
 

Phenomenology of quantum reduced loop gravity in the isotropic
cosmological sector
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Quantum reduced loop gravity is designed to consistently study symmetry reduced systems within the
loop quantum gravity framework. In particular, it bridges the gap between the effective cosmological
models of loop quantum cosmology and the full theory, addressing the dynamics before the minisuperspace
reduction. This mostly preserves the graph structure and SU(2) quantum numbers. In this article, we study
the phenomenological consequences of the isotropic sector of the theory, the so-called emergent bouncing
universe model. In particular, the parameter space is scanned and we show that the number of inflationary
e-folds is almost always higher than the observational lower bound. We also compute the primordial tensor
power spectrum and study its sensitivity upon the fundamental parameters used in the model.
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I. INTRODUCTION

The Higgs boson discovery [1] and the direct observation
of gravitational waves [2] have strengthened the reliability
of well corroborated theories: the standard model of
particle physics (based on quantum field theory) on the
one hand, and general relativity (GR) on the other hand.
Beside these recent observations, the long-standing issue of
quantizing gravity still calls for a solution. All physical
theories must make contact with experiments or observa-
tions and this often constitutes one of the main difficulties
for quantum gravity. Loop quantum gravity [3–5] (LQG) is
a consistent attempt in this direction, as witnessed by the
recent effort on dealing with the black hole quantum
dynamics (both within the canonical [6,7] and covariant
formulations [8]), together with the prediction of the big
bang singularity resolution [9–11] and the power spectrum
calculation [12–14] made possible by loop quantum cos-
mology (LQC).
This article is about the observable consequences of

LQG in cosmology, when the full theory structure is taken
into account. This can be done using a suitable gauge fixed
version of the theory called quantum reduced loop gravity
(QRLG) [15–20]. Differences between LQC and QRLG are
both in the philosophy and the methodology. The former is
a LQG-inspired, polymerlike [21,22] quantization of a
classically symmetry reduced system, while the latter is
a subsector of LQG adapted to the symmetry of the system
one is interested in. In the two approaches, quantization and
symmetry reduction are in reverse order: LQC quantizes a

classical reduced system, QRLG selects a symmetric
subsector from the full quantum theory. If LQC can be
seen as the simplest and most straightforward application of
LQG ideas, starting from the beginning with less degrees of
freedom to quantize, from the QRLG perspective it can be
trusted as a first order quantum correction to the classical
dynamics, since relevant structures of LQG are lost and
have to be “injected” in the process. On the contrary, QRLG
retains all the features of the full theory and, moreover, does
indeed recover LQC at first order [23,24].
In this article we extend the study of QRLG addressing

inflation and discussing features of the power spectrum for
cosmological perturbations. In isotropic QRLG, the
Friedman Lemaitre RobertsonWalker (FLRW) background
is replaced by an emergent bouncing universe [25]. Here
we focus on observable signatures of this scenario and
compare them to the ones provided by LQC. As shown in
[23,24], the corrections are subleading only up to the (first)
bounce—when going backward in time—and, for earlier
times, they grow and lead to a complete different dynamics.
Thus, the observational consequences of the QRLG sce-
nario have to be studied as they may differ from LQC ones.
Before introducing our model, we briefly review LQG in
order to make possible the understanding of our results also
to the reader unfamiliar with the full theory.
LQG is a background free, nonperturbative Hamiltonian

quantization of gravity whose starting point is the 3þ 1
foliation of the GR first order tetradic formulation. It is a
modern canonical quantization that takes advantage of a
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new set of phase space variables—the Ashtekar variables
[26]—in order to cast the classical theory in a form close to
the one of a local SU(2) gauge theory. The Ashtekar
variables Ai

aðx; tÞ, Ea
i ðx; tÞ are an suð2Þ connection and a

(densitized) triad field, which are canonically conjugate,
fAi

aðxÞ; Eb
j ðyÞg ¼ 8πGγδbaδijδ

3ðx − yÞ, and read Ai
a ≔ ωi

aþ
γKi

a, Ea
i ≔ 1

2
ϵijkϵ

abcejbe
k
c, where i, j, k are suð2Þ algebra

indices, a, b, c space ones, ωi
a is the spin-connection

compatible with the triad ebj , Ki
a is the (mixed triadic

projection of the) extrinsic curvature tensor and γ is a
parameter that enters this formulation of GR. This so-called
Barbero-Immirzi parameter γ is expected to have a value
close to 0.24 if one considers the black hole entropy
calculation [27]. It enters in the spectrum of the geometrical
operators like area and volume, but does not change the
classical equations of motion, i.e., Einstein’s equations.
Like all gauge theories, GR is a constrained system, more
specifically, a totally constrained one, as its Hamiltonian
vanishes on physical trajectories. Written in Ashtekar
variables, it turns out to be encoded in three constraints
generating SU(2) gauge transformations (the Gauss con-
straint), spatial diffeomorphisms (the diffeomorphism con-
straint) and time reparametrization (the Hamiltonian
constraint).
Quantization starts using a “technology” borrowed from

lattice gauge theories in order to provide a (background-
independent) smearing of the canonical algebra generated
by Ai

aðx; tÞ and Ea
i ðx; tÞ, leading to the holonomy-flux

algebra. The Ashtekar connection Ai
aðxÞ is replaced by its

holonomy hl½A� along arbitrary paths l- and the densitized
triad Ea

i ðxÞ is replaced by its flux EiðSÞ across a surface S.
Quantization follows implementing the (unique [28])
quantum representation of the holonomy-flux algebra
and computing the kernel of all the quantum operator-
promoted constraints of the theory, according to Dirac’s
procedure [29] for constrained systems. Solving the Gauss
and diffeomorphism constraints leads to the definition of a
Hilbert space with states jΓ; j; ii. Those states are labeled
by graphs Γ given by links associated to the holonomies
(dual to the surfaces used for defining fluxes) and nodes.
Links are colored by spins j, i.e., by representations of
SUð2Þ, and nodes by intertwiners i, i.e., SUð2Þ invariant
tensors. Geometric quantities can be turned in Hermitian
operators and it turns out that they have a discrete spectrum
[30]. The area operator has a spectrum with a minimal
nonvanishing eigenvalue Δ ¼ 4

ffiffiffi
3

p
πGγl2P proportional to

the Barbero-Immirzi parameter γ and the square of the
Planck length lP ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
. The picture provided by

LQG is clear and beautiful: quantum gravity appears as a
quantum theory of geometry, in which the spacetime
continuum disappears leaving place to a relational net of
fuzzy quanta of space.
Beside these achievements, problems arisewhen address-

ing the Hamiltonian constraint. Only trivial and formal

solutions [31] are indeed known and a complete characteri-
zation of the full spectrum is still missing. A retrospective
look at this difficulty is not so discouraging: after all, the
general solution to the analogue classical problem, i.e.,
Einstein’s equations, is still unknown too, but this has not
prevented GR to become a powerful tool for gravity. During
the past years several paths to overcome the issue of
quantum dynamics have been followed, both implementing
different reformulations, e.g., using spinfoam models [32],
and/or addressing the dynamics of symmetric sectors of the
full theory. The pioneering spin-off of LQG that follows this
last direction is the “minisuperspace” quantization of space-
times pursued by LQC.
Calculating the Ashtekar variables for a chosen spacetime,

