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We prove the universality of the Chern-Simons diffusion rate—a crucial observable for the chiral magnetic
effect—in a large class of planar strongly correlated gauge theories with dual string description. When the
effects of anomalies are suppressed, the diffusion rate is simply given in terms of temperature, entropy density
and gauge coupling, with a universal numerical coefficient. We show that this result holds, in fact, for all the
top-down holographic models where the calculation has been performed in the past, even in the presence of
magnetic fields and anisotropy. We also extend the check to further well-known models for which the same
computation was lacking. Finally we point out some subtleties related to the definition of the Chern-Simons
diffusion rate in the presence of anomalies. In this case, the usual definition of the rate—a late time limit of the
imaginary part of the retarded correlator of the topological charge density—would give an exactly vanishing
result, due to its relation with a nonconserved charge correlator. We confirm this observation by explicit
holographic computations on generic isotropic black hole backgrounds. Nevertheless, a nontrivial Chern-
Simons relaxation time can in principle be extracted from a quasinormal mode calculation.
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I. INTRODUCTION

The Chern-Simons diffusion rate ΓCS is a fundamental
observable in the study of chiral effects in the Quark-Gluon
Plasma (QGP). Its value, setting the rate of (local) change of
the Chern-Simons number, determines, through the axial
anomaly, the (local) change rate of chirality imbalance in
the plasma. Chirality imbalance is then responsible, in the
presence of a magnetic field, for the chiral magnetic effect [1],
which can be in principle measured in current experiments.
Being inherently nonperturbative, the Chern-Simons

diffusion rate cannot be computed in QCD from first
principles. In the literature there are interesting effective
field theory calculations, setting for example the behavior
with N (the number of colors of the theory) to be OðN0Þ
[2]. But it is fair to say that we lack a solid estimate
(analogous to what can be obtained from the lattice for
other observables) for the value of ΓCS in the realistic strong
coupling regime of the QGP.
In this paper we address the problem of the calculation of

the Chern-Simons diffusion rate by means of holographic

techniques, as first performed in [3]. Thus, we consider the
planar, strong coupling regime of quantum field theories
which can model (but always present some differences
from) real world QCD. Holography has proven to give
fruitful indications about the physics of transport coeffi-
cients in QCD. In particular, when some universality can be
found among different holographic models, the result for
the observable under scrutiny can be used as a benchmark
for the experiments, since clearly it does not depend on
many of the details of the theory. The shear viscosity is the
most notable example of such a situation [4,5].
We are going to prove that at leading order in the planar

strong coupling limit, the Chern-Simons diffusion rate is
universal in a relevant class of top-down holographic
models which includes, among the others, N ¼ 4 SYM
[3], even in the presence of anisotropies [6,7] and magnetic
fields [8], the Witten-Sakai-Sugimoto model [9–11] and the
Maldacena-Nuñez model [12,13], for which the computa-
tion of ΓCS was lacking. In all the cases the field theory
comes either from D3-branes or wrapped Dp-branes
with p > 3.
More specifically, at leading order in the large N limit

where axial anomalies can be neglected, the Chern-Simons
diffusion rate is given, with a universal coefficient, in terms
of the temperature T, entropy density s and the gauge
coupling αs ¼ g2YM=ð4πÞ of the field theory

ΓCS

sT
¼ α2sðTÞ

23π3
: ð1:1Þ
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At present there are no counterexamples to this formula in
top-down holographic models. So, it is not excluded that its
validity goes beyond the class of models considered in this
paper. Thus, the holographic behavior of this observable
can be used with a certain degree of confidence as a
benchmark for the QGP. For example, a very rough
estimate of the critical temperature values αsðTcÞ ∼
1=2; sðTcÞ ∼ 10T3

c (lattice results without magnetic field
[14,15]) gives the value ΓCS=T4

c ∼ 0.01. This would have
quite a small effect in the QGP.
From a technical point of view, the derivation of the

result (1.1) relies on the fact that the quadratic part of
the five dimensional bulk action for the field dual to the
topological charge density operator has a universal form in
this class of models. It is the action of a massless scalar. Its
kinetic term depends on a function which, in the models
at hand, is the dual of the coupling constant [Eq. (2.13)].
The universality of this result can be useful beyond the
determination of the Chern-Simons diffusion rate.
The most interesting correction to the holographic result

for the Chern-Simons diffusion rate in the planar expansion
comes from possible anomalies proportional to the topo-
logical charge density operator. In the bulk, these are
described by a Stueckelberg action for the scalar mentioned
above and a vector field dual to the anomalous current [16].
We are going to show that, in this case, the usual holo-
graphic prescription for the calculation of ΓCS gives an
identically vanishing result.1 This fact is very general for
holographic field theories and does not rely on the details of
the dual gravity backgrounds.
As we are going to discuss, this feature is not related to the

holographic limit, but it simply relies on the fact that the usual
definition of ΓCS, as the late time behavior of the (imaginary
part of the) retarded correlator of the topological charge
density, gives zero if the latter is proportional, as it happens
due to the anomaly relation, to the retarded correlator of a
nonconserved (axial) charge. The relaxation time of the latter
can, instead, be consistently defined and expressed in terms
of the Chern-Simons diffusion rate computedwith a cutoff in
time, i.e., effectively turning off the anomaly. The rate
computed with this prescription is not automatically vanish-
ing. Some considerations along this line can be already found
in [2,18] where the same issue has been pointed out for QCD.
Chiral effects in the presence of anomalies can be inves-
tigated, from a holographic point of view, through the
analysis of quasinormal modes of the dual black hole
backgrounds. These quasinormal modes, in fact, allow
extraction of the above mentioned relaxation time.
Before concluding this section, let us define the relevant

quantities for our purposes. The Chern-Simons diffusion
rate is the probability of fluctuation of the Chern-Simons
number ΔNCS per unit time t and unit volume V

ΓCS ¼
hðΔNCSÞ2i

Vt
¼

Z
d4xhQðxÞQð0Þi; ð1:2Þ

where the variation in the Chern-Simons number is

ΔNCS ¼
Z

d4xQðxÞ ¼
Z

d4x
1

16π2
TrFF̃: ð1:3Þ

Here F is the Yang-Mills field strength, Q the topological
charge density operator

Q ¼ 1

16π2
TrFF̃; ð1:4Þ

and we normalize the SUðNÞ generators so that Tr½tatb� ¼
δab=2 for the fundamental representation.
The two-point function in formula (1.2) is the sym-

metrized Wightman one—everything is defined in real
time. In a state at thermal equilibrium at temperature T, ΓCS
can be given by a Kubo formula

ΓCS ¼ −lim
ω→0

2T
ω

ImGRðω; k⃗ ¼ 0Þ: ð1:5Þ

Thus its computation boils down to the determination of the
small frequency, zero momentum retarded correlator
GRðω; k⃗ ¼ 0Þ of the operator Q. The retarded correlator
is precisely what can be directly computed in holography
from the standard prescriptions [3], once the bulk field dual
to the operator Q is identified.
The paper is organized as follows. In Sec. II we prove the

universal formulas (1.1), (2.13) for the Chern-Simons dif-
fusion rate and the gravity action of the field dual to the
corresponding operator in a relevant class of top-down
holographic models in absence of anomalies. Then, in
Sec. III we discuss the effects of anomalies confirming,
through a holographic computation ongeneric isotropic black
hole backgrounds, that the standard prescription for the
calculation of ΓCS gives an identically vanishing result. In
turn, we discuss how to extract the Chern-Simons relaxation
time from the quasinormal modes of the dual black hole
backgrounds. The Appendices include the analysis of the
direct calculation of ΓCS in specific examples, including, for
the first time, the Maldacena-Nuñez model. Moreover they
contain a sketch of the derivation of a linear response formula
for the axial relaxation time as well as specific anti–de Sitter
(AdS) examples of the generic holographic results discussed
in Sec. III.

