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The covariant canonical gauge theory of gravity is generalized by including at the Lagrangian level all
possible quadratic curvature invariants. In this approach, the covariant Hamiltonian principle and the
canonical transformation framework are applied to derive a Palatini type gauge theory of gravity. The
metric gμν, the affine connection γλμν and their respective conjugate momenta, kμνσ and qηαξβ tensors, are
the independent field components describing the gravity. The metric is the basic dynamical field, and the
connection is the gauge field. The torsion-free and metricity-compatible version of the spacetime
Hamiltonian is built from all possible invariants of the qηαξβ tensor components up to second order.
These correspond in the Lagrangian picture to Riemann tensor invariants of the same order. We show that
the quadratic tensor invariant is necessary for constructing the canonical momentum field from the gauge
field derivatives, and hence for transforming between Hamiltonian and Lagrangian pictures. Moreover, the
theory is extended by dropping metric compatibility and enforcing conformal invariance. This approach
could be used for the quantization of the quadratic curvature theories, as for example in the case of
conformal gravity.
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I. INTRODUCTION

A natural way to achieve inflation is considering higher-
order curvature corrections in the Hilbert-Einstein
Lagrangian as the R2 Starobinsky model [1], or other
invariants as RμνRμν and RαβγδRαβγδ [2,3]. Hamiltonian
formulations of metric theories with higher-curvature terms
are problematic as they lead to fourth-order derivatives in
the equations of motion. The covariant canonical gauge
theory of gravity (CCGG) can overcome this difficulty [4].
The CCGG framework ensures by construction that the

action principle is maintained in its form requiring all
transformations of a given system to be canonical. The
imposed requirement of invariance of the original action
integral with respect to local transformations in curved
spacetime is achieved by introducing additional degrees of
freedom, the gauge fields. At the basis of the formulation
are two independent fields: the metric gαβ, which encodes

the information about lengths and angles of spacetime, and
the affine connection γλαβ, encoding how a vector trans-
forms under parallel displacement. In this formulation,
referred to as the Affine-Palatini formalism (or the first-
order formalism), these two fields are assumed to be
independent dynamical quantities in the action. In addition
to those fields there are two “momentum fields”: k̃αβμ

which is the conjugate momentum of the metric gαβ, and
q̃λαβμ, the conjugate momentum of the affine connection
γλαβ. In the second-order formalism, the connection is
assumed to be the Levi-Civita or Christoffel symbol

γρμν ¼
�

ρ

μν

�
¼ 1

2
gρλðgλμ;ν þ gλν;μ − gμν;λÞ; ð1Þ

leaving the metric as the only a priori independent field. In
the Einstein-Hilbert action, where torsion of spacetime is
neglected anyway, both formulations yield the same equa-
tions of motion, and the connection will be in both cases the
Christoffel symbol.
Gauge theories of gravity exploring the covariance

of the action with respect to the Lorentz, Poincare, and
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diffeomorphism groups have been considered earlier; see
Refs. [5–19]. However, the novel feature facilitated by the
covariant Hamiltonian canonical transformation theory
[20,21] is the unambiguous derivation from first principles
of the coupling of matter fields with dynamical spacetime.
(The results of the CCGG framework were partially
anticipated in Ref. [22], though.)
Recently the torsion-free version of CCGG was proven

to exploit the correspondence between the first and the
second-order formulation by imposing metricity as a
constraint implemented via a Lagrange multiplier [23]:

Lðg; γÞ þ kαβλgαβ;λ 1storder ⇔ LðgÞ2ndorder: ð2Þ

The Lagrange multiplier kαβλ that imposes the metricity
condition corresponds to the canonical conjugate momen-
tum of the metric in CCGG. (See Ref. [4]. For the
correspondence between the first- and the second-order
formalism in the torsion-free case, see also [24].)
In previous CCGG formulations, a special ansatz for the