LQC follows a polymerlike quantization thatmimics the one
pursued by LQG and provides the quantum dynamics for
symmetry reduced models at the classical level, such as
FLRW and Bianchi spacetimes [33]. The resolution of the
cosmological singularity comes out naturally, replacing the
big bang scenario by a nonsingular bouncing universe.
Looking forward in time, there is a contracting phase which
endswhen the density and the curvature reach near-Planckian
values, then a bounce happens and an expanding phase
follows (the late-time behavior is exactly as in GR). The
singularity is resolved because even though zero is in the
spectrum of the volume operator, it is never dynamically
reached. Despite this remarkable result, one should look at
traditional LQC as a first attempt in applying LQG ideas to
the simplest class of gravitational symmetry-reduced sys-
tems. The limits of this approach are mainly due to the fact
that the quantization is performed only after a classical
symmetry reduction and this does not prevent ambiguities in
the corresponding quantum theory (see e.g., [34]). Working
onlywith few degrees of freedom, LQCneeds to import from
the full theory both a graph structure and aminimumvalue for
physical areas in order to regularize the symmetry-reduced
Hamiltonian operator.
QRLG is a program that attempts to implement a

dynamical reduction of the full theory to a given sym-
metry-reduced setting, i.e., first quantizes and then reduces.
This is achieved in several steps: one begins by implement-
ing a gauge fixing at the quantum level (defining a gauge-
fixed kinematical Hilbert space, called the reduced Hilbert
space HR) and then one uses coherent states peaked on
symmetric spaces over which one evaluates the operator
version of a new set of constraints that preserve the gauge
(built according to the gauge unfixing procedure [35–37]).
In the cosmological setting of the FLRW geometry (and

Bianchi models), this reduced space is selected by (parti-
ally) gauge fixing the SU(2) and the diffeomorphism gauge
of the full theory to diagonal metrics and triads. Only a
small class of spatial diffeomorphisms are still compatible
with this choice (called reduced diffeomorphisms), leading
to the result that at the quantum level only cuboidal graphs
[colored with Uð1Þ representation numbers] are allowed,
i.e., the ones with links parallel to the fiducial triad field.
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Computing expectation values of the (gauge preserving part
of the) LQG Hamiltonian constraint, QRLG effective
Hamiltonians for the FLRW and Bianchi I cases can be
explicitly obtained [24]. They depend on the choice of
coherent states used to define the symmetry-reduced
sectors.
Importantly, the much discussed μ0 or μ̄ LQC regulari-

zation schemes appear in QRLG as particular choices of
coherent states. QRLG allows to reproduce LQC schemes
and to generalize them [24,25] with the so-called statistical
regularization. This is based on ensembles of coherent
states peaked on homogeneous phase space points defining
macrostates. Every homogenous coherent state at a fixed
graph represents a given cosmological macrostate and
statistical superposition of graphs can be considered. To
the same macrostate [labeled by ða; _aÞ, for FLRW] corre-
sponds several coherent microstates labeled by different
quantum numbers and graphs. For each given probability
distribution counting the occurrence of microstates asso-
ciated to a fixed macrostate, an effective Hamiltonian can
be computed taking the expectation value of the
Hamiltonian operator over the chosen ensemble, as done
in the aforementioned references where Gaussian ensem-
bles were chosen.
All the computed QRLG effective Hamiltonians bring

corrections to the LQC ones that are subleading only much
after the big bounce. For the FLRW case, at earlier times,
the Universe oscillates and eventually reaches a stationary
phase of constant finite volume (the meaning of the
“volume of the Universe” will be discussed later on).
Looking forward in time, a Planckian universe emerges
from the infinite past. It is stationary until a transient phase
is reached and, after few bounces, the dynamics matches
the LQC’s one from the (last) big bounce all the way to the
far future. This emergent behavior is a peculiar property of
the isotropic sector and exploring its observational conse-
quences constitutes the main goal we address in the rest of
the paper. As far as perturbations are concerned, we use
here the usual formalism and we apply only QRLG
correction to the background. This is a heavy hypothesis.
In the next section, the effective quantum background is

described. Then, the corresponding basic features are
investigated. At the background level, the duration of
inflation is calculated for most of the parameter space.
Regarding perturbations, the tensor power spectra are
computed and scalar ones discussed. Finally, the effects
of the inflaton field mass are considered.

II. EFFECTIVE QUANTUM BACKGROUNDS

A. FLRW loop quantum cosmology

We briefly review here the quantization of the (spatially
flat) FLRW spacetime as pursued by LQC, focusing on the
effective equations of motion it provides. Starting from the
FLRW line element

ds2 ¼ −dt2 þ aðtÞ2δijeiaejbdxadxb; ð1Þ

where eia ≔ δia, is a fiducial triad field in Cartesian
comoving coordinates ðt; x; y; zÞ and aðtÞ is the scale
factor. The associated Ashtekar variables are computed
in order to write the FLRWHamiltonian provided by GR in
terms of them. To this aim, a fiducial cell of coordinate
volume V0 is introduced1 so as to avoid spurious diver-
gences due to the open topology this geometry is (here
implicitly) endowed with. Now, thanks to the symmetries
of (1), the spin connection is vanishing, the extrinsic
curvature tensor is proportional to the time derivative of
the scale factor and the Ashtekar variables assume the
simple expressions

Ai
aðtÞ ¼ cðtÞδiaV−1=3

0 ; Ea
i ðtÞ ¼ pðtÞδai V−2=3

0 ; ð2Þ
where

c ≔ V1=3
0 γ _a; p ≔ a2V2=3

0 and fc; pg ¼ 8πγ

3
; ð3Þ

and the FLRW Hamiltonian constraint reads

H ¼ −
3

8πγ2
ffiffiffiffi
p

p
c2 ¼ 0; ð4Þ

as one can easily check computing the associated Hamilton
equations of motion. The usual Friedmann equations are
obtained from them once a and _a are inverted from (3) and
the appropriate matter content is added. The next step
consists in switching from this classical model to its
quantum version by implementing a suitable quantum
representation of the canonical variables (2): LQC mimics
LQG by computing holonomies from the Ashtekar con-
nection and fluxes from the triads. Thanks to the symmetry
of the FLRW spacetime, one can consider only holonomies
hμðcÞ along edges of the fiducial cell and fluxes EðSÞ
across faces S of V0:

hμðcÞ ≔ eiμc=2; EðSÞ ≔ p; ð5Þ

where μ is the ratio between the coordinate length of a path
parallel to an edge of the fiducial cell and the length of the
edge itself.
Once the classical constraint2 (4) is written in terms of

(5), it can be promoted to be a quantum operator after a

1This regulator can be removed at the end: the usual Friedmann
equation of motions as well as the effective LQC ones (14) and
(15) do not depend on it. Note that for the QRLG model, this is
not the case and the initial physical volume of the Universe turns
out to be a parameter that has to be constrained by data—this will
be discussed later.