II. HOLOGRAPHIC CHERN-SIMONS
DIFFUSION RATE

We are going to show that in the plasma phase of a large
class of planar strongly correlated gauge theories with dual
string description, the Chern-Simons diffusion rate reads

ΓCS

sT
¼ g4YMðTÞ

27π5
; ð2:1Þ

1All the results concerning ΓCS present in the literature boil
down to the leading planar contribution, i.e., the effects of
anomaly are not fully included in the calculation [17,18].
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where the Yang-Mills coupling gYM and the entropy density
s are evaluated at the temperature scale T of the plasma.
This result holds as long as any possible anomaly is
ignored—effects of anomalies are discussed in the follow-
ing section. In the derivation below, we are going to prove
another general result for the same class of models: the
quadratic part of the five dimensional Lagrangian for the
field dual to the topological charge density operator Q is
universal, being the one of a massless scalar times a
function of the background metric which is precisely the
(squared) coupling in the dual field theory.

A. Derivation of the result

The main difficulty in deriving a general result for the
Chern-Simons (CS) diffusion rate in holography is that it
requires a precise identification of the gravity fields dual to
the topological charge density operator Q and the Yang-
Mills coupling gYM. Unlike what happens for the shear
viscosity, whose related gravity field is a component of the
metric which has a universal Lagrangian, the form of the
five dimensional action for the gravity field dual to Q is in
principle model dependent.
Nevertheless, there exists a class of models where the

identification of the field theory quantities needed for the
computation is quite solid, allowing for the derivation of
the result (2.1). The models we refer to are built up by
wrapping Dp-branes over (p − 3)-cycles, giving rise at low
energies to four dimensional gauge theories. The case
p ¼ 3, i.e., N ¼ 4 SYM, is included in the discussion as
well. In these cases, we are going to show that the five
dimensional action has indeed a universal form.
All the calculations of the Chern-Simons diffusion rate in

holographic top-down models in the literature, and other
ones we are going to discuss, are performed in represent-
atives of this class of models. As such, at present for-
mula (2.1) has no counter-example. It is tempting to
conjecture that it is valid for every theory with a gravity
dual in the strong coupling regime. As stated above, the
difficulty in checking this statement in other models is due
to the uncertain identification of the coupling and the field
dual to Q. It would be obviously interesting to provide a
more general proof of the result (2.1) or to find counter-
examples within different classes of holographic models.
Let us now prove (2.1). The main observation is that, in

holographic models coming from Dp-branes wrapped on
(p − 3)-cycles Ωp−3, the reduction of the brane DBIþWZ
action

S¼−τpTr
Z

dpþ1xe−ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgþ2πα0FÞ

p
þ τpTr

Z X
n

Cn ∧ e2πα
0F; ð2:2Þ

includes the Yang-Mills action

SYM¼−
Z

d4x

�
1

2g2YM
TrFμνFμνþ θYM

16π2
TrFμνF̃μν

�
; ð2:3Þ

with

1

g2YM
¼ τp

2
ð2πα0Þ2

Z
Ωp−3

dp−3xe−ϕ
ffiffiffiffiffiffiffiffiffi
det g

p
;

θYM ¼ ð2πÞ2τpð2πα0Þ2
Z
Ωp−3

Cp−3: ð2:4Þ

In these formulas g is the (pull-back of the) metric,
F the field strength of the gauge field on the brane
world-volume and Cn are RR n-form potentials; τp ¼
ð2πÞ−pα0−ðpþ1Þ=2g−1s is the brane tension. The discussion is
limited to models with vanishing Neveu-Schwarz-Neveu-
Schwarz B field and RR Cp−5 potential along the cycle
Ωp−3, on the black hole background. This condition is not
very restrictive and it is always obeyed in all the examples
where the CS diffusion rate has been holographically
computed so far. Notice that in the case p ¼ 3 (unwrapped
D3-branes) the above relations give the usual identifica-
tions g2YM ¼ 4πgs and θ ¼ 2πC0, where C0 is the type
IIB axion.
We are going to consider Einstein frame actions in five

dimensions, so we rewrite the coupling as

1

g2YM
¼ τp

2
ð2πα0Þ2

Z
Ωp−3

dp−3xe
p−7
4
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
det gE

p
; ð2:5Þ

where gE is the Einstein frame metric. Of course on shell
the coupling does not depend on the frame. In the probe
brane spirit, the identifications above are going to be
considered as the definitions of the couplings in the full
theory where the branes have been replaced by geometry.
Inspection of formulas (2.3) and (2.4) dictates that the

coupling of Q ¼ 1
16π2

TrFF̃ with the dual gravity field C is
precisely

R
QC if

C ¼ τpð2πÞ2ð2πα0Þ2
Z
Ωp−3

Cp−3

≡ τpð2πÞ2ð2πα0Þ2VolðΩp−3ÞC̃; ð2:6Þ

where VolðΩp−3Þ is the volume of the cycle and we have
introduced the reduced field C̃ which is the scalar typically
present in the five dimensional reduced gravity action.
Thus, the gravity field dual to Q is the Cp−3 RR field
integrated on the (p − 3)-cycle.
Let us derive its five dimensional action. Consider the

Einstein frame ten dimensional action for the correspond-
ing field strength

1

2κ210

Z
d10x

ffiffiffiffiffiffiffiffiffiffi
−g10

p
e
7−p
2
ϕ

�
−
1

2
F2
p−2

�
; ð2:7Þ
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together with the reduction ansatz

ds210 ¼ efds25 þ ds2int; ð2:8Þ

where f is a function which encodes the dependence of the
internal volume on the external coordinates. The reduced
Einstein action has canonical form ifZ

d5y
ffiffiffiffiffiffi
gint

p ¼ V inte−3f=2; ð2:9Þ

where yi, i ¼ 1;…5 are the internal coordinates and V int is
the constant part of the compactification volume.
Now, one of the indices of the (p − 2)-form must be in

the five-dimensional directions, while the other ones are
along the Ωp−3 cycle. Thus, assuming that the metric
functions have a trivial dependence on the internal direc-
tions, we have

