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A recent calculation of the multi-Higgs boson production in scalar theories with spontaneous symmetry
breaking has demonstrated the fast growth of the cross section with the Higgs multiplicity at sufficiently
large energies, called “Higgsplosion.” It was argued that Higgsplosion solves the Higgs hierarchy and fine-
tuning problems. In our paper we argue that: (a) the formula for Higgsplosion has a limited applicability
and inconsistent with unitarity of the Standard Model; (b) that the contribution from Higgsplosion to the
imaginary part of the Higgs boson propagator cannot be re-summed in order to furnish a solution of the
Higgs hierarchy and fine-tuning problems.
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I. THE AMPLITUDE BEHAVIOR WITH THE
LARGE SCALAR MULTIPLICITY

One of the flaring questions for the modern elementary
particle physics is the question about the energy scale of
new physics. All current experiments are in excellent
agreement with the Standard Model (SM). Moreover, the
Higgs mass mH ≃ 125 GeV means that all the couplings of
the theory are small above the electroweak scale, and
perturbative calculations in non-Abelian QFT, which is the
core of the SM, should provide a consistent approach. Most
of the coupling constants of the theory become smaller with
increasing energy. The only two couplings which grow
with the energy scale are the Uð1Þ hypercharge coupling
constant and the Higgs self coupling λ. However, the scale
of new physics related to this coupling evolution with the
energy—the Landau pole—is proportional to expð1=λÞ and
significantly exceeds the Planck scale. Therefore, it is
normally assumed that SM can be trusted as a perturbative
QFT at all energies that can, even hypothetically, be probed
in collisions. The only scale that may appear in the SM
framework is the one associated with the metastability of

the electroweak (EW) vacuum, but this scale, even if
present, is very large ∼1010 GeV.
At the same time, it has long been known that theories of

self-interacting scalars (which also include the Higgs boson
of the SM) have problems with the application of pertur-
bation theory at high energies. The first observations of
subtleties in the scalar multiparticle production demon-
strated that at the tree level, owing to the large number of
contributing diagrams, the n-particle amplitudes have
factorial dependence on the number of particles [1–5]

Atree
n ð0Þ ¼ n!
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λ

8

�n−1
2

: ð1Þ

This factorial growth of the amplitude indicates the break-
down of the usual perturbative calculations for n≳ λ−1. It
was found [6–8] that the corresponding 1 → n cross section
can be written in exponential form

σðE; nÞ ∝ exp

�
1

λ
Fðλn; εÞ

�
; ð2Þ

where ε≡ ðE − nmHÞ=nmH is the average kinetic energy
of the final-state Higgs particles. The function Fðλn; εÞ was
obtained by following a specific semiclassical approach [8]
valid in the limit

λ → 0; n → ∞; with fixed λn; ε: ð3Þ

Moreover, there is a conjecture [7], that to exponential
precision the result does not depend on the details of the
initial state, given that the initial number of particles is
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small and therefore, without loss of generality, one can
focus on calculation of 1 → n process, even though the
initial particle is off shell. For small λn ≪ 1 and small
energies of the final particles ε ≪ 1 the exponent of
the cross section is [6–8]1

Fðλn; εÞ ¼ λn ln
λn
16

− λnþ 3

2
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þ 2Bλ2n2 þOðλ3n3Þ þOðλ2n2εÞ
þOðλnε2Þ; ð4Þ

where

B ¼
ffiffiffi
3

p

8π
:

As λn → 0, Fðλn; εÞ → −∞ and the cross section equa-
tion (2) is exponentially suppressed, while in the opposite
regime for large λn the cross section grows exponentially,
thereby contradicting the unitarity of the theory, at least at
the level of perturbation theory.
The equation (4) for Fðλn; εÞ is valid for λn ≪ 1, ε ≪ 1.

The logarithmic and lowest order terms correspond to tree
level contributions, the term of the orderOðλ2n2Þ is the first
radiative correction. Note, that in the range of the validity of
Eq. (4) the function Fðλn; εÞ is negative. At tree level (for
λn ≪ 1) the energy dependence for arbitrary energies εwas
found in [11,12] and again leads to an exponentially
suppressed result. However, the problem of finding the
expression for arbitrary large λn and ε is still open.
Recently authors of [9,10] have extended the thin-wall

approximation of [13] and have found the cross section for
the opposite, λn ≫ 1 limit:

Fðλn;εÞ¼λn
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An important feature of this solution is the increase of
Fðλn; εÞ at sufficiently large λn for a fixed value of ε. This
result was then used to argue that at large multiplicities [or,
equivalently, large energies E ∼ nðεþmHÞ] the 1 → n
width grows exponentially. One should note that the
thin-wall semiclassical solution, leading to Eq. (5) exists
only in the λϕ4 theory with spontaneous symmetry break-
ing in 3þ 1 dimensions.
We would like to stress, however, that nonvanishing ε is

required for the result of Eq. (5) to be positive, since at zero
ε the logarithmic term is infinitely negative which gives
zero cross section at the threshold. At the same time the

contribution 0.85
ffiffiffiffiffi
λn

p
in Eq. (5) was obtained at the

kinematical threshold, that is for ε → 0. This is a subtle
point. One should also note that the full result of Eq. (5) is
obtained from a combination of the large λn contribution
with the tree level result, which has the factorized form

Fðλn; εÞ ¼ λnðf0ðλnÞ þ fðεÞÞ:

This form is valid at tree level and at one loop [cf. Eq. (4)].
We would now like to point out that higher order quantum
corrections are expected to contain terms which depend
both on ε and λn, e.g., terms like Oðλ2n2εÞ in Eq. (4). Such
terms could play an important role. We argue here that
without the knowledge of these terms it is not possible to
determine the validity region of the result, Eq. (5), with
respect to the value of ε. We discuss this in detail in the next
section. Such mixed terms may prevent the exponential
growth of the cross section. The exponential growth of the
1 → n width was suggested to be by itself a solution to the
hierarchy problem in [14] where authors conclude that such
exponential growth of the self-energy leads, after resum-
mation, to exponential suppression of the scalar propaga-
tors at high energies.
In this paper we review in detail the validity and

consequences of such fast-growing amplitudes in the
context of unitary, local and Lorentz invariant quantum
field theory.

II. UNITARITY AND 1PI RESUMMATION

It has been known for many years [2] that exponentially
growing amplitudes lead to a violation of unitarity. In [14]
the authors have proposed a mechanism to recover unitarity
through the effect of the off-shell 1 → n amplitude on the
resummed scalar Feynman propagator. The authors sug-
gested that if the two-point function falls off faster with
energy than the amputated 1 → n matrix element, unitarity
can be restored via the so-called Higgspersion mechanism.
However, this argument requires a propagator which

falls off faster than the amputated 1 → n matrix element. In
other words, we require the two-point function to be
decaying exponentially with energy. This is a peculiar
form of the two-point function that is known to cause
problems with unitarity [15]. However, it has been pro-
posed [14] that this form appears in a theory with exploding
amplitudes.
The problem we see here is the following. An exponen-

tially decreasing propagator has been obtained in [14]
because the authors have used the perturbation theory to
sum up single-particle irreducible (1PI) Green’s functions,
which is a valid procedure only for a convergent geometric
series. Namely, it has been claimed that the exact two-point
function ΔFðp2Þ can be obtained from the 1PI Green’s
function Σðp2Þ via

1We quote here the result for the theory with spontaneous
symmetry breaking, which was used in the recent calculations
[9,10].
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ΔFðp2Þ ¼
Z

d4xeip·xfθðx0Þh0jϕðxÞϕð0Þj0i

þ θð−x0Þh0jϕð0ÞϕðxÞj0ig

¼ i
p2 −m2

0 − Σðp2Þ ð6Þ

where m0 is the bare mass of the theory. However, if Σ is
exponentially growing with p2, at sufficiently large p2 this
series is no longer convergent. In this case, one may not use
the resummed form of the above expression. Since resum-
mation is not valid, instead of exponentially falling with p2,
ΔF will uncontrollably grow with p2. This leads to unitarity
violation of the Higgsploding theory, assuming that Eq. (5)
is valid for large λn values and nonvanishing ε. Under this
assumption, one may ask whether the aforementioned
problem is related to the application of the perturbation
theory where it is not valid. It is illustrative to examine
the functional form of the two-point function using
nonperturbative “language” of dispersion relations. In this
procedure we closely follow [16]. Consider the momen-
tum-space Feynman propagator

ΔFðp2Þ ¼
Z

d4xeip·xfθðx0Þh0jϕðxÞϕð0Þj0i

þ θð−x0Þh0jϕð0ÞϕðxÞj0ig ð7Þ

where we anticipate that the ΔF is Lorentz invariant and
hence only a function of p2.
Using the integral representation of the θ-function,

eip0·x0θð�x0Þ ¼
1

2πi

Z
dp0

0eip0
0·x0

1

p0
0 − p0 ∓ iε

ð8Þ

one has

ΔFðp2Þ ¼
Z

d4x
Z

dp0
0

2πi
e−ip⃗·x⃗þip0

0
·x0

×

�h0jϕðxÞϕð0Þj0i
p0
0 − p0 þ iε

−
h0jϕð0ÞϕðxÞj0i
p0
0 − p0 − iε

�
: ð9Þ

Setting the variable of integration x⃗ → −x⃗ in the second
term and using translation invariance of the vacuum,