2This is the only constraint one remains with, as the Gauss and
diffeomorphism ones are trivially fulfilled thanks to the sym-
metry reduction.
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regularization for the final chosen expression. LQC takes
again inspiration from LQG, where geometry is discretized
and areas exhibit of a minimum area gap Δ (on regulariza-
tions in LQC see [24]). This feature also arises in this
reduced setting through a regularization (so-called
“improved” [11]) achieved by promoting the μ parameter
entering in the holonomies to a be a function μ̄ ≔ μ̄ðpÞ.
Computing the expectation value of the resulting
Hamiltonian operator over coherent states peaked in the
classical phase space of the FLRW geometry ðc; pÞ, one
obtains an effective Hamiltonian [38,39] HLQC that we can
simply introduce by the following “rule,” also called
“polymer” substitution in (4),

c →
sinðμ̄cÞ

μ̄
; where μ̄ ≔

ffiffiffiffi
Δ
p

s
; ð6Þ

which leads to the following effective LQC Hamiltonian for
the geometric sector:

HLQC
grav ≔ −

3

8πγ2
ffiffiffiffi
p

p sin2ðμ̄cÞ
μ̄2

: ð7Þ

In the quantum theory, the basic variables are (5) and
there exist no quantum operator ĉ corresponding to c. The
polymer substitution can be considered as a trigonometric
approximation of ĉ, when written as the derivative of hμ
evaluated in μ ¼ 0,

c ¼ 2

i
d
dμ

hðcÞ
���
μ¼0

≈
2

i

h2μðcÞ − h−2μðcÞ
2μ

; ð8Þ

followed by the replacement μ → μ̄ that defines the specific
regularization adopted by LQC.
When the FLRW geometry is sourced by a (minimally

coupled) massless scalar field, one adds to the effective
Hamiltonian (7) its kinetic contribution, i.e., Hϕ ≔
P2
ϕ=ð4πγvÞ, where Pϕ is the momentum conjugate to the

field ϕðtÞ, fϕ; Pϕg ¼ 1, and the complete Hamiltonian
reads

HLQC
gravþϕ ≔ −

3v
4Δγ

sin2ðb
ffiffiffiffi
Δ

p
Þ þHϕ; ð9Þ

after the change of variables ðc; pÞ → ðb; vÞ, where

b ≔
c

p1=2 ; v ≔
p3=2

2πγ
;

�
bffiffiffi
2

p ;
vffiffiffi
2

p
�

¼ 1: ð10Þ

Finally, the effective dynamics is obtained through the
Hamilton equations of motion:

_Qi ¼ fQi;H
LQC
gravþϕg; _Pi ¼ fPi;H

LQC
gravþϕg; ð11Þ

where

Qi ≔
�

bffiffiffi
2

p ;ϕ

�
and Pi ≔

�
vffiffiffi
2

p ; Pϕ

�
; ð12Þ

and the Poisson brackets are defined on the whole phase
space ðb; vÞ × ðϕ; PϕÞ:

f; g ≔
X
i

∂
∂Qi

∂
∂Pi

−
∂
∂Pi

∂
∂Qi

; ð13Þ

giving

_a2

a2
¼ 8π

3
ρm

�
1 −

ρm
ρcrit

�
; ð14Þ

ä
a
−

_a2

a2
¼ −8πρm

�
1 − 2

ρm
ρcrit

�
; ð15Þ

where ρm ≔ P2
ϕ=ð8π2γ2v2Þ is the scalar field energy

density and ρcrit ¼ 3=ð8πγ2ΔÞ is the critical energy density
(depending on the LQG minimum area gap Δ) at which the
Universe undergoes a bounce. In fact, one can immediately
see that ρm ¼ ρcrit in (14) and (15) corresponds to a
stationary point. The “repulsive force” encoded in the
ρ2m correction to the Friedmann equation reacts to classical
gravity when the energy density reaches a near-Planckian
value and the singularity is tamed. The discreteness of
space predicted by LQG, and imported in LQC, leads to the
singularity resolution. In this framework, the bounce
happens to occur when a Planckian value of the energy
density is reached, regardless of the volume of the Universe
—or of the “fundamental cell”—that can be anything, as
(14) and (15) depend only on the scale factor (and the
chosen value for Pϕ).
The big bounce scenario is a robust prediction of LQC,

as witnessed by its persistence when nonvanishing poten-
tials are added [33,40]. This remains true with curvature
[41] and with a cosmological constant [42]. In the follow-
ing we will focus on inflation and consider the case of a
massive scalar field with a quadratic potential. The LQC
dynamics associated to the corresponding effective
Hamiltonian,

HLQC
gravþϕ2 ≔ HLQC

grav þ P2
ϕ

2V
þ V

m2ϕ2

2
; ð16Þ

where V ≔ 2πγv gets (qualitatively) unchanged until the
beginning of the slow-roll inflationary phase generated by
the massive field.

B. QRLG emergent-bouncing universe

The approach pursued by QRLG greatly simplifies the
LQG computational task, especially when addressing
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isotropic cosmology. In particular, one can easily calculate
the effective dynamics for a quantum corrected FLRW
universe, evaluating the expectation value of the LQG
Hamiltonian constraint over a mixture of coherent states
based on cubical graphs with different numbers of nodesN,
and peaked on the classical FLRW phase space coordinates.
The model provided by QRLG has the same symplectic

structure than LQC, defined by (10), the only difference
being in the Hamiltonian and the effective dynamics. We
report here its final expression computed within the so-
called volume counting statistical regularization scheme
[24], where a Gaussian distribution of coherent states
centered on N ¼ VΔ̃−3=2 is chosen:

HQRLG
full ðV; bÞ ¼ −

3

8πγ2
V1=3

×

R
2VΔ̃−3=2

1 e−
ðN−VΔ̃−3=2Þ2

VΔ̃−3=2 N2=3sin2ðbV1=3

N1=3 ÞdNR
2VΔ̃−3=2

1 e−
ðN−VΔ̃−3=2Þ2

VΔ̃−3=2 dN
;

ð17Þ

where V is a physical volume ðV ¼ a3V0Þ and Δ̃ is related
to the LQG area gap by Δ̃ ≔ 22=3

ffiffiffi
3

p
Δ. [It should be

noticed that there are two different Δ parameters for two
reasons. In QRLG, the “reduced flux” operator—from
which the QRLG area operator is built—turns out to have
eigenvalues that are proportional to m and not toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

, like in LQG, thus only for j ≫ 1 do the two
definitions match. Beside, a further deviation from the
“standard” Δ comes from the actual density matrix chosen
to regularize the effective Hamiltonian within the statistical
regularization scheme.] The Hamiltonian defines the geo-
metrical sector of the model. Adding the usual kinetic
contribution for a massless scalar field ϕ and considering
the first order contribution to the saddle point approxima-
tion for V ≫ 1, one is led to the following approximated
Hamiltonian that describes geometry and matter:

HQRLG
1ord þHϕ ¼ −

3v

4Δ̃γ
sin2ðb

ffiffiffiffi
Δ̃

p
Þ þ P2

ϕ

4πγv

−
b2Δ̃3=2

48πγ2
cosð2b

ffiffiffiffi
Δ̃

p
Þ

þ
ffiffiffiffi
Δ̃

p

48πγ2
sin2ðb

ffiffiffiffi
Δ̃

p
Þ; ð18Þ

and already captures the relevant features of the model,
allowing analytical considerations for the qualitative behav-
ior of the associated dynamics. In the first line, one
immediately recognizes an LQC-like contribution [which
up to the area gap Δ̃ redefinition, exactly coincides with the
expression (9)] while the second and third lines correspond
to the (first order) QRLG corrections: those are subleading

in the semiclassical regime b=v ≪ 1, where LQC and
QRLG dynamics match, but become leading orders in the
deep quantum epoch, giving a very different dynamics, as
discussed below and shown in the upper panel of Fig. 1.
Using HQRLG

1ord þHϕ and neglecting terms that are sub-
dominant in a 1=v expansion,3 the following modified
Friedmann equation are found

FIG. 1. Upper panel: vðtÞ backward evolution, starting from
t ¼ 0. Middle panel: Zoom on the emergent phase. Lower panel:
The LQC scale factor backward evolution obtained starting from
the same initial conditions at t ¼ 0.