Hamiltonian structure up to second order in q̃λαβμ was
considered that is compatible with the Schwarzschild metric.
Here, we take all possible invariants of themomentum fields,
i.e., Riemann tensors in the Lagrangian picture, into account,
exploring the advantages of the second-order formalism. We
prove that, within the canonical transformation framework,
the presence of the quadratic invariant in the Hamiltonian is
necessary, and theHamiltonian of theCCGG theory [4] is the
minimal extension of the Einstein-Hilbert ansatz.
The manuscript is organized as follows: The first chapter

reviews the basic principles of the covariant canonical
gauge theory of gravity and calculates the equations of
motion in the first formalism without assuming torsion. The
second chapter states that if the Hdyn does not depend on
the metric conjugate momenta, the field equations of
motion correspond to the field equations in the second
order formalism, because of the correspondence between
the formulation theorem [Eq. (2)] [23]. The energy
momentum conservation is also guarantied. Under those
conditions, the third chapter implements the generalized
combination of the qαβγδ tensors for the Hdyn, which yields
to the quadratic curvatures terms after Legendre trans-
formation. The fourth chapter contains conformal invariant
extensions into the CCGG. The last chapter summarizes the
results of the paper and discuss possible future work.

II. COVARIANT HAMILTONIAN FORMULATION

A. The gauge field

The starting point of the CCGG framework is a globally
Lorentz invariant Lagrangian and the corresponding action
integral for classical matter fields. The Legendre transform
of the Lagrangian, the Hamiltonian, depends on the fields
and their conjugates. The conjugate momentum compo-
nents of the fields are the duals of the complete set of the

derivatives of the field in the Hamiltonian, including
dynamic metric.
The key element of the canonical transformation frame-

work, enforcing invariance of a system’s action integral
with respect to some local transformation (Lie) group, are
the so called generating functions fixing the transformation
law (covariance) of the matter fields. Form invariance of the
Hamiltonian, though, can only be achieved by introducing
compensating gauge fields, in analogy to the electromag-
netic field enabling the local phase invariance pertinent to
local U(1) symmetry. In consequence, the original matter
Hamiltonian is modified, in essence by replacing the partial
derivatives by covariant derivatives. This methodology has
been applied previously to the SU(N) group [20] and shown
to reproduce the known Yang Mills theories of the electro-
weak and strong interactions. (Obviously, in order to apply
that framework operating in the Hamiltonian picture, we
must request the very existence of the Hamiltonian, i.e., the
regularity of theLagrangian). InCCGG, the symmetry group
in question is the diffeomorphism group representing the
general principle of relativity. Diffeomorphism are general
coordinate transformations (xμ → Xμ), under which the
fields transform as tensors, e.g.,

GμνðXÞ ¼ gαβðxÞ
∂xα
∂Xμ

∂xβ
∂Xν ð3Þ

holds for the metric tensor. (The transformed quantities in
the coordinate system X are denoted by capital letters.)
The gauge field is the affine connection γηαξ with the
transformation law set up to ensure the invariance of the
Hamiltonian:

Γκ
αβðXÞ ¼ γξητðxÞ

∂xη
∂Xα

∂xτ
∂Xβ

∂Xκ

∂xξ þ
∂2xξ

∂Xα∂Xβ

∂Xκ

∂xξ : ð4Þ

The specific generating function implementing field
transformations like (4)–(3) under general coordinate trans-
formations (diffeomorphism) have been introduced in
Ref. [4]. The resulting action becomes then a world scalar
with partial derivatives converted to covariant derivatives
(For fermions, the process and the resulting amendments
are a bit more complex, though) and partial derivatives of
the connection replaced by the Riemann-Christoffel cur-
vature tensor. The gravitational portion of the action then
becomes:

SG ¼
Z
R

�
k̃αλβgαλ;β −

1

2
q̃ηαξβRη

αξβ − H̃Dyn

�
d4x: ð5Þ

The “tilde” sign denotes a tensor density, where the tensor
is multiplied by

ffiffiffiffiffiffi−gp
. The dynamical Hamiltonian H̃Dyn,

which is supposed to describe the dynamics of the free
gravitational field, is not determined by the gauge process.
It is to be built from a combination of the metric conjugate
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momenta k̃αβμ, the connection conjugate momenta q̃ηαξβ,
and the metric gαβ based on physical insights.
Here, we will work on the assumption that the con-

nection is symmetric under the permutation of its lower
indices:

γκαβ ¼ γκβα: ð6Þ

This restriction was omitted in [4,25] which allows torsion
to be present. It was shown (in Ref. [24]) that with metric
compatibility a symmetric connection ensures covariant
conservation of the matter energy-momentum tensor. That
restriction is possible as the transformation rule (4) required
for the gauge field is satisfied with a symmetric connection.

B. The equations of motion

The diffeomorphism invariant action integral can then,
after adding the matter portion in Lagrangian form, be
written as

S ¼
Z �

k̃αβλgαβ;λ −
1

2
q̃λαβξRλ

αβξ − H̃Dynðq̃; k̃; gÞ þ L̃m

�
d4x

ð7Þ

The canonical equations of motion are derived by variation.
The first variation with respect to the momentum field

conjugate to the metric tensor yields

gαβ;λ ¼
∂H̃Dyn

∂k̃αβλ : ð8Þ

Metric compatibility is ensured if the rhs of the above
equation vanishes. This is the case with H̃Dyn not depend-
ing on k̃, i.e., if k̃ is a cyclic variable. This case will be
discussed in the next section.
The variation with respect to the symmetric connection

yields

−ðk̃αμν þ k̃ανμÞgαρ ¼
1

2
∇βðq̃νρμβ þ q̃μρνβÞ; ð9Þ

which is a relation between the momentum of the metric
and the connection.
In order to isolate the tensor kμνλ one can use the

following procedure: First, we multiply by the metric
gρσ and sum over the index σ:

−k̃σμν − k̃σνμ ¼ 1

2
∇αðq̃σμαν þ q̃σναμÞ: ð10Þ

Switching the indices σ ↔ ν:

−k̃νμσ − k̃νσμ ¼ 1

2
∇αðq̃νμασ þ q̃νσαμÞ; ð11Þ

and the indices μ ↔ ν:

−k̃μνσ − k̃μσν ¼ 1

2
∇αðq̃μνασ þ q̃μσανÞ: ð12Þ

Combining the equations ð10Þ þ ð11Þ − ð12Þ we can iso-
late the tensor

k̃σνμ ¼ −
1

2
∇αðq̃σμαν þ q̃νμασÞ: ð13Þ

The third variation is with respect to the conjugate
momentum q̃σμνρ of the connection yielding

∂H̃Dyn

∂q̃σμνρ ¼ −
1

2
Rσ

μνρ: ð14Þ

Obviously if H̃Dyn does not depend on q̃, the Riemann
tensor will be zero, as in teleparallel gravity [26]. The last
variation is with respect to the metric:

Tμν ¼ gμν
�
−kαβγgαβ;γ þ

1

2
qαβγλ Rλ

αβγ

�

þ 2kμνγ;γ −
2ffiffiffiffiffiffi−gp ∂H̃Dyn

∂gμν : ð15Þ

Here,

Tμν ≕
2ffiffiffiffiffiffi−gp ∂L̃m

∂gμν ð16Þ

is the metric energy-momentum (stress) tensor of matter in
balance with the metric energy-momentum (strain) tensor
of matter. Using Eq. (13), we can replace kαβγ and its
derivative:

Tμν ¼ gμν
�
1

2
∇σðq̃αγσβ þ q̃βγσαÞgαβ;γ þ

1

2
qαβγλ Rλ

αβγ

�

−
2ffiffiffiffiffiffi−gp ∂H̃Dyn

∂gμν −∇γ∇αðqμγνα þ qνγμαÞ: ð17Þ

Although the action is derived in Palatini formalism, the
field equations equal to the field equations in the metric
formalism, Due to the correspondence between the for-
mulations [Eq. (2)].

