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We present the differential branching fractions for the B → ψππ decays with the charmonia
ψ ¼ J=ψ ;ψð2SÞ in the invariant mass of the P-wave pion pairs in the perturbative QCD approach.
The two-pion distribution amplitudes (DAs) corresponding to both longitudinal and transverse polar-
izations are constructed to capture important final state interactions in the processes. The timelike form
factors, normalizing the two-pion DAs, contain contributions from the ρ resonance and radial excitations
fitted to the BABAR eþe− annihilation data. Given the hadronic parameters for the two-pion DAs associated
with the longitudinal polarization which were determined in our previous study, and tuning those associated
with the transverse polarization, we accommodate well the observed branching ratios and polarization
fractions of the B → J=ψππ decays. Our predictions for the B → ψð2SÞππ modes from the same set of
parameters can be tested in future LHCb and BelleII experiments. We also investigate the sources of
theoretical uncertainties in our calculation.
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I. INTRODUCTION

The BðsÞ meson decay chains with charmonia and pion
pairs in final states, providing rich opportunities to search
for intermediate resonances, have caught both experimental
and theoretical attention. The neutral and charged B →
J=ψππ modes, first observed by the BABAR Collaboration
[1,2], may involve the J=ψπ and ππ intermediate channels.
No obvious exotic structures were found through the
former, and a series of resonant and nonresonant compo-
nents with different ππ invariant masses has been extracted
though the latter in the LHCb experiment [3]. Recent LHCb
data [3,4] have indicated that the B → J=ψπþπ− decay
spectrum is well described by six resonances in the πþπ−
channel, f0ð500Þ, ρð770Þ, ρð1450Þ, ρð1700Þ, ωð782Þ,

f2ð1270Þ, with ρð770Þ being the dominant component,
and that there is no evidence for f0ð980Þ production. The
corresponding Bs → J=ψπþπ− decay can be described by
an interfering sum of five resonances, f0ð980Þ, f0ð1500Þ,
f0ð1790Þ, f2ð1270Þ, and f02ð1525Þ [5,6], among which the
S-wave f0ð980Þ is the largest component [5–7], and the D-
wave ones amount only up to a few percents. Because the
ss̄ pair produced in this mode is an isoscalar (I ¼ 0), it must
form a zero isospin meson, and P-wave resonances, such as
the isovector ρð770Þ, are forbidden. The resonance struc-
tures in the BðsÞ meson decays into ψð2SÞ have not been
analyzed in detail due to a limited number of events [8].
On the theoretical side, order-of-magnitude estimations

for the rates of the above modes have been performed in
the chiral unitary approach [9], where a BðsÞ meson
decay amplitude is followed by hadronization of a quark-
antiquark pair into two mesons and their further rescatter-
ing. Given the input from a well-measured intermediate
channel, the others can be derived via their relations to the
input one under the above rescattering picture, and were
found to compare reasonably well with present data. The
authors in Ref. [10] calculated the B → J=ψππ branching
ratios in the generalized factorization and improved
QCD factorization approaches, where the ρ intermediate
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resonance was described by a Breit-Wigner (BW) propa-
gator. More recently, final state interactions in the BðsÞ →
J=ψππ decays were extracted from data in a framework
based on dispersion theory [11]. These works mainly focus
on the ρð770Þ contribution to the P-wave dipion system,
with the two radial excitations ρð1450Þ and ρð1700Þ and
the ρ-ω interference being neglected. As stressed in
Ref. [12], the contributions from the two excited ρ states
to the time-like pion form factor are indispensable, if one
intends to accommodate the measured space-like pion form
factor from the time-like one through analytic continuation.
Several collaborations [13,14] have also successfully
fitted the eþe− → πþπ− cross section in the vicinity of
the ρð770Þ resonance, with a small but clearly visible
ω-meson admixture.
It has been argued [15] that the dominant kinematic

region for three-body B meson decays is restricted to the
edges of a Dalitz plot, where two of the three final state
mesons form a collimated pair in the rest frame of the B
meson. In this region, the proof of the corresponding
factorization theorem is basically similar to that for the
two-body cases [16–18]. Hence, the perturbative QCD
(PQCD) approach [19,20] is applicable to three-body B
meson decays, albeit the underlying kT factorization has
not been proven rigorously [21,22]. With the introduction
of two-hadron distribution amplitudes (DAs) [23–26] to
absorb the final state interaction involved in the meson
pair, the factorization formalism can be greatly simplified.
The factorization theorem holds for B meson decays
containing charmonia in the heavy quark limit under the
power counting specified in [27]. As a result, a typical
amplitude for the B → ψππ decays, ψ ¼ J=ψ ;ψð2SÞ, is
written as [15]

A ¼ ΦB ⊗ H ⊗ Φππ ⊗ Φψ ; ð1Þ
in which ΦB and Φψ are the B meson and charmonium
DAs, respectively. The two-pion DA Φππ collects the
nonperturbative dynamics in the ππ hadronization process.
The hard kernel H, similar to that in two-body decays, can
be evaluated in perturbation theory. The symbol⊗ denotes
the convolution in parton momenta of all the perturbative
and nonperturbative objects.
In this paper we will analyze the decays B → ψðππÞP

with the P-wave dipion system. We do not consider the
corresponding decays of a Bs meson, in which the isovector
resonant contributions are forbidden as explained before.
The decays BðsÞ → J=ψðππÞS and BðsÞ → J=ψðKπÞS as
well as the ψð2SÞ counterparts, with the S-wave ππ and Kπ
pairs, have been studied under the quasi-two-body approxi-
mation in the PQCD approach [28–30]. The charmless B
meson decays into P-wave pion pairs in the longitudinal
polarization were investigated in Refs. [31–33]. The
three possible polarizations of the spin-1 ψ meson generate
the longitudinal (0), parallel (k), and perpendicular (⊥)
amplitudes, such that the two-pion DAs corresponding to

both the longitudinal and transverse polarizations are
necessary nonperturbative inputs in our analysis. We will
include the two-pion P-wave DAs corresponding to the
transverse polarization into the PQCD formalism for the
B → ψðππÞP decays. It will be explained that the total
momentum (angular momentum) of the pion pair mimics
the longitudinal (transverse) polarization of the P-wave
dipion system.
The decomposition of the longitudinal two-pion DAs up

to the twist-3 accuracy has been presented in Ref. [31], but
that of the transverse DAs is not yet available. Following
the derivation in Refs. [34,35], the two-pion DAs can be
parametrized in terms of the Gegenbauer polynomials that
depend on parton momentum fractions, and the Legendre
polynomials that depend on meson momentum fractions.
Moreover, the two-pion DAs are normalized to the timelike
form factors, which contain both resonant and nonresonant
contributions to the dipion system. To be specific, we adopt
the vector-dominance-model parametrization for these
form factors, which has been used to fit the pion form
factor measured via the eþe− annihilation process [14].
Apart from the dominant ρð770Þ component, the two radial
excitations ρð1450Þ and ρð1700Þ as well as the ρ-ω
interference effect were also taken into account. Besides,
the B → J=ψππ modes are relevant to the determination of
the CP violation phases in the B system, which is, however,
not the theme of the present work. For recent progresses on
this subject, refer to [36–40].
The paper is organized as follows. In Sec. II we define

the involved kinematic variables and construct the two-pion
DAs for the longitudinal and transverse polarizations. The
numerical results are presented and discussed in Sec. III.
The last section contains the conclusion. The factorization
formulas for the considered decay amplitudes are collected
in the Appendix.

