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We study the renormalization group flow of the Euclidean Engle-Pereira-Rovelli-Livine and Freidel-
Krasnov (EPRL-FK) spin foam model in the large-j limit. The vertex amplitude is deformed to include a
cosmological constant term. The state sum is reduced to describe a foliated spacetime whose spatial slices
are flat, isotropic, and homogeneous. The model admits a nonvanishing extrinsic curvature, whereas the
scale factor can expand or contract at successive time steps. The reduction of degrees of freedom allows a
numerical evaluation of certain geometric observables on coarser and finer discretizations. Their
comparison defines the renormalization group (RG) flow of the model in the parameters ðα;Λ; GÞ. We
first consider the projection of the RG flow along the α direction, which shows a UV-attractive fixed point.
Then, we extend our analysis to two- and three-dimensional parameter spaces. Most notably, we find the
indications of a fixed point in the ðα;Λ; GÞ space, showing one repulsive and two attractive directions.
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I. MOTIVATION

Loop quantum gravity (LQG) and its covariant cousins,
spin foam models (SFMs), are among the most promising
approaches to defining a theory of quantum gravity [1–4].
These models have advanced significantly over the last two
decades and possess a solid theoretical foundation.
However, any approach to quantum gravity must even-

tually walk the long and hard road towards making contact
with observations and attempt to make predictions. This is
largely uncharted territory for LQG and SFMs, in the sense
that they are not yet in a form in which they can be used
to produce reliable numbers which can be compared to
experiment. A notable exception to this is the cosmological
version of loop gravity, loop quantum cosmology (LQC)
[5]. Also, some SFMs are used to estimate the lifetime of
black holes, and to attempt to search for observable signals
of their decay into white holes [6].
In general, however, it is quite difficult to use LQG and

SFMs to produce reliable numerical predictions. One of the
main reasons for this is the fact that in their background-
independent formulation, LQG and SFMs are far away
from the continuum physics of either general relativity
(GR) or quantum field theory. A direct comparison is

therefore quite difficult, and computations of, say, quantum
gravity corrections to known processes, are quite hard to
do. Therefore, the problem is intimately tied to the question
of their continuum limit.
Both LQG and SFMs describe (respectively canonical

and covariant) dynamics for the microscopic degrees of
freedom (d.o.f.) of spacetime. Gravity, as an interactive
field theory, can be expected to have a nontrivial renom-
alization group (RG) flow, and the effective dynamics for
macroscopic d.o.f., which is what we measure and describe
by GR, can differ radically from the microscopic theory.1 To
understand the continuum limit of these theories, one there-
fore needs to compute their RG flow, i.e., the way in which
the theory effectively changes among different scales [9].
Both LQG and SFMs are constructed with background

independence in mind, in order to incorporate Einstein’s
principle of general covariance. This prevents the direct
application of well-established RG methods, since these
contain a notion of scale which relies on a background
metric.2 In recent years, however, there have been signifi-
cant advances in understanding the notion of background-
independent renormalization group flow, in which the
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1A striking example for this is the description of cosmological
spacetime as a condensate of the building blocks of space, as can
be described in the group field theory (GFT) approach [7,8].

2In lattice gauge theory, e.g., one works on fixed lattices with a
lattice length a, which depends on the background geometry.
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notions of coarse graining, scale, and RG flow are general-
ized to the setting of LQG and SFMs [10–22].
These methods bear close resemblance to those devel-

oped for tensor network renormalization (TNR [23–25])
and have been successfully applied to SFMs in 2D and 3D
[10,16,26]. The development of further approximation
techniques have allowed us to also apply these methods
to SFMs in a truncated setting.
The RG flow of 4D models yielded quite interesting

results. In particular, it was observed that the RG flow of
the so-called Engle-Pereira-Rovelli-Livine and Freidel-
Krasnov (EPRL-FK) spin foam model [27–29] appears
to possess a nontrivial UV fixed point [17,18]. While
promising, it is unclear how much these results depend on
the truncations of the EPRL-FK model, which were used.
Therefore, in this article, we are going to relax some of
these truncations in order to investigate the EPRL-FK
model in 4D in more detail.
These relaxations constitute a significant extension of the

analysis in Ref. [17], in that we do not only consider the
path integral over a specific diffeomorphism orbit, but sum
over configurations with different curvatures, which could
not be regarded as diffeomorphically equivalent. We there-
fore expect this to tell us much more about the whole path
integral than previous investigations.
The outline of the paper is as follows. First, we describe

the general setup of our article in Sec. II. In Sec. II A, we
remind the reader of the definition of the EPRL-FK model,
which is used in our analysis. In Sec. II B, we review the
notion of coarse graining in the background-independent
context for SFM. We discuss the approximations and
truncations used in this and previous articles in Sec. II C.
In Sec. II E, we give an overview of the numerical methods
employed in our analysis.
In Sec. III, we consider the RG flow of the 4D EPRL

model, in various gauges and truncations. We consistently
find a similar fixed point to the one in Refs. [17,18],
confirming and extending the results from these earlier
works. In Sec. IV, we additionally consider the dynamics of
the symmetry-restricted model numerically in order to gain
some insight into the behavior of the model. This also lends
some interpretation to the RG flow analysis. In Sec. V, we
consider the asymptotic limit of the free theory, which is
suspected to be a Gaussian fixed point of the RG flow.
We sum up our results in Sec. VI.

II. GENERAL SETUP

Spin foam models describe the dynamics of quantum
gravity by assigning transition amplitudes to loop quantum
gravity boundary states. There exist various different ver-
sions of spin foam models [27,28,30–32] for both
Riemannian and Lorentzian signatures. In this article, we
will focus on the so-called Engle-Pereira-Rovelli-Livine and
Freidel-Krasnov (EPRL-FK) model [27,28]. For simplicity,

we consider Riemannian signature, so that the local gauge
group is SUð2Þ × SUð2Þ ≃ Spinð4Þ.
The boundary states of SFMs are given by a generaliza-

tion of Penrose’s spin network functions to general graphs Γ.
A transition is described by the history of a graph called a
spin foam. Since a graph consists of one-dimensional parts
(links) and zero-dimensional parts (nodes), the elements of a
spin foam Δ are two dimensional (faces, the history of a
link), one dimensional (edges, the history of a node), and
zero dimensional (vertices, where the topology of a graph
can change). See Fig. 1. These are often taken to be the dual
2-complex to a polyhedral decomposition of spacetime, but
they can be more general 2-complexes [29].
A spin foam model is specified by an assignment of

amplitudes to boundary graphs.

A. The EPRL spin foam model

We consider a general spin foam vertex for the
Riemannian signature EPRL-FK model, with the Barbero-
Immirzi paramter γ ∈ ð0; 1Þ. The associated amplitude is a
linear map on the boundary Hilbert space. A state in that
Hilbert space is given by boundary data, which is com-
pletely described by a directed graph Γ ⊂ S3 embedded into
a three-sphere.
A boundary geometry on Γ is given by a collection of

spins jL ∈ 1
2
N associated with the links L ∈ LinksðΓÞ of

Γ, a collection of 3D unit vectors n⃗NL associated with pairs
of nodes N ∈ NodesðΓÞ of the graph, and links L which are
connected to N. For all L ⊃ N, the corresponding unit
vectors are chosen such that they satisfy

FIG. 1. A spin foam Δ describes the history of a spin network
boundary graph. The interaction vertices v are where the topology
of the graph can change.
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GN ≔
X
L⊃N

jLn⃗NL ¼ 0: ð1Þ

For Riemannian signature, the local gauge group is
Spin(4). We use the Hodge duality in four dimensions,
under which its Lie algebra decomposes into spinð4Þ≃
suð2Þ ⊕ suð2Þ, two commuting SUð2Þ subalgebras, which
are the eigenspaces under the Hodge * for eigenvalues �1.
Consequently, one has the group isomorphism Spinð4Þ≃
SUð2Þ × SUð2Þ, and an irreducible representation of Spin(4)
can therefore be depicted as a pair ðjþ; j−Þ of half-integers.
The vertex amplitude Av is constructed in the following

way: We define3

j�L ≔
j1� γj

2
jL ð2Þ

and construct the boosted Livine-Speziale intertwiners
[33,34]

ι�N ≔ P
�
⊗

L←N
βLjjL; n⃗NLi ⊗ ⊗

L→N
hjL;−n⃗NLjβ†L

�
: ð3Þ

The SUð2Þ × SUð2Þ intertwiner ι�N ¼ ðιþN; ι−NÞ factorizes for
γ < 1. Here the coherent states for n⃗ ∈ S2 are given by

jj; n⃗i ≔ Djðgn⃗Þjjji; ð4Þ

i.e., the action on the highest-weight vector with a group
element gn⃗, which is such that gn⃗ez ¼ n⃗, with ez being the
unit vector in the z direction.4 Note that DjðgÞ is the

representation matrix of g ∈ SUð2Þ for the irreducible
representation j.
The map

βL∶ VjL → VjþL
⊗ Vj−L

ð5Þ

is the isometric embedding of jL into the highest-weight
subspace of the Clebsh-Gordon decomposition of

VjþL
⊗ Vj−L

≃ VjjþL−j−L j ⊕ …VjþLþj−L
; ð6Þ

and P∶H → InvSUð2Þ×SUð2ÞðHÞ with

H ≔
�

⊗
L←N

VjþL
⊗ Vj−L

�
⊗

�
⊗

L→N
V†
jþL

⊗ V†
j−L

�
ð7Þ

is the projector onto the invariant subspace of the Hilbert
space H.
As a result of this definition, the tensor product of all

boosted Livine-Speziale intertwiners [Eq. (3)] is an endo-
morphism on the tensor product of all representation spaces
over the links, i.e.,

⊗
N
ι�N∶ ⊗

L
ðVjþL

⊗ Vj−L
Þ → ⊗

L
ðVjþL

⊗ Vj−L
Þ: ð8Þ

The vertex amplitude Av is defined as the trace of this
map, i.e.,

Av ≔ tr
�
⊗
N
ι�N
�
¼ Aþ

v A−
v : ð9Þ

The spin foam state sum Z for a larger 2-complex is defined
by summing over several different products of vertex
amplitudes. A 2-complex is regarded as the history of a
spin network [35] and consists of vertices v, edges e, and
faces f. For every vertex, we denote the vertex graph ΓðvÞ
to be the one which has a node for every edge touching v,
and a link between two nodes whenever two such edges are
in the boundary of the same face (this is the boundary graph
for the spin foam consisting only of the neighborhood of v).
Any assignment of spins j�f to faces which satisfies Eq. (2),
and of corresponding intertwiners ι�e to edges, induces a

FIG. 2. The RG flow rests on a coarse-graining step, replacing several fine vertices with an effective coarse one.

