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We show that the behavior of the excitation curves of some eþe− annihilation processes close to the
nucleon-antinucleon threshold can be explained either by the ρð1900Þ resonance itself or by its interference
with other resonances. Besides the six-pion annihilation and the eþe− → KþK−πþπ− and eþe− → ϕπ0

processes, we also analyze the final states ηπþπ−, KþK−πþπ−π0, and KþK−π0π0, the behavior of which
around 1.9 GeV has not yet attracted attention. Analysis of the data on the eþe− → pp̄ and eþe− → nn̄
reactions clearly shows that the ρð1900Þ resides above the nn̄ threshold.
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I. INTRODUCTION

Interesting phenomena have been observed in many
experiments when the invariant energy

ffiffiffi
s

p
of the final

system or its subsystem reaches the vicinity of 1.9 GeV
(which is the energy very close to the NN̄ thresholds). The
aim of this work is to show that all such phenomena have
their origins in the narrow ρ-like resonance ρð1900Þ, which
has not found its way into the Particle Data Group (PDG)
[1] summary tables but is mentioned in their particle
listings.
Most of the data pointing to the role of the ρð1900Þ

resonance represent the cross section for the eþe− annihi-
lation into various final states. This is the class of processes
we concentrate on in this work. Examples of other
processes include the photoproduction of mesonic systems
and the decays of quarkonia and heavy mesons.
Hints about a possible role of the ρð1900Þ resonance in

the eþe− annihilation into various final states have
appeared in the papers by the Novosibirsk theory group
[2–4]. But the limited accuracy of the data they fitted
allowed only vague determination of the resonance param-
eters and did not reveal detailed behavior of the cross
section in the vicinity of

ffiffiffi
s

p ¼ 1.9 GeV.
The tools we use when fitting the cross-section data to

various processes and determining the parameters of
resonances are the models described in Sec. II. For the
final states with more than four particles, we use the

statistical (phase-space) model. Otherwise, we use models
based on the interaction Lagrangians pertinent for a
particular process. All models are supplemented with the
vector-meson dominance (VMD) hypothesis [5] specifying
the coupling of the hadronic system to the virtual photon.
We also analyze data in which the authors already found

optimal resonance parameters. Our endeavor is to describe,
using the same model, the data coming from various
experiments, so we are better able to compare their results.
Let us mention several experiments in which special

behavior around 1.9 GeV has been observed.
In the 1980s the magnetic detector experiments DM1

and DM2 at the Orsay storage ring DCI investigated the
eþe− annihilation into six pions. The eþe− → 3ðπþπ−Þ
cross section measured by the DM1 detector was published
in 1981 [6]. A later experiment, DM2, investigated the
3ðπþπ−Þ and 2ðπþπ−π0Þ final states, where the authors
discovered a dip at about 1.9 GeV. Unfortunately, their data
have not been published in any journal. They became a part
of the thesis by Schioppa [7] and were included in the
compilation by Whalley [8]. They were also presented at a
meeting in 1988 [9]. The combined data from the DM1 and
DM2 experiments were used in a paper by Clegg and
Donnachie [10]. The salient feature of the excitation curve
(Fig. 2 in [10]) is a narrow dip at

ffiffiffi
s

p
≈ 1.9 GeV. The

authors of [10] explained this structure as a consequence of
the separation of two peaks formed by two (for some
reason) noninterfering resonances. The quality of the fit
depended on the assumed isospin symmetry states in the
3ðπþπ−Þ and 2ðπþπ−π0Þ processes. The best fit was
characterized by χ2 ¼ 58.0 for the number of degrees of
freedom (NDF) equal to 46, which implies a confidence
level (C.L.) of 11.0%. We show in Sec. III A 4 that a much
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better fit quality is achieved if the dip is described as a result
of the destructive interference of a narrow resonance with a
broader resonance. The parameters of the narrow resonance
qualify it as the ρð1900Þ. The latter is known from several
experiments, which are listed and analyzed in Sec. III.
In 1994, a dedicated experiment performed at the Low

Energy Antiproton Ring (LEAR) at CERN [11] determined
the electromagnetic proton form factors by measuring
the total and differential cross sections of the reaction
pp̄ → eþe−. A steep s dependence of the form factors
close to the threshold was found.
The existence of a narrow resonance with a mass close

to the NN̄ threshold was suggested by the FENICE
Collaboration while working at the Frascati eþe− storage
ring ADONE from 1991–1993. They explained [12], in a
paper published in 1996, that such a resonance interfering
with the background given by broad resonances can generate
a dip in the multihadronic cross section just below the NN̄
threshold, which they observed. Two years later, the steep
rise of the proton form factor was attributed to the same
resonance [13]. FENICE’s estimate of the resonance param-
eters was M¼ð1.87�0.01ÞGeV, Γ ¼ ð10� 5Þ MeV.
In 2001, the E687 Collaboration discovered a narrow

dip structure in the 3πþ3π− diffractive photoproduction
on a Be target [14] while working at FNAL. Later, the
E687 data were refitted, and the parameters of the reso-
nance producing the dip by the destructive interference
were specified more precisely [M ¼ ð1910� 10Þ MeV,
Γ ¼ ð37� 13Þ MeV] [15].
The BABAR experiment [16] (re)discovered the dip in

the cross sections of the eþe− → 3ðπþπ−Þ and eþe− →
2ðπþπ−π0Þ processes in 2006 and determined the param-
eters of the resonance which generates them. The details
will be given in Sec. III A.
The cross section of the process eþe− → ϕπ0 appeared

among other results from the BABAR experiment in
Ref. [17] published in 2008. The ρð1900Þ resonance is
visible as a clear isolated peak. In Sec. III B, we present
BABAR’s results and our fits together with their graphical
representation.
In 2012, the BABAR Collaboration completed their

eþe− → KþK−πþπ− program, which started in 2005
[18] and continued in 2007 [19]. In [20], they presented
the excitation curve in which a dip at