II. FRAMEWORK

We begin with the parametrization of the kinematic
variables involved in the decay BðPBÞ → ψðP3ÞðππÞðPÞ.
The momenta in the light-cone coordinates are chosen as

PB ¼ Mffiffiffi
2

p ð1; 1; 0TÞ; P3 ¼
Mffiffiffi
2

p ðr2; 1 − η; 0TÞ;

P ¼ Mffiffiffi
2

p ð1 − r2; η; 0TÞ; ð2Þ

in the B meson rest frame, with the mass ratio r ¼ m=M,
mðMÞ being the charmonium (B meson) mass, and the
variable η ¼ ω2=ðM2 −m2Þ, ω2 ¼ P2 being the invariant
mass squared of the pion pair. The momenta p1 and p2 of
the two pions, obeying p1 þ p2 ¼ P, are defined as

p1 ¼ ðζPþ; ð1 − ζÞηPþ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ω; 0Þ;

p2 ¼ ðð1 − ζÞPþ; ζηPþ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ω; 0Þ; ð3Þ
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with the pion momentum fraction ζ. We focus on the
kinematic configuration, where p1 and p2 are almost
collimated to each other with small amount of relative
transverse momenta. The valence quark momenta labeled
by kB, k3, and k in Fig. 1(a) are parametrized as

kB ¼
�
0;

Mffiffiffi
2

p xB;kBT

�
;

k3 ¼
�
Mffiffiffi
2

p r2x3;
Mffiffiffi
2

p ð1 − ηÞx3;k3T

�
;

k ¼
�
Mffiffiffi
2

p zð1 − r2Þ; 0;kT

�
; ð4Þ

in which xB, x3, z denote the longitudinal momentum
fractions, and kiT represent the transverse momenta.
The hadronic matrix element for the B meson is written

as [41]

ΦBðx; bÞ ¼
iffiffiffiffiffiffiffiffi
2Nc

p ½ð=pB þMÞγ5ϕBðx; bÞ�; ð5Þ

with the impact parameter b conjugate to the transverse
momentum kBT , and the number of colors Nc. The B
meson DA ϕBðx; bÞ is the same as in Refs. [41,42],

ϕBðx; bÞ ¼ Nx2ð1 − xÞ2 exp
�
−
x2M2

2ω2
b

−
ω2
bb

2

2

�
; ð6Þ

where the shape parameter ωb ¼ 0.40� 0.04 GeV has
been fixed in the study of the B meson transition form
factors [43,44], and the coefficient N is determined by the
normalization

R
1
0 dxϕBðx; b ¼ 0Þ ¼ 1.

The hadronic matrix elements for the longitudinally and
transversely polarized vector charmonia are decomposed
into

ΦL
ψ ¼ 1ffiffiffiffiffiffiffiffi

2Nc
p ½m=ϵ3LψLðx3; b3Þ þ =ϵ3L=p3ψ

tðx3; b3Þ�;

ΦT
ψ ¼ 1ffiffiffiffiffiffiffiffi

2Nc
p ½m=ϵ3TψVðx3; b3Þ þ =ϵ3T=p3ψ

Tðx3; b3Þ�; ð7Þ

respectively, with the longitudinal and transverse polariza-
tion vectors

ϵ3L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − ηÞp

r
ð−r2; 1 − η; 0TÞ; ϵ3T ¼ ð0; 0; 1TÞ:

ð8Þ

The explicit expressions of ψ i are referred to our previous
works [45,46].
The two-pion DAs can be related to the pion DAs

through a perturbative evaluation of the matrix elements
[34,35],

hπðp1Þπðp2Þjq̄0ðy−ÞΓqð0Þj0i; ð9Þ

as a timelike dipion production process, where Γ denotes
the possible spin projectors I, γ5, γμ, γμγ5, σμν, and σμνγ5.
The complete set of pion meson DAs up to twist 3 is
given by

ΦP1
ðp1; x1Þ ¼

iffiffiffiffiffiffiffiffi
2Nc

p γ5

�
=p1ϕ

A
P1
ðx1Þ þm0ϕ

P
P1
ðx1Þ þm0

�
=p1=vB
p1 · vB

− 1

�
ϕT
P1
ðx1Þ

�
;

ΦP2
ðp2; x2Þ ¼

iffiffiffiffiffiffiffiffi
2Nc

p γ5

�
=p2ϕ

A
P2
ðx2Þ þm0ϕ

P
P2
ðx2Þ þm0

�
=p2=vB
p2 · vB

− 1

�
ϕT
P2
ðx2Þ

�
; ð10Þ

with the chiral scale m0. The above decompositions, in
which the B meson four-velocity vB ¼ ð1; 0; 0; 0Þ is invari-
ant under the frame rotation, hold for the pion momenta p1

and p2 in arbitrary directions. It is easy to see that the
third structure in Eq. (10) approaches to the conventional
one in [42],

(a) (b) (c) (d)

FIG. 1. Leading-order Feynman diagrams for the quasi-two-body decays B → ψρð→ ππÞ, where ρ represents a P-wave ππ
intermediate state, with (a) and (b) the factorizable amplitudes, and (c) and (d) the nonfactorizable amplitudes.

P-WAVE CONTRIBUTIONS TO B → ψππ DECAYS IN … PHYS. REV. D 98, 113003 (2018)

113003-3



=p1=vB
p1 · vB

→ =nþ=n−; ð11Þ

as p1 is aligned with the plus direction nþ ¼ ð1; 0; 0TÞ,
where the dimensionless vector n− ¼ ð0; 1; 0TÞ is along the
direction of the displacement between the quarks q and q0
in Eq. (9).
The key to construct the transverse polarization vector

ϵTμ for the di-pion system in terms of the kinematic
variables in Eq. (10) is to relate it to the orbital angular
momentum

ϵTμ ∝ ϵμνρσpν
1p

ρ
2v

σ
B; ð12Þ

with the Levi-Civita tensor ϵμνρσ under the convention
ϵ0123 ¼ −1. The transverse polarization vector is then
normalized into