3With the definition in Eq. (2), one has to demand that all three
jL, j�L are half-integers, which puts severe restrictions on the
Barbero-Immirzi parameter γ. This is a pathology of the Rie-
mannian model, which does not occur in the Lorentzian context.

4Note that, given n ∈ S2, the corresponding gn⃗ is only defined
uniquely up to a Uð1Þ ⊂ SUð2Þ subgroup. Different choices
amount to different states jj; n⃗i, which differ by a complex phase.
For one vertex amplitude, this phase is not important, while for
larger triangulations, the relative phases of these states in
neighboring vertices have to be taken care of, since they encode
the 4D curvature.
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boundary state to every vertex graph, and we denote the
vertex amplitudesAv to be the corresponding traces [Eq. (9)].
For a 2-complex without boundary, the formal spin foam

sum is then defined as

Z ¼
X
j�f ;ι

�
e

Y
f

Af

Y
e

Ae

Y
v

Av; ð10Þ

where the face and edge amplitudes are defined by

Af ¼ ðð2jþf þ 1Þð2j−f þ 1ÞÞα; ð11Þ
Ae ¼ kιek−2: ð12Þ

The parameter α plays the role of a coupling constant, in
that it is a free parameter in the path integral measure. The
sum effectively can be expressed as a sum over SUð2Þ spins
jf and SUð2Þ intertwiners ιe, which we will do from
now on.
All three amplitude types are local functions of the

spins and intertwiners. For 2-complexes with boundary, the
amplitudes for edges and faces meeting the boundary
have to be altered. In essence, we choose the boundary
amplitudes

Be ¼ ðAeÞ12; Bf ¼ ðAfÞ
1
nf ; ð13Þ

where nf is the number of partial faces that are glued
together to form the whole face. See Refs. [12,36,37] for
details. Since we work with hypercubic lattices, we will use
nf ¼ 4 throughout this article.
In this case, due to the regularity of the lattice, one can

repackage the sum, to write

Z ¼
X
jf;ιe

Y
v

Âv ð14Þ

with

Âv ≔
Y
f⊃v

A
1
4

f

Y
e⊃v

A
1
2
eAv: ð15Þ

The spin foam sum can be written in terms of boundary
amplitudes in the following way: For each vertex v and
configuration jf, ιe, a SUð2Þ-spin network function
ψΓðvÞ;jf;ιe is induced on the corresponding boundary graph
ΓðvÞ. The boundary amplitudeAΓðvÞ is then an operator on
HΓðvÞ, which is defined by

AΓðvÞðψΓðvÞ;jf;ιeÞ ≔ Âv: ð16Þ

B. Background-independent renormalization

Renormalization in this article is understood in the
Wilsonian sense [9]. A theory with infinitely many d.o.f.
is usually formulated in terms of effective theories on only
part of those d.o.f., e.g., by introducing a lattice or a

momentum cutoff, i.e., a scale. This effective theory then
depends on the scale, usually by scale-dependent param-
eters called coupling constants.
In the background-independent setting of spin foam

models, lengths or energy are encoded in the variables,
not in any background structure. This prevents the use of,
e.g., a fixed lattice spacing to characterize the scale, and
requires one to generalize the well-established renormal-
ization group methods from, e.g., lattice gauge theory. This
has been achieved in recent years [11–15,38,39] and has led
to a version of the RG flow in which spacetime discretiza-
tion itself is regarded as scale.5 Hence, the scale is taken to
be the 2-complex Δ itself. The regularization is understood
as restricting the theory to only finitely many holonomies,
i.e., those which are associated with Δ.
It should be noted that this is a deviation from the usual

way of renormalization, which associates the scale of the
flow with a value of maximal energy or minimal length,
which are introduced as the cutoff. This deviation is an
important consequence of this particular way of back-
ground independence of the model. For a given background
geometry, a finer and finer regular lattice leads to an ever-
decreasing value of the lattice constant. However, in our
case these two notions are disentangled, in that on coarse or
fine lattices both small and large spins occur. The reason is
that on both types of lattice the geometry is not fixed, but
rather the path integral sums over all of them. Hence, the
notion of the refinement of lattices is the only one that
remains in this particular way of dealing with the sum over
geometries.
As a consequence, notions of UV and IR limits are not

associated with, e.g., small and large spins, but rather with
fine and coarse lattices.
On a technical level, this makes the RG flow procedure

very similar to those employed, e.g., in tensor network
renormalization [23,24]; see also, e.g., Ref. [10]. Of course,
this raises the question of how the results of this article
compare to ones obtained in similar approaches, such as
quantum Regge calculus (see, e.g., Refs. [40–43]) or causal
dynamical triangulations [44]. We refer to the discussion
in Ref. [45], although this is still an open question at this
point.
In the background-independent framework for renorm-

alization we employ, the spin foam sum [Eq. (14)] is
understood as an effective theory for the available d.o.f.
provided by the 2-complex. It can be seen as the result of
integrating out all of the finer d.o.f., which are below the
lattice resolution. The lattice itself, then, can be regarded as
the result of successive coarse graining of a much finer
lattice, see Fig. 2.

5Note that on a fixed geometry, refinement of the lattice is
equivalent to shrinking of the lattice length, while in the back-
ground-independent setting of spin foam models, only the former
can be defined, since the lattice spacing is a variable to be
summed over in the path integral.
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The question, then, is how the theories on different
lattices—i.e., on different scales—are related.Mathematically,
the amplitudes are given in terms of linear maps on the
boundary graphs Γ of vertices [Eq. (16)]. However, several
of them together can be made into a linear map onto a larger
lattice, with a refined boundary graph Γ0. This allows us to
rewrite the RG flow of bulk lattices into equations for
boundary amplitudes. See also Ref. [14].
To relate the amplitudes on the original vertex and the

new effective one, one needs an identification of d.o.f. This
can be realized by a projection of configuration spaces, or
an injection of boundary Hilbert spaces,

ιΓ0Γ∶ HΓ → HΓ0 : ð17Þ

The state sum (14) on the fine lattice with the fine
boundary Γ0 has a dynamics which is given by a fine
amplitude AΓ0 . We make the ansatz for the fine amplitude
to be of the EPRL type—i.e., a local expression over the
vertices [Eq. (14)]—which gives us a fine amplitude
AΓ0∶HΓ0 → C, by

AΓ0 ðψΓ0;jf;ιeÞ ≔
X
j0f;ι

0
e

Y
v

Âv; ð18Þ

where the sum ranges over all bulk spins and intertwiners
j0f, ι

0
e of the fine lattice, while the boundary spins and

intertwiners jf, ιe are kept fixed. The amplitude AΓ0

contains all information of the fine theory, represented
as amplitude on the fine boundary. The renormalized
amplitude is then given by

AðrenÞ
Γ ¼ AΓ0 ιΓ0Γ: ð19Þ

In the case of a nested hypercubic lattice, note that the
vertex amplitudes in Eq. (18), as well as the renormalized
amplitude in Eq. (19) can be regarded as amplitudes on the
same boundary graph Γ. However, they do not necessarily
have to coincide. This is the essence of the concept of
“running coupling” in the RG flow.
In fact, Eq. (19) defines the RG flow of the model, i.e.,

the relation of amplitudes on different discretization scales.
Mathematically, this is the notion of cylindrical consis-
tency, which is required to define the continuum limit.6

Notably, we assume one has solved the RG flow equations
along all lattices; i.e., one has a collection of amplitudes
fAΓgΓ which satisfy cylindrical consistency:

AΓ ¼ AΓ0 ιΓ0Γ ð20Þ

for all Γ ≤ Γ0, i.e., whenever Γ arises as a refinement of
Γ0. Then, this is a necessary condition that the continuum
amplitude A∞∶H∞ → C can be defined on the continuum
Hilbert space,

H∞ ≔ lim
Γ→∞

HΓ; ð21Þ

which is the inductive limit of all theHΓ’s. See Ref. [13] for
details.
This shows a nice interplay between mathematical

concepts and physical intuition. The notion of scale is
here played by the choices of lattices, and their relation to
one another, which provide a hierarchy among the d.o.f.
Note that, even though in our case the lattices are regular
hypercubic ones, there are no lengths or other geometric
properties assigned to them. Rather, the sum (18) ranges
over different geometries of the same lattice.

1. On embedding maps

It should be noted that the prescription depends on the
way in which d.o.f. are represented and identified along
different scales. In particular, the embedding map ιΓ0Γ
depends on these choices, which are not unique. For
instance, any family of unitary operators UΓ on HΓ lead
to an equivalent theory with

ÃΓ ≔ AΓUΓ;

ι̃Γ0Γ ≔ U−1
Γ0 ιΓ0ΓUΓ:

The precise choice of ιΓ0Γ can make the actual problem
of solving Eq. (20) harder or easier. In particular, there
are, in general, some choices which can work well—or
not so well—in conjunction with certain approximation
methods.
In Ref. [13], it is argued that the most beneficial way

would be to use dynamical embedding maps, which in and
of themselves already contain all the information of the
dynamics of the theory. The reason for this is that one can
interpret the embedding maps ιΓ0Γ as ways to identify and
add d.o.f. under refinement. Then, Eq. (20) suggests that
refining should be done with respect to the dynamics
encoded in the amplitude AΓ; i.e., d.o.f. should be added
in the dynamical vacuum state. This is a highly nontrivial
condition on bothAΓ and ιΓ0Γ. A real-space coarse-graining
algorithm, called tensor network renormalization [23–25],
aims at implementing exactly such a scheme: the partition
function of the system is rewritten as the contraction of a
(local) network of tensors, which does not refer to a
background and does not require a notion of scale. This
network is coarse-grained by defining effective coarse
d.o.f. from fine ones and ordering them by dynamical
relevance. Thus, these variable transformations, given by
the dynamics, are the inverse of embedding maps. To keep
this algorithm numerically feasible, one usually has to

6This should not be confused with the notion of cylindrical
consistency employed in the construction of the Ashtekar-
Lewandowksi vacuum in loop quantum gravity, which is
entirely kinematical (see, e.g., Ref. [1], and the discussions
in Refs. [11,13–15]).

RENORMALIZATION OF SYMMETRY RESTRICTED SPIN … PHYS. REV. D 98, 106026 (2018)

106026-5



truncate the maximum number of d.o.f. kept in each
iteration. In quantum gravity, this algorithm has been
successfully applied to 2D analogue spin foam models
for finite [10,26] and quantum groups [16,46,47] and 3D
lattice gauge theories [16,48]. One of its main advantages is
the applicability to oscillating amplitudes and fermionic
systems [49]. However, a main disadvantage is the expo-
nential growth in numerical cost with a growing number of
d.o.f., which has prohibited a direct application to 4D spin
foam models.
When using the physical embedding maps, the con-

tinuum Hilbert space is equivalent to the physical Hilbert
space, in which time translation becomes trivial; i.e.,
scattering matrix elements are simply computed by taking
the inner product between in and out states.
Since we do not have the physical embedding maps at

our disposal (indeed, they would have to be found by
solving the RG flow equations), we instead use an ad hoc
choice for embedding maps, which identify (kinematical)
geometric quantities among different scales, such as spins.
The d.o.f. here are added by ιΓ0Γ in such a way that, e.g.,
fine areas add up to coarse areas. This condition is
translated to a condition on the coupling of fine spins to
coarse spins. Details can be found in Ref. [18].