ΔFðp2Þ ¼
Z

d4x
Z

dp0
0

2πi
h0jϕðxÞϕð0Þj0i

×

�
eip

0
0
·x0−ip⃗:x⃗

p0
0 − p0 þ iε

−
eip

0
0
·x0þip⃗:x⃗

p0
0 − p0 − iε

�
: ð10Þ

Now we insert a complete set of (in or out) states. In the
language of [14], this corresponds to a kinematically
unique one-particle state, plus a continuum of multiparticle
states. We let σn denote all the internal quantum numbers of

an n-particle state, including its phase space. Assuming that
jh0jϕð0Þjn; σnij2 is Lorentz invariant,

ΔFðp2Þ ¼
Z

d4x
Z

dp0
0

2πi

X
n;σ

jh0jϕð0Þjn; σnij2ðp2
nÞe−ipn·x

×

�
eip

0
0
·x0−ip⃗·x⃗

p0
0 − p0 þ iε

−
eip

0
0
·x0þip⃗·x⃗

p0
0 − p0 − iε

�
ð11Þ

where pn is the total four-momentum of the n-particle state.
In the case of [14], complications will arise due to the

divergence of this integrand. To see how difficulties appear,
let us consider the scenario where

P
n;σjh0jϕð0Þjn; σnij2 is

a polynomial of order N in p2.
Exchanging p0

0 → −p0
0 and xμ → −xμ in the second term

gives

ΔFðp2Þ ¼
Z

d4x
Z

dp0
0

2πi

X
n;σ

eiðp0
0
−pn;0Þ·x0−iðp⃗−p⃗nÞ·x⃗

× jh0jϕð0Þjn; σnij2ðp2
nÞ

×

�
1

p0
0 − p0 þ iε

þ 1

p0
0 þ p0 þ iε

�
: ð12Þ

Combining both terms in the curly bracket and making the
iε prescription implicit,

ΔFðp2Þ ¼
Z

d4x
Z

dp002
2πi

X
n;σ

eiðp0
0
−pn;0Þ·x0−iðp⃗−p⃗nÞ·x⃗

× jh0jϕð0Þjn; σnij2ðp2
nÞ

1

ðp02
0 − p2

0Þ
: ð13Þ

At this point, one might be tempted to swap the order of
integration and perform the x-integral. However, the
remaining integrand would be an order N − 1 polynomial
in p02. This integrand is not convergent at p0

0 ¼ �∞, so the
straightforward change of the integration order is not valid
here. Before we can swap the order of integration, we must
perform N subtractions of the form

1

p02
0 − p2

0

¼ 1

p02
0

þ p2
0

p02
0 ðp02

0 − p2
0Þ
: ð14Þ

In this way, Eq. (13) may be written as ðp2
0ÞN times a

convergent integral, plus an order N − 1 polynomial in p2
0

where the coefficients are functions of ΔFð0Þ. For example,
the first term in Eq. (14) simply gives ΔFð0Þ.
The contribution from the convergent integral is

ðp2
0ÞN

Z
dp002

�
ð2πÞ3

X
n;σ

jh0jϕð0Þjn;σnij2ðp02Þδð4Þðp0−pnÞ
�

×
−i

ðp002−p2
0Þðp02

0 ÞN
ð15Þ
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where p0μ ≡ ðp0
0; p⃗Þ and we recognize the term in the curly

brackets as the Kallen-Lehmann spectral function ρðp02Þ.
Given that p⃗ is fixed, one may change the variable of
integration from p02

0 to p02, giving

ΔFðp2Þ ¼ ΔFð0Þ þ p2Δð1Þ
F ð0Þ þ ðp2Þ2Δð2Þ

F ð0Þ þ…

þ ðp2ÞN
Z

dp02ρðp02Þ −i
ðp02ÞNðp02 − p2Þ : ð16Þ

From this form it is evident that if ρðp2Þ is an order-N
polynomial in p2, knowledge of ρðp2Þ only defines the
two-point function up to some order-N polynomial. The
functional form of ΔFðp2Þ is allowed to change dramati-
cally without any change in the amputated 1 → n matrix
element.
In the case of [14], the situation is even more extreme. In

this case, the spectral function ρðp2Þ is the sum of terms
proportional to the multiparticle rate

