 4, the uncertainty bands
of the global fits are standard deviations calculated from
the Hessian matrix for MMHT2014 [17] and JR14 [18]
and from Monte Carlo replicas for NNPDF3.0 [16].
The Monte Carlo replicas for MMHT2014 and JR14 are

generated from the Hessian matrix following the procedure
described in Ref. [55].

IV. LIGHT-FRONT HOLOGRAPHIC QCD

The EM form factors of nucleons were described in the
nonperturbative holographic framework from the coupling
of the ρ to a qq̄ pair in the proton in the limit of massless
quarks [56]. In this section we calculate Fs

1ðQ2Þ and
sðxÞ − s̄ðxÞ in the nucleon using the analytic structure of
form factors and quark distribution functions in LFHQCD
for bound states of arbitrary twist. Here, twist refers to the
dimension minus spin of the interpolating operator for the

FIG. 2. Predictions for Fs
1ðQ2Þ from the fluctuation model,

LFHQCD, and lattice QCD [5,7]. The predictions of the
fluctuation model use the LFWFs from Refs. [51,52].

FIG. 3. Fits to the lattice QCD data of Fs
1ðQ2Þ using the

fluctuation model and LFHQCD.

FIG. 4. Asymmetric strange-antistrange x½sðxÞ − s̄ðxÞ� distribu-
tion. In the upper panel, the fit results from the fluctuation model
and LFHQCD are compared. In the middle panel, the global fits are
presented by central curves and standard deviation bands. In the
lower panel, the global fits are presented by a hundredMonte Carlo
replicas. The global fits are at μ ¼ 1 GeV: NNPDF3.0 (gray) [16],
MMHT2014 (green) [17], JR14 (cyan) [18].
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hadron state; it is equal to the number of constituents in a
given Fock component in the LF Fock expansion.
In LFHQCD [13], the EM form factors for a bound-state

hadron with twist-τ can be expressed as [14,57]

FτðtÞ ¼
1

Nτ
Bðτ − 1; 1 − αðtÞÞ; ð40Þ

where the Euler Beta function is

Bðu; vÞ ¼
Z

1

0

dy yu−1ð1 − yÞv−1; ð41Þ

with Bðu; vÞ ¼ Bðv; uÞ ¼ ΓðuÞΓðvÞ
ΓðuþvÞ , Nτ ¼ Γðτ − 1ÞΓð1 −

αð0ÞÞ=Γðτ − αð0ÞÞ a normalization factor, and αðtÞ is the
Regge trajectory of the vector meson which couples to the
EM current in the t-channel exchange.
The Beta function structure of the EM form factors

(40), which follows from the gauge/gravity structure in
LFHQCD, was obtained in the pre-QCD era by Ademollo
and Del Giudice [58] and independently by Landshoff and
Polkinghorne [59]. Their derivations were based on the
Veneziano model [60], which is an incorporation of the
concept of duality [61] in a pole model. For hadronic four-
point functions, it leads to a representation of the scattering
amplitude by Euler Beta functions. Extending these con-
siderations to current induced interactions, a structure like
(40) was derived in Refs. [58,59,62]. However, the variable
τ in the duality based derivations is a free parameter and the
Regge trajectory is a phenomenological input. In contra-
distinction, LFHQCD provides a clear physical meaning of
τ, the twist of a given Fock component of the hadron, and
also incorporates the Regge trajectory from the vector-
meson (VM) spectrum by solving the semiclassical LF
QCD Hamiltonian eigenvalue problem.
For linear Regge trajectories

αðtÞ ¼ αð0Þ þ α0t; ð42Þ

Eq. (40) incorporates the hard-scattering counting rules at
large t [63,64]. Indeed, for fixed u and large v we have
Bðu; vÞ ∼ ΓðuÞv−u, and therefore the first argument in the
Euler Beta function determines the scaling behavior of (40)

lim
Q2→∞

FτðQ2Þ ¼ Γðτ − 1Þ
�

1

α0Q2

�
τ−1

; ð43Þ

at large Q2 ¼ −t. The second argument in (40) determines
the timelike pole structure of the form factor; the analytic
structure of (40) thus leads to a nontrivial connection with
the hadron spectrum. In fact, using the expansion of the
Gamma function

ΓðN þ zÞ ¼ ðN − 1þ zÞðN − 2þ zÞ � � � ð1þ zÞΓð1þ zÞ;
ð44Þ

for integer twist N ¼ τ, with N the number of constituents
for a given Fock component, we find

