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Discovering a selection principle and the origin of flavor symmetries from an ultraviolet completion of
particle physics is an interesting open task. As a step in this direction, we classify all possible flavor
symmetries of four-dimensional massless spectra emerging from supersymmetric Abelian orbifold
compactifications, including roto-translations and nonfactorizable tori, for generic moduli values. Although
these symmetries are valid in all string theories, we focus on the E8 × E8 heterotic string. We perform the
widest known search of E8 × E8 Abelian orbifold compactifications, yielding over 94,000 models with
MSSM-like features. About 70.5% of these models exhibit flavor symmetries containing D4 factors and
only nearly 1.5% have Δð54Þ factors. The remaining models are furnished with purely Abelian flavor
symmetries. Our findings suggest that should particle phenomenology arise from such a heterotic orbifold,
it could accommodate only one of these flavor symmetries.
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I. INTRODUCTION

The reason for the number of families in the standard
model (SM) as well as the origin of fermion mixings may
be clarified in extensions of the SM. The general structure
of the quark-mixing matrix motivated the bottom-up
introduction of ad hoc discrete flavor symmetries (see
e.g., [1,2] for a review) that, together with a number of extra
fields transforming in nontrivial flavor representations,
yield new phenomenology that may be contrasted with
observations. Choosing the correct flavor symmetry among
the different scenarios that render similar physics requires a
selection principle that is not found in this field-theoretic
approach.
It is in this sense that, given the constraints of string

theory and its potential to provide an ultraviolet com-
pletion of the SM, we can try to identify a mechanism in
string theory to restrict the admissible flavor symmetries,
providing thereby their origin. This quest is not new. The
seminal works were in the context of heterotic orbifold
compactifications [3,4], which sparked the study of the
phenomenological consequences of some models [5–9],

generalizations in models with magnetic fluxes [10] and
relations with modular symmetries [11]. Flavor symmetries
are associated in these works with geometric aspects of
orbifolds, but they can also be related to larger continuous
symmetries of the extra dimensions [12]. Also in D-brane
compactifications, some sources of flavor symmetries have
been identified and there is progress in the study of their
phenomenology [13–16].
Here we focus on the E8 × E8 heterotic string compac-

tified on all symmetric, toroidal, Abelian orbifolds1 that
yield four-dimensional N ¼ 1 low-energy effective field
theories, recently classified in Ref. [22]. In these scenarios,
the fact that most matter states are localized at the curvature
singularities of the orbifold becomes instrumental to arrive
at flavor phenomenology, because different singularities
are assigned different localization numbers that can be
interpreted as charges of a flavor symmetry in the four-
dimensional resulting model.
In this work, we present first a systematic classification

of flavor symmetries in Abelian toroidal orbifolds, whose
moduli have no special values, avoiding possible enhance-
ments. These symmetries are completely determined by the
orbifold space group, whose nature is purely geometric,
and are thus independent of the string theory to be
compactified. As the geometric structure of a toroidal
orbifold can be more complicated than usually assumed,
due to the presence of roto-translations or nonfactorizable
tori, this task can be challenging and lead to flavor
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1Beside the original works [17,18], there are several good
introductions to these constructions, see e.g., [19–21].

PHYSICAL REVIEW D 98, 106020 (2018)

2470-0010=2018=98(10)=106020(22) 106020-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.106020&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevD.98.106020
https://doi.org/10.1103/PhysRevD.98.106020
https://doi.org/10.1103/PhysRevD.98.106020
https://doi.org/10.1103/PhysRevD.98.106020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


symmetries not yet identified. Since we explore here all six-
dimensional orbifolds, this paper represents the completion
of the work initiated in Ref. [23].
Orbifolds are used in the heterotic strings to obtain

models that reproduce the main features of the SM [24], its
minimal supersymmetric extension [25–28] (MSSM) and
other nonminimal extensions [29], as well as many other
observed and/or desirable properties of particle physics
[30–36]. Aiming at gaining insight on the actual flavor
symmetry of Nature, an interesting question we can pursue
is: what flavor symmetries can these orbifolds have?
To answer this question, we perform a search of

semirealistic N ¼ 1 heterotic orbifolds with help of the
orbifolder [37]. We then study their flavor symmetries,
which build subgroups of the symmetries we classify in
Sec. III. We expect that a statistical analysis of these
findings may hint towards the family structure that particle
physics emerging from strings can have.
This paper is organized as follows. After reviewing the

aspects of heterotic orbifolds that are crucial for our study
on flavor symmetries, we proceed in Sec. III to discuss how
flavor symmetries arise in Abelian toroidal orbifolds. We
then classify all flavor symmetries that can arise from these
orbifolds, independently of the string theory one may
compactify. In Sec. IV, we show the results of the most
comprehensive search of semirealistic heterotic orbifolds
so far. Section V is devoted to the discussion of the flavor
symmetries that arise in the promising models we found,
which are summarized in the tables presented in the
Appendix. In Sec. VI, we provide our summary and
outlook.

II. ORBIFOLD COMPACTIFICATIONS

A. Toroidal orbifolds

In order to introduce our notation and the main aspects
of our constructions, let us first study the structure of
six-dimensional toroidal orbifolds in the context of four-
dimensional N ¼ 1 models resulting from the supersym-
metric heterotic strings.
In general, a six-dimensional toroidal orbifold O is

defined as the quotient space that results from dividing a
six-dimensional torus T6 by the so-called orbifolding
group G. The torus can be embedded in R6 by dividing
this space by a latticeΛwith basis vectors feiji ¼ 1;…; 6g,
corresponding to identifying all points of R6 connected
by translations λ ∈ Λ, such that λ ¼ P

i miei for some
integers mi.
Alternatively, one can produce the same orbifold O by

moding R6 by the space group S, which is a discrete group
of isometries of the torus T 6, including the translations in
the lattice Λ. For our purposes, this description of an
orbifold turns out to be more useful. That is, we shall
consider here a six-dimensional toroidal orbifold defined as

O ¼ R6=S: ð1Þ

The elements g ∈ S have the general structure g ¼ ðϑ; μÞ,
where the operators ϑ are in general elements of O(6) that
form a discrete, Abelian or non-Abelian point group P of S,
and μ is a vector in R6, which may or may not be an
element of the torus lattice, although it can always be
written in the basis of Λ (with arbitrary coefficients). The
action of g ∈ S on x ∈ R6 is defined by

x↦
g
gx ¼ ϑxþ μ; ð2Þ

that is, ϑ denotes a rotation, reflection or inversion of x
whereas μ denotes a translation vector.
It is said that the action of g is trivial on the torus only

if it amounts to a lattice translation. This is because
T6 ¼ R6=Λ; i.e., the torus is obtained by the identification
x ≃ xþ λ, λ ∈ Λ. It follows that, if μ is an element of the
torus lattice, μ ¼ λ ∈ Λ, the only component of g ∈ S that
exerts a nontrivial action on the torus is ϑ, since ϑx and
ϑxþ λ are identified on a toroidal orbifold.
When μ in Eq. (2) is chosen to be a more general vector,

μ ∉ Λ, the space-group element g ¼ ðϑ; μÞ is called a roto-
translation. In this case, both ϑ and μ act nontrivially on
the six-dimensional torus. One of the purposes of this
work is to study this case with more attention, attempting to
pave the path towards phenomenology of orbifolds with
roto-translations.
In an orbifold, the space group defining the orbifold

consists of a finite number of elements g ∈ S called space
group generators, their products, computed according to

g00 ¼ gg0 ¼ ðϑ; μÞðϑ0; μ0Þ ¼ ðϑϑ0; μþ ϑμ0Þ; g; g0; g00 ∈ S;

ð3Þ

and their conjugations. All elements of a space group S
can be grouped in different conjugacy classes ½g� ¼
fh−1gh; h ∈ Sg. All elements of a conjugacy class are
equivalent. Note that an element g ¼ ðϑ; μþP

imieiÞ,
with μ ∉ Λ or null, can be rewritten as

Q
ið1; eiÞmiðϑ; μÞ.

Therefore, the space group generators can be pure O(6)
transformations, roto-translations or translations.
An additional property of orbifold generators is that each

of them has an integer order N, such that gN is trivial on the
torus, that is gN ¼ ð1; λÞ with λ ∈ Λ. We point out that this
restricts the shape of the translation vectors μ ∉ Λ of roto-
translations g ¼ ðϑ; μÞ. The trivial action of gN on the torus
implies that ϑN ¼ 1 and

P
N−1
j¼0 ϑjμ ∈ Λ. Notice that, e.g., if

ϑμ ¼ μ ≠ 0, then the translation vector is given as a fraction
of lattice vector, μ ¼ 1

N λ.
Let us focus now on Abelian orbifolds, which are the

scope of this work. Complexifying the orbifold generators
g, Eq. (2) becomes
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z↦
g
gz ¼ ϑzþ μ; z; μ ∈ C3; ð4Þ

with the complex coordinates of z related by za ¼ x2a−1þ
ix2a, a ¼ 1, 2, 3, with the real coordinates x ∈ R6. In
Abelian orbifolds, the complexified ϑ elements of the
space group generators can be simultaneously diagonalized
and represented as matrices of the form ϑ ¼ diagðe2πiv1 ;
e2πiv2 ; e2πiv3Þ, with 0≤ jvaj<1. The vector v ¼ ðv1; v2; v3Þ
is commonly called twist vector.

1. Fixed points and roto-translations

Space group generators g with nontrivial twist ϑ have a
nonfree action on T 6. This implies that, in these cases, some
points are left unaltered or fixed under g, which correspond
to curvature singularities of the compact space. The
simplest example of such a fixed point is z ¼ 0 for the
space group element g ¼ ðϑ; 0Þ with ϑ a rotation in six
dimensions, but there are frequently more than one fixed
points in these cases. The number and localization of the
fixed points depend on the details of the torus (or,
equivalently, the lattice Λ) and the space group element
under consideration. There are as many inequivalent fixed
points as conjugacy classes of S with nontrivial twist.
Given a space group generator g ¼ ðϑ; μÞ, it follows from

Eq. (4) that the associated fixed points zf satisfy the
condition

gzf ¼ ϑzf þ μ ¼ zf þ λf; λf ∈ Λ; ð5Þ
where the lattice translations are needed because the
identity must happen in the torus. In order to obtain all
inequivalent fixed points associated with g, one can take
different choices of λf and then select only those that
are not related by space group elements. We note that, by
using the product rule (3), defining gf ¼ ð1;−λfÞg leads to
the identity gfzf ¼ zf. The space group element gf is
typically called the constructing element associated with
the singularity zf.
Let us illustrate the fixed point structure of an orbifold by

using a T2=Z2 × Z2 orbifold with roto-translations.2 We
define the orbifold through the space-group roto-translation
generators g1 ¼ ðθ; 1

2
e1Þ and g2 ¼ ðω; 1

2
e2Þ, where e1;2 are

the orthogonal lattice generators of the torus and the O(6)
generators are given by

θ ¼
�
1 0

0 −1

�
; ω ¼

�−1 0

0 1

�
; ð6Þ

satisfying θ2 ¼ ω2 ¼ 1, such that g21 and g22 have a trivial
action on the torus, as expected for a Z2 × Z2 orbifold.
Omitting the translational generators ð1; eiÞ and their
conjugations, the space group comprises the conjugacy
classes of the elements fg1; g2; g1g2; 1g.
Let us first focus on the element g ¼ g1g2 ¼

ð−1; 1
2
ðe1 − e2ÞÞ. By applying Eq. (5), we find four

fixed points in the fundamental domain of the torus:
zf ∈f1

4
ðe1þe2Þ;14ðe1þ3e2Þ;14ð3e1þe2Þ;34ðe1þe2Þg. One

can easily verify that only two of these points are
inequivalent; 1

4
ðe1 þ e2Þ is related to 3

4
ðe1 þ e2Þ and

1
4
ðe1 þ 3e2Þ is related to 1

4
ð3e1 þ e2Þ in the torus by acting

on them with g1 or g2. Thus, one can choose the fixed points
zf;0 ¼ 1

4
ðe1 þ e2Þ and zf;1 ¼ 1

4
ð3e1 þ e2Þ as the inequiva-

lent fixed points associated with g. These points are
depicted with bullets in Fig. 1. The constructing elements
associated with the fixed points are given by gf;0 ¼
ð−1; 1

2
ðe1 þ e2ÞÞ and gf;1 ¼ ð−1; 1

2
ð3e1 þ e2ÞÞ.