2. Projected RG flow

In general, the cylindrical consistency equations (20) are
very hard to solve, even though we have restricted
ourselves to specific lattices.7 To simplify matters, one
can instead consider amplitudesAðgiÞ

Γ on Γ, which are given
in terms of few parameters, gi, called coupling constants.
One then attempts to rewrite the flow of amplitudes in terms
of a flow of coupling constants

gi → g0i: ð22Þ
The question of whether a parametrization in terms
of few coupling constants is feasible depends on its
renormalizability—i.e., on whether the effect of the inte-
grated out d.o.f. in Eq. (19) can be absorbed by a shift in the
gi. Whether quantum gravity is renormalizable or not is still
an open question. While it is often argued that the perturba-
tive formulation is not [50], there are hints that there might
exist a non-Gaussian fixed point around which the flow
might be renormalizable [51].
We have to leave this question open for now. To be able

to make computations, however, we truncate the flow to
only finitely many parameters. That is, we make an ansatz
for AΓ ¼ AðgiÞ

Γ in terms of the EPRL model (10), with free
parameters

fgig ¼ fα; G;Λg; ð23Þ

i.e., the parameter defined in the face amplitude [Eq. (11)],
as well as Newton’s constant G and the cosmological
constant Λ. We specifically do not choose the Barbero-
Immirzi parameter γ as a running coupling, since its
connection to the allowed spins is rather pathological in
the Euclidean EPRL model. The precise range of allowed
spins kf sensitively depends on γ, by the condition that j�f
given by Eq. (2) are half-integers. In particular, changing γ
by a tiny amount can make huge changes in the range. In
particular, the chosen boundary data which work for one γ
might not be allowed for another, which would spoil the
RG flow equations. To avoid this complication, we fix the
value to

γ ¼ 1

2
: ð24Þ

Since the same pathology does not appear in the Lorentzian
signature model, we surmise that in that case, it would be
prudent to also choose γ as a running coupling.
The projection of the flow will be achieved in the

following way: in its general form, the RG flow equa-
tion (20) can be rephrased as the fact that all observables
OΓ, which are defined on the coarse lattice Γ, can also be
measured on the fine lattice Γ0 [where we denote them as
OΓ0 ¼ ðιΓ0ΓÞ�OΓ], and the expectation values, obtained with
the amplitudes AΓ and AΓ0 , respectively, agree, i.e.,

hOΓiΓ ¼ hOΓ0 iΓ0 for all OΓ: ð25Þ

We emphasize that this is an equivalent rewriting of
Eq. (20). If we truncate the theory space to amplitudes
given in terms of few coupling constants gi, we cannot
expect Eq. (25) to hold for all observables any more
exactly. Instead, we will only demand it to hold approx-
imately, for a subset of all observables. In particular, we

choose a finite set of observables OðnÞ
Γ , which we call

reference observables, and demand that the error

Δg;g0
Γ;Γ0 ≔

X
n

jhOðnÞ
Γ igΓ − hOðnÞ

Γ0 ig0Γ0 j2 ð26Þ

be minimal.8 This truncation of the RG flow obviously
depends on the choice of observables, and a good flow
requires that one find observables which capture the
dynamics of enough interesting d.o.f.
In this article, we choose a specific set of observables,

depending on the situation we are in. We will describe these
in more detail in Sec. III. In particular, we will, in some
instances, truncate the flow further and keep some of the
parameters in Eq. (23) fixed. Depending on which and how
many, the choice for reference observables will be adapted.

7See Ref. [15] for the treatment of a case allowing for all
possible lattices at the same time. In that case, there are
uncountably many RG flow equations to solve.

8To simplify notation, we refer to all parameters by g ¼
ðα; G;ΛÞ and drop the subscript i.
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C. Approximations

In order to solve the RG flow equation (25), we adopt a
number of approximations:
(1) Reduced state sum: The partition function [Eq. (14)]

is hardly usable to carry out predictions about
transition probabilities and expectation values of
observables. This fact has roots in the complexity of
its expression, which involves a sum over all the
possible geometric configurations fjf; ιeg. To over-
come this issue, we restrict the state sum to a special
set of symmetric configurations. They define a
discretization of spacetime in which only a limited
number of spins jf is required to keep track of the
geometric d.o.f., while all the intertwiners ιe are
confined into the shape of a so-called quantum
frustum. We will describe this structure in more
detail in the next section.

(2) Semiclassical limit: In the large-spin limit, the
EPRL-FK vertex amplitude [Eq. (9)] has been
proven to be connected to discrete GR, when built
on a simplicial discretization [52]. This result was
confirmed in Ref. [53] by a saddle-point approxi-
mation of the reduced amplitude. As we will see,
unlike the case of a general simplicial decomposi-
tion, the thinning of the state sum leads to an
explicit asymptotic expression of Eq. (15) as a
function of the spins. This allows us to numerically
evaluate the expectation values in Eq. (40) for some
geometric observables OΓ on a given boundary
graph Γ. Although the error one makes by replacing
the amplitude with its large-j asymptotic expres-
sion is hard to estimate, it can be expected that the
approximation is quite good already for small
values of the spins [53,54]. Since for large parts
of the phase space the multivertex amplitude
appears to be suppressed for small spins [45],
the error might in fact not be that large. Still, this
point warrants further study.

(3) Projection of the amplitudes: In general, given a
theory defined by a set of couplings gi, the dimen-
sion of the parameter space can grow or decrease
when one looks at the physics at different scales. In
other words, new parameters may arise during the
coarse-graining process. Here we truncate the RG
flow by considering the system as self-similar at all
the scales. Thus, at each renormalization step we
project the amplitude down to the reduced Euclidean
EPRL-FK model defined by the three parameters
gi ¼ ðα; G;ΛÞ. Again, we remind the reader that due
to this, equation (20) can at best be satisfied
approximately; see the previous section.

The above set of approximations has been proven
successful in some recent papers [17,18], where the use
of a discretization in terms of hypercuboids allowed the
evaluation of the RG flow of the parameter α appearing in

the face amplitude. Also, the detection of a UV-attractive
fixed point αc showed an indication of invariance of the
model under refinement. While opening the way to the
numerical study of the continuum limit of restricted spin
foams, the hypercuboid model stands on a severe restric-
tion of d.o.f. which does not allow for curvature. The
curvature is in fact vanishing everywhere, and thus the
theory is independent of other interesting parameters such
as Newton’s constant G and the cosmological constant Λ.
In this article, we will instead work on a discrete structure
introduced in Ref. [53] and specially designed to support
a basic concept of curvature. It consists of a pyramidal
discretization that, in the limit of large refinement,
provides a natural description of a foliated manifoldM ¼
Σ ×R in which the spatial hypersurfaces Σ ∼ T3 have the
topology of a 3-torus; are flat, isotropic, and homo-
geneous; and can grow or contract at successive times.
The typical grain of spacetime, defining the spin foam
vertex, is the so-called hyperfrustum Fn, i.e., the four-
dimensional generalization of a truncated regular square
pyramid (to which we refer as a frustum). We represent it
in Fig. 3 via its 3D boundary, obtained by unfolding Fn
into six equal frusta fn and two cubes cn and cnþ1 of
different sizes.9 The geometry of the hyperfrustum is fully
specified by three spins; i.e., Fn ¼ Fnðjn; jnþ1; knÞ. The
spatial spin jn, corresponding to the face areas of cn,
determines the scale factor an ¼

ffiffiffiffiffiffiffiffi
Gjn

p
at a fixed time tn,

where G is Newton’s constant. The height of the hyper-
frustum, defined as the distance between the centers of
its boundary cubes, determines instead the time step
Hn ¼ Hnðjn; jnþ1; knÞ ¼ tnþ1 − tn, where kn stands for
the timelike spins of the trapezoidal faces of fn.
The reader familiar with spin foam models might be

puzzled by our setup, where we claim to allow for discrete

FIG. 3. In black, the 3D boundary of a hyperfrustum Fn. In
general, we can think of it as the one-time-step evolution of a 3D
boundary cube. In blue, the six-valent node dual to a boundary
frustum fn. A similar node is associated with each hexahedron in
the figure.

9This is the analogue, one dimension higher, of the unfolding
of a 3D frustum into four regular trapezoids and two squares.
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geometries with curvature while using spin foam ampli-
tudes in the large-j limit. Indeed, this limit is the context in
which the so-called “flatness problem” was discovered
and discussed in great detail [55,56]. It states that in this
limit, no matter the boundary state of the spin foam, the
bulk geometry is flat, and accidental curvature constraints
occur. In our case, where we only study a subset of the full
spin foam path integral, the configurations that we permit
in principle allow for curvature, in particular compared to
the previously studied cuboid configurations. From our
numerical studies, which we report in this article, we do
not observe that this subset of the path integral is
dominated by flat, i.e., cuboid, geometries. Due to the
restrictiveness of the path integral studied here, this
finding is by no means a proof that the flatness problem
is nonexistent; rather, it hints towards its intricacies that
we need to understand better.
As is shown in Ref. [53], the model characterizes a

cosmological subsector of the quantum theory in the sense
that the associated classical Regge action reproduces the
dynamics of a FLRW universe on large refined discretiza-
tions. In a quantum regime, the results of this model can
potentially approximate the properties of a region of the
Universe in which the dominating quantum fluctuations
manifest the same symmetries of the Friedmann cosmol-
ogy. Whether such systems may exist or not is not clear.
Nonetheless, the interest in the model lies beyond the
application to cosmology, since one can use it to investigate
its RG flow.
The data to build the reduced EPRL-FK vertex ampli-

tude are stored in the spin network dual to the boundary of
a hyperfrustum (Fig. 4). This consists of eight 6-valent
nodes a ¼ 0; 1;…; 7 laced through their links ab. An
intertwiner ιa is assigned to each node a, and a spin jab
is attached to each link connecting the nodes a and b.
This labeling endows the (so far just combinatorial) graph
with a geometric connotation so that whenever two nodes
share a link, two boundary hexahedra have the same face
area bound.