ffiffiffi
s

p ¼ 1.9 GeV is
visible. Our analysis in Sec. III E 1 shows that the data do
not require the involvement of ρð1900Þ but can accom-
modate it.
In 2013, the CMD-3 experiment [21] confirmed the

existence of a sharp drop of the eþe− → 3ðπþπ−Þ cross
section near the pp̄ threshold. In Sec. III A 1, we show that
their result can also be explained as a manifestation of the
ρð1900Þ resonance.
The idea that negative discontinuity in the cross

section of the eþe− → 6π processes at the NN̄ threshold
can be explained by the opening of annihilation channel

eþe− → NN̄ appeared in Ref. [22]. A more detailed
attempt to understand the origin of the structures observed
in eþe− annihilation into multipion states as a pp̄ threshold
effect was published in 2015 [23]. An optical potential
simultaneously describing the experimental data for NN̄
scattering and eþe− annihilation to NN̄ and 6π close to the
threshold of NN̄ was proposed in Ref. [24].
The CMD-3 experiment [25] in 2016 measured the cross

section of the process eþe− → KþK−πþπ−. No conspicu-
ous dip is visible in the data, but we show in Sec. III E 2
that a better fit is achieved if the ρð1900Þ is taken into
consideration.
Three important experiments have appeared that measure

the cross section of eþe− → NN̄ at small energies: BABAR
[26], SND [27], and CMD-3 [28]. These experiments are
analyzed in Sec. III G by means of a simple and transparent
cross-section formula that follows from the ρNN and
γρ Lagrangians supplemented with the VMD. They show,
in unison, that the ρð1900Þ resonance lies above the nn̄
threshold.
A very recent contribution [29] reports on new,

more precise measurements of the eþe− → 3ðπþπ−Þ and
eþe− → KþK−πþπ− cross sections. The group working on
the CMD-3 experiment claims that the behavior of these
cross sections cannot be explained by the interference of
any resonance amplitude with continuum. They have not
published their data yet, so we can neither confirm nor
question their claim. The authors also stressed the corre-
lation of the observed drops with the pp̄ and nn̄ threshold.
We only remind that the correlation does not always mean
causality.
The processes, the behavior of which in the vicinity of

1.9 GeV has not yet been investigated, are analyzed in
Secs. III C, III D, and III F.

II. MODELS

A. Statistical model

For the processes with more than four mesons in the final
state, we evaluate the cross section using the statistical
model combined with the VMD,

σ ¼ 1

8s
jV0ðsÞj2

Z
ð2πÞ4δ4

�
P −

Xn
i¼1

pi

�
dΦn; ð1Þ

where

dΦn ¼
Yn
i¼1

d3pi

ð2πÞ32Ei
ð2Þ

is an element of n-body phase space, and

V0ðsÞ ¼
1

s

X
i

ri expfiδig
s −M2

i þ iMiΓi
ð3Þ
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is the photon propagator multiplied by the sum of the
propagators of the neutral vector-meson resonances. We
can put δ1 ¼ 0. The other δ’s are considered together with
all r’s, M’s, and Γ’s as free parameters.
The vector-meson propagators in (3) are chosen in a

simplified form, with constant decay widths and masses. It
is known [2,4,30] that the inverse propagator of a resonance
acquires boundary values of an analytic function, the
imaginary part of which is proportional to the total decay
width. Its real part is given by the dispersion relation that
follows from the unitarity.
Our formula (3) is thus an approximation, which can be

theoretically justified only for very narrow resonances. But,
as the comparison with publicly available data shows, it
works well. If the disagreement with data appears in the
future, a more correct formalism describing the propagators
of the resonances and also mixing of them [31] will have to
be considered.
As we show, the statistical model is quite successful in

describing the data. The reason probably lies in the large
number of possible intermediate states. The number of
corresponding Feynman diagrams is further multiplied by
the exchanges of all identical mesons in the final state.
When squaring the reaction amplitude, we also get, besides
the quadratic terms, many interference terms, and the
details of dynamics are smudged. So, replacing the ampli-
tude squared by a constant is, in this case, a good
approximation. The only nontrivial dynamics is then
represented by the VMD.

B. Lagrangian-based models

For the processes with fewer than five hadrons in the
final state considered in this paper, it is always possible to
identify the dominant intermediate state on the basis of the
conservation laws and experimental results. Then the
process can be described by a single Feynman diagram,
which is doubled if required by the identical boson
symmetrization. The standard Lagrangians (a useful survey
of them can be found, for example, in Ref. [32]) are used to
evaluate the sum of the amplitudes squared over the spin
states of the initial and final particles. This sum is then
inserted after the integration sign in Eq. (1). The product of
coupling constants can be absorbed into the parameters ri
in Eq. (3).
The quality of the fit is sometimes improved if an

exponential cutoff is applied,

FKIðsÞ ¼ exp

�
−
s − s0
48β2

�
; ð4Þ

where s is the square of the total invariant energy and s0 is
its threshold value. This cutoff is motivated by the results of
the chromoelectric flux-tube breaking model of Kokoski
and Isgur [33], according to which the strong interaction
vertices are modified by an energy-dependent cutoff.

Instead of applying the cutoff to each vertex, we introduce,
similarly to [34], a global cutoff (4). We consider βI ¼ 1=β
as a free parameter when fitting the excitation curve of a
particular process.
The exponential cutoff is a phenomenological tool which

mimics the decrease of the strong coupling constants with
the increasing momentum transfer squared, as expected on
the basis of results of the perturbative quantum chromo-
dynamics. In some cases, it may become counterproduc-
tive, as shown in Ref. [35].

