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We estimate the electrical and thermal conductivities of hot and dense hadronic matter in the relaxation
time approximation of the Boltzmann equation. We estimate the thermodynamical quantities of hot and
dense hadronic matter within the ambit of the excluded volume hadron resonance gas model. The
relaxation time for all the hadrons is estimated assuming the constant cross section with uniform as well as
mass dependent hard-core radius. We compare our results with various existing results. Finally we give an
estimate of electrical and thermal conductivities in the context of heavy ion collision experiments.
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I. INTRODUCTION

Transport coefficients of hot and dense matter are one of
the challenging contemporary research interests, particu-
larly in the field of strong interaction physics. These are
interesting quantities for several reasons. For many physi-
cal systems, through their dependences on system param-
eters like temperature, chemical potential can reveal the
location of the phase transition in the phase diagram. In the
context of heavy ion collisions (HICs), the matter produced
in the fireball after a collision, with quarks and gluons
degrees of freedom, behaves like a strongly interacting
liquid, with a small shear viscosity it expands, cools, and
undergoes a crossover transition to hadronic degrees of
freedom, which finally free stream to the detector. One of
the successful descriptions of such an evolution is through
dissipative relativistic hydrodynamics [1–9] and transport
simulations [10–17]. Finite but small shear viscosity (η) to
entropy (s) ratio is necessary to explain the flow data
[18,19]. The smallness of this ratio η

s and its connection to
the conjectured Kovtun-Son-Starinets bound of η

s ¼ 1
4π

obtained using AdS=CFT correspondence [20] has moti-
vated many theoretical investigations of this ratio to
understand and derive rigorously from a microscopic
theory [21–29]. The other viscosity coefficient ζ has also
been realized to be important to be included the dissipative
hydrodynamics. During the expansion of the fireball, when

the temperature approaches the critical temperature, ζ can
be large and give rise to different interesting phenomena,
like cavitation when the pressure vanishes, and hydro-
dynamic description breaks down [30,31]. The effect of
bulk viscosity on the particle spectra and flow coefficients
has been investigated [32–34], while the interplay of shear
and bulk viscosity coefficients have been studied in
Refs. [35–37]. The coefficient of bulk viscosity has been
estimated for both the hadronic and partonic systems
[38–50]. In the case of noncentral and asymmetric HICs,
a large magnetic field as well as electric field is expected
to be produced [51,52]. The event by event analysis for
the relativistic heavy ion collision system indicates the
generation of the magnetic field of the order of eB ≃m2

π as
well as the electric field eE ≃m2

π . The strong magnetic field
so produced has exciting possibilities of observing CP
violating effects, known as the chiral magnetic and chiral
vortical effects. Apart from these, there have been other
dynamical manifestations of such strong fields on other
observables, like an increase in the elliptical flow coef-
ficient. However, all these interesting and important effects
in off central heavy ion collisions require that a reasonably
strong magnetic field survives for at least several Fermi
proper time. Initially it was thought that the magnetic field
decays rapidly after the collision [53]. It was later pointed
out that the rapid decrease in the magnetic field leads to
induced electric current that slows down the decrease of the
magnetic field and satisfies a diffusion equation [54,55].
The crucial parameter that goes in to the estimation of the
timescale of this diffusion is the electrical conductivity of
the medium σele. The time evolution of the magnetic field in
relativistic heavy ion collisions is still an open question.
This requires a proper estimate of the electrical conduc-
tivity of the medium as well as solutions of magneto-
hydrodynamic equations, which need further investigation
[54,56]. This apart, σele also enters in the hydrodynamic
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evolution, where charge relaxation also plays an important
role. This coefficient influences significantly the soft photon
production [57] as well as low mass dilepton enhance-
ment [58].
Several groups have studied the electrical conductivity,

including the chiral perturbation theory [59], the numerical
solution of the Boltzmann equation [60,61], holography
[62], transport models [63,64], Dyson Schwinger calcu-
lations [65], a dynamical quasiparticle model [66,67], a
quasiparticle model [29,68], the effective fugacity quasi-
particle model [69], and lattice gauge theory [70–76]. All
these studies aim at the value of σel in the quark gluon
plasma (QGP) phase, but some of these do extend below
the transition temperature towards the hadron gas. Despite
the importance of electrical conductivity, it has rarely been
studied in the literature for the hadronic phase. Recently, σel
has been investigated for a pion gas [77] and a hot hadron
gas [78–80]. It has also been studied in the framework of
the Polyakov-Nambu-Jona-Lasinio model [81] and the
Polyakov-Quark-Meson (PQM) model [82].
The transport coefficient that plays an important role in