FτðQ2Þ ¼ 1

1þ Q2

M2
n¼0

�

1þ Q2

M2
n¼1

�
� � �



1þ Q2

M2
n¼τ−2

� ; ð45Þ

which is expressed as a product of τ − 1 poles located at

−Q2 ¼ M2
n ¼

1

α0
ðnþ 1 − αð0ÞÞ: ð46Þ

The form factor (45) thus generates the radial excitation
spectrum of the exchanged particles in the t-channel, while
keeping the structural form found previously in the limit of
zero quark masses [13].
For the lowest radial excitation the VM spectrum in

LFHQCD is given by [13,33] (Appendix B)

M2 ¼ 4λ

�
J −

1

2

�
þ ΔM2; ð47Þ

where the squared mass shift ΔM2 incorporates the effect
from finite light quark masses. The quantity λ ¼ κ2 is the
emergent mass scale, the only dimensional quantity appear-
ing in LFHQCD for massless quarks [13]. Its value
determined from the best fit to all radial and orbital
excitations of the light mesons and baryons is κ ¼ ffiffiffi

λ
p ¼

0.523� 0.024 GeV [33].
There is no need to introduce additional procedures to

include quark masses when using the structural form (40) to
describe form factors, since the effect of quark masses only
amounts to a shift of the Regge intercept. For example, for
the ρ, a vector mesons we obtain from Eq. (47) the leading
Regge trajectory

αρðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ρ

4λ
; ð48Þ

with slope α0 ¼ 1
4λ and intercept αρð0Þ ¼ 1

2
− ΔM2

ρ

4λ , which

differs from the conformal limit 1
2
by the mass shift ΔM2

ρ

4λ
from quark masses. Likewise, the ω, f trajectory is

αωðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ω

4λ
; ð49Þ

with the same slope α0 ¼ 1
4λ and similar intercept

αωð0Þ ¼ 1
2
− ΔM2

ω
4λ . We show in Fig. 5 the Chew-Frautschi

plot for the leading ρ − a and ω − f trajectories.
The spectrum of the exchanged particles in the t-channel

follows from (46) for the leading VM trajectory (48). We
find
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−Q2 ¼ M2 ¼ 4λ

�
nþ 1

2

�
þ ΔM2

ρ; ð50Þ

which is precisely the spectrum of the ρ and its radial
excitations [13] (Appendix B). In this case the shift in
the intercept is rather small since ΔM2

ρ ¼ ΔM2
ω ¼ M2

π�

and M2
π

4λ ≃ 0.02.

A. Strange quark form factor

In contrast to the two-step convolution expansion of the
fluctuation model, Fs

1ðQ2Þ and sðxÞ − s̄ðxÞ from LFHQCD
can be obtained directly from higher-twist terms in the Fock
state expansion by matching to the quark d.o.f. To this end,
let us recall that for the up and down quark form factors the
ρ-trajectory is relevant because it dominantly couples to uū
and dd quark currents in the proton [56]. Likewise, we
compute Fs

1ðQ2Þ in the holographic framework by consid-
ering the Regge trajectory of the ϕmeson, which is nearly a
pure ss̄ state [65], and therefore couples dominantly to the
ss̄ sea current in the nucleon.
To determine the slope and intercept of the ϕ trajectory,

αϕðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ϕ

4λ
; ð51Þ

we fix the ρ intercept from the pion mass and find the best
value for the universal Regge slope from the simultaneous
fit of the ρ and ϕ trajectories; this procedure determines
the ϕ intercept and the universal slope α0 ¼ 1

4λ. We obtainffiffiffi
λ

p ¼ 0.534 GeV and αϕð0Þ ¼ 0.01, or equivalently

ΔM2
ϕ ¼ 1.96λ. The ϕ − f0 trajectory is shown in Fig. 5.