C. Computing details

A substantial part of our computer codes, written in
Fortran, is the numerical minimization program
MINUIT [36] from the former CERN program library,
which is available now in most of the current Linux
distributions. The errors of the parameters that result from
the fits to data are the parabolic errors defined in [36]. The
phase-space integrals are evaluated by using the routine
GENBOD [37] from the former CERN library, rewritten to
double precision and furnished with a contemporary
random number generator. The algebraic manipulation
program REDUCE [38] was used to get the sum of the
amplitudes squared in the Lagrangian-based models.

III. EXPERIMENTS, FITS, AND RESONANCES

A. Six-pion final states

1. 3ðπ +π − Þ in the CMD-3 experiment

The clearest indication of the steep decrease of the
eþe− → 3ðπþπ−Þ cross section near the pp̄ threshold has
been provided by the CMD-3 (Cryogenic Magnetic
Detector) experiment at the VEPP-2000 eþe− collider in
Novosibirsk [21]. Recently, its original results have been
confirmed by more precise and detailed measurements
[29]. Unfortunately, the new data are not publicly available
yet. For that reason we have made a fit to the previous data
[21] using a statistical model combined with the VMD, as
described in Sec. II. We show that a very good fit can be
achieved (see Fig. 1) when three resonances, namely,
ρð770Þ, ρð1700Þ, and ρð1900Þ, are taken into account.
The parameters of the ρð770Þ were taken from the PDG
tables [1]. For the ρð1700Þ we have obtained
M ¼ ð1728� 24Þ MeV, Γ ¼ ð373� 27Þ MeV, in agree-
ment with [1]. The ρð1990Þ is not shown in the PDG [1]
summary tables. It is only listed in the particle listings,
where no recommended parameters are provided. Our
values M ¼ ð1878.3� 5.3Þ MeV, Γ ¼ ð24.7� 8.7Þ MeV
agree with the values coming from various experiments
shown there. To check that the dip in the CMD-3 data [21]
shown in Fig. 1 is really caused by the interference of the
ρð1900Þ with other resonances, we provide all the neces-
sary parameters in Table I.
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2. 3ðπ +π − Þ in the BABAR experiment

The drop of the eþe− → 3ðπþπ−Þ cross section close toffiffiffi
s

p ¼ 1.9 GeV was previously seen in older data by the
BABAR experiment [16], which was located at the
PEP-II eþe− collider in the SLAC National Accelerator
Laboratory. The experiment exploited the initial-state-
radiation (ISR) events to measure low-energy cross sections
without changing the eþe− collider energy [39]. The
BABAR detector ceased operation on April 7, 2008, but
data analysis is ongoing.
To fit the BABAR data [16], we again use the VMD

modified statistical model. A good fit, depicted in Fig. 2 by
dashes, is already obtained with two resonances, ρð1700Þ
and ρð2150Þ. The quality of the fit is characterized by the
χ2=NDF ¼ 39.0=45 and a confidence level (C.L.) of
72.3%. The inclusion of the ρð1900Þ resonance further
improves the fit, leading to χ2=NDF ¼ 29.1=41 and
C:L: ¼ 91.8% (solid curve in Fig. 2). Its parameters are
M ¼ ð1884� 29Þ MeV, Γ ¼ ð72� 39Þ MeV.

3. 2ðπ +π −π0Þ in the BABAR experiment

In the same publication [16], the BABAR experiment also
presented the results on the excitation curve of the process
eþe− → 2ðπþπ−π0Þ, see Fig. 3. We made a similar analysis

FIG. 1. Cross section for the eþe− annihilation into six charged
pions measured in the CMD-3 experiment [21] and the fit by the
statistical VMD model with three resonances.

TABLE I. Parameters of the fit to the CMD-3 data [21] depicted
in Fig. 1. For the statistical model with n ¼ 6, the parameters ri in
Eq. (3) are dimensionless.

i ri Mi (GeV) Γi (GeV) δi

1 −675.84 1.8783 0.024704 0
2 55649 1.7279 0.37265 −0.16059
3 79210 0.77526 0.14910 −1.3665

FIG. 2. Cross section for the eþe− annihilation into six charged
pions measured in the BABAR experiment [16] and the fit by the
statistical VMD model with two (dashed curve) and three
resonances (solid curve).

FIG. 3. Cross section for the eþe− annihilation into four
charged and two neutral pions measured in the BABAR experi-
ment [16] and the fit by the statistical VMD model with two
(dashed curve) and three resonances (solid curve).

PETER LICHARD PHYS. REV. D 98, 113011 (2018)

113011-4



as in the previous six-charged-pion case. A good descrip-
tion (χ2=NDF ¼ 28.7=45, C:L: ¼ 97.2%) of the data is
provided by the statistical VMD model with the ρð1700Þ
and ρð2150Þ resonances (dashed curve in Fig. 3). Again,
adding the ρð1900Þ resonance improves the quality of the
fit, but here only very marginally (χ2=NDF ¼ 24.2=41,
C:L: ¼ 98.3%, solid curve). Given this, the outcome
of the ρð1900Þ mass ð1896�60ÞMeV and width ð53�
58ÞMeV must be taken with reservation.

4. Dip at 1.9 GeV in the DM2 2ðπ +π − π0Þ data
The data we have obtained from Ref. [8] are depicted in

Fig. 4 together with our two-resonance fit by the VMD
modified statistical model. The narrow dip at about 1.9 GeV
is caused by the destructive interference of the ρð1900Þ
resonance with the background provided by the other
resonance. The quality of the fit is excellent: χ2=NDF ¼
16.4=37, C:L: ¼ 99.9%. The ρð1900Þ resonance parameters
M¼ð1878�40ÞMeV, Γ¼ð126�92ÞMeV agreewith those
from the other experiments presented in this section.