the hydrodynamic evolution at finite baryon densities is the
coefficient of thermal conductivity (κ). The effects of
thermal conductivity in the relativistic hydrodynamics
has been recently emphasized in Refs. [83,84]. The thermal
conduction, which involves relative flow of energy and
baryon number, vanishes at zero baryon density. However,
for situations, where, e.g., the pion number is conserved,
particularly at low temperatures, heat conductivity can be
sustained by pions which themselves have zero baryon
number [21]. Recently, thermal conductivity has been
studied for pionic medium by different groups [21,22,
39,85–87]. The heat conductivity was also obtained using
the Kubo formula [41,88,89] and Nambu-Jona-Lasinio
(NJL) model [67,90]. Heat conductivity has been inves-
tigated recently in a transport model [16] and a PQM
coupling model [91].
We might note here that it is of practical as well as

fundamental importance to estimate the transport coeffi-
cients also in the hadronic phase to distinguish the
signatures of QGP matter and hadronic matter. These
coefficients can be estimated directly within QCD using
Kubo formulation. However, as QCD is strongly coupled
for the energies accessible in heavy ion collision experi-
ments, the task is very nontrivial. First principle calcula-
tions like lattice QCD simulation are also challenging and
are limited to equilibrium properties at small chemical
potentials. These coefficients therefore have been estimated
within various effective models for strong interaction as
well as various approximations in the estimation.
In the present work we intend to estimate the coefficients

of electrical conductivity and thermal conductivity for
the hadronic phase within the ambit of a hadron resonance
gas model (HRGM). The HRG model, which successfully
describes the hadronic phase with the multiplicities of

particle abundances of various hadrons in heavy ion
collisions [92–94], is assumed to be a free gas of all
observed hadrons and their resonances treated as point
particles. As shown in Ref. [95], this is a reasonable way
to include attractive interaction among hadrons. Apart from
hadronic multiplicities, this model has been used to
estimate viscosity coefficients [43,96–99] as well as the
study of fluctuations in conserved charges in HIC experi-
ments [100,101]. However, the simple HRGM misses the
repulsive interactions among hadrons, the existence of
which is already known from nucleon-nucleon scattering
experiments. Such repulsive interactions can be imple-
mented via an excluded volume approximation, whereby
the volume available for the hadrons to move is reduced
by the volume they occupy [102–104]. This HRGM with
excluded volume (EHRGM) [96,99,105–107] corrections
has been found to be in good agreement with lattice QCD
results up to temperature T ∼ 140 MeV. The model has
also been used to estimate the viscosity coefficients using
relaxation time approximation for solving the relativistic
Boltzmann kinetic equation [99]. We use here a similar
approximation to estimate the electrical and thermal con-
ductivities of hadronic matter.
We organize the paper as follows. In Sec. II, we recapitu-

late the excluded volume hadron resonance gas model. In
Sec. III, we compute the electrical and thermal conductivi-
ties using the relativistic Boltzmann equation in relaxation
time approximation relevant for multicomponent hadronic
medium. In Sec. IV, we calculate the relaxation time in the
limit of isotropic constant scattering cross section for the
hadrons. In Sec. V, we discuss our results and finally, in
Sec. VI, we summarize findings of the present investigation.