The intertwiner at a node generically describes a quan-
tum frustum. In the notation of Fig. 3, we can write, e.g.,
the intertwiner at the node a ¼ 5 as

ι5¼
Z

dg g⊳
�
jjn;ê3i⊗ jjnþ1;−ê3i⊗ ⊗

3

l¼0
jkn;r̂li

�
; ð27Þ

where r̂l ≡ e−i
π
4
lσ3e−i

ϕ
2
σ2⊳ê3 (l ¼ 0, 1, 2, 3) are the four

vectors perpendicular to the side faces of the frustum, while
the slope angle ϕ between the top and the side face is a
function of the spins

cosϕ ¼ jnþ1 − jn
4kn

: ð28Þ

This object reduces to a quantum cuboid for jnþ1 ¼ jn.
In terms of these coherent states, the vertex amplitude (9)
for γ < 1 factorizes as Av ¼ Aþ

v A−
v , being

A�
v ¼

Z
SUð2Þ8

dg�a eS�½g
�
a �; ð29Þ

the exponential of the complex action

S�½g�a �¼
1

G
j1�γj
2

X
ab⊃a

2Aab lnh−n⃗abjðg�a Þ−1g�b jn⃗abi; ð30Þ

where we denote the area Aab ¼ Gjab,
10 and jn⃗abi≡

j1=2; n⃗abi, and we call n⃗ab ∈ S2 ⊂ R3 the vector orthogo-
nal to the face of a which is dual to the link ab (see Fig. 3
for a reference). In the large-spin limit, the amplitude
[Eq. (29)] behaves as a highly oscillatory integral, and
we can evaluate it via stationary phase approximation.
Thus, we only consider the SUð2Þ group elements ga that
contribute most in the asymptotic limit—i.e., the stationary
and critical points such that ∂Sjga ¼ 0 and ReSðgaÞ ¼ 0.
The critical-point equation can then be written as

g�a⊳n⃗ab ¼ −g�b⊳n⃗ba: ð31Þ

There are four distinct solutions for the couple ðgþa ; g−a Þ,
corresponding to the set of rotations such that the
boundary hexahedra are glued together at their faces so
as to reconstruct a 4D hyperfrustum. The same method
can be used to compute the norm of the coherent
intertwiners to the leading order in the large-j limit,
and thus the edge amplitudes.
These calculations were performed in a preparatory

article (Ref. [53]), where the asymptotic limit of the full
dressed vertex amplitude is carried out explicitly.
Furthermore, in this article we also implement the

cosmological constant Λ by using a generalization of
Han’s deformation of the EPRL-FK model [57]. This model

FIG. 4. Spin network graph dual to a hyperfrustum boundary.
The external legs are considered to be connected to the node
a ¼ 7.

10We work in units in which ℏ ¼ 1, so G ¼ l2
Planck has the

dimension of an area.
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is defined in Ref. [58]. The quantum amplitude is deformed
not (as is usual) by replacing SUð2Þ with its quantum
counterparts, but rather by introducing specific operators for
crossings in the boundary graph, which rely on a quantiza-
tion of the classical formula for the 4D volume of a
polyhedron [59].11

Although nontrivial, it can be shown that, remarkably,
the large-j asymptotics of this deformed amplitude is rather
similar to the undeformed case, in that the position of the
critical and stationary points, as well as the Hessian matrix,
is unchanged by this deformation process. Hence, the
asymptotic action is simply amended by a cosmological
constant term from Regge calculus [58].12

In order to explicitly write the amplitudes in a compact
form, let us first define the functions

Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
8π

; Q≡ 2þ jn þ jnþ1

2kn
;

θ≡ arccos
1

tanϕ
; K ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− cos 2θ
p

; ð32Þ

where the slope angle ϕ is given in Eq. (28). Then, for a
face f labeled by the spin jn (similar for kn), for an edge e
dual to a frustum fnðjn; jnþ1; knÞ, and for a vertex v dual to
a hyperfrustum Fnðjn; jnþ1; knÞ, the asymptotic expressions
of the respective amplitudes are

Af → ð8πΩjnÞ2α; ð33Þ

Ae →
Ω3k3n
2ð4πÞ4 ð1þ K2Þð1þ K2 − 2QÞ2; ð34Þ

Av →

�
1

8πΩ

�
21
�
ei

SR
G

−D
þ e−i

SR
G

−D� þ 2
cosðγSRG − Λ

GVÞffiffiffiffiffiffiffiffiffiffi
DD�p

�
: ð35Þ

We recognize the Regge action SR ¼ P
h Ahϵh, which

usually appears in the asymptotic limit of the spin foam
model under consideration [45,53,69–71]. It is a function
of the areas A ¼ Gj via

SR ¼ G

�
6jn

�
π

2
− Θ

�
þ 6jnþ1

�
π

2
− Θ0

�

þ 12kn

�
π

2
− Θ00

��
: ð36Þ

The four-dimensional dihedral angles Θab among the 3D
blocks at the vertex boundary are (always refer to Fig. 3)

Θ ¼ θ if a ¼ 0 or b ¼ 0;

Θ0 ¼ π − θ if a ¼ 7 or b ¼ 7;

Θ00 ¼ arccosðcos2θÞ if a; b ∈ f1;…; 6g: ð37Þ

Let us notice that in our symmetry-restricted setting, the use
of spin variables is equivalent to the use of edge lengths in
standard Regge calculus; i.e., there is a unique invertible
relation j ↔ l which holds for any number of vertices
glued together [53]. The cosmological constant term in the
discrete setting is proportional to the 4-volume of the
hyperfrustum

V ¼ G2k2nKðQ − 2Þ: ð38Þ

The function D ¼ Dðjn; jnþ1; knÞ is the determinant of the
Hessian of Eq. (30), and its explicit expression is

D ¼ j3nj3nþ1k
15
n

16
KðK − iK2 þ iQÞ3ð1þK2 − 2QÞ3ðK þ iÞ6

× ðK − 3iÞ2ð1þ 3K2 − 2Q− 2iKðQ− 1ÞÞ3:

Finally, arranging the above function as D ¼ jDj expðiφÞ
and summing up all the contributions, we can write the
dressed vertex amplitude [Eq. (15)] as

Âv ∼
ðjnjnþ1Þ3α−3

2k6ðα−1Þn

B

�
cos

�
SR
G

þ φ

�

þ cos

�
γSR
G

−
Λ
G
V
��

; ð39Þ

with

B ¼ jDj
ð1þ K2Þ3ð1þ K2 − 2QÞ6 :

The first cosine appearing in the dressed vertex amplitude
is sometimes addressed as “weird,” being an unexpected
term appearing in the asymptotics of the Euclidean EPRL-
FK vertex amplitude [52]. The argument of the second
cosine is the correct Regge action with the proper
cosmological constant term. The fact that it appears in
a cosine instead of an exponential is related to the so-
called cosine problem. Despite the debate around the
asymptotic limit of the EPRL-FK model, here we compute
expectation values of observables with respect to this
amplitude. This may shed a new light on the properties as
well as the problems of the model. All the techniques used
can be applied straightforwardly to other kind of ampli-
tudes (e.g., without weird terms).

11The deformation of the vertex amplitude depends on an
additional parameter ω; see again Ref. [58]. In the asymptotic
formula, this parameter appears in the action in front of the
dimensionless volume term, i.e., the volume expressed in terms of
spins. Thus, ω is dimensionless and related to the cosmological
constant via ω ∼ ΛG. Expressing the action in terms of areas
results in Eq. (35).

12This is one example of how to incorporate a cosmological
constant in SFMs. Other methods were developed before
[60–68], e.g., by replacing the Lie group with a quantum group.
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In the following sections, we use the fact that in the
large-spin limit, the sum over the spins is well approxi-
mated by an integral

P
j →

R
dj so that, given a boundary

graph Γ, we can numerically integrate the observables OΓ
weighted with the dressed vertex amplitude [Eq. (39)], and
thus evaluate their expectation values

hOΓiΓ ¼
R
djfOΓ

Q
vÂvR

djf
Q

vÂv

: ð40Þ

Eventually, we use this to define and numerically solve the
RG flow equation (25).
One should note that physically, one is actually integrat-

ing over areas A, rather than spins j, which are related by
A ¼ Gj, since we work in units in which ℏ ¼ 1. Still, in
order to keep in line with the majority of the literature, we
will, from now on, substitute Gj → j, and also change the
corresponding notations. Thus, the spins have a physical
dimension of areas, and the explicit dependence on G in
Eqs. (36) and (38) disappears. The overall integration
measure acquires additional powers of G as a factor, which
does not play a role in the path integral nor in expectation
values of observables. Eventually the state sum will depend
on the three parameters α, G, and Λ, as stated in Eq. (39).13

D. Degrees of freedom

It is worthwhile to recap which d.o.f. we are summing
over at this point.
Originally, the spin foam model depends on spins j and

intertwiners ι. The truncation leaves us with a subset of
variables jn and kn of spins (i.e., areas), which are assigned
to spacelike and timelike faces in the 4D lattice, where the
former describe the geometry of the isotropic and homog-
enous spacelike Cauchy surfaces, while the latter describe
the transitions between hypersurfaces, i.e., time steps.14

By going over to continuous areas, and because of the
equivalence to length variables, this describes essentially a
subsector of the state space of quantum Regge calculus.
There are a few differences, though: First, the factor coming
from the Hessian of the asymptotic formula induces a
different measure. Second, the amplitude is not of the form
expð−SÞ, but rather that of Eq. (39), i.e., cosðS̃Þ þ cosðSÞ.
Also, it should be noted that the RG flow is defined

slightly differently here, since we do not introduce a
correlation length, but use, as an ordering parameter, a
different observable, usually certain volume fluctuations.
These will be described in more detail in the following
section. How to define a correlation length, other than in the

pure combinatorial sense, is not obvious, but intriguing to
explore in future research.
In principle, the integral over d.o.f. is unbounded, which

could lead to divergencies of the integral in the limit of
large spins j, k → ∞. However, depending on the value
of the coupling constant α, the integrand goes to zero
sufficiently fast in that limit, so the integral stays finite. This
has been discussed for hypercuboids in Ref. [45], and a
similar calculation is true for the frustum case, which we
consider in this article. In particular, we only consider a
flow of α well inside the region in which the large-j region
is not a problem.
The Hessian matrix which occurs in the measure factor

of the path integral goes to zero in the limit of vanishing
spins, which might a priori lead to divergencies in the j,
k → 0 region as well. However, this is an artifact of the
asymptotic formula, which does not hold for the small-spin
case. Indeed, the actual amplitude stays finite in that region,
where the integral would have to be replaced by the sum
anyway. Indeed, our numerical investigations show that
there is usually only a very small region around j, k ≈ 0 in
which the amplitude diverges. Figure 8 is an example for
this behavior, in which we find that the integrand itself
tends to zero as spins approach small values, and only
suddenly diverges very close to j, k ¼ 0. We attribute this
behavior to the breakdown of validity of the asymptotic
formula, and we remove it by introducing a small-spin
cutoff. As long as one does not enter the region in which the
asymptotic formula breaks down anyway, the results appear
not to be influenced by the precise position of the cutoff.