One can also compute the intercept in LFHQCD with
effective quark masses, see Appendix B, the value is
αϕð0Þ ¼ 0.00� 0.04. The value of ΔM2

ϕ is significantly
larger than ΔM2

ρ due to the presence of the more massive
strange quarks in the ϕ meson.
Since the light-front holographic framework is inherently

relativistic, the LFWF for a state with twist-τ automatically
incorporates Fock state components with two different
orbital angular momenta Lz and Lz þ 1, in analogy to the
upper and lower components of a Dirac 4-component
spinor. For example, the valence quark distributions of a
nucleon correspond to a leading twist-3 effective LFWF
with orbital angular momentum Lz ¼ 0, plus a twist-4 t
erm corresponding to a three-quark effective LFWF
with Lz ¼ 1. Note that Fock states with both Lz and
Lz þ 1 are needed in order that a baryon can have a
nonzero Pauli form factor and a nonzero anomalous
magnetic moment [39].
The five-quark state juudss̄i is the lowest Fock state

which contains strangeness. Therefore, the leading con-
tributions to the strange form factor are terms with twist-5
and twist-6. Using the constraint Fs

1ð0Þ ¼ 0 from the sum
rule (1), the analytic structure of Fs

1ðQ2Þ is uniquely
determined by the holographic structure up to twist-6:

Fs
1ðQ2Þ ¼ ð1 − ηÞNs½Fϕ

τ¼5ðQ2Þ − Fϕ
τ¼6ðQ2Þ�

þ ηNs½Fω
τ¼5ðQ2Þ − Fω

τ¼6ðQ2Þ�; ð52Þ

where we have allowed for a small ϕ − ω mixing η in the
strange form factor [66]. Ns is a normalization factor and
Fω;ϕ
τ ðQ2Þ is the twist-τ form factor (40) with Regge

trajectory αω;ϕðtÞ given by (49) and (51) respectively.
The form factor can also be expressed as a product of
τ − 1 poles located at t ¼ −Q2 ¼ 4λðnþ 1

2
Þ þ ΔM2

ω and
t ¼ −Q2 ¼ 4λðnþ 1

2
Þ þ ΔM2

ϕ, n ¼ 0; 1; 2 � � � τ − 2. One
thus obtains in this case the form factor poles at the mass
of the ω and ϕ vector meson and its radial excitations.
To illustrate the effect of the ϕ − ω mixing we show in

Fig. 6 the effect of a 10% mixing in Fs
1ðQ2Þ. The effect of

the small mixing turns out to be negligible for Fs
1ðQ2Þ. We

also show in Fig. 6 the chiral limit for massless quarks.
Since the quark mass effect is very small in the ω trajectory,
this chiral limit corresponds to a pure ω trajectory.
Note that the normalization factor Ns in (52) is not the

intrinsic strange/antistrange quark number Is, since the
strange and antistrange distributions can both have twist-5
and twist-6 contributions. However, the shape of Fs

1ðQ2Þ is
completely determined from the structure of LFHQCD.
The result is shown in Fig. 2, together with predictions from
the fluctuation model and lattice QCD. The value of

ffiffiffi
λ

p ¼
0.534 GeV and the mass shift ΔM2

ϕ ¼ 1.96λ are obtained
from the ϕ trajectory depicted in Fig. 5. The value of

FIG. 5. Chew-Frautschi plot for the leading ρ and ω (gray
dashed) and ϕ (red continuous) trajectories in LFHQCD. At
values t ¼ M2 where αðtÞ is an integer, there is a hadron with
mass squaredM2 and spin J ¼ αðM2Þ. The ρ and ω intercepts are
fixed by the pion mass from the relation ΔM2

ρ ¼ ΔM2
ω ¼ M2

π�

and the mass scale λ is fixed by the best fit to the slopes of
both trajectories: This fixes the intercept of the ϕ trajectory.

We find
ffiffiffi
λ

p ¼ 0.534 GeV, αρð0Þ ¼ αωð0Þ ¼ 1
2
− ΔM2

π
4λ ¼ 0.483

and αϕð0Þ ¼ 0.01. Solid triangles represent the ω trajectory.
The data is from Ref. [54].
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Ns ¼ 0.047 in Fig. 2 is determined by a best fit to lattice
QCD predictions. As in the case of the fluctuation model,
we also fit the lattice QCD data, taking

ffiffiffi
λ

p
and Ns as free

parameters. The result is shown in Fig. 3 with parameter
values

ffiffiffi
λ

p ¼ 0.52ð17Þ GeV and Ns ¼ 0.046ð17Þ. This
value of

ffiffiffi
λ

p
agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ

4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0

dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ
Therefore, using (53) and the Regge trajectory, (48), (49) or
(51), the EM form factor (40) for twist-τ can be written in
the invariant form

FτðtÞ ¼
1

Nτ

Z
1

0

dxw0ðxÞwðxÞ− t
4λ−

1
2½1 − wðxÞ�τ−2e−ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0

dxðHq
τ ðx; tÞ −Hq̄

τ ðx; tÞÞ

¼
Z

1

0

dxqτðxÞ exp½tfðxÞ�; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by

fðxÞ ¼ 1

4λ
log

�
1

wðxÞ
�
; ð57Þ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ�τ−2wðxÞ−1

2w0ðxÞe−ΔM2

4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2
þΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.