3In writing Eq. (19) the last term in the rhs of (18) has been
neglected but all the numerical studies have been done keeping
also that contribution.
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_a2

a2
¼

�
8π

3
ρm þ ρg

γ2

�
ð1 − 2ΩgÞ−1

×

�
1 −

Ωm − Ωg

1 − 2Ωg

�
; ð19Þ

ä
a
−

_a2

a2
¼ −

�
3

Δ̃γ2
sin2 ðb

ffiffiffiffi
Δ̃

p
Þ þ 4πρm

�

× ð1 − 2 sin2 ðb
ffiffiffiffi
Δ̃

p
ÞÞ; ð20Þ

where

ρg ≔ −
b2Δ̃3=2

18V
; ρ̄cr ≔ −

1

Δ̃
;

ρm ≔
P2
ϕ

2V2
; ρcr ≔

3

8πγ2Δ̃
;

Ωg ≔
ρg
ρ̄cr

; Ωm ≔
ρm
ρcr

: ð21Þ

The quantity ρg is interpreted as a pure quantum gravita-
tional (negative) energy density, vanishing for Δ̃ → 0, and
ρ̄cr is the critical energy density at which an empty universe
(ρm ¼ 0) would undergo a bounce. The former is a key
quantity of the model since for ρg → 0 Eqs. (20) and (21)
give back the LQC effective dynamics, i.e., (14) and (15)
with an area gap Δ̃. Two conditions lead to a stationary
point:

Ωg þ Ωm ¼ 1; Ωg ¼ Ωm: ð22Þ

The first is similar to what happens in LQC, since for
Ωg → 0 it gives Ωm ¼ 1. When the sum of the ratio
between ρg=ρ̄cr and ρm=ρcr is equal to 1, the Universe
bounces reaching a local minimum of the volume. The
second condition is the main novelty brought by QRLG:
when quantum gravity effects compensate the evolution
driven by the matter content, maxima are reached and,
going back in time, the LQC prebounce dynamics is
replaced by oscillations with decreasing amplitudes (see
upper and middle panels of Fig. 1).
The picture provided by the isotropic sector of QRLG is

an asymmetric scenario of the primordial universe: the
Universe emerges from the infinite past with a finite
Planckian volume and eventually undergoes a transient
phase during which expanding and contracting phases
succeed until the geometric energy density gets enough
diluted (as b decreases) to leave the Universe expanding
forever according to the classical dynamics. As we will
show later, this behavior, discovered for a massless scalar
field, is qualitatively unchanged for a massive scalar field.

III. BACKGROUND DYNAMICS: BASIC
FEATURES

The phenomenology of QRLG is a tricky task. There is
indeed a fundamental tension between the basis of QRLG
and usual cosmology. Friedmann equations are invariant
under a rescaling of the scale factor. There is no preferred
length scale in cosmology. If the curvature is null or
negative, the size of the Universe is infinite at all times.
This is why, in usual LQC (see e.g., [13,43]), the bounce is
driven by density effects (together with the shear).
However, in QRLG, there is a physical scale associated
with the fundamentally discrete structure of space. This
does not mean that QRLG is inconsistent: the other way
around, this is expected at the quantum geometrical level. It
means, as advocated e.g., by Bojowald [44], that quantum
cosmology might not be about quantizing the scale factor
and its conjugate variable (say the Hubble parameter) but
about the dynamics of elementary and identical cells of
space. What is usually referred to as the volume of the
Universe should probably be actually understood as the
volume of an elementary patch. Although there is therefore
no logical inconsistency, several issues about making
concrete predictions in this framework remain open due
to the nontrivial transition between the effective quantum
description and the classical regime.
The background evolution is driven by the full

Hamiltonian given in the previous section but the matter
content is now chosen to be a massive scalar field with a
mass m ¼ 1.21 × 10−6 (unless otherwise stated Planck
units are now used). Although slightly disfavored by recent
data [45], this is a standard choice in cosmology which is
also frequently done in LQC, in order to make comparisons
between models easier. The following results may depend
on the field mass and this will be addressed later in the text.
The status of initial conditions in QRLG remains a

complicated question, as there are no a priori preferred
probability density functions for the different parameters in
the quantum regime (we shall address this point again in the
final discussion). However, the late classical universe is
described by a large v value and a small b value. Taking this
into account, the background evolution can be explicitly
computed, as a first step, evolving the state backward in
time. We used a numerical simulation with initial con-
ditions set in the classical phase as in previous works in
QRLG [25],

vclass ¼ 100000;

bclass ¼ 0.0005;

Pϕ;class ¼ 88: ð23Þ

The initial condition on the last parameter ϕclass is obtained
thanks to the Hamiltonian constraint H ¼ 0.
This backward evolution leads, as explained before, to

bounces of decreasing amplitudes that converge to a (quasi)
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static phase, as shown on Fig. 1. This is an interesting
mixture between emergent and bouncing models. It should
be noticed that this dynamics is basically the same for
different sets of initial conditions in the classical phase, as
long as vclass is large and bclass is small. The lower panel of
Fig. 1 represents the scale factor evolution in LQC,
obtained from the same classical initial conditions at
t ¼ 0. It can be observed that the QRLG evolution is
indeed the same as the LQC one up to the bounce (when
evolving backward in time) but the LQC dynamics then
leads to a classical contracting branch.
The values of fv; b;ϕ; Pϕg in the static phase, i.e., at

t ¼ −300 in our simulation, obtained from this backward
evolution are then used as preferred initial conditions to
perform simulations forward in time. In the following,
those new initial conditions are denoted as fvin; bin;
ϕin; Pϕ;ing. This procedure is helpful for the gravitational
variables fv; bg, as their values in the quantum (quasi)static
regime is set by physical arguments requiring a correct
classical behavior. However, this does not constrain the
matter content: the value of the scalar field and its
momentum are still free. The consequences of the possible
choices for initial field conditions on the different observ-
ables will be studied later.
The forward evolution of the b parameter which,

together with v, characterizes the gravitational sector of
the background dynamics, is shown in the upper panel of
Fig. 2. As expected, one can check that this parameter
nearly vanishes in the classical regime. The lower panel
shows the field evolution during the emergent phase and it
can be noticed that, unlikely to what happens in the
contracting branch of the usual LQC bounce (see e.g.,
[46]), the field does not oscillate. Instead, it remains almost
constant. We have studied different field trajectories asso-
ciated with many different initial conditions and, although
the field value does vary during the static phase, oscillations
have never been observed. The evolution of b shows
“kinks” which start at times corresponding to a scale factor
local minimum and last until the next minimum is reached.
In LQC, only one minimum is present (at the big bounce).
Anyway, both in LQC and QRLG, it just corresponds to
phases where b suddenly speeds up. Those phases connect
an initial (postbounce) and final (prebounce) evolution
during which b is almost constant.
As it is well known, inflation is a strong attractor once

the correct matter content is set (see e.g., [46–49] for recent
results on this point in the framework of LQC). This is not a
specific LQC feature but this comes as a result of the
presence of a scalar field together with a high enough initial
energy density [50,51]. It is therefore no surprise that in
QRLG too the static phase is generically followed by an
inflationary stage, as can be seen in Fig. 3. In this figure ω
is the dimensionless ratio between the scalar field pressure