We consider now the element g ¼ g1. For this element, it
turns out that Eq. (5) has no solution, revealing that there
are no fixed points associated with this space group
element. The same is true for g2. This observation will
be useful when figuring out the geometric discrete sym-
metries of the compactification.
For reasons that shall be clearer in Sec. II B, each set

of fixed points is named a sector. From our previous
discussion, we note that, ignoring the trivial sector of
the identity element, in the T2=Z2 × Z2 orbifold worked
out here there are two empty sectors and one sector with
two fixed points. The appearance of empty sectors is
related to the existence of roto-translation space group
elements in toroidal Abelian orbifolds. In general,
orbifolds without roto-translations do not exhibit empty
sectors.
The global geometric structure of the orbifold is obtained

by inspecting the action of all the space group generators.
From the sector associated with g ¼ g1g2, we find that the
space group reduces the fundamental domain of T2 to 1=4
of the torus fundamental domain, as illustrated in Fig. 1. We
see that the combined action of g1 and g2 identifies the
singularities depicted at the top with those in the bottom,
sharing the symbols × and þ. This crossed identification
also affects the “boundaries” of the fundamental domain of
the orbifold, which are also identified according to the
types of arrows in the figure. From this description, we
observe that this orbifold is equivalent to the well-known
two-dimensional cross-capped pillow, with p-rectangular
Bravais lattice (see e.g., Table B.2 of Ref. [22]), also called
singular (real) projective plane.
The structure of fixed points in an orbifold allows to

determine its geometric symmetries. Notice, in our exam-
ple, that the cross-capped pillow is symmetric under the
exchange of its inequivalent singularities. Consequently,
this orbifold is invariant under S2 ≃ Z2 transformations.

2In terms of the classification of Ref. [22], we refer here to a
two-dimensional subsector of the nonlocal geometry (2,5) of a
six-dimensional Z2 × Z2 toroidal orbifold. By itself, the non-
orientable geometry induced by this space group cannot be used
to compactify a six-dimensional field theory as it cannot sustain
chiral fermions. Belonging to a larger six-dimensional orbifold
solves this issue. We thank H. P. Nilles for this observation.
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Analogous (permutation) Sn symmetries arise in orbifolds
with a different number of singularities.

B. Heterotic Abelian orbifolds

The degrees of freedom (d.o.f.) of a string theory
emerge from the left- and right-moving vibrational modes
of a string. The observation that they are independent led
to the heterotic strings, which are the mixture of the
right-moving modes, XR and ΨR, of a ten-dimensional
supersymmetric string with the left-moving modes, XL of a
26-dimensional bosonic string. The 16 extra bosonic d.o.f.
XI
L, I ¼ 1;…; 16, are compactified on a torus T 16, whose

lattice vectors are constrained by anomaly cancellation to
be those of the ΛE8×E8

or ΛSOð32Þ root lattice,
3 revealing the

structure of an E8 × E8 or SO(32) gauge group on a ten-
dimensional supersymmetric spacetime. We focus here on
the heterotic string with E8 × E8 gauge group.
Heterotic orbifolds are constructed by compactifying

six spatial dimensions of the ten-dimensional spacetime
of a heterotic string on a toroidal orbifold. Right- and left-
moving modes, XR and XL, mix to build the (bosonic)
coordinates of the spacetime, X ¼ XL þ XR, but they can
still be taken as independent d.o.f. As a consequence, one
can in principle choose different compactification schemes
for each mode. However, for simplicity, we focus here on
so-called symmetric heterotic orbifolds, in which both
modes are compactified on the same orbifold. As already
mentioned, we can also complexify these coordinates, so
that we have two uncompactified complex dimensions,
corresponding to those of the observed spacetime, and three
complex dimensions compactified on an Abelian orbifold.

Insisting on preserving N ¼ 1 supersymmetry in four
dimensions after compactifying theN ¼ 1 heterotic strings
on six-dimensional toroidal orbifolds, restricts a number of
properties of these constructions. First, it is known that
preserving N ¼ 1 requires that the point group P be a
subgroup of SU(3). Recalling that the point group elements
of Abelian orbifolds can be written as ϑ ¼ diagðe2πiv1 ;
e2πiv2 ; e2πiv3Þ, we immediately find that the condition v1 þ
v2 þ v3 ¼ 0 for each diagonalized generator leads to obtain
N ¼ 1 in four dimensions. Furthermore, more than two
independent generators of P would not leave any invariant
supersymmetry generator; thus, only one or two distinct
point group generators of orders N and M can be
considered, corresponding to cyclic ZN or ZN × ZM point
groups. It is customary to label the orbifold by the name of
its point group (also called Q class). In general, there is
more than one (couple of) generator(s) that can yield the
same point group, but any choice can be diagonalized in
terms of the same twist vector.
Secondly, demanding that the space group elements be

torus isometries further restricts both the choice of the tori
and the space groups. For each choice of generators of a
given point group, there are different torus lattices Λ that
are left invariant under the point group. If we allow for a
number of moduli to take any values and consider the
lattices so related to be equivalent, they build a so-called Z
class. Each point group admits different Z classes.
Finally, once the point group and a torus lattice have

been chosen for the compactification, one has still the
freedom to consider different values of the translations μ of
the space group generators g ¼ ðϑ; μÞ, which may be
equivalent up to affine transformations or not. Equivalent
translations together with the corresponding lattice and
point group generators define an affine class.
In summary, all space groups useful for orbifold com-

pactifications are obtained by classifying the admissible

FIG. 1. A two-dimensional Z2 × Z2 orbifold with roto-translations. The shaded region on the left corresponds to the fundamental
region of the orbifold. The fixed points zf;0 and zf;1 of the g ¼ g1g2 sector are displayed with bullets in the figure. The fixed points at the
top are identified with those in the bottom with the same symbol by the action of other space group elements. Similar arrows are also
identified. This description is equivalent to the cross-capped pillow on the right.

3If one does not demand the resulting theory to be super-
symmetric, there is a third option, the SOð16Þ × SOð16Þ root
lattice.
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combinations of point groups and theirZ and affine classes.
This has been done systematically in Ref. [22], from which
we learn that there exist 138 admissible Abelian space
groups for six-dimensional supersymmetric orbifold. All
possible point groups with their corresponding twist
vectors and the number of compatible Z and affine classes
are listed in Table I. We shall explore the phenomenology
of all 138 space groups.
Once one space group has been chosen to compactify the

heterotic strings, the geometric features of the orbifold in
six dimensions are completely defined, and, due to the
conformal structure of string theory, these properties
determine some aspects of the spectrum of matter in the
resulting four-dimensonal supersymmetric field theory. In
particular, modular invariance of the heterotic string
requires that the orbifold action be embedded into the
gauge d.o.f. of the string. This means that the space group
must be translated into an equivalent group acting in the
16-dimensional space associated with the gauge group, the
so-called gauge twisting group.
The simplest such an embedding is defined (in the

bosonic formulation) by two kinds of translations of the
gauge d.o.f. The point group elements ϑ are embedded as
shifts V, whereas the torus lattice vectors ei are embedded
as so-called Wilson lines (WLs) Ai, i ¼ 1;…; 6. Let us
explain the details by using ZN × ZM orbifolds as our
working example. A generic space group element g of a
ZN × ZM orbifold with P generators θ and ω can be
embedded into the gauge d.o.f. as

g ¼ ðθnωm; μieiÞ ↪ Vg ≡ nV þmW þ μiAi;

n;m ∈ Z; μi ∈ R; ð7Þ

where V and W are the 16-dimensional shift vectors of
fractional entries that encode in the gauge group the
respective action of θ and ω in the six-dimensional
orbifold; μi are nonintegers or integer numbers, depending
on whether the space group element is a roto-translation or
not; and the six WLs Ai are also 16-dimensional fractional
vectors. Vg represents the gauge embedding of the space
group g.
Under this gauge embedding, the action of a space group

element is such that z ↦ gz in six of the ten dimensions of
the spacetime of the heterotic string, and the bosonic left-
moving coordinates associated with the gauge d.o.f. of the
heterotic strings are transformed according to

XI
L ↦ XI

L þ 2πVI
g; I ¼ 1;…; 16: ð8Þ

It is convenient to discuss the details of the states
associated with the string excitations in the dual momentum
space. If we focus on the gauge momentum contribution to
the states jpiL with momentum p, its behavior under the
action of a space group element is dominated by the left-
moving contribution to the full vertex operator expfip ·
XLg (see e.g., Eq. (2.5) of Ref. [38]). Under the action of g,
this operator becomes expf2πip · Vgg expfip · XLg, which
means that the momentum state acquires a phase under g,

TABLE I. We list in the first column all 17 different Abelian point groups for six-dimensional toroidal heterotic
orbifolds that yield N ¼ 1 supersymmetric models in four dimensions. The second column displays the twist
vectors associated with the point group generators. In the third and fourth columns, we show, respectively, the
number of lattices (or Z classes) and space-group translations (or affine classes) that are compatible with each point
group. The details of each space group are given in Ref. [22].