F2
p−2 ¼ ∂MC̃∂MC̃½detðgE;Ω0

p−3
Þ�−1e−f: ð2:10Þ

With detðgE;Ω0
p−3
Þ we denote the determinant of the Einstein

frame metric along theΩp−3 cycle modulo its volume form,

i.e.,
R
Ωp−3

ffiffiffiffiffiffiffiffiffiffiffiffiffigE;Ωp−3

p ¼ VolðΩp−3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgE;Ω0

p−3
Þ

q
. “M” is a

five dimensional index.
In formula (2.10) we have assumed that there is no

mixing of the field ∂MC̃ with any vector potential: this
amounts to assuming that anomalies are subleading effects,
as it will become clear in the next sections.
Since

1

2κ210

Z
d10x

ffiffiffiffiffiffiffiffiffiffi
−g10

p ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p
ef; ð2:11Þ

where 1
2κ2

5

¼ V int
2κ2

10

, the reduction of (2.7) gives

1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
−
1

2
∂MC̃∂MC̃

��
1

e
p−7
2
ϕ detðgE;Ω0

p−3
Þ

�
;

ð2:12Þ

or equivalently

1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
−
1

2
∂MC̃∂MC̃

��
VolðΩp−3ÞR

Ωp−3
e
p−7
4
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
det gE

p
�

2

¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p �
−
1

2
∂MC∂MC

�
1

ð2πÞ4

×

�
1

τpð2πα0Þ2
R
Ωp−3

e
p−7
4
ϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
det gE

p
�

2

: ð2:13Þ

From (2.5) one can recognize that the term in round
parenthesis is nothing else than the fourth power of the
coupling (times a number), so that we get the action

1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p
H

�
−
1

2
∂MC∂MC

�
; H ¼

�
g2YM
8π2

�
2

:

ð2:14Þ

Thus, in the wrapped brane models, the quadratic
part of the five dimensional action for the field dual to
Q is in a universal form. This is the main result of this
section.
Now, for an action of the form (2.14)—on a diagonal

black hole metric with components depending only on the
radial coordinate—with H a function of the background
fields and C the field dual to the operator Q, the holo-
graphic calculation of the CS diffusion rate (following the
original prescription in [3]) gives [19]

ΓCS ¼
1

2π
HhsT; ð2:15Þ

where in Hh the fields are evaluated at the horizon and s is
the Bekenstein-Hawking entropy density. Since in our case

(2.13) we have Hh ¼ g4YMðTÞ
ð8π2Þ2 , where the coupling is at the

temperature scale T, (2.15) gives immediately the
result (2.1).
Let us conclude this section by noting that the form of

the action (2.12) reproduces all the cases for which the
calculation of the CS diffusion rate has been performed.
ForN ¼ 4 SYM it is immediate: there is no reduction and
the dilaton is trivial,2 so eϕ ¼ 1 ¼ detðgΩ0

p−3
Þ and we have

the usual minimally coupled scalar studied in the original
paper [3]. As it is shown in Appendix A, the same is true in
the presence of a magnetic field [8], whose only effect is to
change the explicit form of the entropy density s but not the
form of the relation (2.1). The same relation is also
precisely satisfied by the Chern-Simons diffusion rate
of the anisotropicN ¼ 4 plasma of [6] as computed in [7].
This is a relevant nontrivial example since the background
solution has a running dilaton. Details are provided in
Appendix B.
We review the case of the wrapped D4-brane Witten’s

Yang-Mills (WYM) model [9] in Appendix C and
derive (for the first time) the result for the N ¼ 1 Super
Yang-Mills model by Maldacena and Nuñez (MN)
[12,13], coming from wrapped D5-branes, in
Appendix D. In all these cases the coupling, and so the
ratio e2ϕ= detðgΩ0

p−3
Þ is a constant in the deconfined phase.

Finally, in the flavored version of theN ¼ 4 SYM plasma
[20,21], detðgΩ0

p−3
Þ ¼ 1 and the dilaton factor in (2.13) is

precisely what is given by the consistent reduction of the
model [22], so Hh ∼ e2ϕh ∼ g4YMðTÞ.
It is worth noticing that the result (2.1) holds at leading

order in the holographic limits N; λ ≫ 1, where λ ¼ g2YMN

2In our conventions gs is included in τp.
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is the ’t Hooft coupling. When the first higher derivative
(α0) corrections3 are added on the gravity side—which
amounts to include 1=λ3=2 corrections in the dual quantum
field theory—the Chern-Simons diffusion rate of the N ¼
4 plasma is given by [7]

ΓCS ¼
g4YMðTÞ
27π5

π2

2
N2T4

�
1 −

45

8

ζð3Þ
λ3=2

þ � � �
�
; ð2:16Þ

while the entropy density is (see [24])

s ¼ π2

2
N2T3

�
1þ 15

8

ζð3Þ
λ3=2

þ � � �
�
: ð2:17Þ

The result is that α0 corrections reduce the Chern-Simons
diffusion rate with respect to the value in (2.1). This could
led to conjecture that Eq. (2.1) sets an upper bound for
ΓCS=sT for generic gauge theories.
A last comment is in order. We have restricted the

discussion to models with no Neveu-Schwarz-Neveu-
Schwarz B field turned on. A nontrivial B field is usually
associated with multiple gauge groups, with more that one
topological charge operator. The prototype models are the
Klebanov-Witten one [25] and its nonconformal extension,
the Klebanov-Strassler one [26], which have two gauge
groups. It is immediate to verify that the field dual to the sum
of the two topological charge operators has the same
universal Lagrangian as above.

III. CHERN-SIMONS DIFFUSION
WITH U(1)A ANOMALIES

In a theory like QCD with Nf massless quarks, the
topological charge density operator Q enters the anomaly
equation for the axial current

∂μJ
μ
A ¼ −qQ; ð3:1Þ

where q ∼ Nf is the anomaly coefficient. This equation
implies that the axial charge QA ¼ R

dx3JtA is not con-
served and that its mean square change (e.g., on a thermal
ensemble) is related to that of the Chern-Simons number as

hðΔQAÞ2i ¼ q2hðΔNCSÞ2i: ð3:2Þ

In turn, using the anomaly relation, the definition of the
Chern-Simons diffusion rate (1.5) could be rewritten as

ΓCS

2T
¼ −

1

q2
lim
ω→0

Im

�
1

ω
GDD

R ðω; k⃗ ¼ 0Þ
�
; ð3:3Þ

where GDD
R ðkÞ is the retarded Green’s function of the

divergence of the nonconserved axial current. Fourier

transforming the term in square brackets back to position
space we obtain

1

ω
lim
k⃗→0

GDD
R ðkÞ ¼ i

Z þ∞

−∞
dteiωt∂thQAðtÞQAð0ÞiR: ð3:4Þ

Taking now the ω → 0 limit we get

lim
ω→0

1

ω
lim
k⃗→0

GDD
R ðkÞ ¼ ihQAðt → þ∞ÞQAð0ÞiR: ð3:5Þ

Since the charge QA is not conserved the above retarded
correlator vanishes as t → ∞. Therefore, in the presence of
a chiral anomaly, (1.5) does not provide a good definition
of the Chern-Simons diffusion rate.
In other words, the modes associated to the noncon-

served charge QA are gapped and do not survive the
hydrodynamic limit. Indeed, the equilibrium, time-
independent value of a nonconserved charge necessarily
vanishes and the decay in time of the charge is obscured by
the limit.
In order to study the explicit decay of the total chiral

charge one should look at the retarded correlator Gtt
RðωÞ ¼

hJtAJtAiR at zero momentum k⃗ ¼ 0 and finite frequency ω.
Generically, the retarded correlator can be written as a
sum of poles plus an analytic, scheme-dependent part.
In particular, for a nonconserved charge one expects the
singular part of the correlator to be of the form4