PðtÞ¼EkinðtÞ−EpotðtÞ¼
1

2

PϕðtÞ2
ð2πγvðtÞÞ2−

1

2
m2ϕðtÞ2; ð24Þ

and the scalar field energy density

ρðtÞ¼EkinðtÞþEpotðtÞ¼
1

2

PϕðtÞ2
ð2πγvðtÞÞ2þ

1

2
m2ϕðtÞ2: ð25Þ

It characterizes the cosmological perfect fluid equation of
state. When ω → −1 the scalar field acts as a positive
cosmological constant and generates inflation in a quasi-de
Sitter stage.
The equation of state parameter evolution, presented in

the upper panel of Fig. 3, together with the field evolution
presented in the lower panel of Fig. 3, are typical of a
slow-roll inflationary phase.4 The duration of the phase of
slow-roll inflation has no influence on the shape of the
primordial power spectra given as a function of the
comoving wave number (as long as it lasts long enough
to ensure the freezing of the considered modes). The
number of inflationary e-folds is however of crucial
importance to relate the computed primordial power
spectra to cosmological microwave background (CMB)
observations. This number determines the portion of the

FIG. 2. Upper panel: bðtÞ forward evolution, starting from the
(quasi)static phase at t ¼ −300. Lower panel: ϕðtÞ forward
evolution, also starting from the (quasi)static phase at t ¼ −300.

4On those plots the initial field value ϕin ¼ 4 has been chosen
smaller than for the plots presented in Fig. 2 in order to make the
figure easier to read. The ω and ϕ behaviors remain qualitatively
equivalent, the only difference being the duration of inflation.
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comoving spectrum which falls into the observational
window.

IV. INFLATION DURATION

As stated previously, the knowledge of the number of
inflationary e-folds is necessary as soon as one wants to
compare the primordial power spectra with CMB obser-
vations: the position of the observed interval depends on
this parameter. If the spectrum is fully scale invariant, this is
of course nonrelevant—this is why the total number of
inflationary e-folds can be anything above 60–70 in usual
cosmology—but as soon as some specific features (like in
LQC and QRLG) exist in the spectrum this is mandatory
knowledge.
A crude estimate of the observational window position is

given by the comoving wave number associated with the
size of the observable universe at the recombination time.
The physical size of the observable universe at this time is
of the order of (we still use Planck units)

Lrec ∼ 4 × 1058: ð26Þ

The associated physical wave number is therefore of the
order of kφ;rec ¼ 2π=Lrec ∼ 10−58.
To switch from physical coordinates to comoving ones,

one needs to know the number of e-folds between the

stationary state of the Universe and the recombination
period, as the scale factor is normalized in the initial state
(the chosen value is of course in itself arbitrary). This total
number of e-folds can be expressed as the sum of the
number of inflationary e-folds and the number of e-folds
between the end of inflation and the recombination. The
number of e-folds of inflation can be expressed as

N ¼ ln

�
aðteÞ
aðtiÞ

�
¼ 1

3
ln

�
vðteÞ
vðtiÞ

�
; ð27Þ

where ti and te respectively correspond to the beginning
and the end of the inflationary period. The number of
e-folds between the end of the inflationary phase and
recombination, denoted as N0, depends both on the well-
known decoupling temperature (see, e.g., [52]) and on the
far less-constrained reheating one:

N0 ¼ ln

�
Trh

Tdec

�
≃ ln

�
Trh

0.2 eV

�
≃ 59; ð28Þ

for a reheating temperature around the grand unification
scale (to fix the orders of magnitude).
The comoving wave number associated to the physical

wave number kφ;rec ¼ 10−58 is therefore given by

kc;rec ¼ kφ;recaðtrecÞ ¼ kφ;recaðtiÞe59þN: ð29Þ

This makes the observational window dependence on the
number of inflationary e-folds explicit. It can be noticed
that when N ¼ 75, kc;rec ∼ 1 for aðtiÞ ¼ 1 (as usually
chosen). This is why, as soon as the number of e-folds
is substantially higher than the minimum required value,
the part of the spectrum which is probed corresponds to
modes with kc ≫ 1.
In the following, we focus on the duration of inflation for

different sets of initial conditions. Both for numerical
convenience and because the stationary phase is, by
definition, time translation invariant, the initial conditions
are set just at the end of the static phase (corresponding to
t ¼ −240 in the simulation), before any significant growth
of the physical volume. The situation is slightly more subtle
when dealing with perturbations. Since we cannot explore
fully the four-dimensional parameter space, we fix bin to
the value obtained from the backward evolution. This is not
an arbitrary choice—unlike it would be for the matter
content—and this parameter does not enter the field energy
density expression given in Eq. (25). Three variables are
therefore remaining free: fvin;ϕin; Pϕ;ing. Since the rel-
evant study for our purpose is the impact of both vin and ϕin
on the duration of inflation, we set Pϕ;in such that the initial
Hamiltonian constraint is satisfied.
The main results are displayed in Fig. 4. It can be seen

that N increases both with vin and ϕin. The ϕin dependence

FIG. 3. Upper panel: ωðtÞ ¼ PðtÞ=ρðtÞ evolution during the
slow-roll phase. Lower panel: Scalar field evolution during the
slow-roll phase.
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is the same as in the LQC framework when initial
conditions are set at the bounce.
The comparison with LQC is however subtle. In LQC,

nearly any number of inflationary e-folds, including N ¼
N⋆ ≈ 60 (which is interesting for phenomenology as this
makes the nontrivial features observable) is possible if
initial conditions are fine-tuned. If they are set at the
bounce, there is no obvious preferred initial value for the
field—or alternatively for the sometimes used x variable
defined as the dimensionless square root of the potential
energy density—and it is hard to find a preferred inflation
duration. The other way around, if initial conditions are set
in the remote past of the contracting branch, and if the
bounce energy density is fixed (the usual value being
ρc ≈ 0.24), a preferred value close to N ≈ 140 does appear
[46–48].
In QRLG, the prediction of the number of e-folds is

therefore similar to what happens in LQC, but only when
initial conditions are set at the bounce, in the sense that the

selection criterion for a preferred field value is lost.
However, in QRLG the number of e-folds also depends
on other parameters: N clearly increases with vin.
Numerical investigations show that, with this procedure,

it is necessary to have vin > 12.4, otherwise the
Hamiltonian constraint cannot be fulfilled. This means
that low values of vin are unaccessible, making a small
number of e-folds, close to N⋆, even less probable than in
LQC, not to say strictly impossible. The way vin does
depend on N may seem strange at first sight since the field
energy density ρin ∝ v−2in . In general the higher the density,
the bigger the number of e-folds. However this effect is
“overcompensated” by the fact that ρin is also proportional
to P2

ϕ;in which increases when vin increases (in order to
satisfy the Hamiltonian constraint). The initial field energy
density vin dependence can be seen in Fig. 5.
For slow-roll inflationary models with a single inflaton

field in the LQC framework, the number of e-folds depends

FIG. 4. Upper panel: The number of inflationary e-folds N as a
function of vin and ϕin. Lower panel: Zoom on the small values of
ϕin in order to probe the low values of N.