III. CORRESPONDENCE BETWEEN THE
FIRST- AND SECOND-ORDER FORMALISM

A. H̃Dynðq;gÞ with metric compatibility

A particular case of H̃Dynðk; q; gÞ is when the metric
conjugate momentum kαβγ does not occurs in H̃Dynðq; gÞ.
From the variation with respect to the metric conjugate
momentum kαβγ, Eq. (8), we get the metric compatibility
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condition. In conjunction with neglecting torsion the
connection is Levi-Civita, i.e., equal to the Christoffel
symbol:

gαβ;γ ¼ 0 ⇒ γρμν ¼
�
ρ

μν

�
: ð18Þ

In Ref. [23], it was proven that for any general action which
starts in the first-order formalism with the term kαβγgαβ;γ
added as a Lagrange multiplier, the strain tensor is identical
to that derived via the second-order formalism. The main
reason for that correspondence is the variations of the term
kαβγgαβ;γ. While, as mentioned above, the variation with
respect to kαβγ ensures metricity, the variation with respect
to the connection yields

∂
∂γρμν k

αβλgαβ;λ ¼ −kαμνgρα − kανμgρα ð19Þ

with a symmetrization between the components μ and ν.
Moreover, the variation with respect to the metric yields

∂
∂gμν k

αβλgαβ;λ ¼ −kμνλ;λ: ð20Þ

kμνλ;λ contributes to the field equation (15); hence, the first-
order field equations turn out to be equivalent to the field
equations in the second-order formalism. Indeed, isolating
the tensor kμνλ and inserting it back into Eq. (20) leads to
the relation

∂LðκÞ
∂gσν ¼ 1

2
∇μ

�
gρσ

∂LðκÞ
∂ρ

γμν
þgρν

∂LðκÞ
∂ρ

γμσ
−gρμ

∂LðκÞ
∂ρ

γνσ

�
; ð21Þ

where LðκÞ ¼ kαβγgαβ;γ . The terms on the right-hand side
represent the additional terms that appears in the second-
order formalism. The strain energy-momentum tensor (17)
then gets the additional contribution,

−∇γ∇αðqμγνα þ qνγμαÞ: ð22Þ

This is exactly the additional contribution for the field
equation of motion (17) which yields the missing terms that
arenot present in the first-order formalism.

B. Energy momentum conservation

The strain energy-momentum tensor may not be cova-
riantly conserved in the first-order formalism, in contrast to
the second-order formalism, where the energy-momentum
tensor must be conserved [27]. An important fundamental
link between the dependence of the H̃Dyn with the metric
conjugate momentum k̃αβγ and the conservation of the
stress energy tensor is obtained, through the theorem of the
correspondence between the first- and second-order for-
malism. In the particular case, if H̃Dyn does not depend on
the metric conjugate momentum k̃αβγ ,

Smetric
G ¼

Z
R

�
k̃αλβgαλ;β −

1

2
q̃ηαξβRη

αξβ − H̃Dynðq̃; gÞ
�
d4x:

ð23Þ

Avariation with respect to the metric conjugate momentum
k̃αβγ yields the metric compatibility condition. According to
the theorem (2), the gravitational stress energy-momentum
tensor is the same as the strain tensor in the second-order
formalism, which ensures the covariant conservation of this
strain tensor:

FIG. 1. Scheme of the connection between the dependence of the dynamical Hamiltonian on the momentum fields and the resulting
theories of gravity. The energy momentum conservation for each case is also indicated.
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∇μGμν ¼ 0; Gμν≕ −
2ffiffiffiffiffiffi−gp δSmetric

G

δgμν
: ð24Þ

In the generic case, H̃Dyn does depend on the metric
conjugate momentum k̃αβμ,

SG ¼
Z
R

�
k̃αλβgαλ;β −

1

2
q̃ηαξβRη

αξβ − H̃Dynðq̃; k̃; gÞ
�
d4x:

ð25Þ

Then the variation with respect to the metric conjugate
momentum k̃αβμ breaks the metric compatibility condition,
and the gravitational strain energy tensor may not be
covariantly conserved. Of course, this applies also if the
assumption of zero torsion is dropped. This basic frame-
work is not a special feature only for CCGG but leads to a
fundamental correlation for many options for H̃Dyn.
Figure 1 summarizes the links between the formulation
of the theory and the covariant conservation of the strain
energy-momentum tensor.