Orbifold label Twist vector(s) # of Z classes # of affine classes

Z3
1
3
ð1; 1;−2Þ 1 1

Z4
1
4
ð1; 1;−2Þ 3 3

Z6–I 1
6
ð1; 1;−2Þ 2 2

Z6–II 1
6
ð1; 2;−3Þ 4 4

Z7
1
7
ð1; 2;−3Þ 1 1

Z8–I 1
8
ð1; 2;−3Þ 3 3

Z8–II 1
8
ð1; 3;−4Þ 2 2

Z12–I 1
12
ð1; 4;−5Þ 2 2

Z12–II 1
12
ð1; 5;−6Þ 1 1

Z2 × Z2
1
2
ð0; 1;−1Þ; 1

2
ð1; 0;−1Þ 12 35

Z2 × Z4
1
2
ð0; 1;−1Þ; 1

4
ð1; 0;−1Þ 10 41

Z2 × Z6–I 1
2
ð0; 1;−1Þ; 1

6
ð1; 0;−1Þ 2 4

Z2 × Z6–II 1
2
ð0; 1;−1Þ; 1

6
ð1; 1;−2Þ 4 4

Z3 × Z3
1
3
ð0; 1;−1Þ; 1

3
ð1; 0;−1Þ 5 15

Z3 × Z6
1
3
ð0; 1;−1Þ; 1

6
ð1; 0;−1Þ 2 4

Z4 × Z4
1
4
ð0; 1;−1Þ; 1

4
ð1; 0;−1Þ 5 15

Z6 × Z6
1
6
ð0; 1;−1Þ; 1

6
ð1; 0;−1Þ 1 1
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jpiL → e2πip·Vg jpiL; p ∈ ΛE8×E8
; ð9Þ

where ΛE8×E8
denotes the (self-dual and integer) root lattice

of the E8 × E8 gauge group.
The gauge embedding is subject to some constraints.

First, since the point group generators of a ZN × ZM

orbifold satisfy θN ¼ 1 ¼ ωM, the action of the shift
vectors corresponding to θN and ωM must be trivial in
the gauge d.o.f. This implies that, according to Eq. (9), the
shift vectors are constrained to satisfy NV, MW ∈ ΛE8×E8

because the lattice is integer (i.e., the inner product of
different lattice vectors is an integer). Secondly, WLs must
be consistent with the torus geometry and the orbifold

action on it. For a given point group generator, in general,
ϑei ¼

P
jγijej for some integer coefficients γij. This

implies that the WLs must fulfill the relations Ai ¼ γijAj

up to lattice translations in ΛE8×E8
. The set of resulting

equations of this type can be reduced to conditions for the
WLs; some of them must vanish and other WLs Ai have a
nontrivial order Ni, such that NiAi ∈ ΛE8×E8

(without
summation over i).
The final constraint on the gauge embedding comes from

modular invariance, which is a string theoretical require-
ment ensuring that the compactified field theory is anomaly
free. In the most general case of AbelianZN × ZM heterotic
orbifolds, modular invariance requires that [39]

NðV2 − v2Þ ¼ 0 mod 2; NiðV · AiÞ ¼ 0 mod 2; i ¼ 1;…; 6;

MðW2 − w2Þ ¼ 0 mod 2; NiðW · AiÞ ¼ 0 mod 2;

MðV ·W − v · wÞ ¼ 0 mod 2; NiA2
i ¼ 0 mod 2;

gcdðNi; NjÞðAi · AjÞ ¼ 0 mod 2; i ≠ j: ð10Þ

Here we consider θ ¼ diagðe2πiv1 ; e2πiv2 ; e2πiv3Þ and ω ¼
diagðe2πiw1 ; e2πiw2 ; e2πiw3Þ in terms of the two twist vectors,
v and w.
The space group together with the corresponding gauge

twisting group, fulfilling all the previous requirements,
builds up an admissible symmetric, Abelian orbifold com-
pactification of a heterotic string.
The properties of the space group and a compatible

gauge twisting group completely determine the matter
content of the emerging four-dimensional field theory.
The matter fields in a heterotic orbifold correspond to
the quantum states of (left- and right-moving) closed string
modes, that are left invariant under the action of all
elements of the space and gauge twisting groups. String
modes that are not invariant under the orbifold do not build
admissible states of the compactification. Closed strings in
an orbifold are of two kinds: untwisted and twisted strings.
Untwisted strings are closed strings found among the
original strings of the ten-dimensional heterotic theory
and that are not projected out by the orbifold action.
Twisted strings are special. They arise only because of
the appearance of the orbifold singularities and are thus
attached to them.
As in the uncompactified theory, four-dimensional

effective states consist of a left- and a right-moving com-
ponent. Both components must fulfill the so-called level-
matching condition,MR ¼ ML, whose origin is that there is
no preferred point on a closed string. For nonzero masses of
string states are few times the string scale Ms, which is
close to the Planck scale, any massive state is too massive to
be observed at low energies and, therefore, decouples from
the observable matter spectrum of the compactification.

In string compactifications aiming at reproducing the
physics of our universe, one must thus focus on the study
of massless (super)fields, ML ¼ MR ¼ 0.
Since in ten dimensions the only massless closed strings

found in the heterotic theory are those corresponding to
the E8 × E8 superfields and the gravity supermultiplet, the
untwisted closed-string states that are invariant under the
orbifold represent first the unbroken four-dimensional
gauge superfields that generate the unbroken gauge group
G4D ⊂ E8 × E8, and the four-dimensional gravity multiplet.
Additionally, they correspond to the (untwisted) moduli,
which parametrize the size and shape of the orbifold, and
some (untwisted) matter fields that transform nontrivially
under G4D. The gauge properties of heterotic string fields
are determined by their left-moving momentum, which for
untwisted fields is just a vector of the root lattice of the ten-
dimensional gauge group, p ∈ ΛE8×E8

. Those states whose
momenta satisfy p · V ¼ p ·W ¼ p · Ai ¼ 0 mod 1 belong
to the gravity multiplet, the gauge multiplets or are moduli;
the rest of the states have nontrivial gauge quantum
numbers and build therefore matter fields.
The twisted states correspond to closed strings whose

center of mass is at the orbifold singularities. Their left- and
right-moving momenta depend on the constructing element
associated with the singularity to which they are attached,
according to our discussion in Sec. II A 1. The matter
spectrum of string states of an orbifold is mostly populated
by twisted fields. The gauge momentum of a string attached
to the fixed point associated with the constructing element g
is given by psh ¼ pþ Vg, where Vg is defined in Eq. (7).
The corresponding states remain in the orbifold spectrum
only if they are invariant under the action of all centralizer
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elements h ∈ S, such that ½g; h� ¼ 0. It is thus clear that,
when some WL is chosen to vanish, Aj ¼ 0 for some fixed
j (up to lattice translations), four-dimensional matter fields
located at the singularities with constructing elements
ðθnωm;μjejþ

P
i≠jμieiÞ and ðθnωm;μ0jejþ

P
i≠jμieiÞ are

identical concerning their quantum numbers under G4D, as
long as their centralizers are equivalent. Following the final
remarks in Sec. II A 1, those states would nevertheless be
related under the internal geometric (permutation) sym-
metry of the orbifold. However, if Aj ≠ 0, psh at various
singularities differ, breaking the permutation symmetry.
These are key observations to arrive at the flavor sym-
metries, as we now proceed to discuss.

III. FLAVOR SYMMETRIES IN ABELIAN
HETEROTIC ORBIFOLDS

A. Symmetries from string selection rules

As long as the strings are not deformed by the
spacetime curvature, conformal field theory (CFT) is a
useful tool to compute, e.g., the amplitude of the
interactions among the fields related to the string states
[40–43]. Since orbifolds are flat everywhere but at
isolated points, the description of the string dynamics
is just as in the original uncompactified theory, even
after compactification on these spaces. This is a great
advantage of orbifold compactifications because we must
not rely on a supergravity approximation, which might
break the connection between string theory and the four-
dimensional effective model.
In the CFT, one determines the coupling strength of

interactions among, say, r effective fields Φl, l ¼ 1;…; r,
by computing the r-point correlation functions of the vertex
operators associated with the interacting fields,

A ¼ hVð1Þ
−1=2V

ð2Þ
−1=2V

ð3Þ
−1V

ð4Þ
0 � � �VðrÞ

0 i; ð11Þ

where VðlÞ
−1=2 denotes a fermionic vertex operator in the

ð−1=2Þ-ghost picture and VðlÞ
0;−1 denote bosonic vertex

operators in the 0 or ð−1Þ-ghost pictures. The explicit
expressions are written in terms of the quantum numbers of
the string states (cf. e.g., [38]), revealing that there is a
number of conditions that those quantum numbers must
satisfy in order for the interaction amplitudes (11) to be
nonvanishing. These conditions are known as selection
rules [38,44–49]. The selection rules, beside gauge invari-
ance, include R-charge conservation and space-group
invariance, which deserve a discussion because they lead
to discrete symmetries that may be important for flavor
physics.

1. R-charge conservation

In addition to the left-moving momentum psh that
contains the information about its gauge charges, a string

state has the so-called H-momentum qsh in the three
compactified, complex dimensions za. In the bosonic
formulation of the heterotic string, the entries of the
H-momentum are fractional numbers that depend on
whether they correspond to the description of a fermion
or a boson, differing by �1=2 units. This momentum,
together with the number of left- and right-moving oscil-
lator perturbations acting on the vacuum, build the so-
called R-charge (see e.g., [48,49]), which, in contrast to
pure H-momentum, is invariant under the ghost picture-
changing operation.4

By computing CFT correlation functions (11), one can
demonstrate that weakly-coupled strings interact only if the
total R-charge of the coupling satisfies a conservation
principle stated as [48,49]

Xr

l¼1

RðlÞ
a ¼ −1 mod Na; a ¼ 1; 2; 3; ð12Þ

where each integer Na denotes the order of the point
group generators acting on the ath complex coordinate za

of the six-dimensional torus, i.e., such that Nava ∈ Z. If

one normalizes the charges RðlÞ
a to be integers by multi-

plying by Na, Eq. (12) provides the discrete symmetry
group ZN2

1
× ZN2

2
× ZN2

3
.

On the other hand, since these R-charges distinguish the
bosonic and fermionic components of the four-dimensional
effective superfields, the discrete symmetry arising from
this invariance principle can be only an R symmetry,
explaining why they are called R-charges. We assume
here that flavor symmetries are not R symmetries, thus the
discrete, ZN2

1
× ZN2

2
× ZN2

3
symmetry of R-charges cannot

be part of a flavor symmetry.