FIG. 5. Upper panel: The field energy density at the end of the
static phase as a function of vin and ϕin. Lower panel: The
dimensionless ratio x at the end of the static phase as a function of
vin and ϕin.
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on two parameters: the field energy density and the
dimensionless ratio,

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EpotðtÞ
ρðtÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
m2ϕðtÞ2

1
2

PϕðtÞ2
ð2πγvðtÞÞ2 þ 1

2
m2ϕðtÞ2

vuut ; ð30Þ

at the beginning of the inflationary phase. It increases when
those parameters increase. Basically N ∝ x2 and N ∝ ρin
[46]. There is also a known field mass depend-
ence N ∝ ln ð2m

ffiffiffiffiffiffiffiffi
κ
3
ρin

p Þ.
In Fig. 5, we show the dependence of both ρ and x at the

end of the stationary phase (i.e., at t ¼ −240), upon initial
conditions. As previously mentioned, since the mass is set
to m ¼ 1.21 × 10−6, the field energy density is kinetically
dominated in the range of ϕin values presented here. The
energy density therefore increases with vin but remains
constant when ϕin varies. It would be possible to probe
initial field values close to 106 to study how ρ varies when
the potential term is no longer negligible. It is however not
relevant to go into the details when ϕin ≫ 10 as the number
of e-folds is in this case (and whatever the other parameters
are) very high, as shown Fig. 4. On the other hand, this
switches on the dependence for xin. Since ρin is almost
constant with respect to variations of vin, the value of xin
only depends on the initial field value. If we consider
together the vin and ϕin dependence of both xin and ρin this
leads to the trend which appears in the upper panel of
Fig. 4. This confirms that the duration of inflation in
QRLG, as in LQC, depends on the couple fx; ρg at the
beginning of the inflationary period.
In summary, the duration of inflation in QRLG can be set

close to the lower boundary N⋆ ¼ 60 but it requires a very
high level of fine-tuning, even more important than in LQC
when setting initial conditions at the bounce. For almost all
the probed initial parameter space, the inflation duration is
lengthy, pushing the observational window far in the
ultraviolet part of the spectra. That is quite bad news for
phenomenology as this makes the specific features of the
model nearly impossible to observe. But this is good news
for the consistency: the model agrees with observations
(assuming that the observed tensor spectrum will be scale
free) for nearly all its parameter space.
Now that the background dynamics has been defined and

characterized, cosmological perturbations can be propa-
gated on this background to derive the primordial power
spectra. As precise calculations for perturbations in QRLG
are still missing, we make here the hypothesis that
perturbations are described by the usual theory.

V. PRIMORDIAL POWER SPECTRA

When dealing with a flat universe filled with a
scalar field, the first-order perturbed Einstein equations
are equivalent to the gauge-invariant Mukhanov-Sasaki
equation:

ν00ðη; x⃗Þ − c2sΔνðη; x⃗Þ −
z00T=SðηÞ
zT=SðηÞ

νðη; x⃗Þ ¼ 0; ð31Þ

in which:
(i) ν is a gauge-invariant canonical variable built as a

combination of the metric coordinate (Bardeen
variables) and of the scalar field perturbations.

(ii) z is the background variable that models the back-
ground impact on the perturbations and whose
expression depends on the kind of inhomogeneities
considered. The T=S indices refer either to tensor or
to scalar modes.

(iii) cs is the speed of sound, which is equal to the speed
of light cs ¼ 1 for a canonical scalar field.

(iv) The 0 symbol corresponds to a derivative with
respect to the conformal time η.

As it can be seen from (31), the evolution of cosmo-
logical perturbations is equivalent to the one of a scalar
field ν with a time-dependent mass m2 ¼ −z00T=S=zT=S in a
Minkowski space-time. Because of the dynamical back-
ground, the energy of the perturbations is not conserved
(they can extract energy from the background evolution),
hence the mass time dependence.
When quantizing the theory, the ν functions and their

conjugate momenta become operators. The associated
Fourier temporal mode functions satisfy

ν00kðηÞ þ
�
k2c −

z00T=SðηÞ
zT=SðηÞ

�
νkðηÞ ¼ 0; ð32Þ

in which kc corresponds to a comoving wave number.
This equation can be recast in cosmic time:

ν̈kðtÞ þHðtÞ _νkðtÞ

þ
��

kc
a

�
2

−
_zT=SðtÞ
zT=SðtÞ

HðtÞ − ̈zT=SðtÞ
zT=SðtÞ

	
νkðtÞ ¼ 0: ð33Þ

We introduce a new parameter hkðtÞ ¼ νkðtÞ=aðtÞ such that
(33) becomes

ḧkðtÞ þ 3HðtÞ _hkðtÞ þ hkðtÞ�
HðtÞ2 þ äðtÞ

aðtÞ þ
�
kc
a

�
2

−H
_zT=SðtÞ
zT=SðtÞ

−
̈zT=SðtÞ
zT=SðtÞ

	
¼ 0:

ð34Þ
For the purpose of writing (34) as a set of two first order
ordinary differential equations (ODE) we introduce a
second parameter, gkðtÞ ¼ aðtÞ _hkðtÞ, such that

_hkðtÞ ¼
1

aðtÞgkðtÞ;

_gkðtÞ ¼−2HðtÞgkðtÞ−aðtÞhkðtÞ

×

�
HðtÞ2þ äðtÞ

aðtÞþ
�
kc
a

�
2

−HðtÞ _zT=SðtÞ
zT=SðtÞ

−
z̈T=SðtÞ
zT=SðtÞ

	
:

ð35Þ
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Finally the primordial power spectra are respectively
defined by

PTðkcÞ ¼
4κk3

π2

���� νkðteÞzTðteÞ
����2 ð36Þ

for tensor modes, and

PSðkcÞ ¼
k3

2π2

���� νkðteÞzSðteÞ
����2 ð37Þ

for scalar ones, in which te stands for the cosmic time at the
end of the slow-roll phase.
Since the scale factor is deduced from vðtÞ by

aðtÞ ¼
�
2πγvðtÞ

V0

�
1=3

; ð38Þ

the value of V0 will have an impact on the spectra. This
dependence will be later discussed.
In this article we assume “usual” perturbations on a