Gtt
RðωÞ ∼

iR

ωþ i
τ

; ð3:6Þ

with R and τ real and constant. The above correlator models
the gapped decay mode of the axial charge and, indeed,
taking the Fourier transform of both sides one obtains

hQAðtÞQAð0ÞiR ∼ RθðtÞe−t
τ; ð3:7Þ

where τ is immediately identified with the axial relaxa-
tion time.
Notice that the imaginary part of the Green’s function

(3.6) reads

ImGtt
RðωÞ ∼ ω

R
ω2 þ τ−2

; ð3:8Þ

so that, if q ≠ 0,

1

ω
ImGQQ

R ¼ ω

q2
ImGtt

R ∼
1

q2
ω2

R
ω2 þ τ−2

: ð3:9Þ

3See [23] for holographic computations of the Chern-Simons
diffusion rate in a Gauss-Bonnet setup.

4There might be additional poles and branch cuts in the
correlators.We focus on the pole closest to the origin in the complex
ω plane, which is the one that dictates the late time behavior.
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Hence, the ω → 0 limit of the left hand side, which one
would take to get the Chern-Simons diffusion rate in
absence of anomalies, would thus give zero.
The above observations suggest that a correct way to

define the Chern-Simons diffusion rate in the presence of
anomalies would be by means of a cut-off t� ≪ τ in the
time integration entering the related correlator in (1.2)
[2,18], whenever the microscopic time scales involved in
the CS number fluctuation are much smaller than τ.
A nice hydrodynamical model (realized holographically

in the Witten-Sakai-Sugimoto theory) for axial charge
diffusion and relaxation can be found in [18]. Taking into
account the thermal fluctuations for the average squared
axial charge, which at equilibrium are related to the axial
susceptibility χA, one can write, for t ≪ τ

hðΔQAÞ2i∼χAT½1−e−
2t
τ �V≈

2χAT
τ

Vt≡q2ΓCSVt; ð3:10Þ

where V is the spatial volume and in the last step we have
used (3.2). Crucially, this expression can make sense if the
Chern-Simons diffusion rate is that of the q ¼ 0 theory

ΓCS ≡ ΓCSðq ¼ 0Þ: ð3:11Þ
The above formulas imply, in turn, that the frequency gap,
i.e., the inverse relaxation time, is given by (see also [2] and
Appendix E for an alternative derivation)

1

τ
¼ q2ΓCS

2χAT
: ð3:12Þ

Consistently, when q → 0, τ → ∞, hence the definition
(3.11) can be read as the one which arises in the limit in
which the cut-off in the time integration is sent to infinity.
This framework is akin to the Witten-Veneziano formula

m2
WV ¼ 2Nfχg

f2π
; ð3:13Þ

which, in large N QCD with Nf massless flavors at T ¼ 0,
gives the squared η0 mass (driven by the axial anomaly) in
terms of the topological susceptibility χg (the Euclidean
counterpart of ΓCS) of the unflavored (Nf ¼ 0) theory (the
topological susceptibility being zero for q ≠ 0 with mass-
less flavors).
As we are going to show in the following subsections,

holography consistently implements the above observa-
tions. Moreover, it also allows, in principle, to work beyond
the hydrodynamical limit and to extract the complete
quasinormal mode spectrum of the correlators.

A. The holographic approach

The holographic dual of a 4d quantum field theory with a
Uð1Þ anomalous (axial) current includes a universal sector
described by a Stueckelberg action [16]

S ¼ −
1

4κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
a
2
jFAj2 þHðdCþ qAÞ2

�
;

FA ¼ dA: ð3:14Þ

We omit possible Chern-Simons terms since these are more
than quadratic in the vector field A and cannot contribute to
the two-point function of the dual operator. The parameter
q is constant while the kinetic coefficient a and the mass H
are in general functions of background fields. The action
(3.14) is found in all the dimensional reductions to five
dimensions of top-down holographic models with axial
anomaly, q being precisely the anomaly coefficient (see
e.g., [16,18,22] and Appendix D).
Here we will treat A and C as fluctuating fields over a

fixed background. In the simplest case where the metric is
the only background field, the coefficients will all be
constant and can be set to any desired value rescaling
the fields A and C. However, we will keep them unfixed to
find a more general expression for the equations of motion.
The action above is invariant under the transformation

δA ¼ dλ; δC ¼ −qλ; ð3:15Þ

which, enforced at the boundary on the couplingsR
AμJ

μ
A þ CQ, precisely implies the operator relation

∂μJ
μ
A þ qQ ≃ 0 ð3:16Þ

in the dual field theory, where JA is the current dual to the
vector A and Q the operator dual to the scalar C.
The combination B ¼ dCþ qA is invariant under the

above local transformation. In addition we have dB ¼ qdA,
so when q ≠ 0 the action can be rewritten in terms of B only

S ¼ −
1

4κ25q
2

Z
d5x

ffiffiffiffiffiffi
−g

p �
a
2
jFBj2 þ q2HB2

�
: ð3:17Þ

In this formulation the holographic map reads

Bμ ↔ JμB ¼ 1

q
JμA; ð3:18Þ

so that we have

∂μJ
μ
B þQ ≃ 0 ð3:19Þ

inside correlation functions. In particular, the retarded
correlator of the operator Q satisfies

hQðxÞQð0ÞiR ¼ h∂μJ
μ
BðxÞ∂νJνBð0ÞiR: ð3:20Þ
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B. Equations of motion

Let us consider a 5d background metric of the form

ds2 ¼ gμνdxμdxν þ guudu2; ð3:21Þ

where the metric components are taken to be functions of
the radial variable u ∈ ½uh; u0�. The metric is assumed to
have an horizon at u ¼ uh and to be asymptotically (i.e., at
u → u0) described by radial slices of Minkowski 4d
spacetime. Notice the crucial assumption guμ ¼ 0. We
denote as M the five-dimensional index, μ, ν the four
dimensional ones, i, j the three spatial directions
and k ¼ ðω; k⃗Þ.
Since eventually we will compute Green’s function in

momentum space, it is convenient to use the Fourier
transformed fields from the beginning. Defining

BMðx; uÞ≡
Z

d4k
ð2πÞ4 B̃

k
MðuÞe−ik·x; ð3:22Þ

and substituting inside the action (3.17) we find (dropping
tildes)

S ¼ −
1

4κ25q
2

Z
d4k
ð2πÞ4

×
Z

du
ffiffiffiffiffiffi
−g

p faguugμνB0−k
μ B0k

ν þ iaguuk̂μB0−k
μ Bk

uþ

−iaguuk̂μB−k
u B0k

μ þ B−k
μ ½ðak̂2 þ q2HÞgμν − ak̂μk̂ν�Bk

ν

þðak̂2 þ q2HÞguuB−k
u Bk

ug; ð3:23Þ

where 0 denotes the derivative along the radial direction and
hatted quantities are contracted using the metric gμν. The
equations of motion resulting from varying with respect to
B0−k
μ are