5. Dip at 1.9 GeV in the DM2 3ðπ +π − Þ data
The data are shown in Fig. 5 together with our two-

resonance fit by the VMD-modified statistical model. The
narrow dip at about 1.9 GeV is a result of the destructive
interference of the ρð1900Þ resonance with the accompany-
ing resonance. The quality of the fit is worse than in the
2ðπþπ−π0Þ case: χ2=NDF ¼ 35.1=23, C:L: ¼ 5.1%. The
ρð1900Þ resonance parameters coming from the fit areM ¼
ð1888� 18Þ MeV and Γ ¼ ð44� 37Þ MeV.

B. Peak in the e+ e − → ϕπ0 process

The data about this process were published by the
BABAR Collaboration in 2008 [17]. The cross section
for this process is very small because the ρ0ϕπ0 vertex
is suppressed by the Okubo-Zweig-Iizuka (OZI) rule [40].
In comparison with the cross section for a similar two-body
OZI-allowed process eþe− → ωπ0 [41], it is smaller by
almost 2 orders of magnitude. For us, this process is
extremely interesting because it is one of the known
processes where the ρð1900Þ manifests itself as a narrow
peak in the excitation curve, see Fig. 6. The other such
processes will be dealt with in Sec. III G.
In Table II we present the results of the fit obtained by the

BABAR Collaboration [17] together with the results of our
Lagrangian-based VMD model. The excitation curves that
correspond to those two fits are depicted in Fig. 6. Our
results agree with those obtained by Pacetti [42], who used
the transition form factor method.
A natural question arises as to why the ρð1900Þ is shown

here as a bright peak without interference with any
resonance.1 The answer is that because of the isospin-
one character of the final state, the intermediate resonances
with zero isospin (ω-like and ϕ-like) are suppressed and the
nearest ρ-like resonance [ρð1700Þ] does not couple to the
ϕπ0 system [1].
The process eþe− → ϕπ0 is more convenient for the

study of the ρð1900Þ resonance than, for example, the
reaction eþe− → KþK−π0. In the latter, which was

FIG. 4. The data from the DM2 experiment at Orsay [8] and our
two-resonance fit.

FIG. 5. The data from the DM2 experiment at Orsay taken from
Ref. [8] and our two-resonance fit.

1I thank Dr. Juráň for initiating the discussion.
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presented in the same paper [17], the intermediate state ρ →
ϕπ0 is also present. But it is OZI suppressed in comparison
with the dominant intermediate states ϕð1680Þ → KþK�−
andϕð1680Þ → K�þK−. All three intermediate states lead to
the same final state KþK−π0, so the interference among
them is inevitable. This means that, in a more precise
experiment, the ρð1900Þ might also show up in eþe− →
KþK−π0.

C. Cross-section drop in the e + e− → π +π − η
For the purpose of fitting the data on this process, we

have prepared a simple model reflecting the notion that the
ρη is the dominant intermediate state. It is based on the
standard ρηρ0 and ρππ Lagrangians.

There are four papers that have reported on the cross
section of the process eþe− → πþπ−η. Two of them [43,44]
came from the Spherical Neutral Detector (SND) experi-
ment at the VEPP-2000 eþe− collider in Novosibirsk; the
other two [45,46] were published by the BABAR
Collaboration.

1. ηπ + π − in the SND experiments

The SND experiment obtained data in the η → γγ [43]
and η → 3π0 decay modes [44]. The two sets have been
found to be in agreement and therefore analyzed together in
[44]. Also here, we fit the combined set of data, which
contains 72 data points. If we assume two resonances, we
get a very nice agreement with data (χ2=NDF ¼ 44.3=64,
C:L: ¼ 97.1%); see the dotted curve in Fig. 7. If we also
include the third resonance in our model, χ2 drops from
44.3 to 24.9, which together with the NDF ¼ 60 means a
confidence level of 100%. The new fit is depicted by a solid
curve in Fig. 7. This curve exhibits a drop in the proximity
of the nucleon-antinucleon threshold. We obtain the
following resonance parameters:

M1 ¼ ð1533� 21Þ MeV; Γ1 ¼ ð203� 43Þ MeV;

M2 ¼ ð1812� 31Þ MeV; Γ2 ¼ ð162� 70Þ MeV;

M3 ¼ ð2220� 172Þ MeV; Γ3 ¼ ð3� 140Þ MeV:

The middle resonance, by its parameters, is similar to
ρð1900Þ. But because the data are also well fit by two

FIG. 6. Cross section for the eþe− annihilation into the
ϕð1020Þ and π0 measured by the BABAR Collaboration [17]
and the fit by our model (solid curve) and the fit using the
resonance parameters determined by the BABAR Collaboration
(dashed curve) shown in Table II.

TABLE II. Parameters of the fit to the eþe− → ϕπ0 data [17]
obtained by the BABAR Collaboration compared to the results of
our fit.

BABAR 2008 Our fit

M1 (MeV) 1570� 36 1573� 25
Γ1 (MeV) 144� 75 88� 48
M2 (MeV) 1909� 17 1906.7� 8.8
Γ2 (MeV) 48� 17 38� 52

χ2=NDF 7.37=8 6.7=7
C.L. 50% 47.3%

FIG. 7. Cross section for the eþe− → ηπþπ− process measured
by the SND Collaboration [43,44] and the fit to it by the
Lagrangian VMD model with two (dotted curve) and three
resonances (solid curve).
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resonances, our three-resonance result cannot be consi-
dered as proof of either the rapid drop existence or the role
of the ρð1900Þ in this process.

2. ηπ +π − in BABAR 2007

The BABAR Collaboration [45] identified the η resonance
by its πþπ−π0 decay mode. Our two-resonance fit with
ρð1450Þ and ρð2150Þ, shown in Fig. 8 by dots, leads to
χ2=NDF¼26.6=24 (C:L:¼32.3%). After assuming the third
resonance, χ2 drops to 19.8, the confidence level improves to
47%, and the drop close to the NN̄ threshold becomes more
visible (solid curve). The third resonance parameters areM¼
ð1831�48ÞMeVandΓ¼ð146�167ÞMeV,which identifies
it as the ρð1900Þ.