II. EXCLUDED VOLUME HADRON
RESONANCE GAS MODEL

As we have discussed in the Introduction, hadrons
cannot be considered as point particles. The repulsive
interactions can be taken into account between hadrons
via an excluded volume approximation or van der Waals
treatment. The thermodynamic pressure is related to the
partition function as

Pid ¼ T lim
V→∞

lnZidðT; μ; VÞ
V

; ð1Þ

where T is temperature, μ is chemical potential, and V is
volume of the system. In thermodynamically consistent
excluded volume formulation, one can obtain the transcen-
dental equation for the pressure as [107,108]

PEVðT; μÞ ¼ PidðT; μ̃Þ; ð2Þ

where μ̃ ¼ μ − vPEVðT; μÞ is an effective chemical poten-
tial with v as the parameter corresponding to the proper
volume of the particle. At high temperature and low
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densities this prescription is equivalent to multiplying a
suppression factor of expð−vPEV=TÞ to the pressure in the
Boltzmann approximation. Therefore, the pressure in
excluded volume hadron resonance gas model becomes

PEVðT; μÞ ¼ e
−vPEV ðT;μÞ

T PidðT; μÞ; ð3Þ
where Pid in the Boltzmann approximation can be
written as

PidðT; μÞ ¼
X
a

ga
2π2

m2
aT2K2

�
ma

T

�
cosh

�
μ

T

�
; ð4Þ

where ga is the degeneracy of ath hadron species. Other
thermodynamical quantities can be readily obtained from
Eq. (2) by taking appropriate derivatives. The number
density, energy density, and entropy density, respectively,
can be written as [107]

nEVðT; μÞ ¼
X
a

nida ðT; μ̃Þ
1þP

avan
id
a ðT; μ̃Þ

; ð5Þ

ϵEVðT; μÞ ¼
X
a

ϵida ðT; μ̃Þ
1þP

avan
id
a ðT; μ̃Þ

; ð6Þ

sEVðT; μÞ ¼
X
a

sida ðT; μ̃Þ
1þP

avan
id
a ðT; μ̃Þ

: ð7Þ

Again in the Boltzmann approximation all the
thermodynamical quantities are multiplied by the factor
expð−vPEV=TÞ. But unlike pressure there is an additional
factor 1

1þ
P

a
vanaðT;μ̃Þ

, which suppresses the thermodynam-

ical quantities at high temperature as compared to their
ideal gas counterpart. Once the thermodynamic quantities
are estimated, we can calculate the electrical and thermal
conductivities using the EHRGM model.

III. TRANSPORT COEFFICIENTS IN
RELAXATION TIME
APPROXIMATION

A. Electrical conductivity

The electric conductivity (σele) represents the response of
the system to an applied electric field,

j ¼ σeleE: ð8Þ
We start our calculation from the relativistic Boltzmann
transport (RBT) equation. In the presence of an external
field, the RBT equation can be written as [109,110]

kμ∂μfaðx; kÞ þ qaFαβkβ
∂
∂kα faðx; kÞ ¼ Ca½fa�; ð9Þ

where Fαβ is the electromagnetic field strength tensor and
Ca½fa� is the collision integral. Here we have introduced the

index a on the distribution function for the hadronic
species. The relaxation time approximation (RTA) is the
simplest scheme to approximate the collision term Ca½fa�,
which is given by

Ca½fa� ≃ −
kμuμ
τa

δfa; ð10Þ

where uμ ¼ ð1; 0Þ is the fluid four velocity in the local rest
frame and τa is the relaxation time, which estimates the
timescale for the system to relax towards the equilibrium
state. δfa ¼ fa − f0a, where we assume that the distribution
function fa is very close to the equilibrium distribution f0a
and can be written for deviation in linear order as [61]

faðx;kÞ ¼ f0aðx;kÞð1þ φðx;kÞÞ ¼ f0a þ δfa; ð11Þ

where φ (jφj ≪ 1) is the perturbation. The equilibrium
particle distribution function is

f0aðx;kÞ ¼
1

eðEa−μaÞ=T � 1
; Ea ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

a

q
; ð12Þ

where � in the denominator corresponds to fermion and
boson, respectively; μa ¼ taμ, ta being the baryonic charge
of the hadronic species a. For constant electric field E,
Eq. (9) becomes

qa

�
k0E ·

∂f0a
∂k þE · k

∂f0a
∂k0

�
¼ −

k0

τa
δfa: ð13Þ

After solving, one can get δfa for the case when φ ≪ f0a as

δfa ¼
qaτa
T

E ·
k
k0

f0að1� f0aÞ: ð14Þ

The electric four current (jμ) can be written as

jμ ¼
X
a

qaga

Z
d3k

ð2πÞ3Ea
kμfaðx; kÞ; ð15Þ

where qaðq̄aÞ and faðx; kÞðf̄aðx; kÞ) are the charge and
distribution functions for particles (antiparticles) a. After
applying an external disturbance, jμ ¼ jμ0 þ Δjμ, four
current becomes