FIG. 6. Effect of ϕ − ω mixing in Fs
1ðQ2Þ and the sðxÞ − s̄ðxÞ

asymmetry. The effect of the mixing is negligible even for 10%
mixing, i.e., for η ¼ 0.1.
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ�
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ�; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ2 ; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p ¼
0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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with Nτ defined in (40). In the conformal limit, ΔM2 ¼ 0,
we have R ¼ 8

9
. Incorporating quark masses,ΔM2

ϕ ¼ 1.96λ,
we have R ¼ 0.80. This small-x behavior leads to the
condition Is ≥ ð1 − RÞα from Eq. (70). Together with
α ≥ Ns we have the condition

Ns ≤ α ≤
1

1 − R
Is: ð76Þ

Because the ratio qτ¼5ðxÞ=qτ¼6ðxÞ is monotonically
increasing, the condition (76) ensures sðxÞ ≥ 0 and
s̄ðxÞ ≥ 0 over the full range of x.
The solution which minimizes the strange sea probability

corresponds to α ¼ Ns and Is ¼ ð1 − RÞNs with longi-
tudinal quark distributions

sðxÞ ¼ Nsqτ¼5ðxÞ þ ðIs − NsÞqτ¼6ðxÞ; ð77Þ

s̄ðxÞ ¼ Isqτ¼6ðxÞ: ð78Þ

We show in Fig. 7 the holographic results for the individual
quark distributions sðxÞ and s̄ðxÞ. The results correspond to
the lower bound Is ¼ 0.92%. As we discussed in Sec. II,
the strange distribution sðxÞ should have its support for

larger values of the longitudinal momentum x, as compared
with s̄ðxÞ, to lead to negative sðxÞ − s̄ðxÞ asymmetry at
small-x and to a positive asymmetry at large-x. This
important property is verified for the holographic quark
distributions shown in Fig. 7. One can observe in Fig. 7
(left) that the high-twist suppression at large-x from local
counting rules is significant for the sðxÞ leading-twist-5
distribution above x ∼ 0.7 and for the s̄ðxÞ twist-6 distri-
bution above x ∼ 0.6.
The positive form factor Fs

1ðQ2Þ obtained from the
lattice calculations [5,6], shown in Fig. 2, requires that
the strange quarks are more concentrated at small trans-
verse separation compared with the antistrange quarks (See
Sec. II). As shown in Fig. 8 this is indeed the case for the
LFHQCD results computed from the coordinate space
transverse distribution given by Eq. (18).

V. DISCUSSIONS AND CONCLUSIONS

In this article, we have demonstrated that a nonzero
strangeness contribution to the spacelike electromagnetic
form factor of the nucleon Fs

1ðQ2Þ ≠ 0 implies a strange-
antistrange asymmetry in the nucleon’s light-front wave
function and thus in the nucleon PDF.

FIG. 7. The distributions xsðxÞ (continuous curves) and xs̄ðxÞ (dashed curves) correspond to the minimum intrinsic strange probability
Is ¼ 0.2Ns with Ns ¼ 0.047,

ffiffiffi
λ

p ¼ 0.534 GeV, and M2
ϕ ¼ 1.96λ. The results with massless quarks are included for comparison.

FIG. 8. Light-front holographic results for the asymmetric strange and antistrange quark distributions in transverse coordinate space
corresponding to the minimum possible intrinsic strange probability.
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A lattice QCD calculation predicts a positive strange
quark form factor, which indicates that the strange quark
distribution is more centralized in coordinate space than the
antistrange quark distribution. Consequently, the strange
quark distribution is more spread out in momentum space.
The lattice result thus indicates a negative sðxÞ − s̄ðxÞ
longitudinal momentum distribution at small-x and a
positive distribution at large-x.
We have shown how the baryon-meson fluctuation

model leads to a nonzero strange quark form factor of
the nucleon, and a sðxÞ − s̄ðxÞ asymmetry. Imposing the
lattice QCD data, we have analyzed the constraints on the
model, leading to 1.06(51)% intrinsic strange sea quark
probability in the nucleon.
We have also discussed a new model for the intrinsic sea-