3. ηπ +π − in BABAR 2018

In a very recent paper by the BABAR Collaboration [46],
the η → γγ mode has been utilized. The results are in
agreement with their previous result in the independent η →
πþπ−π0 channel [45]. The rapid drop of the excitation
curve below

ffiffiffi
s

p ¼ 1.9 GeV is already evident in their data
by the naked eye, see Fig. 9. The BABAR Collaboration fit
their data with four different models, each in its own
invariant energy range. The widest energy range, up toffiffiffi
s

p ¼ 2.2 GeV, is covered by their Model 4, which used
the VMD with four resonances [ρð770Þ mass and width
were fixed at the PDG values]. To facilitate the comparison
with their fit results, we choose the same energy range.

Our fit with three resonances yields χ2=NDF ¼ 20.0=24,
C:L: ¼ 69.7%; see the solid curve in Fig. 9. The quality of
the fit is even better than that of BABAR’s four-resonance fit
(χ2=NDF ¼ 28=26, which means a C.L. of 36%). The
obtained masses and widths of the resonances are

M1 ¼ ð1461� 30Þ MeV; Γ1 ¼ ð371� 51Þ MeV;

M2 ¼ ð1725� 63Þ MeV; Γ2 ¼ ð159� 137Þ MeV;

M3 ¼ ð1879� 10Þ MeV; Γ3 ¼ ð54� 28Þ MeV:

Obviously, these are the ρð1450Þ, ρð1700Þ, and ρð1900Þ
resonances. The shape of the drop could be described even
better if we took a model with four resonances. But then we
would get two resonances with very close masses (1836
and 1883 MeV). These we deem artificial and unphysical.

D. Cross-section jump in the
e+ e − → K +K −π +π −π0 process

Another interesting phenomenon that has escaped
attention until now concerns the cross section of the
process eþe− → KþK−πþπ−π0 measured by the BABAR
Collaboration in 2007 [45]. The initial rise above the
threshold is a little below

ffiffiffi
s

p ¼ 1.9 GeV, interrupted by
a narrow dip followed by a very rapid increase, after which
the previous trend is restored, see Fig. 10.
The behavior just described can be perfectly

(χ2=NDF ¼ 23.6=32, C:L: ¼ 85.8%) reproduced by the
VMD-modified statistical model with two resonances; see
the solid curve. One of them is again the ρð1900Þ, the

FIG. 9. Cross section for the eþe− → ηπþπ− process measured
by the BABAR Collaboration [46] and the fit by the Lagrangian
VMD model with three resonances.

FIG. 8. Cross section for the eþe− → ηπþπ− process measured
by the BABAR Collaboration [45] and the fit by the Lagrangian
VMD model with two (dotted curve) and three resonances
(solid curve).
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parameters of which are M1 ¼ ð1902� 26Þ MeV,
Γ1 ¼ ð11� 20Þ MeV. The other resonance is characterized
by M2 ¼ ð2550� 13Þ MeV, Γ2 ¼ ð209� 26Þ MeV.
It must be noted that the fit with one resonance, which

does not produce such an interesting behavior around
1.9 GeV (dots in Fig. 10), is also acceptable (χ2=NDF ¼
30.0=36, C:L: ¼ 74.9%).

E. Cross-section drop in the e+ e − → K +K −π +π −
This process is very interesting because the group

working on the CMD-3 experiment has recently announced
[29] the discovery of a sharp drop of the cross section in the
vicinity of the two-nucleon threshold. Not having access to
their data, we search the older data from the BABAR [20]
and CMD-3 [25] experiments for the occurrence of the
ρð1900Þ resonance.
To describe this process, we use the Lagrangian model

assuming the dominance of the ðϕ=ρ0ÞK�K̄� intermediate
state. The standard ϕK�K̄�, ρK�K̄�, andK�Kπ Lagrangians
are used together with the VMD Ansatz (3).

1. K +K − π +π − in the BABAR experiment

We start by investigating the data by the BABAR
Collaboration [20] from 2012. To concentrate on the region
where the CMD-3 experiment announced this interesting
phenomenon, we limit the invariant energy to

ffiffiffi
s

p
≤

2.02 GeV, which leaves us with 36 data points. A two-
resonance fit with the ϕð1020Þ and ϕð1680Þ gives
χ2=NDF ¼ 22.8=19, which translates to C:L: ¼ 24.6%.

The fit is depicted by the dotted curve in Fig. 11.
Including the ρð1900Þ decreases χ2, but because of a smaller
NDF, the quality of the fit remains the same (χ2=NDF ¼
18.3=15, C:L: ¼ 24.7%). This fit is represented by the solid
curve. The mass and width of the ϕð1020Þ have been
fixed at the PDG values [1]. For the ϕð1680Þ and ρð1900Þ,
we get M ¼ ð1690� 12Þ MeV, Γ ¼ ð250� 20Þ MeV and
M ¼ ð1906� 15Þ MeV,Γ ¼ ð28� 99Þ MeV, respectively.
Given the unsatisfactory confidence level, the real errors
should be larger. This analysis shows that the BABAR data
[20] do not require the presence of the ρð1900Þ resonance but
can accommodate it.

2. K +K − π +π − in the CMD-3 experiment

The CMD-3 experiment in Ref. [25] presented the data
from the 2011 and 2012 runs taken at different magnetic
fields. Their compatibility is a good test of experimental
procedures. To compare ourmodelwith the data,we proceed
in the same way as before. The fit with the ϕð1020Þ and
ϕð1680Þ gives χ2=NDF ¼ 17.3=30 (C:L: ¼ 96.9%) and is
depicted in Fig. 12 by dots. The incorporation of the ρð1900Þ
noticeably improves the agreementwith the data (χ2=NDF¼
9.3=26, C:L: ¼ 99.9%, solid curve). Concerning the
ρð1900Þ parameters, we get M ¼ ð1805� 52Þ MeV,
Γ ¼ ð115� 14Þ MeV. For the ϕð1680Þ, the numbers are
M ¼ ð1665� 29Þ MeV, Γ ¼ ð140� 41Þ MeV. As the
confidence level of the fit without the ρð1900Þ is also high,

FIG. 11. Cross section of the eþe− annihilation into the
KþK−πþπ− system measured by the BABAR Collaboration
[20]. The Lagrangian-VMD-model fit with two resonances is
shown by dots; that with three resonances is depicted by a
solid curve.