ϵTμ ¼
ϵμνρσpν

1P
ρnσ−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζð1 − ζÞp
ωP · n−

: ð13Þ

To arrive at the above expression, we have added pρ
1 to pρ

2

in Eq. (12) to get the total momentum Pρ of the pion pair
without changing the result, and replaced vB by n−, because
P is dominated by the plus component.
Employing the pion DAs in Eq. (10), adopting the

definition in Eq. (13), and following the prescription in
[34,35], we obtain the nonlocal matrix elements in Eq. (9)
for various spin projectors Γ up to twist 3:

hππjq̄0ðy−Þγμqð0Þj0i ¼ ð2ζ − 1ÞPμ

Z
1

0

dzeizP·yϕ0ðz;ωÞ

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ω
ϵμνρσϵ

ν
TP

ρnσ−
P · n−

Z
1

0

dzeizP·yϕvðz;ωÞ; ð14Þ

hππjq̄0ðy−ÞIqð0Þj0i ¼ ω

Z
1

0

dzeizP·yϕsðz;ωÞ; ð15Þ

hππjq̄0ðy−Þσμνγ5qð0Þj0i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ϵTνPμ

Z
1

0

dzeizP·yϕTðz;ωÞ; ð16Þ

hππjq̄0ðy−Þγμγ5qð0Þj0i ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ωϵTμ

Z
1

0

dzeizP·yϕaðz;ωÞ; ð17Þ

hππjq̄0ðy−Þσμνqð0Þj0i ¼ −i
p1μp2ν − p1νp2μ

ω

Z
1

0

dzeizP·yϕtðz;ωÞ; ð18Þ

hππjq̄0ðy−Þγ5qð0Þj0i ¼ 0; ð19Þ

with the two-pion DAs ϕ0;T and ϕs;t;v;a being of twist 2 and
twist 3, respectively.
Some detailed derivation of Eqs. (14)–(19) are outlined

here. For Eq. (14), we have applied the parametrizations for
the longitudinal and transverse components of p1 − p2,

ðp1 − p2Þμ ≈ ð2ζ − 1ÞPμ;

ðp1 − p2Þx ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
ω
ϵxνρσϵTνPρn−σ

P · n−
; ð20Þ

where the ζ-dependent factors will be absorbed
into the corresponding two-pion DAs below. The matrix

element in Eq. (16) for the choice μ; ν ¼ þ; y is propor-
tional to

ϵþyρσp1ρp2σ ¼ ϵγyρσp1ρPσn−γ ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1−ζÞ

p
ωPþϵyT; ð21Þ

in which Eq. (13) has been inserted. It is pointed out that the
structure ðp1μp2ν − p1νp2μÞ in Eq. (18) corresponds to =ϵL=P
for the twist-3 DAs in the longitudinally polarized pseu-
doscalar-vector meson pair [34,35].
We summarize the hadronic matrix elements ΦL

ππ (ΦT
ππ)

for the pion pair associated with the longitudinal (trans-
verse) polarization from Eqs. (14)–(18) as

ΦL
ππ ¼

1ffiffiffiffiffiffiffiffi
2Nc

p
�
=Pϕ0ðz; ζ;ωÞ þ ωϕsðz; ζ;ωÞ þ =p1=p2 − =p2=p1

ωð2ζ − 1Þ ϕtðz; ζ;ωÞ
�
;

ΦT
ππ ¼

1ffiffiffiffiffiffiffiffi
2Nc

p
�
γ5=ϵT=PϕTðz; ζ;ωÞ þ ωγ5=ϵTϕaðz; ζ;ωÞ þ iω

ϵμνρσγμϵTνPρn−σ
P · n−

ϕvðz; ζ;ωÞ
�
; ð22Þ
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where the projectors γ5=ϵT=P, γ5=ϵT , and ϵμνρσγμϵTνPρn−σ come from Eq. (16), Eq. (17), and the second line of Eq. (14),
respectively. Our result for the longitudinal pieceΦL

ππ has the same form as in [31], while the transverse oneΦT
ππ is new. The

two-pion DAs for various twists are expanded in terms of the Gegenbauer polynomials, such as C3=2
2 ð1 − 2zÞ:

ϕ0ðz; ζ;ωÞ ¼ 3Fkðω2Þffiffiffiffiffiffiffiffi
2Nc

p zð1 − zÞ½1þ a02C
3=2
2 ð1 − 2zÞ�ð2ζ − 1Þ;

ϕsðz; ζ;ωÞ ¼ 3F⊥ðω2Þ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ½1þ as2ð1 − 10zþ 10z2Þ�ð2ζ − 1Þ;

ϕtðz; ζ;ωÞ ¼ 3F⊥ðω2Þ
2

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ2½1þ at2C
3=2
2 ð1 − 2zÞ�ð2ζ − 1Þ;

ϕTðz; ζ;ωÞ ¼ 3F⊥ðω2Þffiffiffiffiffiffiffiffi
2Nc

p zð1 − zÞ½1þ aT2C
3=2
2 ð1 − 2zÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
;

ϕaðz; ζ;ωÞ ¼ 3Fkðω2Þ
4

ffiffiffiffiffiffiffiffi
2Nc

p ð1 − 2zÞ½1þ aa2ð10z2 − 10zþ 1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
;

ϕvðz; ζ;ωÞ ¼ Fkðω2Þ
2

ffiffiffiffiffiffiffiffi
2Nc

p
�
3

4
½1þ ð1 − 2zÞ2� þ av2½3ð2z − 1Þ2 − 1�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
; ð23Þ

in which we have introduced one Gegenbauer moment a2 for each DA. The decomposition of the above DAs is similar to
that of the ρmeson DAs, but with the vector (tensor) decay constant fρ (fTρ ) being replaced by the timelike pion form factors
Fk (F⊥).
For the form factor Fkðω2Þ, we adopt the parametrization in Ref. [14],

Fkðω2Þ ¼
�
BWGS

ρ ðω2; mρ;ΓρÞ
1þ cωBWKS

ω ðω2; mω;ΓωÞ
1þ cω

þ
X
i

ciBWGS
i ðω2; mi;ΓiÞ

��
1þ

X
i
ci

�
−1
; ð24Þ

with i ¼ ρ0ð1450Þ and ρ00ð1700Þ. The values of the masses
mi, the widths Γi, the complex coefficients ci, and the BW
functions of various resonances are referred to [14]. For the
form factor F⊥ðω2Þ, we employ the approximate relation
F⊥ðω2Þ=Fkðω2Þ ≈ fTρ=fρ for the ρð770Þ resonance [31].
Because the tensor decay constants fT for ρð1450Þ and

ρð1700Þ are not known yet, we treat the corresponding
modules jcij in F⊥ as free parameters, but keep their phases
the same as in [14]. The global fit to the existing data for the
B → J=ψππ branching ratios and polarization fractions [4]
determines the central values of the dimensionless param-
eters appearing in the two-pion DAs,

a02¼ 0.2; as2 ¼ 0.7; at2¼−0.4; aT2 ¼ 0.5; aa2 ¼ 0.4; av2 ¼−0.5; jcρ0 j ¼ 0.316; jcρ00 j ¼ 0.272: ð25Þ