QRLG background. This is obviously only a first step in the
direction of a full QRLG treatment. The question of
perturbations in LQC is a tricky one. On the one hand,
the dressed metric [53–55] (which is close to hybrid
quantization [56] from the observational viewpoint) puts
the emphasis on the quantum aspects of both the back-
ground and the perturbations, while the deformed algebra
[57–59] highlights the consistency and gauge aspects.
Those issues will need to be dealt with in QRLG in the
future.
Another point that needs to be addressed is the question

of initial conditions for perturbations, which is a well-
known and tricky one. Basically, the idea is to go far
enough in the past so that the effective potential z00T=S=zT=S
is negligible compared to k2c and the evolution equation
becomes the one of a harmonic oscillator. This is the case in
the de Sitter background of standard inflation. This is also
the case in the contracting phase of the LQC bounce for
tensor modes. A detailed discussion for the more compli-
cated case of scalar perturbations in LQC can be found in
[60] for the philosophy followed in this study. (Another
approach based on the definition on a fourth order adiabatic
vacuum at the bounce can be found in [53–55].)
In the following, the simulations presented rely on an

initial state for perturbations defined in the Minkowski
vacuum. The choice of the precise initial vacuum is
however not crucial at this stage as the aim of the study
is to investigate the way in which the spectra depend on the
QRLG parameters. Considering different vacua generally
induces only small modifications in this framework. This
point has been investigated for LQC and it was shown that
although the vacuum choice makes some differences in the
IR, most of the features of the spectrum remain unchanged
[61]. We have effectively tested different vacua and, as it

could have been expected, the results and conclusions
drawn below were checked not to depend on the precise
choice.
It should be mentioned that several interesting features of

the primordial power spectra have been derived in [62] for a
background behavior similar to the model considered in
this work. In particular, damped oscillation appears at
scales smaller than a characteristic value and the reddening
of the spectrum increases at all the scales when the number
of small bounces increases.

A. Primordial tensor power spectra

For tensor perturbations, the background variable is
given by zTðtÞ ¼ aðtÞ, and the previous set of ODEs
(35) becomes

_hkðtÞ ¼
1

aðtÞ gkðtÞ;

_gkðtÞ ¼ −2HðtÞgkðtÞ −
k2c
aðtÞ hkðtÞ: ð39Þ

What matters for the shape of primordial spectra is the
tensor potential z00TðtÞ=zTðtÞ ¼ a00ðtÞ=aðtÞ. More precisely,
the key point is the relative value of the potential and of the
comoving wave number kc. The evolution of this potential
in QRLG is presented in Fig. 6.

FIG. 6. The tensor potential z00T=zT . Upper panel: Full range
including the beginning of the inflationary phase. Lower panel:
Zoom on the emergent phase.
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The evolution of the potential should be slightly con-
trasted with what happens in LQC when initial conditions
are set in the classical contracting branch. In usual LQC, the
tensor potential converges quickly toward zero and a
Bunch-Davies vacuum can be properly defined for all
modes as long as initial conditions are set sufficiently far
away from the bounce. This initial normalization, com-
bined with the potential behavior z00T=zT ≃ 2=η2 during the
slow-roll phase, leads to a scale invariant spectrum for all
modes of cosmological interest.5 In addition, the bounce
leads to a peak in the potential that creates oscillation in the
intermediate part of the spectrum [63–65]. In the specific
case of the deformed algebra approach a UV divergence
also occurs, due to an effective change of signature of the
metrics [66], but this situation will not be considered here.
In QRLG, the tensor potential also exhibits a 2=η2

evolution during the inflationary phase, as it can be seen
in the upper panel of Fig. 6. When the simulation is started,
the potential is of the order of z00TðtiÞ=zTðtiÞ ≃ 10−5, for
V0 ¼ 1. It is, at this stage, not easy to analytically
demonstrate that the potential strictly vanishes in the
remote past. Thus, the choice of the initial state as a
vacuum [in the sense k2c ≫ z00TðtiÞ=zTðtiÞ] is no more
physical for comoving wave numbers that do not satisfy
k2c ≫ 10−5. This means that the IR limit of the spectrum
might not be fully reliable and deserves future investiga-
tion. This is however not important for phenomenology as
the observational window anyway falls in the intermediate
or UV part. As in standard LQC, the bounces induce peaks
in the potential leading to oscillations in the spectra.
The primordial tensor power spectrum is represented in

the upper panel of Fig. 7, with arbitrarily chosen values
V0 ¼ 1 and ϕin ¼ 4. The spectrum dependence upon those
parameters will be discussed in the following paragraphs.
As expected, one can notice a rising IR part, a scale-
invariant UV part (corresponding to kc > 30 in this case)
and an intermediate oscillatory part with a richer structure
than in usual LQC due to the multiple minibounces. For an
easy comparison, the typical LQC spectrum is shown on
the lower panel of 7 (the difference in amplitude is just
due to a different mass value chosen for numerical
convenience).
Following the study of the previous section on the

duration of inflation, it can be concluded that for almost
all the parameter space of initial conditions, the observable
part of the QRLG primordial power spectrum is nearly
scale invariant, as in GR. Probing deviations with respect to
GR, that is the oscillatory intermediate regime, the initial
conditions have to be highly fine-tuned so that N
approaches N⋆.

In Fig. 8, we show the impact of the initial value of the
scalar field on the spectra. For the initial field values chosen
here, f10−3; 10−1; 101; 103g, the field energy density—
which is the physical parameter—is (due to the low mass
of the field) fully kinetic energy dominated and equal to
0.24. The spectrum amplitude increases with the initial

FIG. 7. Upper panel: Primordial tensor power spectrum of
cosmological perturbations on a QRLG background, with V0 ¼ 1
and ϕin ¼ 4. Lower panel: Primordial tensor power spectrum of
cosmological perturbations on a LQC background (with a larger
inflaton mass).

FIG. 8. Primordial tensor power spectrum for different initial
values of the scalar field ϕin in the static phase and V0 ¼ 1.

5It should be noticed that this only holds for tensor modes, as it
is impossible to properly define a Bunch-Davies vacuum in the
same way for scalar perturbations.
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field value, and reaches a level which is in disagreement
with observations when the initial value is ≳10, taking into
account the upper bound on the tensor to scalar ratio [67].
This sets a bound on possible initial field values: ϕin ≲ 10.
It is interesting to notice that spectra with ϕin ¼
f10−3; 10−1g perfectly overlap. The field value is mostly
irrelevant, regarding the tensor spectra, as soon as it
is ≲0.1.
In Fig. 9, the impact of different choices for V0 are

shown. Since the tensor potential writes

z00TðtÞ
zTðtÞ

¼ aðtÞäðtÞ þ _aðtÞ2

¼
�
2πγ

V0

�
2=3

½vðtÞ1=3 ̈vðtÞ1=3 þ ð _vðtÞ1=3Þ2� ∝ V−2=3
0 ;

ð40Þ

and as this value should be compared to the squared
comoving wave number, the horizontal shift of the spectra,
proportional to V−1=3

0 , can easily be anticipated. This agrees
with the numerical results.
It is therefore in principle possible to constrain V0 by

requiring the appropriate properties of the spectrum in the
observable window. Once N is fixed the observable
window position, given by kc;rec, depends only on a0,

and thus on V1=3
0 if vin is fixed. As the tensor power

spectrum has not yet been measured and as there is still a
degeneracy with the number of e-folds this is only a
prospective claim at this stage.