FIG. 10. Cross section for the eþe− → KþK−πþπ−π0 process
measured by the BABAR Collaboration [45] and the fits using the
statistical VMD model with two resonances (solid curve) and one
resonance (dotted curve).
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we cannot claim that the presence of the ρð1900Þ is required.
Certainly, it is not excluded.

F. Cross-section dip in the e+ e − → K +K − π0π0

The BABAR Collaboration [20] reported in 2012 on their
measurements of the cross section of the eþe− →
KþK−π0π0 process. Looking at their data in Fig. 13, one
immediately notices a dip at about

ffiffiffi
s

p ¼ 1.85 GeV.
Compared to the KþK−πþπ− case, the dip seems to be in
the same position but deeper. It may be the consequence of
the interference between two Feynman diagrams originating
from the boson (π0) symmetrization. We start with a two-
resonance fit and get quite a good fit (χ2=NDF ¼ 16.5=20,
C:L: ¼ 68.5%) represented in Fig. 13 by the dotted
curve. Using the VMD with three resonances [one of them
is fixed at the ϕð1020Þ parameters], we obtain an even
better result (χ2=NDF ¼ 10.4=18, C:L: ¼ 91.8%), shown
as a solid curve. The resulting resonance parameters
are M1 ¼ ð1800� 16Þ MeV, Γ1¼ð107�35ÞMeV, M2 ¼
ð2376� 38Þ MeV, and Γ2 ¼ ð121� 108Þ MeV. The first
resonance resembles the ρð1900Þ. Because the difference in
qualities of the two-resonance and three-resonance fits is not
significant, more convincing proof of the dip existence will
be possible only after new data are available.

G. Near-threshold behavior of the e + e− → NN̄

Before discussing the experimental data on the eþe−
annihilation into the proton-antiproton pair, it may be

useful to review the result of the quantum electrodynamics
about the pointlike Dirac fermions; see, e.g., [47]. It says
that at a small s, the cross section is proportional to the
center-of-mass system speed β of the outgoing fermion;
i.e., it tends towards zero. The Coulomb final-state inter-
action modifies the cross section. It is described by the
Sommerfeld-Gamow-Sakharov factor; see Ref. [48] and
references therein. It is

T ¼ η=½1 − expð−ηÞ�; ð5Þ
where η ¼ πα=β. This correction causes the cross section to
become a nonzero constant at the threshold. For pointlike
protons the threshold value is σ0 ¼ 0.848 nb. It is reason-
able to assume that for the real protons, the cross section at
the threshold will not exceed this value.
To construct a VMD model of the eþe− annihilation into

a nucleon-antinucleon pair, we start from a two-component
Lagrangian of the interaction between the ρ field B and the
nucleon field ψ ,

LρN ¼ GρN

�
cos θρjμBμ þ

sin θρ
mN

T μνGμν

�
; ð6Þ

where jμ ¼ ψ̄γμψ , T μν ¼ ψ̄σμνψ , and Gμν ¼ ∂μBν − ∂μBμ.
The interaction between the electromagnetic field A and the
ρ field B is given by the Lagrangian Lργ ¼ egργAμBμ. After
a few standard steps, the following expression is obtained
for the annihilation cross section:

FIG. 12. Cross section of the eþe− annihilation into the
KþK−πþπ− system measured in the CMD-3 experiment [25].
The Lagrangian-VMD-model fit with two resonances is shown as
dots; that with three resonances is depicted by a solid curve.

FIG. 13. Cross section of the eþe− annihilation into the
KþK−π0π0 system measured by the BABAR Collaboration
[20]. The Lagrangian-VMD-model fit with two resonances is
shown as dots; that with three resonances is depicted by a
solid curve.
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σ¼ 4πα2βT
3s

r2ρ
ðs−M2

ρÞ2þðMρΓρÞ2
��

1þ2
m2

N

s

�
cos2θρ

þ12cosθρ sinθρþ2

�
s
m2

N
þ8

�
sin2θρ

�
; ð7Þ

where rρ ¼ GρNgργ . We have also included the
Sommerfeld-Gamow-Sakharov factor T. For a proton it
is given by Eq. (5), for a neutron T ¼ 1. When fitting the
data, rρ, θρ, Mρ, and Γρ will be taken as free parameters.
When a fit with more than one resonance is required, the
second fraction in (7) is to be replaced by the square of the
sum of vector-meson propagators as in (3). This assumes,
of course, that the mixing parameter θ is the same for all
considered resonances, which may not be true.
A frequently discussed quantity is the ratio of the

nucleon form factors. In our model it is given by

R ¼
				 GEðsÞ
GMðsÞ

				 ¼
				
1þ s

m2
N
tan θρ

1þ 4 tan θρ

				: ð8Þ

1. pp̄ in the CMD-3 experiment

The experimental data from the CMD-3 experiment [28]
(see Fig. 14) contain ten points from the threshold to
the highest energy of the VEPP-2000 collider, which is
2 GeV. This is one of the two examples (for the other, see
Sec. III B) in which the ρð1900Þ resonance is already
clearly visible as a peak before drawing the fitting curve.