Δjμ ¼
X
a

qaga

Z
d3k

ð2πÞ3Ea
kμδfa: ð16Þ

Considering the definition of electrical conductivity and
substituting δfa into that, we get

σele ¼
1

3T

X
a

gaq2a

Z
d3k
ð2πÞ3

k2

E2
a
τa × f0að1� f0aÞ: ð17Þ
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In the Boltzmann approximation, the above equation can be
written as

σele ¼
1

3T

X
a

gaq2a

Z
d3k
ð2πÞ3

k2

E2
a
τa × f0a: ð18Þ

B. Thermal conductivity

Thermal conductivity κ is interesting to study, as it
describes the heat flow in interacting systems [111,112].
Recently it has reattained interest in the context of
relativistic HICs [16,113]. We will start our calculations
from the RBT equation. In the absence of external field,
Eq. (9) can be written as [114]

kμ∂μfaðx; kÞ ¼ −
kμuμ
τa

δfa: ð19Þ

We start our calculation from the energy momentum tensor
ðTμνÞ and the baryonic four current ðjμÞ, which are,
respectively, given by [21,114]

Tμν ¼
X
a

ga

Z
d3k

ð2πÞ3Ea
kμkνfaðx; kÞ ð20Þ

and

Jμ ¼
X
a

gata

Z
d3k

ð2πÞ3Ea
kμfaðx; kÞ; ð21Þ

where, as before, ta and ga are, respectively, the charge and
the degeneracy of hadronic species a. In the presence of a
small disturbance from the equilibrium distribution func-
tion, the change in energy momentum tensor ΔTμν can be
written as

ΔTμν ¼
X
a

ga

Z
d3k

ð2πÞ3Ea
kμkνδfaðx; kÞ: ð22Þ

Using the RTA, ΔTμν becomes [114]

ΔTμν ¼ −
X
a

ga

Z
d3k

ð2πÞ3Ea

kμkν

k:u
τakα∂αfaðx; kÞ ð23Þ

and the change in four current Δjμ becomes

Δjμ ¼
X
a

gata

Z
d3k

ð2πÞ3Ea

kμ

k:u
τakα∂αfaðx; kÞ; ð24Þ

where ∂μ ¼ uμDþ∇μ, and the convective derivatives
ðDT;Dμ; DuμÞ can be eliminated by using the relation

ðεþ PÞDuμ −∇μP ¼ 0; ð25Þ

Dnþ n∇μuμ ¼ 0: ð26Þ

After using the above relations, one can obtain [114]

ΔTμν ¼
X
a

ga

Z
d3k

ð2πÞ3Ea

kμkν

k:u
1

T

�
τaf0að1 − f0aÞ

×

�
k:u

�∂k
∂ε

�
n
∇αuα þ kαXα þ

kαkβ

k:u
∇αuβ

þ
�∂k
∂n

�
ε

∇αuα −
εþ P
n

kα

k:u
Xα

��
ð27Þ

and

Δjμ ¼
X
a

ga

Z
d3k

ð2πÞ3Ea

kμ

k:u
1

T

�
τaf0að1 − f0aÞ

×

�
k:u

�∂k
∂ε

�
n
∇αuα þ kαXα þ

kαkβ

k:u
∇αuβ

þ
�∂k
∂n

�
ε

∇αuα −
εþ P
n

kα

k:u
Xα

��
; ð28Þ

where

Xα ¼
∇αP
εþ P

−
∇αT
T

; ð29Þ

and uμ ¼ ð1; 0Þ. ε and n are the energy density and baryon
number density. The momentum conservation shows that
∇P ¼ 0 [where ∇P ¼ ðεþ PÞ∂u=∂t] in the steady state.
Thermal conduction, which involves the relative flow of
energy, arises when energy flows relative to the baryonic
enthalpy. The T0i component is the energy flux and with the