The differential branching fraction for the B → ψππ
decays into P-wave pion pairs is expressed as

dB
dω

¼ τωjp⃗1jjp⃗3j
32π3M3

X
i¼0;k;⊥

jAij2; ð26Þ

where the pion and charmonium three-momenta in the ππ
center-of-mass frame are given by

jp⃗1j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðω2;m2

π;m2
πÞ

p
2ω

; jp⃗3j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2;m2;ω2Þ

p
2ω

; ð27Þ

respectively, with the pion massmπ and the Källén function
λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ. The terms

A0, Ak, and A⊥ represent the longitudinal, parallel, and
perpendicular polarization amplitudes in the transversity
basis, respectively. The polarization fractions fλ with
λ ¼ 0, k, and ⊥ are then defined by

fλ ¼
jAλj2

jA0j2 þ jAkj2 þ jA⊥j2
: ð28Þ

III. NUMERICAL RESULTS

To proceed with the numerical analysis, we first collect
all the input quantities below. The meson masses and the
heavy quark masses take the central values (in units of
GeV) [47]
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M ¼ 5.28; mb ¼ 4.8; mc ¼ 1.275; mρ ¼ 0.775;

mπ� ¼ 0.140; mπ0 ¼ 0.135; mJ=ψ ¼ 3.097; mψð2SÞ ¼ 3.686: ð29Þ

The Cabibbo-Kobayashi-Maskawa (CKM) parameters in the Wolfenstein parametrization are set to λ ¼ 0.22537,
A ¼ 0.814, ρ̄ ¼ 0.117, and η̄ ¼ 0.355 [32]. The decay constants (in units of GeV) and the B meson lifetimes (in units
of ps) are chosen as [32,45,46]

fB ¼ 0.19; fJ=ψ ¼ 0.405; fψð2SÞ ¼ 0.296; fρ ¼ 0.216; fTρ ¼ 0.184; τB0 ¼ 1.519; τB� ¼ 1.638: ð30Þ

The resultant branching ratios B and the polarization
fractions fλ together with the available experimental
measurements from the LHCb Collaboration for the J=ψ
involved modes are summarized in Table I, and the
corresponding ones for ψð2SÞ are listed in Table II. Since
the charged and neutral B meson decays differ only in the
lifetimes and the isospin factor in our formalism, one can
derive the branching ratios for the Bþ meson by multiply-
ing those for the B0 meson by the ratio 2τBþ=τB0 .
The theoretical errors in Tables I and II are from

some typical sources, namely, the two Gegenbauer
moments in the twist-2 two-pion DAs, a02 ¼ 0.2� 0.2
and aT2 ¼ 0.5� 0.5, and the variation of the hard scales

t from 0.75t to 1.25t, which characterize the energy release
in decay processes (see the factorization formulas in the
Appendix). It is worthwhile to mention that the hard
kernels are evaluated only up to leading order plus the
vertex corrections in this work, so the theoretical accuracy
still needs to be improved. This is the case especially for B
meson decays into charmonia, whose energy release may
not be high enough for justifying the leading-order calcu-
lation. It is then expected that the hadronic parameters
extracted from the data in the present framework should
suffer larger theoretical uncertainty. Therefore, we have
considered a wide range for the variation of the Gegenbauer
moment a02 ¼ 0.2� 0.2, which covers the central value

TABLE II. PQCD results for the branching ratios and the polarization fractions of the P-wave resonance channels in the B0 →
ψð2SÞπþπ− decay.

R BðB0 → ψð2SÞRð→ πþπ−ÞÞ f0ð%Þ fkð%Þ f⊥ð%Þ
ρð770Þ ð1.0þ0.1þ0.2þ0.0

−0.1−0.2−0.0 Þ × 10−5 50þ3þ9þ1
−2−8−0 26þ1þ5þ0

−2−7−1 24þ1þ3þ0
−1−3−1

ρð1450Þ ð8.2þ0.1þ2.3þ0.4
−0.0−1.5−0.2 Þ × 10−7 46þ1þ11þ3

−0−10−3 28þ0þ9þ2
−1−10−2 26þ0þ1þ0

−0−1−1

TABLE I. PQCD results for the branching ratios and the polarization fractions of the P-wave resonance channels in the B0 →
J=ψπþπ− decay. The theoretical errors are attributed to the variation of the Gegenbauer moments a02 and aT2 , and the hard scales t,
respectively. The data are taken from [3,4,39], where the first uncertainty is statistical and the second is systematic. The uncertainties
from [39] are statistical only.

R BðB0 → J=ψRð→ πþπ−ÞÞ f0ð%Þ fkð%Þ f⊥ð%Þ
ρð770Þ ð2.58þ0.27þ0.53þ0.06

−0.25−0.38−0.04 Þ × 10−5 57.9þ4.0þ10.1þ0.6
−4.5−9.7−1.5 22.9þ2.4þ5.3þ0.5

−2.2−6.0−0.4 19.2þ2.1þ4.4þ1.0
−1.8−4.1−0.2

LHCb [3] ð2.49þ0.20þ0.16
−0.13−0.23 Þ × 10−5 � � � � � � � � �

LHCb [4] ð2.50� 0.10þ0.18
−0.15 Þ × 10−5 57.4� 0.2þ1.3

−3.1 23.4� 1.7þ1.0
−1.3 19.2� 1.7þ3.8

−1.2

LHCb [39] ð2.60� 0.10Þ × 10−5
a 56.7� 1.8 23.5� 1.5 19.8� 1.7

ρð1450Þ ð3.0þ0.2þ1.1þ0.1
−0.1−0.6−0.0 Þ × 10−6 46þ3þ12þ1

−1−11−4 29þ1þ9þ2
−2−10−1 25þ1þ3þ1

−2−2−0

LHCb [3] ð2.1þ1.0þ2.2
−0.6−0.4 Þ × 10−6 � � � � � � � � �

LHCb [4] ð4.6� 1.1� 1.9Þ × 10−6 58� 10þ14
−23 27� 13þ7

−11 15� 7þ28
−10

LHCb [39] ð3.6� 0.7Þ × 10−6
a 47� 11 39� 12 14� 8

ρð1700Þ ð1.8þ0.1þ0.9þ0.1
−0.0−0.5−0.0 Þ × 10−6 31þ2þ12þ2

−0−9−0 38þ0þ9þ0
−1−14−1 31þ1þ2þ1

−0−0−0

LHCb [4] ð2.0� 0.5� 1.2Þ × 10−6 40� 11þ13
−23 24� 14þ7

−10 36� 14þ28
−9

LHCb [39] ð1.2� 0.3Þ × 10−6
a 29� 12 42� 15 29� 15

aThe fit fractions determined from the Dalitz plot analysis have been converted into the branching fraction measurements.
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a02 ¼ 0.3 extracted from the data for charmless B meson
decays in Ref. [32]. Eventually, we will improve the
accuracy of our analysis and perform a global fit to all
relevant data, when determining the involved hadronic
parameters.
One can see that the errors from the two Gegenbauer