E. Numerics

The vital ingredient of this article is the calculation of
expectation values of geometrical observables in the spin
foam state sum. The spin foam amplitudes are intricate
functions of the spins j, and the integrations over j
generically cannot be performed analytically. As in a
similar analysis for cuboid-shaped spin foams [17,18,45],
we will therefore perform these integrations numerically.
We perform our numerical simulations in the program-

ming language Julia15 and use algorithms suitable
for higher-dimensional integration from the Cuba pack-
age [72].16

While the Cuba package contains several algorithms,
most of which employ Monte Carlo techniques, we use a
deterministic algorithm called Cuhre. It works roughly as
follows: Similarly to Monte Carlo algorithms, the integrand
is evaluated at several points. Given this data, Cuhre then
attempts to approximate the integrand by a polynomial in
the integration variables and estimates the error. If the error
is larger than requested, the region with the largest error13Remember that we have fixed γ ¼ 1

2
. In general, the ampli-

tude also depends on the Barbero-Immirzi parameter γ.
14Remember though, that the choice of time direction is

somewhat arbitrary at this point, since we deal with Riemannian
geometries in this article.

15https://julialang.org/.
16See https://github.com/giordano/Cuba.jl for the package and

documentation on how to use these algorithms in Julia.
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gets subdivided, and the algorithm is iterated. Once this
procedure has sufficiently converged, or the maximum
number of iterations has been reached, the polynomials are
used to deterministically evaluate the integral.
For our purposes, this algorithm is particularly useful,

since it is more efficient for integrating oscillatory inte-
grands than ordinary Monte Carlo techniques, at least if the
dimensionality of the integrand is not too high.17 Indeed, as
frusta configurations allow for curvature, the vertex ampli-
tude is a sum of several oscillating terms, which marks an
important generalization compared to the pure cuboid case.
Fortunately, hyperfrusta are prescribed by only three spins,
compared to the six of a hypercuboid. Together with the
large amount of symmetry in these configurations, we can
study discretizations containing many spin foam vertices,
which only depend on a few spins. Indeed, most of the
integrations performed in this article are two-dimensional,
which can be efficiently performed.
Another generalization compared to the cuboid case is

the necessity of introducing a cutoff on the spins. While in
the cuboid case we implemented an embedding map fixing
the total area of a coarse face, we a priori cannot enforce
such a restriction onto the hyperfrusta. To efficiently
perform the integrals, an upper cutoff on the spins is
necessary. Usually, one then has to carefully check that
the result does not change under gradually increasing the
cutoff. In our case, this question is closely tied to the value
of the parameter α, as it determines whether large or small
spins are preferred in the path integral. Generically, if α is
too large, the result is cutoff dependent as the amplitudes
diverge for growing spins. We have performed our simu-
lations in a regime of α where the results converge for a
relatively small cutoff jmax ∼ 10. Fortunately, this is also
the regime of interesting dynamics.
Thus, the difficulty of the numerics stems less from the

integrand itself but more from the fact that we have to scan
a three-dimensional parameter space. To quickly generate
the results, we have used the local HPC at Perimeter
Institute; e.g., to perform 1024 one- and two-dimensional
integrations took roughly 12 hours on a single core. This
can be further accelerated, as the Cuba package in Julia
can be straightforwardly vectorized and parallelized.

III. RENORMALIZATION GROUP FLOWS

We work on a system Φ describing the time evolution of
an isotropic and homogeneous universe. We consider
different discretizations of this process in terms of hyper-
frusta. We then demand cylindrical consistency among
different discretizations, which defines the RG flow of the
amplitudes.

Let us focus on the table in Fig. 5, which catalogs some
possible discretizations of Φ preserving the symmetries of
the system. Each slot ðX ;YÞ represents a discretization
ΦðX ;YÞ of Φ in terms of n ¼ X3Y vertices.
In what follows, we are considering the initial and final

slices as our disconnected boundary. There exists a unique
embedding map [Eq. (17)], which allows for using only
and solely the hyperfrustum vertex at each refinement
step. This is such that it maps a coarse boundary cube into
the unique configuration of X3 smaller cubes, all of the
same size.
At the coarsest level, the process is described by a single

vertex—i.e., a hyperfrustum Φð1;1Þ with boundary cubes of
areas ji and jf. These labels fix the boundary geometry of
Φð1;1Þ and determine the coarsest scale where there is a
single d.o.f. available, e.g., the height H. Shifting to the
right in the picture (i.e., along X ) corresponds to a
homogeneous split of the spatial discretizations, dictated
by the embedding map. Thus, in the slot ðX ; 1Þ each spatial
edge is split into X equal pieces. Correspondingly, each of
the coarsest boundary cubes of areas ji and jf is subdivided
into X3 cubes of areas ji=X2 and jf=X2, respectively.
Stepping down in the picture (i.e., along Y) corresponds
instead to refining the discretization in the time direction.
As an example, at the slot ð1;YÞ of Fig. 5, one has the
transition of a single cube in Y time steps, which is
represented by a chain of Y hyperfrusta of heights
H1;…; HY with

PY
i¼1Hi ¼ H. The variables of a discre-

tizationΦðX ;YÞ are the bulk spatial spins jn and the timelike
spins km, where n ¼ 1;…;Y − 1, m ¼ 1;…Y.
The flow is extrapolated from the comparison of the

dynamics of two discretizations Γ ¼ ΦðX ;YÞ (coarse) and

FIG. 5. Catalog of some possible discretizations of Φ which
preserve the homogeneity of the spatial hypersurfaces. The labels
X refer to the number of links used to discretize each spatial
direction. The labels Y refer to the number of time steps in which
the transition occurs.

17To approximate higher-dimensional regions by polynomials
requires considerably more sample points, rendering the algo-
rithm less efficient.
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Γ0 ¼ ΦðX 0;Y0Þ (fine), defining a coarse-graining step. One
can choose any couple ðΓ;Γ0Þ in Fig. 5 with the condition
that X · Y < X 0 · Y0. In general, the flow will depend on
such a choice. However, we expect that for highly
discretized Γ and Γ0, the dependence of the flow becomes
negligible, since the discretization is fine enough to
capture the dynamics of the system.
Note that all the configurations shown in Fig. 5 give rise

to real transition amplitudes, since the vertex amplitudes Âv
[Eq. (39)] are real. The discretizations lying in the even
columns have positive amplitudes, while the odd columns
can take negative values, since each time step comes with
an odd power of vertex amplitudes. In what follows, we
restrict ourselves to discretizations with positive amplitudes
only. This ensures in general a faster numerical evaluation
of the expectation values of the observables.

A. One-dimensional isochoric RG flow

First, we consider a restricted flow where all coupling
constants are kept fixed, except for α. The RG flow in α is
computed in the isochoric setting, i.e., keeping fixed the
total 4-volume of spacetime. This is a generalization of a
previous work, in which the discretization has been
restricted to hypercuboids, and where it has been observed
that the RG flow of α is intimately connected to the vertex
displacement symmetry of the model [17].
In particular, in Ref. [45], it was observed that the

EPRL model breaks vertex displacement symmetry,
which is the manifestation of diffeomorphisms on the
lattice [45,73–77]. While this breaking of symmetry is
well known in classical Regge calculus, where it appears
whenever curvature is involved, the quantum theory
breaks it even in the case of flat metrics.
If one restricts the state sum to only these flat metrics by

using hypercuboids, then it could be shown that the RG
flow has a UV-attractive fixed point, on which vertex
displacement symmetry is roughly restored. Since one only
considers flat configurations, only the coupling constant α
plays a role. Depending on the boundary state, the fixed
point lies around α ≈ 0.63 [18]. In the following, we extend
the RG flow to frusta geometries which also allow for
curvature.
We consider the coarse-graining step of Γ ¼ 2 ×Φð1;2Þ

into Γ0 ¼ 2 ×Φð2;4Þ, which are discretizations with nΓ ¼
13 × 2 × 2 ¼ 4 and nΓ0 ¼ 23 × 4 × 2 ¼ 64 vertices,
respectively (Fig. 6). The lattice is doubled in one of
the spatial directions, so that the amplitude is always
positive. The initial and final boundary spins are fixed and
equal, ji ¼ jf ¼ jb.
The RG flow is then evaluated in the isochoric regime,

i.e., summing over all configurations which have identical
total 4-volume V tot. This is achieved by performing a
transformation of the integral over spins ðjn; kmÞ to an
integral over ðjn; VmÞ, with the 4-volumes Vm of a vertex at
time step m. This adds a Jacobian determinant to the

integration, after which the total volume is fixed by
including a δðPm Vm − V totÞ in the integral, which allows
us to express one of the volumes by the others and V tot.
For the coarse lattice Γ, this results in two variables j1, V1,
while for the fine lattice Γ0, one has six variables j0n; V 0

n,
with n ¼ 1, 2, 3.
We use the amplitude [Eq. (39)] and Eq. (40) to compute

the expectation values of an observable corresponding to
the fluctuation of half of the volume; i.e.,

hOΓiΓ ≡ hðV1 − V tot=2Þ2i; ð41Þ

hOΓ0 iΓ0 ≡ hðV 0
1 þ V 0

2 − V tot=2Þ2i: ð42Þ

To compare to the computation in Ref. [18], we fix
1=G ¼ 1.5, Λ ¼ 0.1, and consider the amplitude depend-
ing only on the coupling constant α. For a given α0 on the
fine lattice, we compute the fine observable [Eq. (42)] and
look for the value α on the coarse lattice, which leads to the
same value for Eq. (41); i.e., the RG flow α0 → α is given
by the condition

hOΓiαΓ¼! hOΓ0 iα0Γ0 : ð43Þ

The result can be seen in Fig. 7. The intersection with the
line of α ¼ α0 lies at about

α� ≈ 0.69; ð44Þ

which marks an unstable (i.e., UV-attractive) fixed point of
this flow. This value is slightly above the one found in
Ref. [17], but it only differs by about 10%.
A plot of the path integrand for the coarse lattice

(depending on the two free variables j1, V1) is depicted
in Fig. 8. It can be seen that for α at the fixed point, there is
a plateau in the integrand, indicating that some symmetry
among the variables is approximately realized in the path
integral. This can be regarded as some vertex displacement
symmetry. It should be noted, however, that in this case the
connection to the diffeomorphisms is much less clear, due

FIG. 6. Coarse-graining step used to generate the one-dimen-
sional flow in the isochoric setting, i.e., keeping the total 4-
volume fixed.
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to the presence of nontrivial deficit angles. Numerical tests
show indeed that the plateau depicted in Fig. 8 vanishes as
soon as one moves α away from the fixed point α�. All of
this is in agreement with what has been found previously in
the case of hypercuboids [17,18].