A one-resonance fit to the data provides the following
parameters:

Mρ ¼ ð1888.8� 2.4Þ MeV;

Γρ ¼ ð12� 10Þ MeV;

θρ ¼ −0.2427� 0.0020;

rρ ¼ ð1.88� 0.14Þ GeV2: ð9Þ

The quality of the fit is excellent: χ2=NDF ¼ 1.0=6, which
implies a confidence level of 98.6%. The CMD-3 data [28]
show, without any doubt, that the observed behavior of
the cross section is caused by the coupling of the pp̄ pair to
the photon through the ρð1900Þ resonance. Contrary to the
previous ideas (see, e.g., Ref. [21]), this resonance does not
lie under the pp̄ threshold but well above it. The fitting
curve therefore shows it as a perfect peak.
What is very surprising is the behavior of the proton form

factor ratio R in Eq. (8) predicted by our model using the θρ
from the fit in Eq. (9). From the threshold unity the R
steeply falls to zero at

ffiffiffi
s

p ¼ 1.886 GeV and then steeply
rises to R ¼ 12.97 at

ffiffiffi
s

p ¼ 2 GeV. There is no exper-
imental evidence yet of such behavior.

2. pp̄ by the BABAR Collaboration

The BABAR Collaboration [26] presented their measure-
ment of the eþe− → pp̄ cross section from the threshold toffiffiffi
s

p ¼ 4.5 GeV. We want to concentrate on the region close
to the threshold. In order to have enough data points for a
statistically significant fit, we choose the upper limit some-
what higher than in the CMD-3 case, namely, 2.05 GeV.
This gives us seven data points. The data and the result of a
one-resonance fit using Eq. (7) are shown in Fig. 15. The
quality of the fit is again excellent: χ2=NDF ¼ 0.19=3,
C:L: ¼ 97.9%. The fit parameters are

Mρ ¼ ð1885.8� 8.6Þ MeV;

Γρ ¼ ð12� 16Þ MeV;

θρ ¼ −0.2452� 0.0037;

rρ ¼ ð1.66� 0.11Þ GeV2; ð10Þ

in agreement with the CMD-3 values shown in Eq. (9). Only
the value of rρ is somewhat smaller, which reflects the
difference in overall normalization of the cross sections,
visible in Figs. 14 and 15. With θρ from (10) the

ffiffiffi
s

p
dependence of the R ¼ jGE=GMj ratio has a different
character than we saw in the CMD-3 case. Here, the curve
does not touch zero, and it rises immediately from the
threshold. In the whole interval up to 2.0 GeV, jGMj is
negligible in comparison with jGEj. Such behavior is not
supported by the BABAR data. Figure 9 in Ref. [26]
shows two bins below

ffiffiffi
s

p ¼ 2 GeV with mean values of
r approximately equal to 1.35 and 1.48.

FIG. 14. Cross section for the eþe− → pp̄ process measured by
the CMD-3 experiment [28]. The curve represents the fit by the
Lagrangian-VMD model with one resonance.
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The comparison of Figs. 14 and 15 shows the advantage
of the energy scan method over the ISR method in the fine-
structure measurements not far from the threshold. From
the principle of the ISR method, it follows that it does not
provide the eþe− cross section at a given energy but the
mean value of the cross section over a finite energy interval.
The fine structure is thus lost. The specifics of the ISR
method must be taken into account when fitting the data. In
the process of looking for optimal fit parameters, we have
therefore used Eq. (7) for calculating the average cross
sections in the same intervals as in the data and compared
them to the experimental values.
The empirical cross section for the eþe− → pp̄ process

measured by the BABAR Collaboration [26] can be per-
fectly fitted by the Lagrangian VMD model (7) with one
resonance, the parameters of which are shown in Eq. (10).
So, even if the peak is not visible in the data (probably
because of their average-in-bin character), we dare to assert
that they confirm the character of the ρð1900Þ as a narrow
resonance lying above the pp̄ threshold and coupling to the
pp̄ pair.

3. nn̄ in the SND experiment

The data for the eþe− → nn̄ process presented in [27]
were accumulated in 2011–2012 at the VEPP-2000 eþe−
collider in Novosibirsk with the SND detector. The outcome
consists of eleven values of the cross section taken at ten
different energies. The experimentalists faced mainly prob-
lems caused by the cosmic ray background. Nevertheless,

their results are in agreement with the FENICE measure-
ments [13] from 1998 and have smaller errors.
We have again fit the SND data using the cross-section

formula (7). Our fit is depicted together with the data in
Fig. 16. The quality of the fit is a little worse than in the
previous two pp̄ experiments but is still acceptable:
χ2=NDF ¼ 8.2=7, C:L: ¼ 31.5%.2 The optimal parameters
are

Mρ ¼ ð1890.6� 5.2Þ MeV;

Γρ ¼ ð29� 35Þ MeV;

θρ ¼ −0.2410� 0.0036;

rρ ¼ ð1.92� 0.41Þ GeV2: ð11Þ

They are in perfect agreement with the fit parameters for the
CMD-3 (9) and BABAR (10) experiments.
Concerning the jGE=GMj ratio, it should reach zero atffiffiffi
s

p ¼ 1.895 GeV and then R ¼ 6.91 at
ffiffiffi
s

p ¼ 2 GeV.
The SND experiment gives further support to the notion

that the above-threshold behavior of the NN̄ cross sections
is caused by the coupling of the pp̄ and nn̄ pairs to the
narrow resonance ρð1990Þ, the mass of which lies above
the nn̄ threshold of 1879.1 MeV. With all three independent

FIG. 15. Cross section for the eþe− → pp̄ process measured by
the BABAR Collaboration [26] and a one-resonance fit using the
Lagrangian VMD model.

FIG. 16. Cross section for the eþe− → nn̄ process measured by
the SND experiment [27]. The solid line represents the fit by the
Lagrangian-VMD model with one resonance.