ða ffiffiffiffiffiffi
−g

p
guugμνB0k

ν Þ0 þ iða ffiffiffiffiffiffi
−g

p
guuk̂μBk

uÞ0
−

ffiffiffiffiffiffi
−g

p ½ðak̂2 þ q2HÞgμν − ak̂μk̂ν�Bk
ν ¼ 0; ð3:24Þ

whereas varying with respect to B−k
u yields

ðak̂2 þ q2HÞBk
u ¼ iak̂μB0k

μ : ð3:25Þ

The above equation can be used to remove Bk
u from (3.24),

thus obtaining

ða ffiffiffiffiffiffi
−g

p
guuKμνB0k

ν Þ0−
ffiffiffiffiffiffi
−g

p ðak̂2þq2HÞKμνBk
ν ¼ 0; ð3:26Þ

with

Kμν ≡ gμν − a
k̂μk̂ν

ðak̂2 þ q2HÞ ; ð3:27Þ

which for q → 0 becomes the projector onto the subspace
transverse to kμ. From (3.26) and its counterpart for B−k

μ , we
find that

d
du

½a ffiffiffiffiffiffi
−g

p
guuKμνðB−k

μ B0k
ν − Bk

μB0−k
ν Þ� ¼ 0; ð3:28Þ

so the quantity in parenthesis is conserved along radial
motion.
The on-shell action reads

Son-shell¼−
1

4κ25q
2

Z
d4k
ð2πÞ4B

−k
μ ða ffiffiffiffiffiffi

−g
p

guuKμνÞB0k
ν

����u0
uh

:

ð3:29Þ

C. Retarded Green’s functions

Thanks to the anomaly relation (3.20), the longitudinal
Green’s function of the current operator JB is equal to the
retarded Green’s function of the topological operator Q

GLL
R ðkÞ≡ −kμkνG

μν
R ðkÞ ¼ −kμkνhJμBð−kÞJνBðkÞiR

¼ hQð−kÞQðkÞiR: ð3:30Þ

The Chern-Simons diffusion rate is defined in terms of the
retarded Green’s function of the topological operator Q as
follows

ΓCS ¼ −2T lim
ω→0

lim
k⃗→0

Im½hQð−kÞQðkÞiR�
ω

¼ −2T lim
ω→0

lim
k⃗→0

Im½GLL
R ðkÞ�
ω

: ð3:31Þ

The holographic computation of the Green’s functions is
formally done through the following steps: a) setting
Bk
μðuÞ ¼ bνkμ ðuÞbkν, where bkν ¼ kν can be chosen to imple-

ment the boundary condition Bμ → ∂μC in momentum
space [both bνkμ ðuÞ and C are taken to be normalized to one
at the boundary]; b) taking the functional (second) deriva-
tive of the on-shell action (3.29) with respect to b−kμ (and

bkν). Setting k⃗ ¼ 0, with btωt ≡ bωt (and zero for the other
components) we get

Im½GLL
R ðω; 0⃗Þ� ¼ −

iω2

4κ25q
2
lim
u→uh

½a ffiffiffiffiffiffi
−g

p
guu

× Kttðb−ωt b0ωt − bωt b0−ωt Þ�; ð3:32Þ

where the right hand side, being independent on the radial
variable [see (3.28)], can be equally computed at the
horizon (as we do above) or at the boundary (as according
to the standard holographic prescription [3]). This allows
deduction of the generic behavior of the Green’s function
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just by considering universal features of the near-horizon
solution.
In order to compute (3.32), we need to extract the generic

near-horizon behavior of a massive vector field in the
background (3.21). We will just make use of the following
assumptions: a) the metric is diagonal and depends on the
radial coordinate u only; b) the uu component has a simple
pole at u ¼ uh ≡ 1 (we suitably rescale our coordinates so
that the latter equivalence holds); c) the tt component has a
simple zero atu ¼ 1; d) the ii components are proportional to
the identity and finite at u ¼ 1; e) the mass of the vector is
finite at u ¼ 1; f) the kinetic term of the vector is finite
at u ¼ 1.
Let us consider the equation of motion for the t-

component of the vector field in momentum space setting
ki ¼ 0

∂u

� ffiffiffiffiffiffi−gp
aHgttguu

Hq2 þ aω2gtt
∂ubωt

�
¼ ffiffiffiffiffiffi

−g
p

Hgttbωt ; ð3:33Þ

and consider the following expansions

aðuÞ¼
X∞
n¼0

aðnÞh ð1−uÞn; HðuÞ¼
X∞
n¼0

HðnÞ
h ð1−uÞn;

gxx¼
X∞
n¼0

cðnÞx ð1−uÞn; gtt¼−ð1−uÞ−1
X∞
n¼0

cðnÞt ð1−uÞn;

guu¼ð1−uÞ
X∞
n¼0

cðnÞu ð1−uÞn;

bωt ðuÞ¼ð1−uÞα
X∞
n¼0

bðnÞh ð1−uÞn; ð3:34Þ

with cð0Þt > 0; cð0Þx > 0; cð0Þu > 0. Solving the equation of
motion (3.33) and choosing the incoming wave solution at
the horizon sets

α ¼ −iω

ffiffiffiffiffiffiffi
cð0Þt

cð0Þu

s
: ð3:35Þ

Moreover one finds

bð1Þh

bð0Þh

¼ −i
q2

ω

Hð0Þ
h

að0Þh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð0Þt cð0Þu

q þ q2Hð0Þ
h

að0Þh cð0Þu

þOðωÞ: ð3:36Þ

Now the point is that the Chern-Simons diffusion rate as
defined in (3.31) turns out to be given by

ΓCS ¼
T
κ25

Hð0Þ
h

ðcð0Þx Þ3=2
jbð0Þh j2: ð3:37Þ

In the q ¼ 0 case, jbð0Þh j ¼ 1 reproduces the relation (2.15).
Crucially, however, in the generic case equation (3.36) holds.
Since we are interested in the ω → 0 limit, we can just look
at the first term in that equation. From this we immediately

see that if we want bð0Þh to be finite, then bð1Þh → ∞ in the
limit. Otherwise, if we want to avoid this singular behavior

keeping bð1Þh finite, we need to assume that

bð0Þh ∼ ω → 0; ð3:38Þ

so that, consistently with the nonconservation of the axial
charge, the Chern-Simons diffusion rate as defined in (3.31)
vanishes.
We have checked this general result in the simplest setup

where A and C are treated as fluctuations over a fixed
Schwarzschild-AdS background (see Appendix F for
details). Solving the related equations of motion numeri-

cally, the analysis confirms that bð0Þh ¼ 0whenever q ≠ 0 as
shown in Fig. 1. Note that for q → 0 but nonvanishing,

jbð0Þh ðωÞj2 approaches the behavior of the q ¼ 0 case for
ω > 0, but eventually it always drops to zero at ω ¼ 0.