Rðp2Þ≡ 1

2M2
h

X
n

Z
dΠnjMð1 → nÞj2 ð17Þ

where Mh is the Higgs mass, Πn is the n-particle phase
space element and Mð1 → nÞ is the matrix element for
1 → n Higgs decay. If one assumes that Rðp2Þ is expo-
nentially growing in p2, all predictive power for ΔF from
ρðp2Þ is lost, due to the infinite number of subtractions
required for a convergent integral in Eq. (13). Although one
may know the exact form of ρðp2Þ, one may add an
arbitrary analytic function to both the left-hand side and
right-hand side of Eq. (16) such that the Feynman propa-
gator is allowed to change its functional form wildly
without having any apparent effect on the multiparticle
rate Rðp2Þ.
This feature is just a statement that for an order-N

polynomial gðzÞ with a branch cut ΔgðzÞ along the real axis
beginning at z0, one can integrate ΔgðzÞ via contour
integration. In order to discard the contribution from the
jzj → ∞ curve, one performs N subtractions such that

gðzÞ ¼ ðz − yÞN 1

π

Z
∞

z0

ΔgðxÞ
ðx − zÞðx − yÞN dx

− ðz − yÞN dN−1

dyN−1

�
gðyÞ

ðy − zÞ
�

ð18Þ

where the latter term is the residue at the x ¼ y pole [17].
The price one pays for convergence is the addition of an
order-N “polynomial of integration” which must be fixed
by extra conditions of the theory.
Returning to the Higgspersion scenario, we would like to

stress that given that ΔFðp2Þ may include an arbitrary
analytic function of p2 there is no reason why it should fall

off exponentially with p2 in the high-energy limit. In fact,
Eq. (16) suggests precisely the opposite—that the two-
point function should grow uncontrollably in this limit. The
discrepancy between the amplitude growth with p2 we
observe and the exponential fall proposed in [14] arises
because the latter was calculated using perturbation theory.
Namely, the 1PI Green’s function Σðp2Þwas summed into a
geometric series in order to put Σ into the denominator of
ΔFðp2Þ. However, if Σ grows exponentially with p2, at
sufficiently large p2 this series is no longer convergent and
one must instead use the form

ΔFðp2Þ ¼ i
p2 −m2

0

X∞
n¼1

�
−iΣðp2Þ i

p2 −m2
0

�
ð19Þ

where m0 is the bare mass of the theory. In this form ΔF

will uncontrollably grow with p2, in agreement with
Eq. (16). In this way, the Higgspersion mechanism only
compounds the unitarity violation in the Higgsploding
theory.

III. CONCLUSIONS

We have explored the Higgsplosion effect and related
Higgspersion mechanism behind it in detail and have found
its limitation and problems.
In particular, assuming the correctness of the Eq. (5) for

Fðλn; εÞ derived for 1 → n process in [9,10] beyond
the thin-wall approximation, we have found that the
amplitude for 1 → n process increases exponentially
rather than decreases at sufficiently high energies as stated
in [14]. We have found this effect and the respective
discrepancy because one cannot use the resummation of
the self-energy insertion when that self-energy grows
exponentially. Since the respective series is divergent
for sufficiently large momentum one can not resum it
into a correction of the propagator. Previously [14] it was
argued that such a correction will play a crucial role in
“shutting off” the propagator at sufficiently large energies
and solving hierarchy problem. In light of our finding we
would like to state that such a resummation is not possible
and that, assuming Eq. (5) is correct, the 1 → n amplitude
will grow exponentially thereby violating unitarity. It
may be also interesting to note another nonperturbative
resummation of a class of diagrams with multiple inter-
mediate particle lines using 2PI formalism, which does
not give suppression of Higgs boson propagator at high
energies [18].
The fact that Eq. (5) implies unitarity violation leads us

to conclude that this equation is likely not generic enough
and that additional higher order cross terms of Oðλ2n2εÞ
form in Eq. (4) are expected to play an important role on
restoration of unitarity. Indeed, unitarity should be restored,
since it was present in the theory in the first place from the
hermiticity of the Hamiltonian. If some theory has a real
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unitarity problem (which is, however, not the case of the
SM framework we discuss here) one of the natural
solutions could be a composite nature of the Higgs boson
which at certain characteristic energy scales would cure
nonunitary growth via the respective form factor and the
related new physics sector.
In the case of the Standard Model we conclude that the

1 → n multiscalar final state amplitude should be consis-
tent with unitarity, but that in any case if it exponentially
grows it can not be resummed. Such behavior is not
consistent with unitarity and does not provide a solution
to the hierarchy problem. We believe that the correct
evaluation of 1 → n amplitude for multiscalar final states
above the threshold requires an extension of Eq. (5) and
remains still an open and very nontrivial problem.
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