Eckart condition, T0i ¼ ΔT0i − ðεþPÞ
n Δji ≡ Ii, where Ii is

the heat current with

ΔT0i ¼
X
a

ga

Z
d3k
ð2πÞ3

k2

3T
τaf0að1 − f0aÞ

�
1 −

εþ P
nEa

�
Xi

ð30Þ
and

Δji¼
X
a

taga

Z
d3k

ð2πÞ3Ea

k2

3T
τaf0að1−f0aÞ

�
1−

εþP
nEa

�
Xi:

ð31Þ

Using either the Eckart or Landau-Lifshitz condition, one
can define the heat conductivity as [114]

Ii ¼ −κ½∂iT − T∂iP=ðεþ PÞ� ¼ κTXi: ð32Þ
Using Eqs. (30) and (31), one can obtain the expression for
thermal conductivity as

κ ¼ 1

3T2

X
a

gaτa

Z
d3k
ð2πÞ3

k2

E2
a
f0að1 − f0aÞ

�
Ea −

taω
n

�
2

;

ð33Þ
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where ω ¼ εþ P is the enthalpy and ta is the baryonic
charge of hadronic species a. For the baryonic matter and
low temperature, the antiparticle contribution in the above
sum can be neglected, as the temperatures are much smaller
compared to the masses of the baryons. Since we will work
in the Boltzmann approximation, the expression for thermal
conductivity can be written as

κ ¼ 1

3T2

X
a

gaτa

Z
d3k
ð2πÞ3

k2

E2
a
f0a

�
Ea −

taω
n

�
2

: ð34Þ

IV. RELAXATION TIME

The relaxation time τa is defined by the expression [99]

τ−1ðEaÞ ¼
X
bcd

Z
d3pb

ð2πÞ3
d3pc

ð2πÞ3
d3pd

ð2πÞ3 Wða; b → c; dÞf0b;

ð35Þ
where Wða; b → c; dÞ is the transition rate,

Wða; b → c; dÞ ¼ ð2πÞ4δðpa þ pb − pc − pdÞ
2Ea2Eb2Ec2Ed

jMj2;

ð36Þ
and jMj is the transition amplitude. Equation (35) can be
simplified in the center of mass frame as

τ−1ðEaÞ ¼
X
b

Z
d3pb

ð2πÞ3 σabvabf
0
b; ð37Þ

where σab is the total scattering cross section for the
process, aðpaÞ þ bðpbÞ → aðpcÞ þ bðpdÞ, and vab is rela-
tivistic relative velocity. One can obtain the averaged partial
relaxation time by averaging the relaxation time over f0a,
which is rather a good approximation [115]. Thus, the
averaged relaxation time can be written as

τ̃−1a ¼
X
b

nbhσabvabi: ð38Þ

In the above, vab is the “relative velocity” defined by

vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa · pbÞ2 −m2

am2
b

q
EaEb

;

withpa,Ea being the four momentum and energy of particle
“a” and, with gb being the degeneracy of species “b,”

nb ¼
gb

ð2πÞ3
Z

d3pb

ð2πÞ3 f
0
b

is the equilibrium number density of bth hadronic species.
Hereweuse the equilibriumMaxwell-Boltzmanndistribution

f0a ¼ exp

�
−
Ea − μa

T

�
: ð39Þ

The thermal average of total cross section times relative
velocity, i.e., hσvi for the scattering of hard sphere particles of
the same species at a given T and μ (having constant cross
section, σ), can be calculated as outlined in Refs. [116,117].
The thermal average hσvi for the process aðpaÞ þ aðpbÞ →
aðpcÞ þ aðpdÞ can be written as

hσabvabi ¼
σ
R
d3pad3pbvabe−Ea=Te−Eb=TR
d3pad3pbe−Ea=Te−Eb=T

: ð40Þ

Note that, in the above, the chemical potential dependences
gets canceled from the numerator and the denominator, which
is a consequence of Boltzmann approximations for the
equilibrium thermal distribution function. After changing
the integration variable as discussed in detail in Ref. [99], the
numerator and denominator in Eq. (40) respectively become