D. Quasinormal modes

Holography implies that the location of the poles of a
two-point retarded correlator are given by the frequencies
of the quasinormal modes of the corresponding bulk field
[3,27], so their study allows extraction of the relaxation
time τ. The quasinormal mode spectrum can be computed
in the following way.
Let Φ be the bulk field dual to an operator O in the field

theory, and let Φ fluctuate over a background with an event
horizon. The fluctuations satisfy second order linear
equations of motion whose solution near the horizon will
be the sum of incoming and outgoing waves. As above,

FIG. 1. The coefficient jbð0Þh j2 as a function of ω for an AdS5
black hole background with unit radius and a ¼ H ¼ 1 for
different values of q ¼ 0.04, 0.44, 3 (top to bottom at small
ω) and for q ¼ 0 (dashed line).
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since we are after the retarded correlator, we pick the
ingoing solution. The solution close to the boundary, placed
at u ¼ 0, will have the form

Φðu;ω; k⃗Þ ¼ Aðω; k⃗ÞuΔ− þ Bðω; k⃗ÞuΔþ ; ð3:39Þ

where A and B are completely determined up to a
common nonvanishing multiplicative factor fðω; k⃗Þ ≠ 0.
Quasinormal modes are solutions satisfying ingoing boun-
dary conditions at the horizon that vanish at infinity. Their
frequencies, ωnðk⃗Þ, are thus defined implicitly by the
equation

Aðωnðk⃗Þ; k⃗Þ ¼ 0: ð3:40Þ

In order to see the connection with the poles of the retarded
correlator, recall that the correlator is [3]

hOOiR ∼
B
A
þ…; ð3:41Þ

where … stand for scheme dependent contact terms. The
zeros of A are exactly the poles of the correlator. According
to (3.8) we need to find the first zero of

�
Im

BðωÞ
AðωÞ

�
−1

ð3:42Þ

along the imaginary ω axis. Applying this logic to the AdS
black hole background, one finds [28] that the axial
relaxation time τ scales like q−2 for small q. Since q
enters the equations of motion only as q2 even in the most
general case (3.33), we expect the relation τ ∼ q−2 to be
universal for small nonzero q. This relation would thus
reproduce the phenomenological formula (3.12).
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APPENDIX A: CHERN-SIMONS DIFFUSION
RATE IN THE N = 4 PLASMA WITH EXTERNAL

MAGNETIC FIELD

The effective 5d holographic description of the N ¼ 4
SYM plasma in the presence of a constant magnetic field is
provided by a magnetically charged black hole solution
arising from the Einstein-Maxwell-Chern-Simons action

S ¼ −
1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ FMNFMN −

12

L2

�

þ 1

6
ffiffiffi
3

p
πG5

Z
A ∧ F ∧ F; ðA1Þ

supplemented by standard boundary terms. In units L ¼ 1,
the solution follows from the ansatz (see e.g., [8] and
references therein)

ds2 ¼ −UðrÞdt2 þ dr2

UðrÞ þ
e2VðrÞ

v
ðdx21 þ dx22Þ þ

e2WðrÞ

w
dx23;

F ¼ B
v
dx1 ∧ dx2; ðA2Þ

where U, V, W are functions of the radial variable r, the
coordinates are rescaled in such a way that the black hole
horizon is at r ¼ 1 where Uð1Þ ¼ 0; U0ð1Þ ¼ 1; Vð1Þ ¼
Wð1Þ ¼ 0 and v, w are functions of the magnetic field B.
The Chern-Simons diffusion rate for the dual magnetized
plasma has been computed in [8] finding

ΓCS ¼
g4YM
27π5

N2

2π

T
v

ffiffiffiffi
w

p ; ðA3Þ

where T is the temperature (T ¼ 1=4π in the rescaled
coordinates defined above). It is easy to realize that this
formula, which holds for any value of the magnetic field,
precisely matches our Eq. (2.1), since the black hole
entropy density is given by

s ¼ Ah

4V3G5

¼ N2

2π

1

v
ffiffiffiffi
w

p ; ðA4Þ

where Ah is the area of the horizon, V3 is the (infinite) 3d-
space volume and the holographic relation G5 ¼ π=2N2

has been used.

APPENDIX B: CHERN-SIMONS DIFFUSION
RATE IN THE ANISOTROPIC N = 4 PLASMA

The anisotropic N ¼ 4 SYM plasma considered in [6]
corresponds to thermal N ¼ 4 SYM deformed by a linear
space-dependent topological theta angle

θðx3Þ ¼ 2πax3; ðB1Þ

where x3 is one of the space directions and a is a
dimensionful anisotropic parameter which can be read as
the density of homogeneously smeared D7-branes along
the x3 direction. The dual black hole solution arises from
the effective 5d action (Einstein frame)
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S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12 −

ð∂ϕÞ2
2

− e2ϕ
ð∂C0Þ2

2

�
;

ðB2Þ

where ϕ is the dilaton and C0 is the axion dual to the
topological charge density operator of the quantum field
theory. The background has a metric of the form

ds2 ¼ e−ϕðuÞ=2

u2

�
−F ðuÞBðuÞdt2 þ du2

F ðuÞ

þ dx21 þ dx22 þHðuÞdx23
�
; ðB3Þ

supported by a running dilaton ϕðuÞ and the axion
C0 ¼ ax3. The horizon is at r ¼ rh. The Chern-Simons
diffusion rate, as computed in [7], has, for any value of
a=T, precisely the same form given in (2.1), provided we
recall that in this case

g2YMðTÞ ¼ 4πeϕðrhÞ: ðB4Þ

APPENDIX C: CHERN-SIMONS DIFFUSION
RATE IN WYM

In this Appendix we review the calculation of the Chern-
Simons diffusion rate in Witten’s Yang-Mills model [9] and
show that it obeys the universal formula (2.1). The
diffusion rate has been calculated in [11] (in string frame)
and reads

ΓCS ¼ 4
1

2π

λ34
36π2

ð2πR4Þ2T6; ðC1Þ

where the overall factor 4 (instead of the 1 in [11])
originates from the difference between our conventions
(2.4) and (2.6) and the corresponding ones adopted in [11].
In this formula T is the temperature,

λ4 ¼ 2πgsNlsMKK ¼ 1

2
g2YMN; ðC2Þ

is proportional to the “UV ’t Hooft coupling” and MKK ¼
1=R4 is the mass scale of the theory. Since the entropy
density is

s ¼ 28π4λ4N2T5

36M2
KK

; ðC3Þ

one can write

ΓCS ¼
g4YM
27π5

sT; ðC4Þ

which is exactly in the universal form (2.1).
It is instructive to see how the result above is generated in

Einstein frame. The five dimensional reduction of the
WYM background has been performed in [29]. The
gravitational constant reads

1

2κ25
¼ 1

2κ210
2πR4VolðS4Þ ¼

1

2κ210

16π3

3MKK
; ðC5Þ

where R4 is the radius of the circle of the cigar and VolðS4Þ
is the volume of the unit radius four sphere.
The reduction of the term of the ten dimensional action

containingC1, whose integral on the circle (with coordinate
x4) is dual to the operator Q (up to a constant),