quark distributions based on light-front holographic QCD.
The strange quark form factor and the sðxÞ − s̄ðxÞ asym-
metry are determined in this framework up to a normali-
zation factor, which can be constrained by the lattice
prediction. Effects from the finite quark masses of the
vector mesons which couples to the quark current in the
nucleon have also been discussed. Remarkably, the holo-
graphic structure of form factors and PDFs allows the
introduction of quark masses without modifying the hard
scattering counting rules, the local counting rules, or the
t-dependence of GPDs. The small-x behavior modified by
quark masses is still governed by the Regge intercept. Since
the strange quark mass is much greater than up and down
quark masses, the strange quark distributions at small-x in
LFHQCD is less singular than up and down quark
distributions. By incorporating the positivity bound on
quark distribution functions, we have derived a lower
bound for the intrinsic strange sea probability using the
holographic approach. The lower bound is 0.92%, com-
patible with the value found in the fluctuation model;
however, the intrinsic strangeness probability contributing
to sðxÞ þ s̄ðxÞ can be significantly larger. We have also
evaluated the individual sðxÞ and s̄ðxÞ distributions and the
coordinate-space transverse distributions for the strange
and antistrange quarks in the nucleon for the intrinsic
strange quark probability determined by the lower bound.
The result supports the qualitative analysis that the strange
quark is more concentrated at small transverse separation
than the antistrange quark. This novel nonperturbative
approach to sea quark distributions presented here, based
on the light-front holographic framework, complements the
physical picture inherent to the meson-baryon fluctuation
model, and gives new insights into both the structure of the
strange-antistrange asymmetry and the strange form factor
of the nucleons. This approach can also be extended to the
study of intrinsic charm and bottom.
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APPENDIX A: LATTICE QCD DETERMINATION
OF THE STRANGE QUARK FORM FACTOR

The s quark contribution to the nucleon’s magnetic
moment and charge radius has been calculated in
Ref. [5] using the overlap fermion on the (2þ 1) flavors
RBC/UKQCD domain wall fermion (DWF) gauge con-
figurations. Details of these ensembles are listed in Table I.
The authors used 24 valence quark masses in total for the
24I, 32I, 32ID, and 48I ensembles representing pion
masses in the range mπ ∈ ð135; 400Þ MeV to explore
the quark-mass dependence of the strange quark form
factors.
One can perform the model-independent z–expansion fit

to the form factor GðQ2Þ [76,77]

Gz−expðQ2Þ ¼
Xkmax

k¼0

akzk; z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcutþQ2

p
þ ffiffiffiffiffiffi

tcut
p ; ðA1Þ

using the lattice data of strange Sachs electric and magnetic
form factors Gs

E;MðQ2Þ to extrapolate the s-quark magnetic
moment and charge radius as shown in [5], and then use
the fit parameters ak to interpolate Gs

E;M values at various
Q2 for a given valence quark mass on the lattice. The
available Q2 on the 24I and 32I ensembles are
Q2 ∈ ð0.22; 1.31Þ GeV2, on the 32ID ensemble are Q2 ∈
ð0.07; 0.43Þ GeV2 and on the 48I ensemble are
Q2 ∈ ð0.05; 0.31Þ GeV2. It is a common problem for lattice
QCD calculations that the signal-to-noise ratio decreases as
one reaches the physical pion mass. Lattice results of
Gs

E;MðQ2Þ at the physical pion mass on the 48I ensemble
[75] is noisier compared to theGs

E;MðQ2Þ obtained from the
lattice ensembles with heavier pion masses. Although the
largest available momentum transfer of the 24I and 32I
ensembles is Q2 ∼ 1.3 GeV2, the largest momentum

TABLE I. The parameters for the DWF configurations: spatial/
temporal size, lattice spacing [74,75], the strange quark mass in
the MS scheme at 2 GeV, the pion mass corresponding to the
degenerate light sea quark mass, and the numbers of configura-
tions used in Ref. [5].