2A better fit with C.L. of 53.1% could be achieved if the two
data points at 1.9 GeV were merged to one using the inverse error
squared as the weight.
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NN̄ experiments pointing in the same direction, the
confidence of this notion is very high.
The authors of Ref. [49] recently explained the results of

the NN̄ experiments [26–28] using nuclear, rather than
particle, phenomenology. A quantitative comparison of the
success of their model with ours is not possible, as they did
not provide any measure of agreement with the data.

4. Common fit to all three NN̄ experiments

The ultimate confirmation of the decisive role of the
ρð1900Þ in the eþe− → NN̄ processes, together with a
more precise determination of its parameters, is provided
by a common fit to all three NN̄ experiments using the
formula (7). The quality of the simultaneous fit to the
BABAR [26] and CMD-3 [28] pp̄ experiments, together
with the nn̄ experiment SND [27], is exceptionally high,
characterized by χ2=NDF ¼ 11.3=22 and C:L: ¼ 97.0%. It
not only supports the assertion about a decisive role of the
ρð1900Þ resonance but also bears witness to mutual
compatibility of the three data sets. The fitted parameters
common to all three experiments are

Mρ ¼ ð1888.3� 2.8Þ MeV;

Γρ ¼ ð10.0� 4.1Þ MeV;

θρ ¼ −0.2439� 0.0014: ð12Þ

The parameters specific for each of the experiments are
rρðBABARÞ ¼ ð1.707� 0.055Þ GeV2, and rρðCMD-3Þ ¼
ð1.787� 0.069Þ GeV2, rρðSNDÞ ¼ ð1.75� 0.10Þ GeV2.
It is interesting that the ρð1900Þ width that we deter-

mined from the simultaneous analysis of the three experi-
ments is equal to FENICE’s estimate from the late 1990s
[12,13]. As concerns the ρð1900Þ mass, their central value
is about 9 MeV below the nn̄ threshold, while ours is about
9 MeV above that threshold.

IV. SUMMARY AND CONCLUSIONS

Our phenomenological analysis of several eþe− anni-
hilation processes suggests that the origin of their
special behavior in the vicinity of the NN̄ thresholds
is the ρð1900Þ resonance. Its parameters obtained by
fitting the various cross sections are shown in Table III.
The most precise values are those obtained from the pp̄
[26,28] and nn̄ [27] data. The ρð1990Þ masses and
widths from those three experiments are mutually
compatible and clearly show that the ρð1900Þ is not
an NN̄ resonance because its mass is greater than the nn̄
threshold.
For some data sets and processes, the quality of the fit

was about the same with and without the ρð1990Þ reso-
nance. When we also tried to determine the ρð1900Þ
parameters in these cases, they came out with larger errors
and were sometimes “not in line” (see Table III).

Obviously, more experimental work is needed to decide
about the ρð1900Þ involvement in those processes.
A conundrum is why the behavior of the cross sections of

some eþe− annihilation processes in the vicinity of
ffiffiffi
s

p ¼
1.9 GeV is smooth, not influenced by theρð1900Þ resonance.
Also here, more experiments are needed to pinpoint those
processes. As we cannot expect clarification from non-
perturbative quantum chromodynamics in the near future,
more phenomenological work is also required. A step in this
direction was made by Clegg and Donnachie in Ref. [10],
where the classification of the six-pion isospin states was
done using the correlation numbers scheme of Pais [50].
Various versions of the flux-tube breaking model [33,51]

predicted a narrow hybrid vector-meson resonance with a
mass around 1.9 GeV. This would be one way to explain the
“ρð1990Þ selection rules.” But the nature of the ρð1900Þ as
a hybrid meson is no longer considered [52].
Important sources of information are the processes where

special behavior occurs when the invariant energy of a
produced subsystem (not that of the whole final-state
system) approaches 1.9 GeV. Here are a few examples:
(i) the diffractive photoproduction of a six-pion system
[14,15], (ii) the decays B� → pp̄K� [53] and B̄0 → D0pp̄
[54] with a salient peak just above the pp̄ threshold, (iii) a
sudden drop near the pp̄ threshold in the η0πþπ− mass
distribution in the J=ψ → γη0πþπ− decay [55], and (iv) vari-
ous quarkonia decays with a pp̄ pair in the final state,
which are thoroughly listed in Ref. [49].
A simultaneous fit to all processes in which the presence

of ρð1900Þ is suspected would be valuable but difficult.

TABLE III. Parameters of the resonance influencing the behav-
ior of the eþe− annihilation cross section into various final states
in the vicinity of

ffiffiffi
s

p ¼ 1.9 GeV obtained from our fits.

Final state Data M (MeV) Γ (MeV) Section

3ðπþπ−Þ CMD3’13 1878.3� 5.3 24.7� 8.7 III A 1
3ðπþπ−Þ BABAR’06 1884� 29 72� 29 III A 2

2ðπþπ−π0Þ BABAR’06 1896� 60 53� 58 III A 3

2ðπþπ−π0Þ DM2’86 1878� 40 126� 92 III A 4

3ðπþπ−Þ DM2’86 1888� 18 44� 37 III A 5

ϕπ0 BABAR’08 1906.7� 8.8 38� 52 III B

ηπþπ− SND’18 1812� 31 162� 70 III C 1
ηπþπ− BABAR’07 1831� 48 146� 167 III C 2
ηπþπ− BABAR’18 1879� 63 159� 137 III C 3
KþK−3π BABAR’07 1902� 26 11� 20 III D
KþK−πþπ− BABAR’12 1906� 15 28� 99 III E 1
KþK−πþπ− CMD3’16 1805� 52 115� 14 III E 2

KþK−π0π0 BABAR’12 1800� 16 107� 35 III F

pp̄ CMD3’16 1888.8� 2.4 12� 10 III G 1
pp̄ BABAR’13 1885.8� 8.6 12� 16 III G 2
nn̄ SND’14 1890.6� 5.2 29� 35 III G 3
pp̄, nn̄ 3 expts. 1888.3� 2.8 10.0� 4.1 III G 4
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