2. Space-group invariance

In the compactified theory, interactions must be invari-
ant under the space group that defines the orbifold
compactification. This implies that the joint action of
the composition of the constructing elements of the
interacting strings must be trivial on the orbifold (rather
than on the torus). This condition is the so-called space-
group selection rule. If we denote the constructing
element of the fixed point zf;l of the sector ðϑl; μðlÞÞ
as gðlÞf ¼ ðϑl; μðlÞf Þ, the space-group selection rule is
given by

4The ghost picture or ghost charge of the vertex operators is
given as subindex in Eq. (11). The total ghost charge must be −2
to cancel the ghost charge þ2 of the sphere on which A is
computed. However, all different ghost-charge assignations or
pictures yielding the same total ghost charge provide equivalent
results. Thus, it is natural to demand that physical charges be
invariant under ghost-picture changing.
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Yr
l¼1

gðlÞf ¼
Yr
l¼1

ðϑl; μðlÞf Þ¼! ð1;⋃
l
Λ̃ lÞ; Λ̃ l ¼ ð1 − ϑlÞΛ;

ð13Þ

where e.g., ϑl ¼ θqlωwl for ZN × ZM orbifolds and Λ̃ l
denotes the invariant sublattice of fixed points. The
invariant sublattice of fixed points is such that, if the

fixed point zf;l has constructing element gðlÞf and λ̃ ðlÞ ¼
ð1 − ϑlÞλ with arbitrary λ ∈ Λ, then zf;l þ λ is the fixed

point associated with the constructing element ðϑl; μðlÞf þ
λ̃ ðlÞÞ which is in the conjugacy class of gðlÞf and refers
thus to the same fixed point in the orbifold.
In order to satisfy the space-group selection rule, we

must impose first that
Q

lϑl¼! 1, which for ZN × ZM
orbifolds amounts to demanding

Xr

l¼1

ql ¼! 0 mod N;
Xr
l¼1

wl ¼! 0 mod M: ð14Þ

These relations suggest that the effective fields Φl can
be considered to transform under a discrete symmetry
ZN × ZM with charges ðql; wlÞ. Nonetheless, as we shall
shortly see, these two symmetries are not always indepen-
dent, yielding sometimes a smaller symmetry.
The second part of the space-group selection rule can be

rewritten as

μð1Þf þ
Xr

l¼2

�Yl−1
l0¼1

ϑl0

�
μðlÞf ¼!

Xr
l¼1

λ̃ ðlÞ; λ̃ ðlÞ ∈ Λ̃ l: ð15Þ

Since all vectors λ̃ ðlÞ and μðlÞf can be expressed in terms of
the basis vectors ei, i ¼ 1;…; 6, Eq. (15) becomes a set
of (up to) six independent conditions similar to those of
Eq. (14), which depend on the specifics of the space group
elements; i.e., the four-dimensional fields are charged
under additional ZNi

, i ¼ 1;…; 6, that depend on the
space group.
To illustrate the conditions that follow from Eq. (15), let

us consider the T 2=Z2 × Z2 orbifold with the point-group
generators given by Eq. (6), ignoring the rest of the six-
dimensional heterotic orbifold (see footnote 2). A generic
element λ ∈ Λ is written as λ ¼ λ1e1 þ λ2e2 with λi ∈ Z.
Let us suppose that we are considering couplings among
states arising only from the sector ðθω; μÞ ¼ ð−1; 1

2
ðe1 −

e2ÞÞ since no fixed points appear in the g1 and g2 sectors of
this orbifold. Because of Eq. (14) and ql ¼ wl ¼ 1 for all
massless twisted states we consider, we learn that the
number r of fields that an admissible coupling can have in
this orbifold is even. A general element of the correspond-
ing invariant sublattice is given by ð1 − ϑÞλ ¼ 2λ ¼
2λ1e1 þ 2λ2e2. Thus, we see that Eq. (15) takes the form

μð1Þ − μð2Þ þ μð3Þ − μð4Þ þ � � � − μðrÞ ¼! 2λ; ð16Þ
where the sign in the last vector is a consequence of r
being even. Rewriting the constructing elements as gf;0 ¼
ð−1; μþ e2Þ and gf;1 ¼ ð−1; μþ e1 þ e2Þ, so that the
field Φl in a coupling may have the constructing element

gðlÞf ¼ ð−1; μþ nðlÞ1 e1 þ nðlÞ2 e2Þ with ðnðlÞ1 ; nðlÞ2 Þ ¼ ð0; 1Þ
or (1,1), we find that Eq. (16) yields two (apparently)
independent conditions

nð1Þ1 þ nð2Þ1 þ nð3Þ1 þ nð4Þ1 þ � � � þ nðrÞ1 ¼! 0 mod 2;

nð1Þ2 þ nð2Þ2 þ nð3Þ2 þ nð4Þ2 þ � � � þ nðrÞ2 ¼! 0 mod 2; ð17Þ
where we have used that the integer λi can be replaced by

λ0i−nð2Þi −nð4Þi − � � �−nðrÞi , i¼1, 2, without loss of generality.
Another important observation is that the orbifold sectors
corresponding to the generators g1 and g2 do not lead to fixed
points. This implies that there are no massless twisted states
related to those sectors. Thus, if one focuses on massless
twisted states, our previous considerations are enough to
arrive at the flavor symmetry in the effective theory.
From our discussion, one could be tempted to conclude

that the discrete symmetry emerging from the space group
is Z4

2. This is wrong. The correct discrete symmetry that
massless states support is only a Z2 × Z2. The reason is
as follows. First, since the point-group charges of these
states satisfy ql ¼ wl ¼ 1, if

P
lql ¼ r ¼ 0 mod 2, thenP

lwl ¼ r ¼ 0 mod 2 too. That is, we obtain only one
independent Z2 from these conditions. Similarly, the
second equation of (17) is automatically fulfilled once
r ¼ 0 mod 2 has been imposed because we have chosen

ðnðlÞ1 ; nðlÞ2 Þ ¼ ð0; 1Þ or (1,1). However, there exists a non-
trivial condition yielding a Z2 that does contribute to
the flavor symmetry of massless states in the sample
T2=Z2 × Z2 orbifold that we study here.5

It must be stressed that the symmetries that we have
discussed are only related to massless states. Massive string
states can wind on a torus even if it has no fixed points. In
our example, this case would correspond to constructing
elements such as g1 or g2. When all elements of the space
group are taken into account, the corresponding symmetry
becomes larger and the charges associated with the point-
group generators and translations combine. Nevertheless,
in this paper we shall only consider massless states and
leave the general discussion for future work [50].

B. General structure of flavor symmetries

In orbifold compactifications (of any string theory),
flavor symmetries can arise from the properties of the

5It is possible to show that nðlÞ1 þ nðlÞ2 is the only Z2 charge
that is independent of the choice of the constructing elements we
take (from their conjugacy classes). We thank Patrick K. S.
Vaudrevange for very useful discussions and insight on this topic.
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space group. In particular, in heterotic orbifolds, they
emerge as a result of combining the geometric properties
of the extra dimensions and the symmetries emerging from
the selection rules that we examined in the previous section.
As we have illustrated in Sec. II A 1, if the global

structure of an orbifold contains n fixed points, the compact
space exhibits an Sn permutation symmetry, which indi-
cates that geometrically all singularities are equivalent.
From the perspective of the gauge quantum numbers, four-
dimensional effective fields Φl located at the singularities
do not display any difference as long as the gauge
embeddings Vg associated with the singularities are equal
(see Eq. (7) and final remarks in Sec. II B). Under these
conditions, the four-dimensional twisted fields build up
nontrivial Sn representations.
In the case of factorizable orbifolds, i.e., when T 6 can be

decomposed as Td1 × Td2 × � � �, each subtorus has at least a
Kähler modulus that allows for differences in the effective
theory of the fields originated in different tori. Thus,
considering a number of singularities in each torus, the
full permutation symmetry of the orbifold is the product
Sn1 × Sn2 × � � �, where each factor corresponds to the
permutation symmetry among the fixed points localized
at each of the various tori.
Invariance under the full permutation group holds only if

all WLs have trivial values. When someWLs are nontrivial,
(at least some) twisted states with identical gauge quantum
numbers located at various fixed points get different gauge
properties and some others do not change. Hence, the four-
dimensional field theory is not invariant under the full
permutation symmetry anymore, but only under (at most) a
(permutation) subgroup thereof. Therefore, the permutation
symmetry is said to be explicitly broken by nontrivial WLs
in heterotic orbifold compactifications. The permutation
symmetry is completely broken when all WLs have non-
trivial values.
In order to identify the permutation symmetries, it is

important to notice which singularities prevail in the global
structure of the orbifold. In simple prime ZN orbifolds, the
same singularities appear in all sectors. However, in less
trivial orbifolds, different sectors (corresponding to inequi-
valent space group elements) have in general different
singularities. It is the intersection of all sectors what
determine the global structure of the orbifold. This means
that only the singularities appearing in all sectors must be
regarded to determine the permutation symmetries. These
fixed points, which include points in invariant subtori (like
those of Z2 × ZM orbifolds), exhibit equivalent centralizers
and thus the associated twisted states are equal.
Both the permutation symmetry and the Abelian space-

group symmetries build a large set of symmetry generators,
usually denoted by ðSn1 × Sn2 × � � �Þ ∪ ðZN1

× ZN2
× � � �Þ.

The multiplicative closure of the elements of this set
constitutes the flavor symmetry perceived by the four-
dimensional effective fields. In most cases, the product

of Abelian discrete symmetries originated from the space
group, ZN1

× ZN2
× � � �, is a normal subgroup of

ðSn1 × Sn2 × � � �Þ ∪ ðZN1
× ZN2

× � � �Þ, which implies that
the flavor group is given by GF ¼ ðSn1 × Sn2 × � � �Þ ⋉
ðZN1

× ZN2
× � � �Þ. Only in a few cases, the resulting

symmetry requires extra generators, leading to a symmetry
that differs from this structure. This is important when
nontrivial WLs are considered.

1. Flavor symmetries in orbifolds
with roto-translations

If the generators of the space group include roto-
translations, some sectors may not exhibit fixed points.
As a consequence, no massless states can appear in those
sectors and, therefore, the sectors can be ignored to
determine the flavor symmetries of the massless spectrum.
As an illustration, let us study again our T2=Z2 × Z2

example defined by the generators around Eq. (6). In that
case, only the sector g ¼ g1g2 has two inequivalent fixed
points. The sectors g1 and g2 do not exhibit fixed points and
thus cannot support massless states. The global geometric
structure of the orbifold is just that of the projective plane
with two singularities, allowing, in the absence of WLs, for
an S2 ≃ Z2 permutation symmetry of the twisted states. In
addition, as we discussed in Sec. III A, there is a Z2 × Z2

symmetry due to the space group selection rule. That is, we
observe that the four-dimensional effective theory must be
invariant under the set S2 ∪ ðZ2 × Z2Þ of symmetries. It is
possible to verify that the group Z2 × Z2 remains invariant
under S2 elements, so it is a normal subgroup, which
implies that the multiplicative closure of the set of
symmetries is S2 ⋉ ðZ2 × Z2Þ ≃D4. Therefore, the corre-
sponding flavor symmetry is GF ¼ D4, which coincides
with the emerging flavor symmetry when only one dimen-
sion is compactified on an S1=Z2 orbifold.