Z
d3pad3pbvabe−Ea=Te−Eb=T

¼ 2π2T
Z

ds
ffiffiffi
s

p ðs − 4m2ÞK1ð
ffiffiffi
s

p
=TÞ ð41Þ

and

Z
d3pad3pbe−Ea=Te−Eb=T ¼ ½4πm2TK2ðm=TÞ�2: ð42Þ

Therefore, the thermal average hσabvabi can bewritten as [99]

hσabvabi¼
σ

8m4TK2
2ðm=TÞ

Z
∞

4m2

ds
ffiffiffi
s

p ðs−4m2ÞK1ð
ffiffiffi
s

p
=TÞ;

ð43Þ

where
ffiffiffi
s

p
is the center of mass energy and K1 (K2) is the

modified Bessel function of order 1 (2). For the case of
scattering between different species of the particles, Eq. (43)
becomes

hσabvabi ¼
σ

8Tm2
am2

bK2ðma
T ÞK2ðmb

T Þ

×
Z

∞

maþmb

ds
½s − ðma −mbÞ2�p

s

× ½s − ðma þmbÞ2�K1ð
p
s=TÞ: ð44Þ

After evaluating the thermal averaged cross section, we can
relate it to the relaxation time in Eq. (38).

V. RESULTS AND DISCUSSION

In the hadron resonance gas model, it is customary to
include all the hadrons and resonances up to certain cutoff
Λ. We choose cutoff Λ ¼ 2.25 GeV and include all the
mesons and baryons listed in Ref. [118]. The only
parameter that remains in our model is hard-core radius
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rh or the excluded volume parameter v. We choose two
different parametrization schemes, viz., uniform excluded
volume parameter ðv ¼ 16

3
πr3hÞ [96] and mass dependent

excluded volume parameter (v ¼ Mh
ϵ0
) [106]. Here ϵ0 is the

parameter that we fix to 2 GeV fm−3. Based on the
nucleon-nucleon scattering analysis [119], we choose uni-
form hard-core radius rh ¼ 0.3 fm.
Figure 1 shows the thermodynamical properties of

hadron gas estimated within the ambit of the EHRGM.
Figure 1(a) shows scaled pressure P=T4 at zero baryon
chemical potential for two different choices of hadron hard-
core radius rh ¼ 0.2 and rh ¼ 0.3 fm. We note that the
EHRGM estimates deviate from the lattice data at higher
temperature. The deviation is large for larger hard-core
radius. This is essentially due to the suppression factor
ð1þ vnEVÞ−1, which is large for higher rh. Figure 1(b)
shows the scaled interaction measure ðϵ − 3pÞ=T4. Again
the EHRGM estimates strongly deviate from the lattice data
at higher temperature. The rapid rise in the trace anomaly
cannot be explained within the EHRGM alone. But it has
been shown in Ref. [120] that, by including the Hagedorn
mass spectrum along with the discrete hadron spectrum in
the HRG model, the resulting excluded volume model
reproduces the lattice data up to 160 MeVat μ ¼ 0. Similar
studies extended to include finite baryon chemical potential
confirm this result [121]. Note that we will not include the
Hagedorn states in our calculations since their quantum
numbers, especially the electric charges, are not known
experimentally.
In Fig. 2, we show the dimensionless electrical con-

ductivity (σele=T) as a function of temperature at zero
chemical potential. We have compared our results with the
various results that exist in the literature. The red dashed
line shows the results of the conformal Super-Yang-Mills

(SYM) plasma [122]. The red open circles represent the
data from lattice QCD calculation [123]. However, the
hadronic interactions are missing in the lattice calculation.
The violet dotted line represents the nonconformal holo-
graphic model [62,124]. The cyan dashed line represents
chiral perturbation theory (CPT) results [77]. The blue
solid line shows the kinetic theory results [79]. The
magenta curve shows our results for the uniform excluded
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FIG. 1. Thermodynamical functions, pressure (a) and trace anomaly (b), at zero chemical potential.
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volume parameter ðv ¼ 16
3
πr3hÞ, while the maroon curve