moments are comparable and contribute to the major
uncertainties as shown in Tables I and II, while the last
one from the hard scales is only of a few percents due to the
inclusion of the vertex corrections. We have also examined
the sensitivity of our results to the choice of other
Gegenbauer moments in the twist-3 two-pion DAs, as2,
at2, a

a
2 , and a

v
2, in Eq. (25). The first two give a comparable

effect on the longitudinal branching ratio as a02 does. With
the increase (decrease) of as2 (a

t
2), the total branching ratios

and the longitudinal polarization factions become larger.
On the contrary, the last two have a little impact on the total
branching ratios, but can modify the relative importance of
the parallel and perpendicular polarization amplitudes. As
we set aa2 ¼ av2 ¼ 0, the polarization fractions fk and f⊥
are roughly equal. When aa2 and av2 are changed in the
opposite direction, as indicated in Eq. (25), the difference
between fk and f⊥ is enhanced and matches the data. It can
be understood from the factorization formulas presented in
the Appendix: the contribution from ϕa to the parallel
polarization amplitudes plays a role similar to that
from ϕv to the perpendicular polarization amplitudes, so
the inputs of aa2 and av2 opposite in sign increase the
difference between the two amplitudes. It is also found that
the coefficients jcij in F⊥ cause a significant effect
on the branching ratios for the ρð1450Þ and ρð1700Þ
channels. The variation of jcij by 20% results in the
change of the branching ratios by 40%–50%. The uncer-
tainties from other parameters in our formalism, such as the
decay constants and the CKM matrix elements, are not
discussed here. The polarization fractions are not
sensitive to these parameters, because they mainly yield
an overall effect, which cancels in the ratios defined
by Eq. (28).
It is obvious that both our branching ratio and three

polarization fractions for the ρð770Þ channel agree well
with the high-precision LHCb data [3,4,39] in Table I.
Although the central values of the measured branching
ratios for the ρð1450Þ resonance vary in a wide range
ð2.1–4.6Þ × 10−6, their PDG weighted average leads to
2.9þ1.6

−0.7 × 10−6 [47], in good consistency with our predic-
tion. For the ρð1700Þ channel, the LHCb Collaboration
got BðB0→J=ψρ00ð→πþπ−ÞÞ¼ð2.0�0.5�1.2Þ×10−6 [4],
while the subsequent measurement gave ð1.2� 0.3Þ ×
10−6 [39] with the statistical uncertainty only. Our pre-
diction ð1.8þ0.9

−0.5Þ × 10−6 is in between, and matches both
data within errors. For the ψð2SÞ involved modes, although
the LHCb Collaboration [8] also observed a dominant
contribution to the B0 → ψð2SÞπþπ− decay from the

ρð770Þ resonance, the detailed partial wave analysis for
determining its fraction is still missing due to a limited
number of events.
Summing over all the contributing P-wave resonances in

the ππ invariant mass spectra ½2mπ;M −m�, we have the
total branching ratios

BðB0→J=ψðπþπ−ÞPÞ¼ð3.1þ0.4þ0.8þ0.2
−0.2−0.5−0.0 Þ×10−5;

BðB0→ψð2SÞðπþπ−ÞPÞ¼ð1.2þ0.1þ0.3þ0.0
−0.1−0.2−0.0 Þ×10−5; ð31Þ

where the sources of the errors have been interpreted
before. The former amounts up to 78% of the total
three-body branching ratio BðB0 → J=ψπþπ−Þ ¼ ð3.96�
0.17Þ × 10−5 [47]. As noticed in [3], the S-wave f0ð500Þ
and D-wave f2ð1270Þ resonances, besides the P-wave
ones, were also produced significantly in the J=ψπþπ−
final states. The best fit model in [3] implies that
one full ρð770Þ meson width contains 11.9% S-wave
component and 0.72% D-wave component. Therefore, it
is reasonable to leave the remaining 22% to the S-wave
and D-wave contributions, as well as the nonresonant
one and their interference in the entire invariant mass
range. We estimate from Eq. (31) the ratio of the branching
fractions,

BðB0 → ψð2SÞðπþπ−ÞPÞ
BðB0 → J=ψðπþπ−ÞPÞ

¼ 0.39þ0.01
−0.03 ; ð32Þ

in which all the uncertainties have been added in quad-
rature. The value is slightly lower than the LHCb meas-
urement [8]

BðB0 → ψð2SÞπþπ−Þ
BðB0 → J=ψπþπ−Þ ¼ 0.56� 0.07ðstatÞ

� 0.05ðsystÞ � 0.01ðBÞ; ð33Þ

where the third uncertainty corresponds to the one from the
dilepton branching fractions of the J=ψ and ψð2SÞ char-
monium decays. The minor discrepancy may be resoled by
including other partial wave contributions.
The resonant decay rate obeys a simple factorization

relation under the narrow width approximation,

BðB0 → ψRð→ πþπ−ÞÞ ¼ BðB0 → ψRÞBðR → πþπ−Þ;
ð34Þ

from which we extract the two-body B → ψR branching
ratios, given the input of BðR → πþπ−Þ. Combining the
experimental fact Bðρ → ππÞ ∼ 100% [47] and the esti-
mates of Bðρ0 → ππÞ ¼ 10.04þ5.23

−2.61% and Bðρ00 → ππÞ ¼
8.11þ2.22

−1.47% in Ref. [33], we obtain the central values

P-WAVE CONTRIBUTIONS TO B → ψππ DECAYS IN … PHYS. REV. D 98, 113003 (2018)

113003-7



BðB0 → J=ψρÞ ¼ 2.58 × 10−5;

BðB0 → J=ψρ0Þ ¼ 3.0 × 10−5;

BðB0 → J=ψρ00Þ ¼ 2.2 × 10−5;

BðB0 → ψð2SÞρÞ ¼ 1.0 × 10−5;

BðB0 → ψð2SÞρ0Þ ¼ 8.2 × 10−6: ð35Þ

It is seen that both BðB0 → J=ψρÞ and BðB0 → ψð2SÞρÞ
are consistent with those derived in the PQCD framework
for two-body decays [48].
We plot in Fig. 2 the total differential branching fractions

in the P-wave πþπ− invariant mass for the considered
decays. The curve for the B0 → J=ψπþπ− mode is similar
to those for the charmless B → Pππ decays [33], since the
same time-like form factors for the two-pion DAs, fitted by
the BABAR Collaboration via the eþe− annihilation process

[14], have been adopted. One finds a dip appearing at the
invariant mass around 1.5–1.6 GeV in Fig. 2(a), that is
usually interpreted as the destructive interference between
the ρð1450Þ and ρð1700Þ channels [14,49]. In fact, the best
fit model also shows that the destructive interference
between ρð1450Þ and ρð1700Þ is comparable with their
individual fit fractions (see Tables VII and IX in Ref. [4]).
However, the dip is not observed in Fig. 2(b), because the
ρð1700Þ state is beyond the dipion invariant mass spectra
for the B0 → ψð2SÞπþπ− mode. Both cases exhibit a clear
ρ-ω interference pattern in the ρ peak region. The individ-
ual resonance contributions are displayed in Fig. 3, where
the red solid, green dashed, and blue dotted curves
represent those from ρð770Þ, ρð1450Þ, and ρð1700Þ,
respectively. The different shapes among these individual
channels are mainly governed by the corresponding
BW functions and parameters ci in Eq. (24). As expected,

FIG. 3. ρð770Þ, ρð1450Þ, and ρð1700Þ resonance contributions to the differential branching fractions of (a) B0 → J=ψπþπ− and
(b) B0 → ψð2SÞπþπ−, which are displayed by the solid red, dashed green, and dotted blue curves, respectively.