C. Flavor symmetries of Abelian orbifolds
without Wilson lines

One of the outcomes of our study is a full classification
of the flavor symmetries emerging from six-dimensional
Abelian orbifold compactifications without WLs. Intere-
stingly, these symmetries do not depend on the specific
string theory to be compactified. They correspond to the
flavor symmetries perceived by four-dimensional massless
closed-string states attached to the orbifold singularities.
Thus, without any further elements (such as D-branes,
orientifolds and open strings), the flavor symmetries we
find are common to all four-dimensional supersymmetric
models arising from orbifold compactifications in generic
points of their moduli space.
In these orbifolds, all states associated with fixed points

of a particular sector have identical gauge quantum
numbers and only their localization in different, indepen-
dent tori, Td1 ; Td2 ;…, distinguish them. By applying the
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tools explained in the previous section, we determine the
flavor symmetries of all 138 admissible Abelian orbifolds.
Our findings are presented in Table II. Following the

notation of Ref. [22], we label each Abelian orbifold,
presenting its point group symmetry, and, in parentheses,
the labels ði; jÞ of the corresponding Z and affine classes,
as introduced in Sec. II B. These space group labels are
presented in the first and third columns. In the second and
fourth columns of Table II, we display the corresponding
flavor symmetries at massless level.
There are three space groups which do not lead to any

flavor symmetries. The reason is that no fixed points and
thus no twisted states appear in those orbifolds. Further,
there are 71 orbifolds that yield only Abelian symmetries.
The origin of this simplicity in those cases is that only one
fixed point is common to all sectors and thus only one point
appears in the global structure of the orbifold, avoiding
permutation symmetries. We also observe that 45 cases

TABLE II. Flavor symmetries of Abelian toroidal heterotic
orbifolds with point groups ZN and ZN × ZM. In the first and
third columns, we provide the point group as well as the labels
ði; jÞ of the torus lattice and the roto-translational element,
respectively, according to the classification of [22]. The second
and fourth columns display the corresponding flavor symmetries.
The flavor symmetry for the space groupZ2 × Z4 (1,1) reported in
[7] differs from ours because they incorrectly divide an extra Z2.

Orbifold Flavor symmetry

Z2 × Z2 (1,1) D4
6=Z4

2

(1,2) Z2 × Z2

(1,3) ðD4 ×D4 ×D4Þ=Z2

(1,4) � � �
(2,1) D4

5=Z3
2

(2,2) Z2 × Z2

(2,3) ðD4 ×D4 ×D4Þ=Z2
2

(2,4) Z2 × Z2

(2,5) ðD4 ×D4Þ=Z2

(2,6) � � �
(3,1) ðD4 ×D4 ×D4 ×D4Þ=Z2

2

(3,2) Z2 × Z2

(3,3) ðD4 ×D4Þ=Z2

(3,4) � � �
(4,1) ðD4 ×D4 ×D4 ×D4Þ=Z2

2

(4,2) Z2 × Z2

(5,1) ðD4 ×D4 ×D4 ×D4Þ=Z2
2

(5,2) Z2 × Z2

(5,3) Z2 × Z2

(5,4) ðD4 ×D4Þ=Z4

(5,5) Z2 × Z2

(6,1) ðD4 ×D4 ×D4 ×D4Þ=Z2
2

(6,2) Z2 × Z2

(6,3) D4

(7,1) ðD4 ×D4 ×D4Þ=Z2

(7,2) Z2 × Z2

(8,1) D4 ×D4

(Table continued)

TABLE II. (Continued)

Orbifold Flavor symmetry

(9,1) ðD4 ×D4 ×D4Þ=Z2

(9,2) Z2 × Z2

(9,3) Z2 × Z2

(10,1) D4 ×D4

(10,2) Z2 × Z2

(11,1) ðD4 ×D4 ×D4Þ=Z2

(12,1) D4 ×D4

(12,2) Z2 × Z2

Z2 × Z4 (1,1) ðD4 ×D4 ×D4 ×D4 × Z4Þ=Z3
2

(1,2) Z2 × Z4

(1,3) Z2 × Z4

(1,4) Z2 × Z4

(1,5) Z2 × Z4

(1,6) ðD4 ×D4 ×D4 × Z4Þ=Z2
2

(2,1) ðD4 ×D4 ×D4 ×D4 × Z4Þ=Z3
2

(2,2) Z2 × Z4

(2,3) Z2 × Z4

(2,4) ðD4 ×D4 × Z4Þ=Z2

(2,5) Z2 × Z4

(2,6) Z2 × Z4

(3,1) ðD4 ×D4 ×D4 × Z4Þ=Z2
2

(3,2) Z2 × Z4

(3,3) Z2 × Z4

(3,4) Z2 × Z4

(3,5) Z2 × Z4

(3,6) Z2 × Z4

(4,1) ðD4 ×D4 × Z4Þ=Z2

(4,2) Z2 × Z4

(4,3) Z2 × Z4

(4,4) Z2 × Z4

(4,5) Z2 × Z4

(5,1) ðD4 ×D4 ×D4 × Z4Þ=Z2
2

(5,2) Z2 × Z4

(6,1) ðD4 ×D4 ×D4 × Z4Þ=Z2
2

(6,2) Z2 × Z4

(6,3) Z2 × Z4

(6,4) Z2 × Z4

(6,5) Z2 × Z4

(7,1) (D4 ×D4 × Z4Þ=Z2

(7,2) Z2 × Z4

(7,3) Z2 × Z4

(8,1) ðD4 ×D4 × Z4Þ=Z2
2

(8,2) Z2 × Z4

(8,3) Z2 × Z4

(9,1) ðD4 ×D4 × Z4Þ=Z2

(9,2) Z2 × Z4

(9,3) Z2 × Z4

(10,1) Z2 × Z4

(10,2) Z2 × Z4

Z2 × Z6-I (1,1) ðD4 ×D4 × Z6Þ=Z2

(1,2) Z2 × Z6

(2,1) ðD4 ×D4 × Z6Þ=Z2

(2,2) Z2 × Z6

Z2 × Z6-II (1,1) Z2 × Z6

(2,1) Z2 × Z6

(Table continued)
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include D4 factors, whereas 19 space groups lead to Δð54Þ
flavor-symmetry factors, three exhibit S4 and only one
contains S7. In some cases the structure of the flavor
symmetry follows a factorizable pattern, that is, the
resulting flavor symmetry is the direct product of two or
more independent non-Abelian symmetries; see e.g., the
(8,1) geometry of Z2 × Z2 orbifolds. However, most of the
resulting flavor symmetries are more complicated products
and quotients of several permutation and cyclic groups.
As expected from previous studies [3], D4 flavor factors

appear in Z2 × ZM orbifolds whereas Δð54Þ is present in
Z3 × ZM orbifolds. However, we see that also other
symmetries arise in those cases. Thus, only the careful
study of the space groups that we carry out here reveals the
flavor symmetries of the four-dimensional effective theo-
ries arising from orbifold compactifications.
Note that, given aZN × ZM point group, the largest flavor

symmetry arises for ði; jÞ ¼ ð1; 1Þ, because the space groups
with i, j > 1 correspond to nonfactorizable six-dimensional
tori and/or include roto-translations. Both features reduce the
number of fixed points in the orbifold with respect to the
(1,1) space group, avoiding large permutation symmetries.
Yet there are two exceptional cases: the flavor symmetries of
Z6–I and Z12–I (1,1) orbifolds are smaller than those for
i > 1. This follows from the fact that the point group induces
only a Z3 symmetry for the twisted states due to their
localization in the i ¼ 1 case.
One of the conclusions one may draw from these results is

that the four-dimensional massless spectrum of supersym-
metric heterotic orbifold compactifications can only have
one of the flavor symmetries presented here or a subgroup
thereof. However, these symmetries may be enhanced by
imposing very special conditions on the vacuum, that is, by
requiring that the expectation values of moduli satisfy
particular relations. For example, if one demanded that all
Kähler moduli of the (1,1) case of Z3 × Z3 have the same
value, the Δð54Þ3=Z3 flavor symmetry would be enhanced
to the multiplicative closure of S27 ∪ Z3

5.
It has also been shown that the discrete flavor sym-

metries found here can be enlarged to continuous gauge
symmetries at some symmetry-enhanced points of the
moduli space [12]. In this work, as already pointed out,
we suppose that, if moduli stabilization is possible in these
scenarios [51,52], the vacua obtained correspond in general
to nonenhanced points in the moduli space.

TABLE II. (Continued)

Orbifold Flavor symmetry

(3,1) Z2 × Z6

(4,1) Z2 × Z6

Z3 × Z3 (1,1) ðΔð54Þ × Δð54Þ × Δð54ÞÞ=Z3

(1,2) Z3 × Z3

(1,3) Z3 × Z3

(1,4) ðΔð54Þ × Δð54ÞÞ=Z3

(2,1) Δð54Þ × Δð54ÞÞ
(2,2) Z3 × Z3

(2,3) Z3 × Z3

(2,4) ðΔð54Þ × Δð54ÞÞ=Z3

(3,1) Δð54Þ × Δð54Þ
(3,2) Z3 × Z3

(3,3) ðΔð54Þ × Δð54ÞÞ=Z3

(4,1) Δð54Þ × Δð54Þ
(4,2) Z3 × Z3

(4,3) ðΔð54Þ × Δð54ÞÞ=Z3

(5,1) Z3 × Z3

Z3 × Z6 (1,1) Δð54Þ × Z6

(1,2) Z6 × Z3

(2,1) Δð54Þ × Z6

(2,2) Z6 × Z3

Z4 × Z4 (1,1) ðD4 ×D4 ×D4 × Z4 × Z4Þ=Z3
2

(1,2) Z4 × Z4

(1,3) Z4 × Z4

(1,4) Z4 × Z4

(2,1) ðD4 ×D4 × Z2
4Þ=Z2

2

(2,2) Z4 × Z4

(2,3) Z4 × Z4

(2,4) Z4 × Z4

(3,1) ðD4 ×D4 × Z2
4Þ=Z2

2

(3,2) Z4 × Z4

(4,1) ðD4 ×D4 × Z2
4Þ=Z2

2

(4,2) Z4 × Z4

(4,3) Z4 × Z4

(5,1) Z4 × Z4

(5,2) Z4 × Z4

Z6 × Z6 (1,1) Z6 × Z6

Z3 (1,1) ðΔð54Þ × Δð54Þ × Δð54ÞÞ=Z2
3

Z4 (1,1) ðD4 ×D4 ×D4 ×D4 × Z4Þ=Z4
2

(2,1) ðS4 × S2 × S2Þ ⋉ ðZ3
4 × Z3

2Þ
(3,1) ðS4 × S4Þ ⋉ ðZ5

4 × Z2
2Þ

Z6-I (1,1) Δð54Þ
(2,1) ðΔð54Þ × Z6Þ=Z3

Z6-II (1,1) Δð54Þ × ½D4 ×D4=Z2�
(2,1) ½ðΔð54Þ × Z6Þ=Z3� × ½D4

2=Z2
2�

(3,1) ½ðΔð54Þ × Z6Þ=Z3� × ½D4
2=Z2

2�
(4,1) ½ðΔð54Þ × Z6Þ=Z3� × ½D4=Z2�

Z7 (1,1) S7 ⋉ Z6
7

Z8-I (1,1) ðD4 ×D4 × Z8Þ=Z2
2

(2,1) ðD4 ×D4 × Z8Þ=Z2
2

(3,1) S4 ⋉ ðZ8 × Z2
4 × Z2Þ

(Table continued)

TABLE II. (Continued)