1

2κ210

Z
d10x

ffiffiffiffiffiffiffiffiffiffi
−g10

p
e
3
2
ϕF2

2; ðC6Þ

gives

1

2κ25

Z
d5x

ffiffiffiffiffiffiffiffi
−g5

p
e
3
2
ϕ−2f−8wF2

1; ðC7Þ

where F1 ¼ dCx4 . The functions f, w are the metric
functions in the reduction ansatz

ds210 ¼ e−
10
3
fds25 þ e2f½e8wdx24 þ e−2wdS24�: ðC8Þ

Amazingly enough, on the background5

e
3
2
ϕ−2f−8w ¼ 1: ðC9Þ

Thus, the five dimensional action is the one of a minimally
coupled scalar.6 Considering that the field dual to Q is not
C1 but

2πR4

gsls
C1 after reduction on the circle of the D4-brane

action, as shown in [11], one obtains that (C7), (C9) give
the result (C4) for the CS diffusion rate in the WYM theory.
A remark is in order. While the WYM has a running

coupling in the confined phase, the gravity combination of
fields above dual to the coupling in the deconfined case is
again a constant. This is due to the fact that the theory in the
deconfined case is basically a six dimensional conformal
field theory. In fact, one can calculate the four dimensional
coupling from the action of a probe D4-brane wrapped
around the circle of the cigar, as in [30], obtaining in the
deconfined phase

1

g2YM;dec

¼ 1

8π2ls

Z
dx4e−ϕ

ffiffiffiffiffiffi
g44

p ¼ β4
8π2lsgs

; ðC10Þ

where β4 is the length of the circle. Thus, the ’t Hooft
coupling is constant and equals precisely 2λ4,

g2YM;decN ¼ 2λ4: ðC11Þ

5We use the convention in which gs is in the brane tension and
in κ10, so there are no factors of gs in the dilaton solution.

6Referring to the general action (2.12), we have e2ϕ ¼ g44.
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APPENDIX D: CHERN-SIMONS
DIFFUSION RATE IN MN

In this appendix we calculate the Chern-Simons diffusion
rate in the Maldacena-Nuñez (MN) model of N ¼ 1 Super
Yang-Mills [12,13] and show that it obeys the universal
formula (2.1). The nonextremal solution corresponding to
the deconfined, chirally symmetric phase of the dualN ¼ 1
SYM theory is a linear dilaton background [31], i.e., the dual
of the little string theory representing the UV completion of
the model. The internal metric is the product of a two sphere
and a three sphere. In Einstein frame the solution reads

ds2E ¼ eϕ=2½−νðrÞdt2 þ dxidxi þ νðrÞ−1dr2 þ dS22 þ dS23�;
ðD1Þ

F3 ¼ P½Ω3 þ w3 ∧ Ω2�; ðD2Þ
ϕ ∼ r: ðD3Þ

In this formulaP is proportional to the number of colors,Ω2;3

are the two and three-sphere volume forms and w3 ¼ dψ þ
cos θ2dϕ2 is the third left-invariant one-form of SUð2Þ (the
other twowill be denoted asw1;2). The two and three spheres
have radii equal to 2.
The identification of the gravity field dual to Q has

been done directly in [13], see also [32–34]. It is a
component of the RR two-form potential C2, whose UV
asymptotics give, upon integration on a two-sphere, the
θYM—term,

Q ↔ qðrÞðw1 ∧ w2 −Ω2Þ≡ qðrÞΦ; with

qðrÞ → ψ − ψ0 for r → ∞: ðD4Þ
Note that ψ is a coordinate of the three-sphere, while ψ0 is a
constant proportional to θYM.
The five dimensional consistent reduction of

type IIB containing the relevant fields for our purposes
can be found in [35]. The relevant component of C2 is
termed cΦ. The full action is quite involved. But we are
interested only in the quadratic fluctuations around the
solution (D1). It can be checked that the only terms
contributing are in the form of the usual Stueckelberg
coupling of cΦ with the Reeb vector A. Let us sketch the
derivation.
Comparing the metric (3.3) in [35] with (D1) we get that

the only metric fields which are turned on are

v ¼ ϕ

4
þ log 3; u ¼ ϕ

4
þ 1

2
log 6;

gμν ¼
1

9 × 24=3
e
4
3
ϕdiagð−ν; 1; 1; 1; ν−1Þ: ðD5Þ

Apart from the dilaton, the other quantity in [35] which is
different from zero is the flux q ¼ 18P.
The only five dimensional field where cΦ enters, which

is linear in the fluctuating fields, is

gΦ1 ¼ dcΦ − qA: ðD6Þ
In the action it enters in a quadratic term and some mixing
terms with other fields, with specific coefficients depending
on the metric. On the background the only nonzero
coefficient is the one of the quadratic term (which is 1),
so the action reduces to7

Sc ¼ −
1

2κ25

Z
1

62
1

2
ðgΦ1 Þ2⋆1: ðD7Þ

One can also check that A appears always in terms which
are at least of third order in fluctuating fields, apart from its
kinetic term

SA ¼ −
1

2κ25

Z
1

2
ð54Þ4=3e4

3
ϕðdAÞ2⋆1: ðD8Þ

Now, by comparing formula (2.49) in [32] with the
notation in [35] one gets that the field dual to Q is8

Q ↔ CðrÞ≡ 8π2

g2YM

�
cΦ

6

�
: ðD9Þ

Thus, if the effects of anomaly are ignored, i.e., we drop the
terms in A, the action (D7) reads

Sc ¼ −
1

2κ25

Z ffiffiffiffiffi
g5

p �
g2YM
8π2

�
2 1

2
ðdCÞ2; ðD10Þ

which is in the form (2.13), implying that the CS diffusion
rate is in the universal form (2.1).
As an aside, note that the function H of formula (2.14) is

a constant in the MN model.9 The latter has no AdS UV
asymptotics but in the deconfinement phase the coupling is
anyway constant. In fact, if we calculate it as in formula
(4.2) of [32], but on the nonextremal solution, we get

1

g2YM;dec

¼ 1

4π2gs
: ðD11Þ

APPENDIX E: NOTES ON THE AXIAL
RELAXATION TIME

In this Appendix a quick derivation of formula (3.12) is
presented. Let us turn off the anomaly for a moment.
Diffusion of the axial current implies Fick’s law

J⃗A ¼ −D∇⃗JtA; ðE1Þ
where D is the diffusion constant. In momentum space

JxA ¼ −ikDJtA; ðE2Þ

7We correct a factor of 1
2
in [35].