FIG. 2. P-wave contribution to the differential branching fractions of the modes (a) B0 → J=ψπþπ− and (b) B0 → ψð2SÞπþπ−.
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the ρð770Þ production is apparently dominant. Comparing
Tables I and II with Eq. (31), the ρð770Þ resonance
accounts for 83% of the total P-wave branching fractions
in both the B0 → J=ψπþπ− and ψð2SÞπþπ− decays, while
the higher ρð1450Þ and ρð1700Þ resonances contribute less
than 10%. The obtained distributions in the P-wave ππ
mass as well as the individual resonance contributions
agree fairly well with the LHCb data shown in Fig. 13 of
Ref. [4] and in Fig. 4 of Ref. [8].

IV. CONCLUSION

In this paper we have performed the analysis of the B →
ψππ decays under the quasi-two-body approximation in the
PQCD framework by introducing the two-pion DAs. Since
both the charmonium and the P-wave pion pair in the final
state carry the spin degrees of freedom, the two-pion DAs
corresponding to both the longitudinal and transverse
polarizations are the necessary nonperturbative inputs,
and were constructed through a perturbative evaluation
of the associated hadronic matrix elements as a timelike
process. It was observed that the total momentum and the
orbital angular momentum of the P-wave dipion system
mimics its longitudinal and transverse polarizations,
respectively. The two-pion DAs for various spin projectors
were then decomposed in terms of the Gegenbauer poly-
nomials that depend on parton momentum fractions, and
the Legendre polynomials that depend on meson momen-
tum fractions up to twist 3. The timelike form factors,
normalizing the two-pion DAs, were parametrized to
consist of a linear combination of the ρ, ρ0, and ρ00 resonant
contributions together with the ρ-ω interference.
We have determined the hadronic parameters involved

in the two-pion DAs from a global fit to the data of the
B0 → J=ψρð→πþπ−Þ branching ratios and polarization
fractions with good consistency. In particular, the resultant
differential branching fractions in the P-wave di-pion
invariant mass and individual resonance contributions
match the LHCb data. We have also predicted the branch-
ing ratios and the polarization fractions of the B0 →
ψð2SÞρð→πþπ−Þ decays, which can be confronted with
future measurements. As a by-product, we extracted the
two-body B0 → ψρ branching ratios from the results for the
corresponding quasi-two-body modes by employing
the narrow width approximation. The predictions for the
ρð770Þ channels are in accordancewith our previous PQCD
calculations performed for two-body decays. The consis-
tency between the three-body and two-body analyses

supports the PQCD approach to exclusive charmonium
B meson decays. The predictions for the higher excited
intermediate states still need to be tested at the ongoing and
forthcoming experiments.
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APPENDIX: DECAY AMPLITUDES

Before presenting the explicit factorization formula for
each B0 → ψππ decay amplitude in this Appendix, we
make a remark on the factorization theorem for hadronic B
meson decays into charmonia. It has been argued [50] that
the QCD factorization (QCDF) approach is applicable to
exclusive B meson decays into J=ψ , since the transverse
size of J=ψ becomes small in the heavy quark limit. On the
other hand, the kT factorization theorem also holds for B
meson decays containing charmonia in the heavy quark
limit under the power counting mc=mb, ΛQCD=mc ≪ 1,
with the QCD scale ΛQCD, as elaborated in [51]. Because
we focus on the resonant region of the di-pion system, what
we studied here are basically quasi-two-body decays, and
the reasoning in [51] for their factorization still applies.
That is, the PQCD approach is expected to be suitable for
describing the B0 → ψππ decays.
The contributions from the longitudinal polarization, the

normal polarization, and the transverse polarization
are labelled by the subscripts L, N and T, respecti-
vely. The contributions from the ðV − AÞ ⊗ ðV − AÞ,
ðV − AÞ ⊗ ðV þ AÞ, and ðS − PÞ ⊗ ðSþ PÞ operators
are labelled by the superscripts LL, LR, and SP, respec-
tively. The total decay amplitude is decomposed into

A ¼ AL þANϵT · ϵ3T þ iATϵαβρσnαþnβ−ϵ
ρ
Tϵ

σ
3T; ðA1Þ

where the three individual polarization amplitudes are
written as

AL;N;T ¼ GFffiffiffi
2

p
�
V�
cbVcs

��
C1 þ

1

3
C2

�
FLL

L;N;T þ C2MLL
L;N;T

�
− V�

tbVts

��
C3 þ

1

3
C4 þ C9 þ

1

3
C10

�
FLL

L;N;T

þ
�
C5 þ

1

3
C6 þ C7 þ

1

3
C8

�
FLR

L;N;T þ ðC4 þ C10ÞMLL
L;N;T þ ðC6 þ C8ÞMSP

L;N;T

��
; ðA2Þ
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with the CKM matrix elements Vij and the Fermi coupling constant GF. The Wilson coefficients Ci encode the hard
dynamics of weak decays. The above amplitudes are related to those in Eq. (26) via

A0 ¼ AL; Ak ¼
ffiffiffi
2

p
AN; A⊥ ¼

ffiffiffi
2

p
AT: ðA3Þ

The explicit amplitudes F ðMÞ from the factorizable (nonfactorizable) diagrams in Fig. 1 read as

FLL
L ¼8πCFfψM4ffiffiffiffiffiffiffiffiffi

1−η
p

Z
1

0

dxBdz
Z

∞

0

bBdbBbdbϕBðxB;bBÞf½−ϕ0ðr2ð−2ηzþ2zþ1Þþðη−1Þðzþ1ÞÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1−r2Þ

q
ðϕsðηþr2ð2ðη−1Þzþ1Þ−2ηzþ2z−1Þþϕtðηþr2ð2ðη−1Þz−1Þ−2ηzþ2z−1ÞÞ�EeðtaÞhaðxB;z;bB;bÞ

þ½2ϕsð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1−r2Þ

q
ð−ηþr2xB−r2þ1ÞÞ−ϕ0ð−η2þηþη2r2−2ηr2þr2xBÞ�EeðtbÞhbðxB;z;bB;bÞg; ðA4Þ

MLL
L ¼ −

32πCFM4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − ηÞηð1 − r2Þ

p
Z

1

0

dxBdzdx3

Z
∞

0

bBdbBb3db3ϕBðxB; bBÞ½ϕ0ðηþ r2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
− 2ηðr2 − 1Þϕt�

× ½r2ψLð2ðη − 1Þx3 þ xB − ηzþ zÞ − 2ðη − 1Þrrcψ t þ ðη − 1ÞzψL�EnðtdÞhdðxB; z; x3; bB; b3Þ; ðA5Þ

FLL
N ¼ 8πCFfψM4r

Z
1

0

dxBdz
Z

∞

0

bBdbBbdbϕBðxB; bBÞf½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ðϕaðr2z − z − 2Þ − ðr2 − 1ÞzϕvÞ

þ ϕTðr2 − 1þ ηð−2r2zþ 2z − 1ÞÞ�EeðtaÞhaðxB; z; bB; bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½ϕað−ηþ r2 þ xB − 1Þ

þ ϕvðηþ r2 − xB − 1Þ�EeðtbÞhbðxB; z; bB; bÞg; ðA6Þ

FLL
T ¼ 8πCFfψM4r

Z
1

0

dxBdz
Z

∞

0

bBdbBbdbϕBðxB; bBÞf½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ðϕvðr2z − z − 2Þ − ðr2 − 1ÞzϕaÞ

þ ϕTðr2 − 1 − ηð−2r2zþ 2z − 1ÞÞ�EeðtaÞhaðxB; z; bB; bÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
½ϕvð−ηþ r2 þ xB − 1Þ

þ ϕaðηþ r2 − xB − 1Þ�EeðtbÞhbðxB; z; bB; bÞg; ðA7Þ

MLL
N ¼ −

64πCFM4ffiffiffi
6

p
Z

1

0

dxBdzdx3

Z
∞

0

bBdbBb3db3ϕBðxB; bBÞfϕT ½rψVð−ηx3 þ x3 − xB þ ηzÞ þ ðη − 1ÞrcψT �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ϕa½rψVð−ηx3 þ x3 − xB þ zÞ þ ðη − 1ÞrcψT �gEnðtdÞhdðxB; z; x3; bB; b3Þ; ðA8Þ

MLL
T ¼ −

64πCFM4ffiffiffi
6

p
Z

1

0

dxBdzdx3

Z
∞

0

bBdbBb3db3ϕBðxB; bBÞfϕT ½rψVð−ηx3 þ x3 − xB − ηzÞ þ ðη − 1ÞrcψT �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð1 − r2Þ

q
ϕv½rψVð−ηx3 þ x3 − xB þ zÞ þ ðη − 1ÞrcψT �gEnðtdÞhdðxB; z; x3; bB; b3Þ; ðA9Þ

FLR
L;N;T ¼ FLL

L;N;T; ðA10Þ

MSP
L;N;T ¼ −MLL

L;N;T; ðA11Þ

with rc ¼ mc=M,mc being the charm quark mass, the color
factor CF ¼ 4=3, and the decay constant fψ of the
charmonium. The expressions for the evolution functions
E, the hard kernels h, and the hard scales ta;b;c;d can be
found in the Appendix of Ref. [28]. We point out that the
amplitudes F correspond to the B → ππ transition form
factors, which have been computed in QCD light-cone sum
rules [52,53].

In addition, the vertex corrections to the factorizable
diagrams in Fig. 1 are included through the modification
of the Wilson coefficients as done in the QCDF approach
[54–56], according to the argument in [57]. Note that the first
step of the factorization of these diagrams is the same in the
QCDF and PQCD approaches, at which the Wilson coef-
ficients are factorized out of the exclusive B meson decays.
The difference of the two approaches stems fromwhether the
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remaining hadronic matrix elements of effective operators,
namely, the soft form factors, are factorizable. Due to the
different power counting on parton transverse momenta,
these soft form factors are not factorizable in QCDF, but are
in PQCD. Once the factorization is established, one can
calculate radiative corrections to each involved piece sepa-
rately. Since the Wilson coefficients are the same in the two

approaches, the vertex corrections to this piece obtained in
QCDF can be applied to PQCD. Moreover, the infrared
divergences in the vertex corrections cancel, when they are
summed over, as stated in Ref. [50]. Therefore, it is not
necessary to introduce parton transverse momenta into the
evaluation of these corrections [57], and the QCDF results
can be adopted directly and consistently.
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Hořejši, Fortschr. Phys. 42, 101 (1994).
[25] M. Diehl, T. Gousset, B. Pire, and O. Teryaev, Phys. Rev.

Lett. 81, 1782 (1998); M. Diehl, T. Gousset, and B. Pire,

Phys. Rev. D 62, 073014 (2000); B. Pire and L.
Szymanowski, Phys. Lett. B 556, 129 (2003).

[26] M. V. Polyakov, Nucl. Phys. B555, 231 (1999).
[27] T. Kurimoto, H. N. Li, and A. I. Sanda, Phys. Rev. D 67,

054028 (2003).
[28] W. F. Wang, H. N. Li, W. Wang, and C. D. Lü, Phys. Rev. D

91, 094024 (2015).
[29] Z. Rui, Y. Li, and W. F. Wang, Eur. Phys. J. C 77, 199

(2017).
[30] Z. Rui and W. F. Wang, Phys. Rev. D 97, 033006 (2018).
[31] W. F. Wang and H. N. Li, Phys. Lett. B 763, 29 (2016).
[32] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 95,

056008 (2017).
[33] Y. Li, A. J. Ma, W. F. Wang, and Z. J. Xiao, Phys. Rev. D 96,

036014 (2017).
[34] C. H. Chen and H. N. Li, Phys. Rev. D 70, 054006

(2004).
[35] C. Wang, J. B. Liu, H. N. Li, and C. D. Lü, Phys. Rev. D 97,

034033 (2018).
[36] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 736, 186

(2014).
[37] J. Charles et al. (CKMfitter Group), Phys. Rev. D 91,

073007 (2015).
[38] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 713, 378

(2012).
[39] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 742, 38

(2015).
[40] L. Zhang and S. Stone, Phys. Lett. B 719, 383 (2013).
[41] H. N. Li, Prog. Part. Nucl. Phys. 51, 85 (2003) and

references therein.
[42] T. Kurimoto, H. N. Li, and A. I. Sanda, Phys. Rev. D 65,

014007 (2001).
[43] Y. Y. Keum, H. N. Li, and A. I. Sanda, Phys. Lett. B 504, 6

(2001).
[44] Y. Y. Keum, H. N. Li, and A. I. Sanda, Phys. Rev. D 63,

054008 (2001).
[45] Z. Rui and Z. T. Zou, Phys. Rev. D 90, 114030 (2014).
[46] Z. Rui, W. F. Wang, G. X. Wang, L. H. Song, and C. D. Lü,

Eur. Phys. J. C 75, 293 (2015).
[47] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[48] Z. Rui, Y. Li, and Z. J. Xiao, Eur. Phys. J. C 77, 610

(2017).
[49] M. Fujikawa et al. (Belle Collaboration), Phys. Rev. D 78,

072006 (2008).