B. The isotemporal gauge

Let us now go beyond the one-dimensional analysis and
generate higher-dimensional RG flow diagrams. In fact, the
theory is also defined by the parameters G and Λ. We first
look at a two-dimensional flow in the space ðΛ; GÞ while
keeping fixed the value of α. Such analysis reveals partial
information, being a projection of the three-dimensional
flow. Nonetheless, we will see that it carries the traces of
nontrivial regions. We then extend this result to the entire
parameter space, generating a more detailed flow diagram
in the space ðα; G;ΛÞ. As we will show, the flow has a fixed
point with one repulsive and two attractive directions.
Here we relax the constraint which keeps fixed the

total 4-volume, and instead we fix the total height H.
Furthermore, we work in an isotemporal gauge; i.e., we
demand that all the hyperfrusta in a given discretization
have the same height. As an example, the slot ð1;YÞ of

Fig. 5 is now interpreted as the transition of a single cube
into the same cube in Y time steps, which is represented
by a chain of Y hyperfrusta of the same height H=Y.
In our analysis we consider the case of Γ ¼ Φð3;2Þ and

Γ0 ¼ Φð4;3Þ, which correspond to discretizations of Φ in
terms of nΓ ¼ 33 × 2 ¼ 54 and nΓ0 ¼ 43 × 3 ¼ 192 hyper-
frusta, respectively (Fig. 9). We also choose a fiducial set of
boundary conditions ji ¼ jf ¼ 1, and we fix H ¼ 6.
Let us note that the total amplitude of Γ0 is always

positive, being given as the product of an even number of
identical dressed vertex amplitudes for each time step.
The coarse lattice Γ has instead an odd number of vertices
contributing to each time step. However, thanks to the
symmetry Âvðjn; jnþ1; knÞ ¼ Âvðjnþ1; jn; knÞ of Eq. (39),
the chosen boundary conditions and the isotemporal gauge
setting guarantee the positivity of the total amplitude, as
both time steps carry the same amplitude.
In the large-spin limit, the partition functions associated

with these two systems are, respectively,

ZΓ ¼
Z

dj1dk1dk2Âv

�
ji
9
; j1; k1

�
27

Âv

�
j1;

jf
9
; k2

�
27

;

ZΓ0 ¼
Z

dj01dj
0
2dk

0
1dk

0
2dk

0
3Â

64
v

�
ji
16

; j01; k
0
1

�

× Â64
v ðj01; j02; k02ÞÂ64

v

�
j02;

jf
16

; k03

�
; ð45Þ

where j1, j01, j
0
2 are internal spacelike spins associated with

square areas, while k1, k2, k01, k
0
2, k

0
3 are internal timelike

spins associated with trapezoidal faces. To implement the
isotemporal gauge, we first perform a change of variables:

k1 → H1; k2 → H2; k01 → H0
1;

k02 → H0
2; k03 → H0

3: ð46Þ
Each of these substitutions generates a Jacobian factor.
For a hyperfrustum Fnðjn; jnþ1; knÞ, the Jacobian J ≡
Jðjn; jnþ1; HnÞ reads

FIG. 7. RG flow α → α0 in the isochoric case. The intersection
with the dashed line (αα0) lies at about α ≈ 0.69, while the other
coupling constants are fixed to 1=G ¼ 1.5, γ ¼ 1

2
, and Λ ¼ 0.1.

FIG. 8. Path integrand Â1 · Â2 for the coarse lattice at α ¼ α�,
depending on the two variables j1, V1. The plateau indicates the
presence of vertex displacement symmetry.

FIG. 9. Coarse-graining step used to generate the two- and
three-dimensional flows in the isotemporal gauge, i.e., keeping
fixed the height of the vertices in each discretization and
imposing the total height H to be fixed.
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J ¼ ∂Hnðjn; jnþ1; knÞ
∂kn

¼ Hnð
ffiffiffiffiffi
jn

p þ ffiffiffiffiffiffiffiffiffi
jnþ1

p Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Hnð

ffiffiffiffiffi
jn

p þ ffiffiffiffiffiffiffiffiffi
jnþ1

p Þ2 þ 2ðjn − jnþ1Þ2
p ð47Þ

and refers to the change of variables kn → Hn, the height
Hn being given in terms of Eq. (32) by

Hn ¼
2knffiffiffiffiffiffiffiffiffi

jnþ1

p þ ffiffiffiffiffi
jn

p K: ð48Þ

As a second step, we insert in the coarse and fine partition
functions, respectively,

δðH −H1 −H2ÞδðH1 −H2Þ;
δðH −H0

1 −H0
2 −H0

3ÞδðH0
1 −H0

2ÞδðH0
1 −H0

3Þ: ð49Þ

The partition functions then become

ZΓ ¼
Z

dj1AΓ;

ZΓ0 ¼
Z

dj01dj
0
2AΓ0 ; ð50Þ

where we have defined

AΓ ¼ J

�
ji
9
; j1;

H
2

�
J

�
j1;

ji
9
;
H
2

�

× Â27

�
ji
9
; j1; k1

�
Â27

�
j1;

ji
9
; k2

�
;

AΓ0 ¼ J

�
ji
16

; j01;
H
3

�
J

�
j01; j

0
2;
H
3

�
J

�
j02;

jf
16

;
H
3

�

× Â64

�
ji
16

; j01; k
0
1

�
Â64ðj01; j02; k02ÞÂ64

�
j02;

jf
16

; k03

�
:

ð51Þ
The timelike spins in the expressions above must be
understood as functions kn ≡ knðjn; jnþ1; HnÞ.
Thus, in the coarse case we remain with a system with a

single d.o.f. given by the intermediate spatial spin
j1 ∈ ½0;∞�. In the fine case, there are two d.o.f.’s corre-
sponding to the two intermediate spins j01, j

0
2 ∈ ½0;∞�.

We evaluate expectation values of n observables OðnÞ by
numerically integrating over these variables:

hOðnÞ
Γ igΓ ¼ 1

ZΓ

Z
dj1O

ðnÞ
Γ AΓ;

hOðnÞ
Γ0 ig0Γ0 ¼ 1

ZΓ0

Z
dj01dj

0
2O

ðnÞ
Γ0 AΓ0 ; ð52Þ

where g ¼ ðα; G;ΛÞ and g0 ¼ ðα0; G0;Λ0Þ are sets of
parameters defining the theory. Observables should be
cylindrically consistent, written as

hOðnÞ
Γ igΓ ¼ hOðnÞ

Γ0 ig0Γ0 ∀ n: ð53Þ

This can be seen as an equation for the coupling constants
g, g0, which defines the RG flow equation for our model. In
fact, if one can solve it, for any point g0 the equation returns
a point g, and we can connect them with an arrow Ag0→g to
draw the flow in the parameter space.18 The existence of an
exact solution to Eq. (53) depends on many factors. We
already discussed the relevance of the choice of Γ and Γ0, as
well as the various approximations that may spoil the
solution. A further technical obstacle is represented by the
fact that the solution of Eq. (53) would require knowledge

of the values hOðnÞ
Γ iΓ and hOðnÞ

Γ0 iΓ0 at all the points of the
parameter space. However, in our case these observables
are evaluated numerically for every couple ðg; g0Þ.
Therefore, we must consider a finite number of points in
the parameter space in order to perform a finite number of
integrations. The solution of the flow equation is then
approximated, whereas for a point g0 we cannot access all
the points in its neighborhood with infinite accuracy, and
consequently, the point g cannot be defined exactly. Note
that here we also assume implicitly that the RG flow makes
only small steps in the coupling constants. While this can
be expected to hold near a fixed point, in general it might
not be true, increasing the error of our RG computation.
In the light of these observations, we impose the

cylindrical consistency condition in a weak form:

Δg;g0
Γ;Γ0 ≡

X
n

jhOðnÞ
Γ igΓ − hOðnÞ

Γ0 ig0Γ0 j¼! min : ð54Þ

Our plan consists in considering an adequate number of
points in a “large” region of the parameter space, determin-
ing the flow according to the weak cylindrical consistency
condition [Eq. (54)] and finally, for each arrow Ag0→g,
checking how small is the relative error

Rg;g0
Γ;Γ0 ≡ Δg;g0

Γ;Γ0

Ōg;g0
Γ;Γ0

; ð55Þ

with

Ōg;g0
Γ;Γ0 ≡

X
n

				 hO
ðnÞ
Γ igΓ þ hOðnÞ

Γ0 ig0Γ0

2

				: ð56Þ

Regions of parameter space that are interesting for the
RG flow (e.g., since one expects a fixed point there) can be

18In analogy with the RG flows generated in the asymptotic
safety scheme, where the arrows point from high to low energy,
here the arrows start at g0 associated with the fine observables, and
point at g, which is related to coarse observables. We recall that, in
our context of background-independent renormalization, there are
no continuous labels tracing the energy scale. Instead, the shift of
resolution happens in discrete steps and is associated with a change
of discretization. This also equates to a change in the number of
d.o.f. that we keep when describing a physical process. Thus, in a
“Wilsonian” sense, the refinement of a discretization can be
interpreted as a shift towards high-energy regimes.

BAHR, RABUFFO, and STEINHAUS PHYS. REV. D 98, 106026 (2018)

106026-14



studied with higher accuracy by zooming further into that
region. During our analysis, we encountered many regions
of the parameter space where the cylindrical consistency
condition is in fact violated and the RG flow cannot be
trusted. We concentrate on those regions where cylindrical
consistency is satisfied up to only small errors.

C. Two-dimensional isotemporal RG flow

Let us look at the projection of the RG flow on two-
dimensional parameter space ðΛ; GÞ. To do so, we fix the
value of α ¼ 0.68. We recall that the choice of α
influences the convergence of the path integral. In
particular, the chosen value for α favors small spins.
This allows us to set an upper spin cutoff during the
Monte Carlo integrations so that the results will be
independent of it. Furthermore, this value of α stands
out in our analysis as a point where an interesting and
consistent dynamics is expected to take place, as indicated
by our earlier investigation in Sec. III A.
In order to draw a flow diagram, we proceed as follows:
(1) Select a domain in the parameter space ðΛ; GÞ and

identify n ¼ 32 × 32 ¼ 1024 points homogeneously
distributed in this domain.

(2) In each point of the domain, evaluate numerically
the coarse and fine expectation values of three
operators:
(a) The 3-volume at middle height hOð1Þi≡ hV3i.
(b) Its variance hOð2Þi≡ hV2

3i − hV3i2.
(c) The total 4-volume hOð3Þi≡ hV4i.

(3) Starting from each g0 ¼ ðΛ0; G0Þ, draw an arrow
Ag0→g pointing at g ¼ ðΛ; GÞ such that, following the
notation of Eq. (54), the distance Δg⋆;g0

Γ;Γ0 is minimal
for g⋆ ¼ g, where g⋆ is a point in the selected
domain. This defines an RG flow diagram.19

(4) Assign a color to the arrows depending on the value
of the relative errors Rg;g0

Γ;Γ0 , where we have used the
notation as in Eq. (55). Namely, draw in red the
arrow that most violates the cylindrical consistency
condition [Eq. (54)] with respect to the other arrows
in the plot. On the contrary, color in blue the one
which best satisfies the condition. Report the cor-
responding values Rred and Rblue of the relative
errors. According to the above classification, draw
the other arrows in a tonal progression from red
to blue.