IV. GENERIC QUADRATIC INVARIANTS IN qηαβμ

A. Complete combination of the q tensors

The term Rδ
αβλqδαβλ in the action (5) contributes only if

the Riemann tensor and the qδαβλ tensor have the same
symmetries and antisymmetries. Hence, we may build
similar contractions and combinations of the conjugate
momenta of the connection, as are possible with the
Riemann tensor. For example qαβ in analogy to the Ricci
tensor:

Rμν ¼ Rλ
μλν; qμν ¼ qλμλν; ð26Þ

or the q scalar in analogy to the Ricci scalar:

R ¼ Rμνgμν; q ¼ qμνgμν: ð27Þ

Those fundamental definitions will be used to built the
general form of the free gravity Hamiltonian H̃Dyn.

B. The general form

In order to see the complete implications for this formu-
lation, our starting point is a dynamical Hamiltonian with
the connection conjugate momentum qδαβλ up to the second
order, but without a dependence on the metric conjugate
momentum kαβλ:

HDyn ¼ H0 þH1 þH21 þH22 þH23 ð28Þ

H0 ¼ g0 ð29aÞ

H1 ¼ −
g1
2
q ð29bÞ

H21 ¼ −
1

4
g21q2 ð29cÞ

H22 ¼ −
1

4
g22qμνqμν ð29dÞ

H23 ¼ −
1

4
g23qαβγδqαβγδ ð29eÞ

That Hamiltonian contains all possible (up to a sign)
combinations of q tensors. As HDyn does not depend on
kαβγ, the existence of the term kαβλgαβ;λ ensures, as dis-
cussed above, a correspondence between the first- and the
second-order formalism. In consequence, the strain tensor
is covariantly conserved; i.e., Eq. (24) holds.

C. The qσμνρ tensor

In order to derive the relation between the momentum
field qσμνρ and the Riemann curvature, we carry out the
corresponding variation, and obtain:

Rσ
μνρ ¼ g23qσμνρ þ δνσðg22qμρ þ gμρðg21qþ g1ÞÞ: ð30Þ

To isolate the q tensor, we take the trace of this equation by
contracting with δσν :

Rμρ ¼ ðg23 þ 4g22Þqμρ þ 4gμρðg21qþ g1Þ: ð31Þ

Taking trace of this equation by contracting with gμρ gives:

R ¼ ðg23 þ 4g22 þ 16g21Þqþ 16g1: ð32Þ

Solving for q,

q ¼ R − 16g1
g23 þ 4g22 þ 16g21

; ð33Þ

and plugging q into Eq. (31) allows to extract the qμν tensor
in terms of the metric and the Ricci tensor and scalar:

qμν ¼ Rμν

4g22 þ g23
−

4g1
16g21 þ 4g22 þ g23

gμν

−
4g21

ð4g22 þ g23Þð16g21 þ 4g22 þ g23Þ
Rgμν: ð34Þ

In the last step we insert the relations for q and qμν into
Eq. (30), and reconstruct the momentum tensor from the
Riemann curvature tensor:

qσμνρ¼ α1Rσ
μνρ þ δνσðα2Rμσ þ α3Rgμσ þ α4gμσÞ : ð35Þ

The new coupling constant are combinations of the original
ones:
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α1 ¼
1