P-WAVE CONTRIBUTIONS TO B → ψππ DECAYS IN … PHYS. REV. D 98, 113003 (2018)

113003-11

https://doi.org/10.1103/PhysRevLett.90.091801
https://doi.org/10.1103/PhysRevLett.90.091801
https://doi.org/10.1103/PhysRevD.76.031101
https://doi.org/10.1103/PhysRevD.76.031101
https://doi.org/10.1103/PhysRevD.87.052001
https://doi.org/10.1103/PhysRevD.87.052001
https://doi.org/10.1103/PhysRevD.90.012003
https://doi.org/10.1103/PhysRevD.90.012003
https://doi.org/10.1103/PhysRevD.86.052006
https://doi.org/10.1103/PhysRevD.86.052006
https://doi.org/10.1103/PhysRevD.89.092006
https://doi.org/10.1103/PhysRevD.89.092006
https://doi.org/10.1103/PhysRevD.79.074024
https://doi.org/10.1016/j.nuclphysb.2013.03.004
https://doi.org/10.1016/j.nuclphysb.2013.03.004
https://doi.org/10.1103/PhysRevD.90.114004
https://doi.org/10.1103/PhysRevD.90.114004
https://doi.org/10.1088/0031-8949/88/03/035101
https://doi.org/10.1007/JHEP02(2016)009
https://doi.org/10.1007/JHEP02(2016)009
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1140/epjc/s2004-02064-3
https://doi.org/10.1016/S0370-2693(02)01168-1
https://doi.org/10.1016/S0370-2693(02)01168-1
https://doi.org/10.1016/j.physletb.2007.01.073
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1103/PhysRevD.86.032013
https://doi.org/10.1016/S0370-2693(03)00486-6
https://doi.org/10.1016/j.nuclphysb.2015.08.004
https://doi.org/10.1016/j.nuclphysb.2015.08.004
https://doi.org/10.1007/JHEP10(2017)117
https://doi.org/10.1007/JHEP10(2017)117
https://doi.org/10.1103/PhysRevLett.74.4388
https://doi.org/10.1016/0370-2693(95)00174-J
https://doi.org/10.1103/PhysRevD.88.114014
https://doi.org/10.1103/PhysRevD.88.114014
https://doi.org/10.1103/PhysRevD.94.094015
https://doi.org/10.1103/PhysRevD.94.094015
https://doi.org/10.1007/BF01037870
https://doi.org/10.1007/BF01037870
https://doi.org/10.1002/prop.2190420202
https://doi.org/10.1103/PhysRevLett.81.1782
https://doi.org/10.1103/PhysRevLett.81.1782
https://doi.org/10.1103/PhysRevD.62.073014
https://doi.org/10.1016/S0370-2693(03)00134-5
https://doi.org/10.1016/S0550-3213(99)00314-4
https://doi.org/10.1103/PhysRevD.67.054028
https://doi.org/10.1103/PhysRevD.67.054028
https://doi.org/10.1103/PhysRevD.91.094024
https://doi.org/10.1103/PhysRevD.91.094024
https://doi.org/10.1140/epjc/s10052-017-4772-2
https://doi.org/10.1140/epjc/s10052-017-4772-2
https://doi.org/10.1103/PhysRevD.97.033006
https://doi.org/10.1016/j.physletb.2016.10.026
https://doi.org/10.1103/PhysRevD.95.056008
https://doi.org/10.1103/PhysRevD.95.056008
https://doi.org/10.1103/PhysRevD.96.036014
https://doi.org/10.1103/PhysRevD.96.036014
https://doi.org/10.1103/PhysRevD.70.054006
https://doi.org/10.1103/PhysRevD.70.054006
https://doi.org/10.1103/PhysRevD.97.034033
https://doi.org/10.1103/PhysRevD.97.034033
https://doi.org/10.1016/j.physletb.2014.06.079
https://doi.org/10.1016/j.physletb.2014.06.079
https://doi.org/10.1103/PhysRevD.91.073007
https://doi.org/10.1103/PhysRevD.91.073007
https://doi.org/10.1016/j.physletb.2012.06.032
https://doi.org/10.1016/j.physletb.2012.06.032
https://doi.org/10.1016/j.physletb.2015.01.008
https://doi.org/10.1016/j.physletb.2015.01.008
https://doi.org/10.1016/j.physletb.2013.01.035
https://doi.org/10.1016/S0146-6410(03)90013-5
https://doi.org/10.1103/PhysRevD.65.014007
https://doi.org/10.1103/PhysRevD.65.014007
https://doi.org/10.1016/S0370-2693(01)00247-7
https://doi.org/10.1016/S0370-2693(01)00247-7
https://doi.org/10.1103/PhysRevD.63.054008
https://doi.org/10.1103/PhysRevD.63.054008
https://doi.org/10.1103/PhysRevD.90.114030
https://doi.org/10.1140/epjc/s10052-015-3528-0
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1140/epjc/s10052-017-5193-y
https://doi.org/10.1140/epjc/s10052-017-5193-y
https://doi.org/10.1103/PhysRevD.78.072006
https://doi.org/10.1103/PhysRevD.78.072006


[50] H. Y. Cheng and K.-C. Yang, Phys. Rev. D 63, 074011
(2001).

[51] T. Kurimoto, H. N. Li, and A. I. Sanda, Phys. Rev. D 67,
054028 (2003).

[52] U.-G. Meißner and W. Wang, Phys. Lett. B 730, 336
(2014).

[53] C. Hambrock and A. Khodjamirian, Nucl. Phys. B905, 373
(2016).

[54] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Phys. Rev. Lett. 83, 1914 (1999).

[55] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda,
Nucl. Phys. B591, 313 (2000).

[56] M. Beneke and M. Neubert, Nucl. Phys. B675, 333
(2003).

[57] H. N. Li, S. Mishima, and A. I. Sanda, Phys. Rev. D 72,
114005 (2005).

ZHOU RUI, YA LI, and HSIANG-NAN LI PHYS. REV. D 98, 113003 (2018)

113003-12

https://doi.org/10.1103/PhysRevD.63.074011
https://doi.org/10.1103/PhysRevD.63.074011
https://doi.org/10.1103/PhysRevD.67.054028
https://doi.org/10.1103/PhysRevD.67.054028
https://doi.org/10.1016/j.physletb.2014.02.009
https://doi.org/10.1016/j.physletb.2014.02.009
https://doi.org/10.1016/j.nuclphysb.2016.02.035
https://doi.org/10.1016/j.nuclphysb.2016.02.035
https://doi.org/10.1103/PhysRevLett.83.1914
https://doi.org/10.1016/S0550-3213(00)00559-9
https://doi.org/10.1016/j.nuclphysb.2003.09.026
https://doi.org/10.1016/j.nuclphysb.2003.09.026
https://doi.org/10.1103/PhysRevD.72.114005
https://doi.org/10.1103/PhysRevD.72.114005