The resulting RG flow in the region Λ ¼ ð−0.04; 0.04Þ and
G ¼ ð−0.02; 0.02Þ is shown in Fig. 10.
As the relative errors suggest, at the analyzed resolution

the flow is hardly reliable in some regions. Still, we notice
that the arrows drawn in dark blue have a small relative
error R ∼ 0.017. Most notably, those in the first quadrant,
close to ðΛ; GÞ ¼ ð0; 0Þ, show an interesting behavior
where they have a vanishing length (represented by dots).

–0.04 –0.02 0.00 0.02 0.04
–0.020

–0.015

–0.010

–0.005

0.000

0.005

0.010

0.015

0.020

FIG. 10. RG flow with the cylindrical consistency condition maximally and minimally violated with the respective relative errors
Rred ¼ 4.0675, Rblue ¼ 0.0169.

19In the first plots, we fix a maximum length for the arrows,
since we are interested in getting an idea about where to zoom
next to satisfy Eq. (54) best. Later, when we are in a region that
we can trust, we will allow the arrows to have any length.
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This is exactly what we would expect to happen at a fixed
point. Let us then zoom into such a region. The result for
Λ ¼ ð−0.01; 0.01Þ and G ¼ ð−0.004; 0.004Þ is shown
in Fig. 11.

A first clear observation is that the overall relative errors
have improved, reaching a top precision R ∼ 0.008. In an
angular region around G ¼ 0, the flow is still unreliable.
However, in agreement with the interesting region (blue

G

–0.010 –0.005 0.000 0.005 0.010

–0.004

–0.002

0.000

0.002

0.004

Λ

FIG. 11. RG flow with the cylindrical consistency condition maximally and minimally violated with the respective relative errors
Rred ¼ 3.6085, Rblue ¼ 0.0081.

FIG. 12. Three-dimensional RG flow with the cylindrical consistency condition maximally and minimally violated with the respective
relative errors Rgreen ¼ 0.004, Rblue ¼ 0.00017.
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arrows), the relative errors are fairly small, and the flow
shows a more coherent behavior. In particular, there are still
some arrows with null distance. We then want to zoom
further into the top-right region of Fig. 11. We do so by also
unlocking the parameter α and letting it vary slightly
around α ¼ 0.68.

D. Three-dimensional isotemporal RG flow

Using the same strategy as in the two-dimensional case,
it is possible to generate an RG flow in the space defined
by the three coupling constants ðα; G;ΛÞ. Figure 12
shows the RG flow in the region Λ ¼ ð0.006; 0.01Þ,
G ¼ ð0.003; 0.0045Þ, and α ¼ ð0.6765; 0.6775Þ, in which
we have selected 32 × 32 × 32 points. All the arrows in
the plot satisfy the cylindrical consistency condition to high
precision, the smallest relative error being R ∼ 0.00017.20

Remarkably, there is the indication of a fixed point
within the center of this region, showing one repulsive and
two attractive directions. At this order of precision, both
the relevant (repulsive) and irrelevant (attractive) direc-
tions seem to be associated with linear combinations of all
three parameters. A better precision can be reached by
further zooming. Our research suggests that this is a rare
point of the parameter space. Whether this point is unique
needs further analysis.

IV. EXPANDING AND CONTRACTING
UNIVERSES

We now investigate the dynamics described by the
amplitudes, in order to gain an insight into the interpre-
tation of the RG flow.
Frusta geometries are geared towards studying cosmo-

logical transitions. The spatial cubes essentially encode the
scale factor a of the universe at a certain time step, and the
timelike frusta mediate between spatial cubes of different
size.21 Naturally, the question arises as to which configu-
rations are preferred in the path integral given by the EPRL
amplitudes. In particular, we intend to examine how the
parameters of the model, e.g., the cosmological constant Λ,
influence the dynamics and whether familiar features of the
classical theory emerge as well. In the case of our simple
model, this could be whether the universe’s expansion is
accelerating or slowing down, depending on the sign of the
cosmological constant.
To this end, we study again the expectation values of

observables that we have used before to define and compute
a renormalization group flow. More precisely, we consider

the 3D volume for the coarse transition investigated
before, as it essentially gives the intermediate scale factor
between an initial and final state of the same size.
Furthermore, studying an observable used for the renorm-
alization group flow in more detail may reveal a few
insights as to the form of the flow. We show its expectation
value in Fig. 13.
As a first striking feature, we recognize the “X” shape

in the values of the observables similar to the 2D scans of
the renormalization group flow. Inside this region, the 3D
volume fluctuates significantly and can reach quite high
values. These peaks appear to be slightly larger for a
negative cosmological constant, but there also exist regions
for positive Λ in which the intermediate 3D volume is
significantly larger compared to the initial and final state.
Note that this is also the region in which the cylindrical
consistency conditions for the observables of the RG flow
are strongly violated, which implies that a similar behavior
does not exist in a similar region for the fine observable.
Judging from the plot, this behavior is due to the small size
of jGj, and it appears to extend slightly as jΛj is increased.
A possible explanation is that both parameters enhance the
oscillatory behavior of the integral, resulting in a highly
fluctuating expectation value.
Outside that region, more precisely for larger jGj, we

observe a rather uniform behavior, where the 3D volume is
around or slightly larger than 1, which is also the volume at
the initial and final slice.
There is only a little dependence on the sign of the

cosmological constant: For negative Λ, we observe a
slightly larger intermediate 3D volume already for smaller
jGj. Thus, Λ < 0 appears to favor a larger intermediate 3D
volume compared to Λ > 0; however, in both cases we
observe an intermediate volume that is larger than the initial

–0.010 –0.005 0.000 0.005 0.010
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–0.002

0.000
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FIG. 13. Expectation value for the 3D volume of the inter-
mediate spin, hj32i, for α ¼ 676855. This is the case of the coarse
transition with 54 hyperfrusta.

20For practical graphical reasons, we only draw the most
reliable arrows in blue and green.

21The cuboid intertwiners we use are sharply peaked on the
cuboid shape, yet they are undetermined in the extrinsic curva-
ture; i.e., how the 3D cubes are embedded in a 4D geometry. In
this sense, the states are sharply peaked in a, but _a is maximally
uncertain.
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and final one. Hence, we generically observe a transition in
which the universe first expands and then contracts, or at
most remains constant. A transition to a contracting and
then expanding universe is not observed numerically.
Naturally, one would like to compare this behavior to

classical dynamics. However, it is not clear to which
discrete action we should compare our results. In the vertex
amplitude [Eq. (39)], several oscillating terms appear,
containing different actions. While the cosine contains
the (area) Regge action and a volume term times the
cosmological constant, the other oscillating terms only
contain the Regge action. Clearly the former term is the
desired one; we will briefly compare our results to the
classical, discrete dynamics.
Since we consider the transition for fixed heights, with

jin ¼ jfin ¼ 1, there is one discrete equation of motion to
solve depending on Λ.22 For Λ ¼ 0, the equations of
motion are solved by j ¼ 1, so there is no expansion or
contraction, as one would expect. For Λ > 0 we find j < 1
as the solution, while for Λ < 0 we find j > 1. So we see a
first contracting, then expanding universe for a positive
cosmological constant, and the opposite for a negative
cosmological constant. Something similar can be seen in
the continuum, whereΛ > 0 implies ä > 0. Hence, in order
to arrive at the same scale factor a at a later time, the
universe first contracts before expanding again. The behav-
ior is reversed, as Λ < 0 implies ä < 0.
It seems that the behavior of the truncated SFM does

not reproduce the classical dynamics. Instead, we usually
see hj32i > 1, no matter the sign of the cosmological
constant. Nevertheless, we do observe generically larger
expectation values hj32i > 1 for negative Λ compared to
positive Λ. There are a few plausible explanations for
these deviations: The vertex amplitude contains several
oscillating functions—some contain the cosmological
constant term, and some do not. Moreover, the “proper”
action appears in the cosine, which might lead to unwanted
interference of different bulk solutions. Additionally, the
whole spin foam does not oscillate with the sum of Regge
actions assigned to hyperfrusta, as the cosine is not additive.
Another possible deviation might stem from the face
amplitudes, which favor small or large spins depending
on the value of the parameter α. If α is large, it puts emphasis
on large spins, which generically results in larger expect-
ation values for spins or volume, etc.
A possibility to overcome the “cosine problem” would

be to consider states which are not just peaked on the
shapes of cuboids or frusta, but which are also peaked in the
extrinsic curvature. This would roughly correspond to
prescribing both a and _a at the initial and final times.
As a result, one of the two stationary and critical points in
the asymptotic expansion might be suppressed, resulting in

a quantum dynamics closer to its classical counterpart.
We leave this for future research.

V. FREE THEORY

In this section, we consider the limit of the RG flow
equationsG → 0 and Λ → 0. This can be understood as the
free theory, as the gravitational coupling G, which governs
the strength of the perturbative interaction in the linearized
theory, vanishes. It should be noted that, due to its non-
perturbative nature, the EPRL-FK model does not exist for
G ¼ 0 (Λ ¼ 0 is no problem, though). We therefore
approach this point in theory space asymptotically.
Considering the RG step of a lattice with 4 × 4 × 4 ×

3 ¼ 192 vertices to one with 3 × 3 × 3 × 2 ¼ 54 vertices,
as described in Sec. II C, we compute the observables V3

and V4 for the isotemporal case—i.e., when the time steps
are gauge fixed—for Λ ¼ 0 in the asymptotic limit
1=G → ∞. The initial and final boundary spins are fixed
to the same (but ultimately arbitrary) value ji ¼ jf ¼ j.
We first consider not the full EPRL-FK model, but only

its proper vertex, where the amplitude is replaced simply by
the exponential of the Regge action. In that case, we have
that

Z54 ¼
Z

Jmax

0

dj1ðÂÞ54; ð57Þ

with

Â ¼ Fðj1Þ
e54i=GSR

jDj ;

where D is the Hessian determinant, and SR ¼ SRðj1; j; HÞ
is the Regge action for one hyperfrustum with initial and
final spin j, intermediate spin j1, and heightH. Also, Fðj1Þ
is a function depending on j1 (and j and H), which is given
by a collection of face and edge amplitudes.
To evaluate Eq. (57) in the limit 1=G → ∞, we can

perform a stationary phase approximation. For this we
simply observe that the condition