corresponds to the mass dependent excluded volume
parameter (v ¼ Mh

ϵ0
). The behavior of σele=T with temper-

ature from the CPT and kinetic theory results are similar
to our results, although there is a difference in magnitude
of electrical conductivity. The magnitude of electrical
conductivity is higher in the model as compared to other
results, especially the kinetic theory estimations of
Ref. [79] with Breit-Wigner (BW) crosssections.
However, this is not so surprising. The basic reason
behind higher conductivity in our model is the smaller
cross section. In the case of the uniform excluded volume
parameter, the cross sections ∼10 mb for all the hadronic
species, while in Ref. [79] different cross sections are
assumed for different species and the values of the cross
section are relatively large. Since the conductivity is
inversely proportional to the cross section (through
relaxation time τ), its estimation turns out to be large
in our model. However, it may be noted that assigning
hard-core radius to all the hadrons may not be the correct
way to account for the repulsive interactions within the
noninteracting HRG model. One possible improvement
one can do to this model is to assign repulsive interactions
only between baryons and antibaryons, while mesons are
kept noninteracting [125]. Estimating the transport coef-
ficients within this model is under progress and will
appear elsewhere.
In Fig. 3 we show the variation of electrical conductivity

with temperature for different chemical potentials, μ ¼ 0.1,
0.2, and 0.3 GeV. Figure 3(a) corresponds to the uniform
excluded volume parameter, while Fig. 3(b) corresponds to
the mass dependent excluded volume parameter. We note

that the electrical conductivity increases with the increase
in chemical potential, although the general behavior as a
function of temperature does not change. This behavior is
not hard to understand. In Eq. (40), while the cross section
is independent of both μ and T, the thermally averaged
cross section times the relative velocity hσvi is, in general,
dependent on both T and μ arising from the distribution
functions. However, in the Boltzmann approximation, the μ
dependence gets canceled from the numerator and the
denominator. On the other hand, for the thermal averaged
cross section times the relative velocity or the inverse of
scattering length, given by hσviabnb [Eq. (38)], will be an
increasing function of μ if species b is a baryon. So this will
lead to the relaxation time being a decreasing function of μ.
In the expression for the σele, τa is multiplied by a
distribution function, which again is an increasing function
of μ when species a is a baryon. Thus, the contribution to
σele from, say, a baryon will depend upon which of the two
parts τa (a decreasing function of μ) and the distribution
function f0 (which is an increasing function of μ) dominate
the variation with μ. It turns out that, for baryons, the
dominant contribution to the relaxation time arises from
the baryon scattering with mesons and in that case the
corresponding average cross section or, equivalently, the
relaxation time is independent of μ. Therefore, the μ
variation of the corresponding contribution of the baryon
to σele is an increasing function of μ.
From Fig. 3 it is clear that the σele=T ratio is higher for

the mass dependent excluded volume parameter case as
compared to the uniform excluded volume parameter case
for the different values of chemical potential, although the
general behavior of the ratio is similar as a function of
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temperature. This behavior may be the reflection of the fact
that, while the cross section in the case of the uniform hard-
core excluded volume parameter is ∼10 mb, the same in
mass dependent parametrization varies from 3 mb for pions
to 10 mb for protons. Thus, the smaller cross section
leads to a larger relaxation time and therefore results in a
larger electrical conductivity.
In Fig. 4 we show the variation of thermal conductivity

with temperature for μ ¼ 0.1, 0.2, and 0.3 GeV. We note
that the thermal conductivity decreases with increase in
temperature. Further, at given a temperature, κ=T2 is always
larger for higher chemical potential. The coefficient of
thermal conductivity depends on three factors, viz., the
relaxation time τ̃, the distribution function f0, and the
quantity w=n [see Eq. (34)]. Although the relaxation time
decreases with μ, f0 and w=n increase with increase in
chemical potential. It turns out that the latter wins over the
former and the overall effect is to increase κ with μ. We
further note that the magnitude of κ=T2 in the uniform
excluded volume scheme is smaller than that of the mass
dependent one. This observation can again be attributed to
the fact that the cross section in the former parametrization
is relatively larger than that of the latter.
In order to make the connection with the heavy ion

collision experiments, we need the beam energy dependence
(

ffiffiffi
s

p
) of the electrical and thermal conductivities. This is

extracted from a statistical thermal model description of the
particle yield at various

ffiffiffi
s

p
[126]. TðμÞ is parametrized by

TðμÞ ¼ a − bμ2 − cμ4, with a ¼ 0.166� 0.002 GeV, b ¼
0.139� 0.016 GeV−1, and c ¼ 0.053� 0.021 GeV−3. The
energy dependence of the baryon chemical potential is para-
metrized as μ¼d=ð1þe