Orbifold Flavor symmetry

Z8-II (1,1) ðD4 ×D4 ×D4 × Z8Þ=Z3
2

(2,1) ðD4 ×D4 × Z8Þ=Z2
2

Z12-I (1,1) Δð54Þ
(2,1) ðΔð54Þ × Z12Þ=Z3

Z12-II (1,1) ðD4 ×D4Þ=Z2
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IV. ZN × ZM HETEROTIC ORBIFOLDS WITH
MSSM-LIKE PROPERTIES

The flavor symmetries classified and showed in Table II
correspond to the largest symmetries that the four-
dimensional effective field models emerging from orbifold
compactifications exhibit. However, in general, they are not
the flavor symmetries that models with semirealistic
features have because those models include nontrivial
WLs, which break the permutation symmetries and thus
the flavor symmetries.
To determine the unbroken flavor symmetries that

promising models can have, one must know the WL-
structure of all promising orbifold compactifications in the
different geometries, and, furthermore, the unbroken sub-
group of the flavor groups once nontrivial WLs are
included in those orbifold geometries.
Clearly, performing a full classification of semirealistic

heterotic orbifolds is beyond our capabilities. The first
reason is that, given the vastness of the landscape, even the
best available algorithms to look for promising models
could miss some of them. A second reason is that any such
a classification will certainly be very time-consuming.
Instead, we use the orbifolder [37] to perform a
random search of Abelian orbifold compactifications with
properties similar to those of the MSSM. Even in this
context, exploring all geometries is very challenging. Thus,
since it seems more likely to find appropriate phenom-
enology with non-Abelian flavor symmetries, we restrict

ourselves to a search of phenomenologically promising
models, considering only the 64 (19 ZN and 45 ZN × ZM)
orbifold geometries that allow for non-Abelian flavor
symmetries in the absence of WLs (see Table II).
We shall regard here an orbifold compactification as

phenomenologically viable if its four-dimensional effective
massless spectrum satisfies the following requirements:

(i) the unbroken gauge group is GSM × Ghidden ¼
SUð3Þc × SUð2ÞL × Uð1ÞY × Ghidden, where Ghidden
contains additionally (Abelian and non-Abelian)
continuous gauge factors, and the Uð1ÞY is non-
anomalous and compatible with grand unification;

(ii) the effective (twisted and untwisted) states include
fields that reproduce the matter spectrum of the
MSSM; and

(iii) additional effective states are vector-like with respect
to GSM and include SM singlets that can play the role
of right-handed neutrinos.

With these restrictions, we have performed a broad
(although nonexhaustive) search of inequivalent promising
models arising from Abelian toroidal orbifold geometries
that exhibit non-Abelian flavor symmetries in the absence
of WLs. We have studied 19 geometries of ZN orbifolds
and 45 geometries of ZN × ZM orbifolds, including cases
with roto-translations. In Tables III and IV, we report the
results of our search.
Table III displays the number of ZN orbifolds models

with promising features. There are no models with the

TABLE III. Number of ZN heterotic orbifold models with different geometries yielding the MSSM matter
spectrum. In the first column it is shown the orbifold label according to [22]. The maximum number of independent
WLs is written in the second column and the number of models found for each number of vanishing WLs is also
shown. In the final column we display the total number of MSSM-like models.

# of MSSM-like models with

0 1 2 3

Orbifold Max # of independent WLs vanishing WL Total

Z4 (2,1) 3 149 0 0 0 149
(3,1) 2 27 0 0 27

Z6-I (1,1) 1 30 0 30
(2,1) 1 30 0 30

Z6-II (1,1) 3 26 337 0 0 363
(2,1) 3 14 335 0 0 349
(3,1) 3 18 335 0 0 353
(4,1) 2 44 312 0 356

Z7 (1,1) 1 1 0 1

Z8-I (1,1) 2 230 38 0 268
(2,1) 2 205 41 0 246
(3,1) 1 389 0 389

Z8-II (1,1) 3 1,604 398 21 0 2,023
(2,1) 2 274 231 0 505

Z12-I (1,1) 1 556 0 556
(2,1) 1 555 0 555

Z12-II (1,1) 2 279 84 0 363
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required properties of Z3 and Z4 (1,1) orbifolds, reason
why these cases are not presented. In the first column,
we label each orbifold geometry as in Table II. In the
second column, we write the maximal number of
admissible WLs. The numbers presented in the third
through sixth columns correspond to the number of
models with 0, 1, 2 and 3 vanishing WLs. For example,
we have found 398 semirealistic Z8-II (1,1) orbifold
models with one vanishing WL (out of maximally three
possible WLs); i.e., there are 398 promising models
with two nonzero WLs. The last column provides the

total number of models of each geometry. In total, we
find 6,563 phenomenologically viable models arising
from all ZN orbifold geometries. We notice that about
52% of these models arise from the different geometries
of Z8 orbifolds.
In Table IV, where the same notation as in Table III is

followed, we show our results for the ZN × ZM geometries
we selected because they exhibit non-Abelian flavor
symmetries in the absence of WLs. Only space groups
that yield promising models are presented; this is why only
34 (out of the 45 chosen) geometries are listed.

TABLE IV. Number of ZN × ZM heterotic orbifold models with different geometries yielding the MSSM matter
spectrum. The maximum number of independent WLs and the total number of models is also shown. The number of
promising models of Z6 × Z6 orbifolds is presented as a representative of geometries not admitting WLs and
yielding four-dimensional field theories endowed only with Abelian flavor symmetries; it is remarkable to find a
large number of semirealistic models even without WLs.

# of MSSM-like models with

0 1 2 3 ≥ 4

Orbifold Max # of independent WL vanishing WL Total

Z2 × Z2 (1,1) 6 1 152 52 0 0 205
(2,1) 5 13 342 14 0 0 369
(3,1) 5 4 400 40 0 0 444
(5,1) 4 2 40 0 0 0 42
(6,1) 4 344 57 0 0 0 401
(7,1) 4 21 55 0 0 0 76
(8,1) 4 25 0 0 0 25
(9,1) 3 25 2 0 0 27
(10,1) 3 19 2 0 0 21
(12,1) 2 3 0 0 3

Z2 × Z4 (1,1) 4 454 8,637 1,463 26 0 10,580
(1,6) 2 65 21 0 86
(2,1) 4 260 4,686 1,131 81 0 6,158
(2,4) 2 281 47 0 328
(3,1) 3 13,117 3,637 103 0 16,857
(4,1) 3 2,911 1,575 33 0 4,519
(5,1) 3 1,311 742 63 0 2,116
(6,1) 3 1,814 1,374 58 0 3,246
(7,1) 3 1,481 1,122 64 0 2,667
(8,1) 2 839 72 0 911
(9,1) 2 1,620 522 0 2,142

Z2 × Z6-I (1,1) 2 467 116 0 583
(2,1) 2 275 78 0 353

Z3 × Z3 (1,1) 3 40 987 81 0 1,108
(1,4) 1 8 0 8
(2,1) 2 1,713 239 0 1,952
(3,1) 2 6 0 0 6
(4,1) 2 105 110 0 215

Z3 × Z6 (1,1) 1 4,469 24 4,493
(2,1) 1 495 45 540

Z4 × Z4 (1,1) 3 599 12,091 2,258 5 14,953
(2,1) 2 2,807 3,220 19 6,046
(3,1) 2 2,039 875 6 2,920
(4,1) 2 1,876 1,552 6 3,434

Z6 × Z6 (1,1) 0 3,412 3,412
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Some Z2×Z2 orbifold geometries cannot produce
MSSM-like models because their structures forbid chiral
matter. This was already pointed out in [53,54] as a conse-
quence of the conditions imposed by the space group: in
some Z2 × Z2 orbifolds, all sectors yield independent
effective six-dimensional N ¼ 2 supersymmetric effective
theories, whose combination corresponds to nonchiral field
theories from the four-dimensional perspective of the full
compactification.
Table IV includes the results for Z6 × Z6 orbifolds, even

though this geometry does not provide non-Abelian flavor
symmetries at massless level, solely for the purpose of
comparison.
Excluding Z6 × Z6, we have found 87,834 ZN × ZM

heterotic orbifold compactifications whose four-dimensional
effective theories satisfy our phenomenological constraints.
Interestingly, about 56.5% of these promising models arise
from the different geometries of Z2 × Z4 orbifolds. As
expected, most models with the features of the MSSM
require nontrivial WLs; however, there are a few Z3 × Z6

and Z4 × Z4 examples where the shift vector suffices to
render a consistent gauge embedding of the compactification
geometry with four-dimensional promising features.
In comparison, we note that Z6 × Z6 is much more

fruitful in this sense. Although Z6 × Z6 orbifolds do not
admit nontrivial WLs, there are thousands of models with
MSSM-like properties. This observation may trigger a
phenomenological study on heterotic orbifold models with
Abelian flavor symmetries.
On the other hand, we find that there are only 422

promising models with roto-translations, which can be
identified from Table IV, by inspecting the labels ði; jÞ:
those space groups with j > 1 include roto-translations.
One of the reasons for this behavior is that space groups
with roto-translations impose more restrictions on the
admissibility of WLs, thus making more difficult the
appearance of MSSM-like compactifications.
The list of all 94,397 ZN and ZN × ZM promising

orbifold compactifications of the E8 × E8 heterotic string
found in this study is provided in [55], where not only the
defining data (as required by the orbifolder) for each
of the models is provided, but also their associated flavor
symmetries. Although our results are compatible with
previous findings [23,56], we find as many as seven times
more models than preceding studies. Thus, our results
represent the most exhaustive search of semi-realistic string
compactifications so far.

V. FLAVOR SYMMETRIES IN PROMISING
STRING COMPACTIFICATIONS

One purpose of this work is to provide the flavor
symmetries that phenomenologically viable Abelian orbi-
folds admit. Since most of the promising models discussed
in the preceding section require nonzero WLs, we inves-
tigate now the flavor symmetries that arise when nontrivial

WLs are included in orbifold models with the geometries
that led to our promising models.
As stated in Sec. III B, nonzero WLs fully break some of

the permutation Sn symmetries. If there are independent
permutation symmetries, different WLs can break them if
they acquire nontrivial values. Consequently, if some WLs
have nonvanishing values, the flavor group of the effective
model is a (non-Abelian or Abelian) subgroup of the
classified flavor symmetries of Table II.
A six-dimensional orbifold compactification can have up

to six nontrivial WLs Ai of different orders Ni, but the
constraints on the gauge embedding imposed by each space
group, discussed in Sec. II B, inhibit nontrivial values for
some (and, in some cases, all) of them. For example, in the
two-dimensional orbifold introduced in Sec. II A 1, one can
verify that the WLs A1 and A2 associated with the directions
e1 and e2 must be trivial. Thus, if a promising model
appeared from such a geometry, its flavor symmetry would
then be D4. However, many geometries do admit nontrivial
WLs. Details of the general properties of the WLs allowed
by all Abelian space groups are given in Ref. [22].
We have systematically determined the flavor symmetries

that appear once nontrivial WLs are included in the orbifold
geometries that allow for non-Abelian flavor symmetries,
according to Table II. Our results are presented in Table V for
ZN and Table VI for ZN × ZM orbifold geometries, where
only those space groups that allow for at least one WL are
shown. In those tables, we label the orbifold geometries
according to their space groups, using, as before, the notation
of Ref. [22]. After the label, the maximal possible number of
inequivalent nontrivial WLs is presented.
In the fourth through seventh columns of Table V, we

provide the flavor symmetries that arise in ZN orbifolds
when l ¼ 1;…; 4 nontrivial WLs are allowed. Since some
orbifold geometries admit WLs of different orders and/or,
even if they have the same order, their action is not
symmetric in all compact directions, there may be more
than one possible flavor symmetry for the same number of
nonvanishing WLs.
For example, consider the space group Z4 (2,1), that

admits up to three nontrivial WLs, two of which must
have order two and one must be of order four, and yields
the flavor group ðS4 × S22Þ ⋉ ðZ4