8We work in units α0 ¼ 1 here.
9Referring to the notation in (2.12), e2ϕ ¼ detðgΩ0

2
Þ and we get

(D7) once we take into account the 1
6
normalization in [35].
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where k ¼ kx. Now, turning on a source Ax for JxA we have,
in linear response,

hJxAi ¼ −Gxx
R Ax; ðE3Þ

where Gxx
R is the retarded correlator of JxA. At zero spatial

momentum, considering the electric field

Ex ¼ −iωAx; ðE4Þ

the previous relation reproduces Ohm’s law with

Gxx
R ðω; 0⃗Þ ¼ iωσ; ðE5Þ

where σ is the conductivity.
Using (E2) we thus get

hJtAi ¼
hJxAi
−ikD

¼ Gxx
R

ikD
Ax: ðE6Þ

Now, the anomaly, through the gauge invariant combina-
tion ∂μCþ qAμ, implies that a source C for the topological
charge density QðxÞ, is induced by the electric field as

ikC ¼ qAx; ðE7Þ

so that

hQi ¼ −GQQ
R C ¼ −

GQQ
R

ik
qAx ¼

ΓCSω

2kT
qAx; ðE8Þ

where we have used

GQQ
R ¼ −i

ΓCS

2T
ωþOðk2Þ: ðE9Þ

All in all, from

hQi
hJtAi

¼ iωqΓCSD
2TGxx

R
¼ qΓCSD

2Tσ
þOðkÞ≡ 1

qτ
þOðkÞ; ðE10Þ

and using D=σ ¼ χ−1A we get the desired relation

1

τ
¼ q2ΓCS

2TχA
: ðE11Þ

APPENDIX F: STUECKELBERG ACTION ON
THE AdS-BH BACKGROUND

In the simplest possible setup the fields A and C defined
in (3.14) are treated as fluctuations over a fixed
Schwarzschild-AdS background

ds2¼l2

z2

�
−bðzÞdt2þjdxj2þ dz2

bðzÞ
�
; bðzÞ¼1−

z4

z4h
; ðF1Þ

where 0 ≤ z ≤ zh, the horizon is at z ¼ zh and the black
hole temperature is given by 4πT ¼ jb0ðzhÞj ¼ 4=zh.
Another useful description is obtained using the dimen-
sionless radial coordinate u ∈ ½0; 1�

u ¼ z2

z2h
; ds2 ¼ l2

u

�
−bðuÞdt2 þ jdxj2

z2h
þ du2

4ubðuÞ
�
;

bðuÞ ¼ 1 − u2: ðF2Þ

Let us now solve the equation of motion (3.26) on the
above AdS-BH background.

1. Near-boundary expansion

Close to the boundary at u ¼ 0 the equation of motion
(3.26) becomes (assuming H and a to go to 1 at the
boundary)

4u2B00k
μ − ðqlÞ2Bk

μ ≃ 0; ðF3Þ

therefore we have the following expansion close to the
boundary:

Bk
μðuÞ≡ uΞfkνμ ðuÞbkν;

fkνμ ðuÞ ¼ δνμ þOðuÞ þ u1−2Ξðbk2δνμ þOðuÞÞ; ðF4Þ

where the exponent Ξ ¼ 1
2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqlÞ2

p
Þ is strictly

negative.

2. Near-horizon expansion

Close to the horizon at u ¼ 1 (again assumingH and a to
go to constant values Hh, ah) we have

Kμν½16ð1 − uÞðð1 − uÞB0k
ν Þ0 þ w2Bk

ν� ¼ 0; ðF5Þ

where w ¼ zhω and the matrix K is evaluated at the
horizon:

Kij →
z2h
l2

δij;

Kit →
z2h
l2

ki

ω
;

Ktt →
ðqlÞ2Hh þ ahz2hjk⃗j2

ahl2ω2
: ðF6Þ

The matrix is nonsingular at the horizon, and the near-
horizon solution has the form

fkνμ ðuÞ ¼ fkhμ
νð1 − uÞ−iw4 ½1þOð1 − uÞ�

þ gkhμ
νð1 − uÞþiw

4 ½1þOð1 − uÞ�: ðF7Þ

We pick the in-falling solution which corresponds to
setting gkhμ

ν ¼ 0.
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3. Retarded Green’s functions and Chern-Simons diffusion rate

In order to define the retarded Green’s function for our current operator, JB, we need to evaluate the action on a generic
solution of the equations of motion. Since we are after the imaginary part of the correlator, we do not need to renormalize
explicitly the action, the relevant part being finite. From (3.29) and (F4) we have

Son-shell ¼ −
1

4κ25q
2

Z
d4k
ð2πÞ4 b

−k
μ ½ ffiffiffiffiffiffi

−g
p

aguuu2Ξ−1f−kμρ KρσðΞfkνσ þ uf0kνσ Þ�
����1
0

bkν: ðF8Þ

The Green’s function then reads

hJμBð−kÞJνBðkÞiR ¼ Gμν
R ðkÞ ¼ 1

2κ25q
2
lim
u→0

½ ffiffiffiffiffiffi
−g

p
aguuu2Ξ−1f−kμρ KρσðΞfkνσ þ uf0kνσ Þ�; ðF9Þ

and its imaginary part

Im½Gμν
R ðkÞ� ¼ −

i
4κ25q

2
lim
u→0

½ ffiffiffiffiffiffi
−g

p
aguuu2ΞKρσðf−kμρ f0kνσ − fkμρ f0−kνσ Þ�; ðF10Þ

is essentially (3.28), and therefore independent from u. Here we are interested in the longitudinal component (3.30) of the
above correlator. The imaginary part of this quantity coincides with the conserved current in (3.28) when the latter is
computed on solutions satisfying the boundary condition bkμ ¼ kμ. In position space the boundary condition would
read Bμðu → 0; xÞ ¼ ∂μCðxÞ.
Since the right hand side of (F10) is constant we can evaluate the longitudinal correlator at the horizon u ¼ 1. We obtain

Im½GLL
R ðkÞ� ¼ ahωl

2κ25q
2z3h

kμkν × F μν;

F μν ≡
�ðqlÞ2Hh þ ahz2hjk⃗j2

ahω2
f−kμht fkνht þ z2hf

−kμ
hi fkνhi þ z2h

ki

ω
ðf−kμht fkνhi þ f−kνhi fkμht Þ

	
;

ΓCS ¼ lim
jk⃗j;ω→0

ahl
πκ25q

2z4h
kμkν × F μν ¼ Hhπ

3l3

κ25
T4jfkthtj2; ðF11Þ

where we assumed all the f’s are analytic in ki (before taking the zero-frequency limit). All we need to compute the CS
diffusion rate is the norm of the coefficient fktht at jk⃗j ¼ ω ¼ 0. However, it turns out that for the temporal component of a
massive bulk vector the coefficient fktht always goes to zero with ω (at zero momentum), and therefore formula (3.31)
gives zero.
In fact, the solution to the equations of motion admits the following expansion close to the horizon10 (this is model

independent):

fk ¼ ð1 − uÞ−iw4 ½fkh þ ð1 − uÞfkhð1Þ þOð1 − uÞ2�: ðF12Þ

On the AdS-Schwarzschild background one then finds

fkhð1Þ ¼
ð−16ΞðΞ − 1Þ þ 4iΞðΞþ 1Þwþ ð4Ξ − 1Þw2 − iw3ÞHh

4wðwþ 2iÞ fkh: ðF13Þ

For small w (and q ≠ 0) the above formula gives

fkhð1Þ ∼ i
q2Hh

2w
fkh; ðF14Þ

which explodes unless fkh ∼ w,11 so that from (F11) it follows that ΓCS ¼ 0.

10We suppress the super and subscript t.
11The expressions for fkhð2Þ and fkhð3Þ all suffer from the same issue.
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