g23
ð36aÞ

α2 ¼ −
g22

g23ð4g22 þ g23Þ
ð36bÞ

α3 ¼ −
g21

ð4g22 þ g23Þð16g21 þ 4g22 þ g23Þ
ð36cÞ

α4 ¼ −
g1

16g21 þ 4g22 þ g23
: ð36dÞ

Now the Ricci tensor and scalar read:

qμν ¼ ðα1 þ 4α2ÞRμν þ 4ðα3gμνRþ α4gμνÞ; ð37Þ

q ¼ ðα1 þ 4α2 þ 16α3ÞRþ 16α4: ð38Þ

Eq. (36) shows that the reconstruction of the momentum
tensor is possible only if g23 ≠ 0; i.e., the success of the
canonical formulation depends on the existence of the
qαβγδqαβγδ term which, not surprisingly, also ensures
the existence of the Legendre transform. This proves that
the choice of H̃Dyn in CCGG [4] is the necessary but
minimal extension of the Einstein-Hilbert theory.

D. The quadratic Lagrangian

Because of the variation with respect to qσμνρ gives the
solution for qσμνρ, and since qσμνρ is a field with zero
canonical momentum, which does not contain derivatives,
we can replace the solution for qαβγδ into the action. The
Lagrangian is obtained by carrying out the Legendre
transform given by the integrand in the action integral (23):

−L ¼ α1
4
Rλ

αβγRλ
αβγ þ

α2
4
RμσRμσ þ

α3
4
R2 þ α4

2
Rþ Λ :

The emerging “cosmological constant” Λ is defined by

Λ ¼ −4g1α4 þ g0 ¼ −
4g21

16g21 þ 4g22 þ g23
þ g0: ð39Þ

This formula for the cosmological constant facilitates an
option for resolving the cosmological constant problem as
suggested earlier in Ref. [25] for a dynamical Hamiltonian
with

g21 ¼ g22 ¼ g0 ¼ 0: ð40Þ

Then one considers a very large jg23j and g23 < 0. For that
case, the cosmological constant Λ is highly suppressed.
This is similar to the “cosmological see-saw mechanism” to
obtain a low value of the effective cosmological constant
[28]. In order to get the small cosmological constant, we

could require j16g21 þ 4g22 þ g23j to be very large, and
16g21 þ 4g22 þ g23 < 0. This applies also for g0 ¼ 0.
The potential of the quadratic term to transfer energy

from gravity to matter and vice versa and generate inflation
[1] has been shown in Ref. [29].

E. Special cases

There are two particularly interesting special cases for
the coupling constant. For the Gauss-Bonnet combination
[30] of the quadratic terms, the original g constants must
fulfill the relation

g21 ¼ ξ; g22 ¼ −4ξ; g23 ¼ 15ξ; ð41Þ

where ξ is some free constant. For this combination, we get
the condition for the α couplings:

α1 ¼ −
α2
4
¼ α3: ð42Þ

For the conformal gravity [31–33] based on the quadratic
Weyl tensor, the original g constants are chosen to be

g21 ¼ ξ; g22 ¼ 10ξ; g23 ¼ −35ξ

g0 ¼ g1 ¼ 0 ð43Þ

where ξ is some free constant. After the Legendre trans-
form, the final coupling constants are

α1 ¼ −
α2
2
¼ 3α3; Λ ¼ 0; ð44Þ

which gives eventually the quadratic Weyl tensor in the
effective action

L ¼ ξ

4
CμναβCμναβ; ð45Þ

which is the familiar conformal invariant action.