B. Primordial scalar power spectra

This study focuses on tensor modes. Scalar perturbations
are more closely related to available observation but are
substantially more difficult to deal with. In the case of
scalar perturbations, the usual background variable is

zSðtÞ ¼ aðtÞ _ϕðtÞ
HðtÞ and Eq. (35) cannot be solved analytically.

Because of the more complex shape of the scalar potential,
the fate of scalar perturbations is not as clear as for the
tensor ones.6

Due to the oscillating behavior of vðtÞ in the static phase,
as it can be seen in the upper panel of Fig. 10, the Hubble
parameter HðtÞ oscillates around 0, as shown in the middle
panel of Fig. 10. This induces a nontrivial behavior of zSðtÞ.
The scalar potential in the static phase therefore exhibits
very fast oscillations of small amplitude that will amplify
scalar perturbations. The resulting power spectrum is not
physical. This is however not a clear conclusion as:

FIG. 9. Primordial tensor power spectra of cosmological
perturbations on a QRLG background for different values of V0.

FIG. 10. Oscillatory behavior of the different parameters that
compose the background scalar variable zS during the static
phase. Upper panel: Background variable v(t). Middle panel:
Hubble parameter. Lower panel: Time derivative of the field.

6This is already the case in usual LQC where the definition of a
proper vacuum state is tricky.
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(i) It is probable that oscillations are actually damped
when going far enough in the past, making the
choice of a nonambiguous initial vacuum possible.
Currently available simulations do not, however,
allow to answer unambiguously this question be-
cause the case of scalar perturbations is quite
intricate. The knowledge of the scale factor behavior
is not sufficient and one needs the full constraint.
The difficulty is however purely numerical and
should be solved in a near future.

(ii) The Mukhanov-Sasaki variables might be modified
in QRLG and their usual expressions might not hold
anymore. The fact that usual perturbations are
propagated is of course a very heavy hypothesis
of this study. Building a fully self-consistent QRLG
perturbation theory is a huge task.

VI. INFLUENCE OF THE FIELD MASS

The QRLG cosmological sector is very different from
usual cosmology. Thus, the relevance of the usual mass
field value m ¼ 1.21 × 10−6 can be challenged. In the
following, we consider different field masses around the
usual one: m ¼ 1.21 × 10n, with n ¼ f−10;−8;−6;−4;
−3;−2g. Changing the value of n results in a small shift of
the emergent background dynamics, which has no phe-
nomenological importance, see Fig. 11. In this figure the

trajectories for all masses m < 1.21 × 10−6 perfectly over-
lap, both for v and b.
However, a modification of the scalar field mass also

modifies the postemergent dynamics, and notably the
inflationary period.
The primordial tensor spectra for n ¼ f−8;−6;−4g are

represented Fig. 12. It appears that, if initial conditions are
chosen such that fvin; bin;ϕing are fixed, and Pϕ;in varies
according to the Hamiltonian constraint, the general trend
of the spectra, namely the rising IR behavior, the oscil-
lations in the intermediate regime, and the scale invariance
in the UV, do not depend on the mass. Different masses
only result in a shift of the spectra, mostly as in LQC [64].
However, numerical simulations suggest that for extremely
low values of the mass (typically m < 10−7), the shape of
the power spectrum, even in the UV, is not scale-invariant
anymore. This might be used as a constraint for the
parameters of the model but this anyway requires a deeper
treatment of the perturbations in QRLG.
If initial conditions are set such that fvin; bin; Pϕ;ing are

fixed and the initial field ϕin varies according to the
constraint, then ϕin is lower by a factor 10nþ6 with respect
to the usual case n ¼ −6. For example, if the field mass is
close to the Planck mass, such as n ¼ −2, then ϕin is
divided by 104. Those small values of ϕin, together with the
increase of the potential steepness with m, lead to very
small numbers of inflationary e-folds. The combination of
those two effects can even prevent the slow-roll phase from
happening. The associated tensor spectra are deeply modi-
fied, with a non-scale-invariant behavior presumably
excluded by future observations.
The mass dependence of both the number of e-folds N

and of the tensor spectra shape highly depends on the way
one deals with the Hamiltonian constraint. Variations of
the mass can either induce a simple shift of the spectra or
deeply modify the previously studied behavior. But sub-
stantial modifications only appear when large deviations
(at least by 2 orders of magnitudes) from the usual value

FIG. 11. Upper panel: vðtÞ backward evolution for different
values of the scalar field mass, starting from t ¼ 0. Lower panel:
bðtÞ backward evolution for different values of the scalar field
mass, starting from t ¼ 0.

FIG. 12. Primordial tensor power spectra with V0 ¼ 1, ϕin ¼ 4,
and different field masses given by n ¼ f−8;−6;−4g.
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m ¼ 1.21 × 10−6 are considered. For reasonable devia-
tions, all the conclusions previously stated still hold.
We also recall that the conclusions mentioned here are

probably no longer true for scalar perturbations as the
background variable zS directly depends on the field. The
mass term therefore has a direct impact on the scalar
potential, thus on the spectra, and may have a deeper effect
than the simple shift observed in Fig. 12.

VII. CONCLUSION

Quantum reduced loop gravity is an important step in
trying to bridge that gap between full quantum gravity and
effective quantum cosmology. As the kinematics is defined
before the minisuperspace reduction, some important
features of LQG, such as the graph structure and SU(2)
quantum numbers, are preserved although simplified to
make relevant calculations analytically tractable. The key
point is to impose the gauge-fixing conditions to the
diagonal spatial metric. The minisuperspace reduction is
then implemented at the dynamical level, keeping terms
preserving the diagonality conditions.
The main result of QRLG is the replacement of the usual

LQC bounce by an “emergentþ bounce” scenario. In this
article we have studied the inflationary dynamics in this
framework. The main result when scanning the full
parameter space is that the number of inflationary e-folds
is always greater that the experimental lower bound around
60–70. This not fully true in LQC where the number of
e-folds can be tuned to an arbitrary small number by
choosing appropriate initial conditions.
We have also calculated the tensor power spectrum and

shown its dependence upon the parameters of the model.

The IR part is blue, the intermediate part is oscillatory and
the UV part is nearly scale invariant. Following the study
on the number of e-folds, the observational window falls on
the UV part and a flat tensor power spectrum is therefore
predicted.
Several improvements are possible for future studies:
(i) The scalar power spectrum should be better inves-

tigated. This requires a deeper understanding of the
background behavior in the remote past of the
static phase.

(ii) It might be possible to assign a known probability
distribution function to a parameter driving the
dynamics (like in [46,48]), but this requires a
“harmonic oscillator-like” behavior in the deep past
and this is not established at this stage.

(iii) Cosmological perturbations should also be QRLG
corrected.

(iv) The anisotropic version of QRLG should be inves-
tigated as the shear is expected to be possibly
important at the bounce.

Refining quantum cosmological models is a major
challenge. Although quite a lot of subtleties do appear
when going from LQC or QRLG or group field theory
[68,69], it is interesting that the main global features seem
to be preserved, making the overall picture more and more
reliable.
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