Ensemble L3 × T a (fm) mðsÞ
s (MeV) mπ (MeV) Nconfig

24I [74] 243 × 64 0.1105(3) 120 330 203
32I [74] 323 × 64 0.0828(3) 110 300 309
32ID [75] 323 × 64 0.1431(7) 89.4 171 200
48I [75] 483 × 96 0.1141(2) 94.9 139 81
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transfer available on the 48I ensemble is Q2 ∼ 0.31 GeV2.
We note that the uncertainties in the extrapolation of the
nucleon strange electromagnetic form factor become very
large and the form factors are consistent with zero above
Q2 ∼ 0.7 GeV2 for the 48I ensemble and therefore the
extrapolations of the 48I ensemble electromagnetic form
factor data were constrained up to Q2 ¼ 0.5 GeV2 in the
global fit (a simultaneous fit in lattice spacing, volume and
pion mass) in Ref. [6]. It is important to note that the lattice
QCD estimate of Gs

E;MðQ2Þ in Ref. [6] is the most precise
and accurate first-principles calculation of s-quark EMFFs
to date. This is the only calculation at the physical pion
mass where the quark mass dependence, as well as finite
lattice spacing (a), volume corrections, and partial quench-
ing effect (when the valence and sea quark masses are not
the same in lattice QCD simulation) were considered.
After obtaining Q2-dependence from the z-expansion fit

to the lattice data, for a given Q2 -value, we obtain 24 data
points corresponding to different valence quark masses
from 3 different lattice spacings and volumes and 4 sea
quark masses including one at the physical point. We use
the chiral extrapolation formula from Ref. [78] and volume
correction from Ref. [79], yielding a global fit in different
quark masses, lattice spacings, volumes of the strange
quark Sachs electric form factor at a givenQ2. It is given by

Gs
Eðmπ;mK;mπ;vs;a;LÞ ¼ A0þA1m2

K þA2m2
π

þA3m2
π;vsþA4a2þA5

ffiffiffiffi
L

p
e−mπL;

ðA2Þ
where mπ=mK is the valence pion/kaon mass and mπ;vs is
the partially quenched pion mass m2

π;vs ¼ 1=2ðm2
π þm2

π;ssÞ
with mπ;ss the pion mass corresponding to the sea quark
mass. The χ2=d:o:f: for different Q2 global fits ranges
between 0.7–1.13. For example, in the continuum limit, the
global fit for Q2 ¼ 0.25 GeV2 provides the physical value
of Gs

Ejphys ¼ 0.0024ð8Þ, A1 ¼ 0.58ð30Þ, A2 ¼ −0.29ð15Þ,
A3 ¼ −0.003ð9Þ, A4 ¼ 0.001ð2Þ, and A5 ¼ −0.001ð3Þ
with χ2=d:o:f: ¼ 1.1. One could also consider a
logðmKÞ-term in the chiral extrapolation of Gs

E as shown
in [78], however our analysis shows that this term does not
have any effect on the global fit for our lattice data. A
similar vanishing difference has been observed if one
considers e−mπL instead of a

ffiffiffiffi
L

p
e−mπL term in the volume

correction, where L is the finite box size of a lattice. For
example, including the factor logðmKÞ and e−mπL instead offfiffiffiffi
L

p
e−mπL, one obtains Gs

Ejphys ¼ 0.0026 in comparison
with Gs

Ejphys ¼ 0.0024. We include these small effects in
the systematics of the global fit results. We also assign a
20% systematic uncertainty from the model-independent
z-expansion interpolation coming from adding a higher
order term a3 while fitting the Gs

EðQ2Þ data. These
uncertainties are added in quadrature to the systematics
discussed in [5].

Similarly, we calculate the strange Sachs magnetic form
factor Gs

M at a particular Q2 using the global fit formula

Gs
Mðmπ;mK;mπ;vs;a;LÞ¼A0þA1mπþA2mKþA3m2

π;vs

þA4a2þA5mπ

�
1−

2

mπL

�
e−mπL;

ðA3Þ
where we have used a chiral extrapolation linear in mπ and
mloop ¼ mK [78,80–82]. For the volume correction we refer
to Ref. [83]. From the global fit formula (A3), for example,
in the continuum limit at Q2 ¼ 0.25 GeV2, we obtain
Gs

Mjphys ¼ −0.018ð4Þ, A1 ¼ 0.04ð3Þ, A2 ¼ −0.18ð12Þ,
A3 ¼ −1.27ð84Þ, A4 ¼ 0.008ð6Þ, and A5 ¼ 0.04ð5Þ with
χ2=d:o:f: ¼ 1.13. From the values of the parameters in the
global fit formula (A3), it is seen that the quark mass
dependencies play an important role in calculatingGs

MðQ2Þ
at the physical point. A 9% systematic uncertainty from the
model-independent z–expansion and an uncertainty from
the empirical fit formula have been included as discussed in
[5]. We obtain systematics from the global fit formula by
replacing the volume correction by e−mπL only and also by
adding a mπ;vs term in the fit and include the difference in
the systematics of the global fit results.
More details about the lattice analysis can be found in

Refs. [5,7].