∂SRðj; j1; kðj; j1; HÞÞ
∂j1 ¼ 0 ð58Þ

has only j1 ¼ j as its solution. To compute expectation
values, we perform the same calculation, but include
another function Oðj; H; j1Þ (in our case, V3 and V4) in
the integral, which we evaluate at the respective stationary
point as well. We can immediately conclude that

hV3iG→0;Λ¼0
54 ¼ 27j

3
2; hV4iG→0;Λ¼0

54 ¼ 54Hj
3
2: ð59Þ

The computation for Z192 is only slightly more compli-
cated. We have

Z192 ¼
Z

dj01dj
0
2ðÂ1Â2Â3Þ64; ð60Þ22As G is an overall constant, only Λ determines the classical

dynamics in the absence of matter.
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where the Âi’s, i ¼ 1, 2, 3 denote the vertex amplitudes for
the ith time step. We get

Â1Â2Â3 ¼
ei=GðS1þS2þS3Þ

jD1D2D3j
; ð61Þ

with the Regge actions Si for the ith time step, and Di the
corresponding Hessian determinants. The variables for
these are j01 and j02, and one can show that, again, the
only solution to

∂
∂j01 ðS1 þ S2 þ S3Þ ¼

∂
∂j02 ðS1 þ S2 þ S3Þ ¼ 0 ð62Þ

is j01 ¼ j02 ¼ j0. This immediately leads to

hV3iG→0;Λ¼0
192 ¼ 64ðj0Þ32; hV4iG→0;Λ¼0

192 ¼ 192H0ðj0Þ32:

With H0 ¼ 2
3
H and

ffiffiffiffi
j0

p
¼ 3

4

ffiffi
j

p
, we can conclude that

hV3iG→0;Λ¼0
192 ¼ hV3iG→0;Λ¼0

54 ;

hV4iG→0;Λ¼0
192 ¼ hV4iG→0;Λ¼0

54 :

This demonstrates that the point G ¼ 0, Λ ¼ 0 is a fixed
point of the discussed RG flow of the reduced amplitude.
It is notable that this analysis rests on using the reduced

amplitude—i.e., where only one term in the exponential
expression for EPRL-FK amplitude (the one containing the
exponential of the Regge action) is kept. As soon as this is
replaced with the full EPRL-FK amplitude, the analysis
does not hold anymore. This can be traced back to the
presence of the cosine, as well as the weird terms. Indeed,
in the case where these terms are present, the path integral
is a sum over different possibilities, in which different
vertices contribute the same parts of the Regge action with
different signs. This allows for several terms in which the
individual contributions of vertices identically cancel,
irrespective of the configuration. As a result, the stationary
phase approximation is dominated by those terms, which
do not only contribute the classical solutions, but many
nonclassical configurations as well. For instance, all
transitions via arbitrary intermediate (bulk) spin j contrib-
ute. Since the quantum theory is not dominated by the
classical solutions in this case, it seems unlikely that the
free theory is a fixed point in this case.
Incidentally, the problem can be avoided when using

only the cosine, as well as an odd number of vertices per
time step. This is an indication that, for Lorentzian
signature and an odd number of vertices, the free theory
might indeed be a fixed point.

VI. SUMMARY AND CONCLUSION

In this article, we have investigated the RG flow of the
4D Riemannian EPRL spin foam model for quantum

gravity with analytical and numerical tools. For this, several
approximations and truncations were employed in order to
make the analysis tractable.
Previous investigations [17,18] only allowed for quasi-

local fluctuations of the metric, which are, in the semi-
classical limit, expected to turn to gauge d.o.f. It can be
expected that these appear in the theory as spurious d.o.f.,
since it is well known that the gauge symmetry of GR is
broken in the EPRL model [45,73,77].
The crucial innovation of this article is to relax previous

truncations to include quantum frustal geometries [53].
This allows for curvature fluctuation in the models which
are not just pure gauge. Also, the model restricted to frusta
is an extension of the previous setting in Refs. [17,18],
which allows for d.o.f. which are local in time.
The interesting coupling constants of this model are the

gravitational and cosmological constants G and Λ, as well
as a parameter in the path integral measure α, which is
connected to the 4-volume in the measure, and has been
shown to play a crucial role in the restoration of broken
diffeomorphism symmetry [17].
In our analysis, we have worked on hypercubic lattices,

which provide discretizations of a torus universe. The RG
flow was considered for various coarse-graining steps of
finer to coarser discretizations.
To define a flow in terms of coupling constantsG,Λ, α, it

was necessary to choose a couple of reference observables,
which we compared on the coarse and the fine lattices.
Here, we mostly restricted ourselves to 3- and 4-volumes,
as well as their fluctuations. Different choices are possible,
but we expect those to yield only qualitatively minor
changes to the results, as long as one considers observables
which are diverse enough as to separate the space of
considered path integral measures. See also the discussion
in Ref. [15].
Furthermore, we employed a system which made the RG

flow much more accessible. By relaxing the condition for
cylindrical consistency, but allowing only slight changes in
the coupling constants, we were able to produce a much
smoother flow. As a drawback, the flow diagrams cannot be
trusted everywhere, but with the deviation R from cylin-
drical consistency [Eq. (25)], we have a control parameter
to judge the quality of the resulting flow in any region. This
allows for quick scanning of parts of the phase space, since
in the region of fixed points it can be expected that the value
of R has to be small. It is in the vicinity of these regions that
one can trust the flow images the most.

A. Our findings

Our results are as follows:
(1) First, the employed approximations allow us to

generate images of the RG flow. The introduction
of theR parameter allowed us to quickly decidewhich
regions of the phase space are more likely to contain
fixed points and are worthwhile to concentrate our
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analysis around. This is in general very encouraging,
and we believe that this method can also be used
more generally in other RG applications, possibly
even beyond the spin foam context.

(2) We have considered three main flows. One is the
parameter α, which was taken to be isochoric, i.e.,
with fixed total 4-volume. This was a direct gener-
alization of the flow computed in Ref. [17], where
the nontrivial fixed point was found. Our analysis
revealed that the fixed point was still present, albeit
with a slightly changed numerical value. We found
that in the case of frusta, the fixed point lies at

α� ≈ 0.69; ð63Þ

which is slightly increased from α� ≈ 0.63 in the
case of hypercuboids.

(3) For considering the RG flow in more parameters, we
considered a 2D flow in G and Λ, keeping α ≈ 0.68
fixed. We used this to scan the phase space for
regions likely containing the fixed points, using the
procedure described above.
We then also considered a 3D flow in all three

parameters ðG;Λ; αÞ within that region. We found
that there appears to be a fixed point at

α�≈0.677; G�≈0.037; Λ�≈0.008: ð64Þ

Numerical evidence shows that the fixed point has
one repulsive and two attractive directions.

(4) We also considered the free theory, i.e., the point at
which the coupling constants G ¼ 0, Λ ¼ 0. This
point plays an important role in the perturbative
renormalization of GR, which is defined by pertur-
bations around it. The EPRL model is defined
nonperturbatively, which is seen as one of the
strengths of the (loop) quantum gravity approach.
This, however, makes it difficult to draw compar-
isons to more traditional forms of the analysis.
In particular, this point is not part of the range of

EPRL amplitudes. However, with our methods of
defining the flow via observables, we can investigate
this point at least asymptotically, since it sits on the
infinite boundary of the EPRL theory space, and
expectation values of some observables converge
when approaching this point.
In particular, we could approach this point both

numerically and analytically by asymptotic meth-
ods. We found that, contrary to our assumptions, the
free theory appears not to be a fixed point of the
Riemannian EPRL model. If we replace the EPRL
amplitude with the exponential of the Regge action
(with measure factors from the asymptotic EPRL
amplitude), however, we can show that the free
theory is a fixed point.

B. Discussion

The main goal of our analysis was to learn more about
the RG flow of the EPRL model. Indeed, there are several
lessons one might draw from our findings:
(1) The stability of existence of a fixed point under the

extension of the parameters, and the relaxing of
truncations, fosters hope that this sort of fixed point
is an actual feature of the model, rather than an
artifact of the approximation. Of course, further
study needs to be undertaken before this point can
be settled decisively. In this instance, it is unclear
whether this fixed point is the only interesting one of
its kind in the considered phase space. It is also not
clear whether this point bears any relation to the non-
Gaussian fixed point discussed in the asymptotic
safety scenario [51].

(2) The fact that the free theory (i.e., where G ¼ 0,
Λ ¼ 0) is not a fixed point of the EPRL model, but
becomes one when replacing it with simply the
exponential of the Regge action, was an unexpected
feature. It can be understood by the form of the
EPRL amplitude: Apart from the exponential of the
Regge action, it also contains its sign-reversed part
(commonly referred to as the cosine problem), as
well as other, nongeometric terms (colloquially
called weird terms).
It is the presence of these additional terms which

spoils the fixed-point properties. In the free theory, it
should be expected that quantum fluctuations around
the classical solution are suppressed, since the
prefactor in front of the Regge action oscillates
rapidly for even minor deviations from the classical
trajectory. However, in the EPRL amplitude, the
situation changes, since terms with opposite signs
can cancel each other in the action. Fluctuations in
these directions are therefore not suppressed, since
they do not change the value of the amplitude. These
highly curved contributions are quite different nu-
merically on different lattices, which is why the
fixed-point properties are spoiled.
The main message one might take away from

this is that the Riemannian EPRL model can be
expected, in general, to be quite a different theory
from (Riemannian signature) quantum gravity. This
in itself is not surprising, but, to our knowledge, this
is the first instance where this fact has been observed
explicitly. It should be noted that in the Lorentzian-
signature version of the EPRL model, the weird
terms are absent. Also, there is work on the so-called
proper vertex, which aims at resolving the cosine
issue, even for the Lorentzian amplitude [78,79].
The question of whether the two terms in the

cosine interfere with one another has not been
decisively settled by our analysis, but the question
appears to be answered in the affirmative. There are,
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however, some caveats which might, in the long run,
change this point of view:
First, if the weird terms are absent (as happens in

the Lorentzian theory), one can make the free theory
into a fixed point by only considering lattices with an
odd number of vertices. This prevents precise
cancellation of contributions from vertices with
differing signs. Still, this restriction appears slightly
artificial to us, but it illustrates an important point:
the cancellations also happen because of the large
amount of symmetries we consider, i.e., by using
frusta. In the unrestricted theory where all fluctua-
tions are considered, the states in which precise
cancellation among all vertices happens might be
dominated by those where it does not. This kind of
entropic argument could resolve the issue for the
Lorentzian amplitude.
Second, our choice of coherent states might

influence the result as well. In general, it is expected
that one can restrict the scenario to either sign of the
action by prescribing the proper extrinsic curvature
on the boundary. The Livine-Speziale intertwiners

used in our analysis are maximally uncertain in the
extrinsic curvature, so that both signs of the Regge
action are excited equally. It is feasible to assume
that by choosing boundary states which suppress one
sign, one can effectively implement the proper
vertex (with minor fluctuations), which would turn
the free theory into a fixed point.
This point certainly warrants further investigation

in the future.
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