3 × Z2
3Þ. Nontrivial

values for an order-2 WL break an S2 whereas the
order-4 WL breaks the S4 permutation symmetry; that is,
if one order-2 WL and one order-4 WLs are given
nontrivial values, the flavor symmetry contains only S2 as
permutation factor, while if both order-2 WLs acquire
nontrivial values, only S4 appears. The resulting flavor
symmetries in these cases are S2 ⋉ ðZ4 × Z2Þ2 and
S4 ⋉ ðZ4 × Z2Þ2, respectively. The breakdown of a Z4 ×
Z2 factor in the former case is related to the multipli-
cative closure: it is automatically broken when S4 is no
longer a symmetry. Both possible flavor symmetries with
l ¼ 2 WLs are stacked one over the other in the
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corresponding column of Table V. We repeat this reason-
ing for all geometries.
Just below each flavor symmetry, we show the number of

heterotic orbifold models with phenomenologically appeal-
ing properties found in our search with such flavor
symmetry (see Sec. IV) and a given number of nontrivial
WLs. There are several flavor symmetries with which no
promising model can be associated. The final column of the
table counts the total of MSSM-like models corresponding
to each space group.
Table VI follows a similar notation, but there are some

differences. First, in some ZN × ZM orbifold geometries,
there are WLs that do not alter the degeneracy of the fixed
points even though they do have an impact on the gauge
group and other four-dimensional properties of the model.
For this reason, we provide in the fourth column the
maximal number of WLs that affect the flavor group.
Secondly, in some other cases, we find different symmetries
for orbifolds with up to l ¼ 6 nontrivial WLs, which are
given in the fifth through tenth columns.
As before, we also provide under each flavor symmetry

the number of inequivalent promising models found with
such symmetries. The total number of phenomenologically
viable models is given in the last column. We recall here
that, as we already observed in Table IV, there are some
MSSM-like models that do not require nontrivial WLs;
their flavor symmetries do not appear in Table VI (because
they are included in Table II), but they are counted as part of
the total number of models.

A. Distribution of flavor symmetries

Inspecting our results given in Tables V and VI reveals
that (excluding the 3,412 models arising from Z6 × Z6

orbifolds) the 94,397 promising models identified in the
previous section have one of three types of flavor
symmetries:

(i) Products and quotients of powers of D4 with
Abelian Zn factors. We identified as many as
66,742 models with this kind of non-Abelian flavor
symmetries, which amount to about 70.5% of all
promising models. The most frequent combination
is D4 × Z4 × Z2

2, which arises naturally in Z2 × Z4

orbifolds.
(ii) Pure Abelian flavor symmetries, including (direct)

products of Z2, Z3, Z4, Z6, Z7, Z8 and Z12 at dif-
ferent powers. These groups result from the break-
down of all permutation symmetries by the WLs and
are thus the symmetries arising from the space-group
selection rule. We found 26,189 models of this type,
corresponding to about 28% of the total.

(iii) Products and quotients of powers of Δð54Þ with
Abelian Zn factors. We found only 1,466 models
with these flavor symmetries, which represent about
1.5% of all MSSM-like Abelian heterotic orbifolds
we obtained. Models with these flavor symmetries

arise only from orbifolds whose space group has a
Z3 generator, which are not many.

The defining parameters for our promising models,
together with their flavor symmetries, are given in [55].
The fact that D4 appears in the majority of our models

was expected because we saw already from Table II that
most of the space groups yielding non-Abelian flavor
symmetries in compactifications without WLs contain
D4. However, the proportion with respect to models
endowed with Δð54Þ is much larger than expected, dis-
favoring somewhat the latter.
It is known that orbifold compactifications with a D4

flavor symmetry and an MSSM-like matter spectrum are
such that matter generations split in 2þ 1 representations
of D4, where the third generation and its mixings are
distinct from the other two, producing some reasonable
CKM patterns once the flavor symmetry is broken by
VEVs of some SM singlet fields, which turns out to be
required by moduli stabilization and decoupling of exotics.
Thus, we conclude that most heterotic orbifold compacti-
fications with non-Abelian flavor symmetries follow these
patterns, which may deserve further study.
Even though Δð54Þ is not a favored non-Abelian flavor

symmetry in our constructions, the number of promising
models is still significant and must, therefore, be consid-
ered. Phenomenologically, it has been observed that in
Z3 × Z3 heterotic orbifolds furnished with this flavor
symmetry, SM generations frequently appear in flavor
triplets [8]. This means that these appealing models are
endowed with three identical SM generations, justifying the
origin of the flavor multiplicity, but, even after spontaneous
flavor-symmetry breaking, complicating the explanation of
the observed quark and neutrino mixing patterns. It might
be interesting to investigate whether and how this situation
is improved in some other models with this symmetry.
We finally observe that we find that almost no space

group with roto-translations leads to MSSM-like models.
Only the orbifold geometries Z2 × Z4 (1,6), Z2 × Z4 (2,4)
and Z3 × Z3 (1,4) include roto-translations and yield
promising models, although the models of Z3 × Z3 (1,4)
admit only Abelian flavor symmetries. One could therefore
argue that roto-translations impose generally too tight
constraints to arrive at promising Abelian orbifolds. It
would be nevertheless interesting to know what kind of
phenomenology is produced by these models.

VI. FINAL REMARKS

With the goal in mind of finding in string theory some
guidance principle that singles out the discrete symmetry
that might govern the mixing patterns of fermions in the
SM, we have investigated the flavor symmetries that arise
from compactifying symmetrically the heterotic string on
Abelian toroidal orbifolds.
First, we have classified the flavor symmetries associated

with the geometry of all admissible Abelian toroidal
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orbifolds. This classification, presented in Table II, is valid
for the massless closed-string sector of all string theories
compactified on orbifolds for arbitrary values of their
moduli. We find that 64 out of 138 admissible space
groups yield non-Abelian flavor symmetries, where prod-
ucts of D4, Δð54Þ, S4, S7 and cyclic groups appear. 71
space groups lead to purely Abelian flavor symmetries and
we find no flavor in three cases.
In most cases, arriving at four-dimensional models that

reproduce properties of particle physics requires additional
elements (such as D-branes, orientifols, Wilson lines, etc.)
that break the flavor symmetries we have classified to their
subgroups. In the heterotic strings compactified on Abelian
toroidal orbifolds, their gauge embeddings admit the
inclusion of Wilson lines, whose different values, restricted
by modular invariance, lead to a variety of effective field
theories.
We have performed the widest known search of MSSM-

like Abelian toroidal orbifolds of the E8 × E8 heterotic
string and found more than 94,000 promising models with
different properties arising from orbifolds defined by the 64
space groups that yield non-Abelian flavor symmetries in
our classification. Almost 88,000 models arise from differ-
ent geometries of ZN × ZM orbifolds, but only 422 arise
from orbifolds with roto-translations, disfavoring this class
of models for phenomenology. We show a summary of
these results in Tables III and IV. These models represent as
many as seven times more models than those found in the
literature.
Assuming that these models can describe some generic

properties of the region of the string landscape where the
stringy ultraviolet completion of the SM resides, we have
then studied the flavor properties of these models. We have
found that about 70.5% of them exhibit flavor symmetries
that are products of powers ofD4 and cyclic groups, whereas
only about 1.5% contain Δð54Þ. The remaining models are
furnished with purely Abelian flavor symmetries, whose
origin are the rules that dictate how string states couple after
compactification [see Eqs. (14) and (15)]. These results are
summarized in the Appendix, and all model definitions are
provided in our website [55], where our promising models
are classified according to their space group, number of
Wilson lines and flavor symmetry.
Twoobservations of these results are in order. Sincemodels

withD4 flavor distinguish the third generation from the other
twowhilemodels withΔð54Þ frequently assign equal proper-
ties to all three generations, one can argue that our findings
disfavor statistically the second scenario. Nonetheless, one
may also be interested in studying the properties of the almost
1,500 models with Δð54Þ as flavor structure.

Our second observation concerns the models with purely
Abelian symmetries. It is somewhat surprising that almost
one third of our promising models have such flavor
symmetries. Further, we must point out that we have not
performed a search of MSSM-like constructions for the 71
orbifold space groups that led to Abelian symmetries in the
absence of WLs, according to Table II. We have only
explored Z6 × Z6 and found more than 3,000 models
endowed with a Z6 × Z6 flavor symmetry. Extrapolating
this number of models, it is conceivable that most prom-
ising models arising from orbifold compactifications
exhibit Abelian flavor symmetries. Therefore, we consider
necessary to further investigate the phenomenological
implications of models whose flavor structure coincide
with the cyclic symmetry groups we find. We shall pursue
this goal elsewhere.
On the other hand, although restricting ourselves to the

massless sector of our models is reasonable, the massive
sectors of the compactification can also influence physics at
low energies. Thus, beside further research on the phe-
nomenology of the models we have found and possible
extensions to string compactifications without supersym-
metry, one should study how our findings are altered when
massive strings or, in other words, all space group elements
are considered. This is matter of ongoing research [50].
Additionally, it is well-known that target-space modular

symmetries act nontrivially on quarks and leptons arising
from orbifold compactifications [57–60]. It has been
recently emphasized the key role that these symmetries
may play in flavor phenomenology [11,61–64]. We find
interesting to study systematically these symmetries in
heterotic orbifolds, as shall be done elsewhere.
Finally, one can extend the study of the stringy landscape

of flavor physics by exploring non-Abelian orbifolds. Since
the space group selection rule would most likely lead
directly to non-Abelian symmetries, instead of only prod-
ucts of cyclic groups, one could expect a richer flavor
structure. Following recent progress on the understanding
of these constructions [54], we can pursue this enter-
prise now.
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APPENDIX: FLAVOR SYMMETRIES IN MODELS WITH WILSON LINES

TABLE V. Flavor symmetries in ZN 6D orbifolds with WLs. The orbifold labels correspond to the labels of the associated space
group, according to Ref. [22]. For each space group yielding non-Abelian flavor symmetries in the absence of WLs (see Table II), we
show all possible breakings for non-vanishing WLs. There are cases where the same space group geometry and number of WLs lead to
different flavor symmetries; these symmetries are stacked in different rows. Under each flavor symmetry, we show the number of
phenomenologically viable heterotic models obtained from our fairly exhaustive search of models (see Sec. IV).