APPENDIX B: THE VECTOR MESON
TRAJECTORIES IN LFHQCD

The meson spectrum in LFHQCD is given by [13,33]

M2 ¼ 4λ

�
nþ Lþ J

2

�
þ ΔM2½m1; m2�; ðB1Þ

where the squared mass shift ΔM2½m1; m2� incorporates the
effect from finite light quark masses. Following the
procedure discussed in Refs. [13,33], one can add a

correction term of the invariant mass
P

i
m2

i
xi

to the LF
kinetic energy in the LF Hamiltonian, and leave, as a first
approximation, the LF transverse potential unchanged. The
resulting LF eigenfunction is then modified by the factor

e−
1
2λ

P
i

m2
i

xi by performing a Lorentz frame-invariant substi-
tution in the LFWF [84]. This leads, for a hadron with two
constituents of mass m1 and m2, to the correction of the
quadratic mass spectra by the term:

ΔM2½m1; m2� ¼
1

N

Z
1

0

dx

�
m2

1

x
þ m2

2

1 − x

�
e−

1
λð

m2
1
x þ

m2
2

1−xÞ;

Nm ¼
Z

1

0

dxe−
1
λð

m2
1
x þ

m2
2

1−xÞ; ðB2Þ

where the mi are effective quark masses.
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The longitudinal confinement dynamics in presence of
quark masses has also been discussed in Refs. [85,86]. In
[86] a specific longitudinal confinement potential is intro-
duced by extending the transverse holographic potential
while maintaining rotational invariance in the heavy quark
limit. The approaches of Refs. [13,86] lead to very similar
results for the ground state distribution amplitudes.
For vector mesons in the lowest radial excitation one

obtains from (B1):

M2 ¼ 4λ

�
J −

1

2

�
þ ΔM2½m1; m2�; ðB3Þ

from which one deduces the Regge trajectory:

αðtÞ ¼ α0tþ αð0Þ; ðB4Þ

with slope α0 and intercept αð0Þ given by

α0 ¼ 1

4λ
; αð0Þ ¼ 1

2
−

1

4λ
ΔM2½m1; m2�: ðB5Þ

The QCD scale
ffiffiffi
λ

p ¼ κ is determined from the spectra in
all light hadronic channels and it is remarkably independent
of the channel (mesonic and hadronic) [33]. Its value isffiffiffi
λ

p ¼ κ ¼ 0.523 GeV, with a standard deviation of
0.024 GeV. Therefore, for mesons consisting of light
quarks the Regge slope is universal, α0 ¼ 1

4λ. In contrast,
the intercept αð0Þ depends on the effective quark masses,

see (B5). Using the measured values of the pion and kaon
masses one obtains from Mπ ¼ ΔM2½mq;mq̄� and MK ¼
ΔM2½mq;ms̄� the values mq ¼ mu ¼ md ¼ 46 MeV and
ms ¼ 357 MeV for the effective quark masses of the light
quarks [13,33]. With these values for the effective quark
masses one obtains the intercept of the ρ, ϕ and K�
trajectories

αρð0Þ ¼
1

2
−
m2

π

4λ
; ðB6Þ

αϕð0Þ ¼
1

2
−
ΔM2½ms;ms̄�

4λ
; ðB7Þ

αK� ð0Þ ¼ 1

2
−
m2

K

4λ
: ðB8Þ

Here it was taken into account that the ϕ meson is nearly a
pure ss̄ state [65].
Using the mass shift Eq. (B2) we find ΔM2½ms;ms̄�=

λ ¼ 2.16� 0.20. This value is slightly larger than the value
1.96 extracted from the combined spectral fit in Sec. IVA,
but agrees with it even within the statistical errors. As final
values for the intercepts from LFHQCD we obtain the
intercept values αρð0Þ ¼ 0.482� 0.002, αϕð0Þ ¼ −0.04�
0.05 and αK� ð0Þ ¼ 0.275� 0.020, to be compared with
the fitted values from the spectra αϕð0Þ ¼ 0.01 and
αK� ð0Þ ¼ 0.273.
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