ffiffiffi
s

p Þ, where, d¼1.308�0.028GeV
and e¼0.273�0.008GeV−1 [126]. In Fig. 5(a), we have

shown the variation of electrical (σele=T) conductivity with
the center of mass energy (

ffiffiffi
s

p
). We note that the electrical

conductivity first decreases along the freeze-out line with
increasing collision energy and then attains almost constant
value at large

ffiffiffi
s

p
for both the uniform excluded volume

parameter (v ¼ 16
3
πr3h) and mass dependent excluded vol-

ume parameter case (v ¼ Mh
ϵ0
). This is reasonable because

low
ffiffiffi
s

p
corresponds to low temperature and high chemical

potential along the freeze-out curve, at which electrical
conductivity is larger. We can conclude that along the freeze-
out line electrical conductivity of the hadron gas does not
change.
In Fig. 5(b) we have shown the variation of thermal

conductivity (κ=T2) with
ffiffiffi
s

p
. We observe that thermal

conductivity first decreases at small values of
ffiffiffi
s

p
, then

decreases slowly, becomes minimum, and finally increases
at its larger values for both the uniform excluded volume
parameter and mass dependent excluded volume parameter
case. This can be understood from the expression for
thermal conductivity as given in Eq. (34). In order to
discuss Fig. 5(b), we can approximate μ, T to be much
smaller than the masses of the baryons. In that case, we
have ω ¼ ϵþ p ≃ nðmþ TÞ, where the baryon number
density is given by

n ¼ 2g

�
mT
2π

�
3=2

e−βm sinhðβμÞ; ð45Þ

so that the factor ðEa − ω
nÞ2 in Eq. (34) becomes

≃ðEa −
ðmþTÞT

2μ Þ2. Therefore, as μ increases, the second
term in the parentheses decreases, leading to an increase
of the thermal conductivity as seen in Figs. 4 and 5.
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However, as μ becomes vanishingly small, the second term
dominates over the first term and diverges for μ ¼ 0.
Therefore, κ=T2 will show a minimum as a function offfiffiffi
s

p
as seen in Fig. 5(b). Similar to the electrical conduc-

tivity, the value of κ=T2 is also more with the mass
dependent excluded volume parameter case as compared
to the case of the uniform excluded volume parameter for
all the values of

ffiffiffi
s

p
except for its small values.

VI. SUMMARY

We have studied the electrical and thermal conductivity
of hot and dense hadron gas by using the Boltzmann
equation in the relaxation time approximation. First we
have estimated the relaxation time for all the hadrons by
assuming the constant cross section. Here we have used the
hadron resonance gas model, where the repulsive inter-
actions are parametrized through excluded volume correc-
tions in the ideal hadron resonance gas. We choose the
uniform excluded volume and mass dependent excluded
volume parametrization scheme. We have included all the
hadrons and their resonances with mass cutoff 2.25 GeV.
Here we take rh ¼ 0.3 fm for hadrons. We have compared
our results for both the mass dependent excluded volume
parameter and the uniform excluded volume parameter case
with various existing results. We found that the magnitude
of electrical conductivity is higher in our case as compared

to these existing results and is more for the mass dependent
excluded volume parameter case as compared to the case of
the uniform excluded volume parameter. We have shown
the behavior of the electrical and thermal conductivity with
temperature for different values of the chemical potential.
We found that electrical and thermal conductivity increases
with increase in chemical potential. The increase in
electrical and thermal conductivity is more for the mass
dependent excluded volume parameter case as compared to
the case of the uniform excluded volume parameter.
Further, we have shown the variation of electrical

(σele=T) and thermal (κ=T2) conductivity with the collision
energy (

ffiffiffi
s

p
). We found that electrical conductivity first

decreases at small values of
ffiffiffi
s

p
and then remains almost

constant at its larger value for both the case of the uniform
excluded volume parameter and the mass dependent
excluded volume parameter. Thus, we can conclude that
electric conductive behavior of hadrons remains same
along the freeze-out line. On the other hand, thermal
conductivity first decreases with

ffiffiffi
s

p
, attains minimum,

and then increases very slowly.
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