Flavor symmetry with l non-vanishing WLs

Orbifold Max. # of possible WLs l ¼ 1 2 3 4 Total

Z3 (1,1) 3 Δð54Þ2 Δð54Þ × Z2
3 Z4

3
0

0 0 0

Z4 (1,1) 4 ðD3
4 × Z4Þ=Z2 D2

4 × Z4 D4 × Z4 × Z2
2 Z4 × Z2

2
0

0 0 0 0
(2,1) 3 ðS2 × S2Þ ⋉ ðZ2

4 × Z2
2Þ S2 ⋉ ðZ2

4 × Z2
2Þ Z2

4 × Z2
2

149
0 0 149

ðS4 × S2Þ ⋉ ðZ3
4 × Z3

2Þ S4 ⋉ ðZ3
4 × Z3

2Þ
0 0

(3,1) 2 S4 ⋉ ðZ4
4 × Z2Þ Z3

4
27

0 27

Z6-I (1,1) 1 Z3 × Z3 30
30

(2,1) 1 Z6 × Z3 30
30

Z6-II (1,1) 3 ½ðD4 ×D4Þ=Z2� × Z2
3 D4 × Z2 × Z2

3 Z6 × Z3 × Z2
2

363
0 337 26

Δð54Þ ×D4 × Z2 Δð54Þ × Z3
2

0 0
(2,1) 3 Z6 × Z3 × ½ðD4 ×D4Þ=Z2

2� D4 × Z6 × Z3 Z6 × Z3 × Z2
2

349
0 335 14

½ðΔð54Þ × Z6Þ=Z3� ×D4 ½ðΔð54Þ × Z6Þ=Z3� × Z2
2

0 0
(3,1) 3 Z6 × Z3 × ½ðD4 ×D4Þ=Z2

2� D4 × Z6 × Z3 Z6 × Z3 × Z2
2

353
0 333 18

½ðΔð54Þ × Z6Þ=Z3� ×D4 ½ðΔð54Þ × Z6Þ=Z3� × Z2
2

0 2
(4,1) 2 ½ðΔð54Þ × Z6Þ=Z3� × Z2 Z6 × Z3 × Z2 356

0 44
½D4=Z2� × Z6 × Z3

312

Z7 (1,1) 1 Z2
7

1
1

Z8-I (1,1) 2 D4 × Z8 Z8 × Z2
2

268
38 230

(2,1) 2 D4 × Z8 Z8 × Z2
2

246
41 205

(3,1) 1 Z8 × Z4 389
389

Z8-II (1,1) 3 ðD4 ×D4 × Z8Þ=Z2 D4 × Z8 × Z2 Z8 × Z3
2

2,023
21 398 1,604

(2,1) 2 D4 × Z8 Z8 × Z2
2

505
231 274

(Table continued)
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TABLE VI. Flavor symmetries in ZN × ZM orbifolds with WLs. The orbifold labels correspond to the labels of the associated space
group, according to Ref. [22]. For each space group yielding non-Abelian flavor symmetries in the absence of WLs (see Table II), we
show all possible breakings for non-vanishing WLs. There are cases where the same space group geometry and number of WLs lead to
different flavor symmetries; these symmetries are stacked in different rows. Under each flavor symmetry, we show the number of
phenomenologically viable models obtained from our fairly exhaustive search of models (see Sec. IV). Since someWLs do not break the
flavor group, we give in the fourth column the maximal number of WLs that affect the flavor symmetries. For Z3 × Z6 and Z4 × Z4 we
also count in the total the promising models arising without WLs.

Orbifold

Max. #
of possible

WLs

Max. # of WLs
affecting the

flavor symmetry

Flavor symmetry with l non-vanishing WLs

l ¼ 1 2 3 4 5 6 Total

Z2 × Z2 (1,1) 6 6 D5
4=Z

2
2 D4

4 D3
4 × Z2

2 D2
4 × Z4

2 D4 × Z6
2 Z8

2
205

0 0 0 52 152 1
(1,3) 4 2 D2

4 D4 × Z2
2 D4 × Z2

2 D4 × Z2
2

0
0 0 0 0

D3
4=Z

2
2 D2

4 D2
4

0 0 0
D3

4=Z
2
2

0
(2,1) 5 5 D4

4=Z2 D3
4 × Z2 D2

4 × Z3
2 D4 × Z5

2 Z7
2

369
0 0 14 342 13

(2,3) 3 2 D4 × Z2
2 Z4

2 Z4
2

0
0 0 0
D2

4 D4 × Z2
2

0 0
D3

4=Z
2
2 D2

4

0 0
(2,5) 3 1 D4 × Z2 D4 × Z2 D4 × Z2 0

0 0 0
D2

4=Z2 D2
4=Z2

0 0
(3,1) 5 5 D3

4 D2
4 × Z2

2 D4 × Z4
2 Z6

2 Z6
2

444
0 0 40 8 4

D3
4 D2

4 × Z2
2 D4 × Z4

2

0 0 392
(3,3) 3 1 D4 × Z2 D4 × Z2 D4 × Z2 0

0 0 0
D2

4=Z2 D2
4=Z2

0 0
(4,1) 4 2 D3

4 D2
4 × Z2

2 D2
4 × Z2

2 D2
4 × Z2

2
0

0 0 0 0
D4=Z2

2 D3
4 D3

4

0 0 0
D4=Z2

2

0

(Table continued)

TABLE V. (Continued)

Flavor symmetry with l non-vanishing WLs

Orbifold Max. # of possible WLs l ¼ 1 2 3 4 Total

Z12-I (1,1) 1 Z3 × Z3 556
556

(2,1) 1 Z12 × Z3 555
555

Z12-II (1,1) 2 D4 × Z2 Z3
2

363
84 279
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TABLE VI. (Continued)

Orbifold

Max. #
of possible

WLs

Max. # of WLs
affecting the

flavor symmetry

Flavor symmetry with l non-vanishing WLs

l ¼ 1 2 3 4 5 6 Total

(5,1) 4 4 D3
4 D2

4 × Z2
2 D4 × Z4

2 Z6
2

42
0 0 40 2

(5,4) 2 1 D4 × Z2 D4 × Z2 0
0 0

D2
4=Z2

0
(6,1) 4 2 D3

4 D2
4 × Z2

2 D2
4 × Z2

2 D2
4 × Z2

2
401

0 0 57 344
D2

4=Z
2
2 D3

4 D3
4

0 0 0
D4

4=Z
2
2

0
(6,3) 2 0 D4 D4 0

0 0
(7,1) 4 3 D2

4 × Z2 D4 × Z3
2 D4 × Z3

2 D4 × Z3
2

76
0 0 55 21

D3
4=Z2 D2

4 × Z2 D2
4 × Z2

0 0 0
(8,1) 4 4 D4 × Z2

2 Z4
2 Z4

2 Z4
2

25
0 0 0 25

D4 × Z2
2

0
(9,1) 3 2 D2

4 × Z2 D4 × Z3
2 D4 × Z3

2
27

0 2 25
D3

4=Z2 D2
4 × Z2

0 0
(10,1) 3 3 D4 × Z2

2 Z4
2 Z4

2
21

0 2 19
D4 × Z2

2

0
(11,1) 3 0 D3

4=Z2 D3
4=Z2 D3

4=Z2 0
0 0 0

(12,1) 2 2 D4 × Z2
2 Z4

2
3

0 3

Z2 × Z4 (1,1) 4 4 ðD3
4 × Z4Þ=Z2 D2

4 × Z4 × Z2 D4 × Z4 × Z3
2 Z4 × Z5

2
10,580

26 1,463 8,637 454
(1,6) 2 2 D2

4 × Z4 D4 × Z4 × Z2
2

86
21 65

(2,1) 4 4 ðD3
4 × Z4Þ=Z2 D2

4 × Z4 × Z2 D4 × Z4 × Z3
2 Z4 × Z5

2
6,158

81 1,131 4,686 260
(2,4) 2 2 D4 × Z4 × Z2 Z4 × Z3

2
328

47 281
(3,1) 3 2 D2

4 × Z4 D4 × Z4 × Z2
2 D4 × Z4 × Z2

2
16,857

27 1,012 13,117
ðD3

4 × Z4Þ=Z2
2 D2

4 × Z4

76 2,625
(4,1) 3 3 D4 × Z4 × Z2 Z4 × Z3

2 Z4 × Z3
2

4,519
33 1,133 2,911

D4 × Z4 × Z2

442

(Table continued)
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TABLE VI. (Continued)

Orbifold

Max. #
of possible

WLs

Max. # of WLs
affecting the

flavor symmetry

Flavor symmetry with l non-vanishing WLs

l ¼ 1 2 3 4 5 6 Total

(5,1) 3 2 D2
4 × Z4 D4 × Z4 × Z2

2 D4 × Z4 × Z2
2

2,116
18 45 1,311

ðD3
4 × Z4Þ=Z2

2 D2
4 × Z4

45 697
(6,1) 3 2 D4 × Z4 × Z2

2 Z4 × Z4
2 Z4 × Z4

2
3,246

18 511 1,814
D2

4 × Z4 D4 × Z4 × Z2
2

3 295
ðD3

4 × Z4Þ=Z2 D2
4 × Z4

37 568
(7,1) 3 3 D4 × Z4 × Z2 Z4 × Z3

2 Z4 × Z3
2

2,667
64 729 1,481

D4 × Z4 × Z2

393
(8,1) 2 0 ðD2

4 × Z4Þ=Z2 ðD2
4 × Z4Þ=Z2 911

72 839
(9,1) 2 2 D4 × Z4 × Z2 Z4 × Z3

2
2,142

522 1,620

Z2 × Z6-I (1,1) 2 2 D4 × Z2 × Z6 Z3
2 × Z6 583

116 467
(2,1) 2 2 D4 × Z2 × Z6 Z3

2 × Z6 353
78 275

Z3 × Z3 (1,1) 3 3 Δð54Þ2 × Z3 Δð54Þ × Z3
3 Z5

3
1,108

81 987 40
(1,4) 1 1 Z3

3
8

8
(2,1) 2 2 Δð54Þ × Z2

3 Z4
3

1,952
239 1,713

(3,1) 2 2 Z3
3 Z3

3
6

0 6
(4,1) 2 1 Z4

3 Z4
3

215
22 105

Δð54Þ2
88

Z3 × Z6 (1,1) 1 1 Z2
3 × Z6 4,493
4,469

(2,1) 1 1 Z2
3 × Z6 540
495

Z4 × Z4 (1,1) 3 3 ðD2
4 × Z2

4Þ=Z2 D4 × Z2
4 × Z2 Z2

4 × Z3
2

14,953
2,258 12,091 599

(2,1) 2 1 D4 × Z2
4 D4 × Z2

4
6,046

436 2,807
ðD2

4 × Z2
4Þ=Z2

2

2,784
(3,1) 2 2 D4 × Z2

4 D4 × Z2
4

2,920
875 2,039

(4,1) 2 1 Z2
4 × Z2

2 Z2
4 × Z2

2
3,434

412 1,876
ðD2

4 × Z2
4Þ=Z2

2

1,140
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