V. A CONFORMAL INVARIANT EXTENSION

An extension which breaks the metric compatibility
condition and respects conformal invariance [34–36] can
be developed based on the above considerations by
introducing a vector field Aμ into the metricity constraint

kαβγgαβ;γ ⇒ kαβγðgαβ;γ − egαβAγÞ: ð46Þ

The corresponding generalized action then reads

S ¼
Z

½k̃αβγðgαβ;γ − egαβAγÞ

−
1

2
q̃λαβξRλ

αβξ − H̃Dynðq̃; k̃; gÞ þ L̃m�d4x; ð47Þ
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where e is the “conformal charge” of the conformal gauge
field Aμ. Assuming that the connection will be covariant
under conformal transformation, the symmetries give

Γλ
αβ →Γλ

αβ; gμν →ΩðxμÞ2gμν; kαβγ → kαβγ

Aμ →Aμþ
2

e
∂μ logΩðxμÞ; qλαβγ →ΩðxμÞ−4qλαβγ ð48Þ

that the metric conjugate momenta kαβγ with lower indices
does not transform. From the variation of kαβγ the condition
of Weyl’s nonmetricity is obtained from the action

∇γgαβ ¼ eAγgαβ ð49Þ

which leads to the solution for the connection:

Γρ
μν ¼

�
ρ

μν

�
−
e
2
gρλðgλμAν þ gλνAμ − gμνAλÞ: ð50Þ

For the conformal invariant dynamical Hamiltonian,

HDyn → HDyn ð51Þ

only quadratic terms of the qσμνρ tensors are kept, with the
coupling constants of the Hamiltonian Eq. (28):

g0 ¼ g1 ¼ 0: ð52Þ

In addition, a kinetic term based on the gauge field Aμ could
be added:

LðKinÞ ¼ −
1

4
FμνFμν: ð53Þ

Because of the new contributions, the complete field
equation is Weyl invariant. This subject could be study
in details in the future.
In order to have a linear term in curvature which respects

the conformal invariance symmetry, one can use a modified
measure, which is independent of the metric in addition to
the action that was discussed [37]:

S ¼
Z

d4xΦR: ð54Þ

A simple construction of this modified measure is from four
scalar fields φa, where a ¼ 1, 2, 3, 4.

Φ ¼ 1

4!
εαβγδεabcd∂αφ

ðaÞ∂βφ
ðbÞ∂γφ

ðcÞ∂δφ
ðdÞ; ð55Þ

with the conformal symmetry being realized by the trans-
formation:

φa
0 → φa

0ðφÞ; Φ0 → ΦΩðxÞ2: ð56Þ

where the Jacobian of the transformation being correlated
with Ω through the relation J ¼ ΩðxÞ2. This is one option
for breaking the metricity condition, and respecting the
conformal invariance, using the same Lagrange multiplier.

VI. CONCLUSIONS

The covariant canonical gauge theory of gravity (CCGG)
is a classical covariant field theory in theHamiltonian picture
using the framework of canonical transformations to imple-
ment local invariance with respect to the diffeomorphism
group. Its fundamental ingredients are the metric gμν, the
affine connection γλμν and their conjugate momenta, the kμνσ

and the qηαξβ tensors. The metric is a dynamical field and the
connection is the (independent) gauge field. The final
covariant Hamiltonian of the gauge theory is taken to be
in the second order of the qηαξβ tensor. This approach seems
well suited for the quantization of quadratic curvature
theories, because it reduces the derivatives in the action.
We hope to discuss the quantization of higher-derivative
theories in the future, based on this formalism.
In this paper, we have generalized torsion and metricity-

compatible CCGG to account for all higher-curvature invar-
iants in the action up to second order in the qηαξβ tensor
components, including the contractions (qμνqμν and q2).
This leads to all possible combinations of second-order
curvature invariants in the Lagrangian. It turns out that the
quadratic qηαξβ tensor invariant must be present in the
Hamiltonian in order to make the theory consistent; other-
wise, g23 ¼ 0, and all of the α’s coupling constants contain
singularities [see Eq. (36)].
CCGG can also be extended with more general dynami-

cal Hamiltonian depending on the metric conjugate
momenta kαβγ . In this case, the metric compatibility
condition will be violated and a gate for new physics
opened. A simple example for such a theory with non-
metricity coupled to a vector field is shown to maintain
conformal invariance. These options and others could be
investigated in the future.
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