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The early universe provides an opportunity for quantum gravity to connect to observation by explaining
the large-scale structure of the Universe. In the group field theory (GFT) approach, a macroscopic universe
is described as a GFT condensate; this idea has already been shown to reproduce a semiclassical large
universe under generic conditions, and to replace the cosmological singularity by a quantum bounce. Here
we extend the GFT formalism by introducing additional scalar degrees of freedom that can be used as a
physical reference frame for space and time. This allows, for the first time, the extraction of correlation
functions of inhomogeneities in GFT condensates: in a way conceptually similar to inflation, but within a
quantum field theory of both geometry and matter, quantum fluctuations of a homogeneous background
geometry become the seeds of cosmological inhomogeneities. We find approximately scale-invariant initial
quantum fluctuations in the local volume, with naturally small amplitude; this behaviour extends to other
quantities such as the matter density. These results confirm the potential of GFT condensate cosmology to
provide a purely quantum gravitational foundation for the understanding of the early universe.

DOI: 10.1103/PhysRevD.98.106019

I. INTRODUCTION

Cosmology provides the most promising avenue for
connecting quantum gravity to observable physics; this has
motivated much work in particular on models replacing the
big bang with a bounce [1]. Since our Universe is very well
described on large scales by a simple Friedmann-Lemaître-
Robertson-Walker (FLRW) metric with linear perturba-
tions, one then looks for a manageable approximation or
truncation of quantum gravity to nearly homogeneous and
isotropic universes.
In the last years, a new promising approach has emerged.

In the group field theory (GFT) formalism for quantum
gravity [2] (itself a second quantized formalism for loop
quantum gravity (LQG) [3] and an enrichment of random
tensor models [4] by group theoretic data), in which space
and time are fundamentally made up of discrete “atoms of
geometry,” one can describe a macroscopic, homogeneous
universe as a condensate, a highly coherent configuration
of many such atoms. Condensates realize a natural quantum

notion of homogeneity—the condensation of many quanta
into a single microscopic quantum state—and the idea that
spacetime could be a type of Bose-Einstein condensate had
been considered earlier [5]. In GFT, such condensates
describe spatially homogeneous universes [6]. By coupling
to a massless scalar (clock) field, it was shown such
universes satisfy the Friedmann dynamics of classical
general relativity (GR) in a semiclassical regime [7]; the
semiclassical regime is reached for generic initial condi-
tions [8]. In addition, at high curvatures such condensates
undergo a bounce similar to the one seen in loop quantum
cosmology. For some GFT models, this bounce can be
followed by a long lasting phase of acceleration, without
the need to introduce an inflaton [9,10].
An open question in the study of GFT condensates (as in

other approaches deriving cosmology from full quantum
gravity) has been to extend these results from exactly
homogeneous to inhomogeneous universes, i.e., to realistic
and testable situations. In previous studies [11,12], a major
obstacle was the localization of perturbations in a fully
background-independent context, without a manifold or
coordinates. Ideas from quantum cosmology such as a Born-
Oppenheimer approximation for inhomogeneities [13]
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are not directly applicable to GFT where no separation of
perturbation modes, e.g., as eigenmodes of a Laplacian, is
readily available.
Our starting point is to realize that the related problem of

“localizing events in time” was solved by introducing a
scalar field, used as a “clock” to label evolution of the
geometry; the problem of “localizing events in spacetime”
is then solved by coupling four scalar fields (in four
spacetime dimensions) to gravity, using these scalars as
relational clocks and rods, i.e., as a physical coordinate
system. This idea has a long history in classical and
quantum gravity, the most famous example perhaps being
Brown-Kuchař dust [14]. Such models, in which one can
solve the constraints of canonical GR and define observ-
ables on a physical phase space, have had numerous
applications in LQG [15].
We define a class of GFT models for gravity coupled to

four reference scalar fields ϕI, I ¼ 0;…; 3, generalizing
Ref. [7]. This allows us to define observables that corre-
spond to a local volume element at each point in spacetime,
and hence capture (scalar) inhomogeneities.
Working in the mean-field approximation to the full

quantum GFT, the effective dynamics for geometric
observables can be extracted by the same methods as in
Ref. [7]. We then assume a background continuum geom-
etry that is homogeneous, corresponding to a condensate
state independent of the “rod” fields, to reproduce the usual
setup for cosmological perturbations.
Next we compute quantum fluctuations of local volume

observables in such a quantum state, staying within the
full quantum gravity framework, but in a hydrodynamic
approximation. We propose their two-point function as the
relevant quantity in order to compare to standard cosmol-
ogy and observation, and show that this is nonvanishing
for a homogeneous condensate, very similar to how
inhomogeneities arise from quantum vacuum fluctuations
in inflation. The results outline a concrete, workable
formalism for deriving a power spectrum of cosmological
perturbations directly from a theory of quantum gravity,
and bring quantum gravity closer to observational tests.

II. RELATIONAL CLOCKS AND RODS

We introduce physical reference frames and define rela-
tional dynamics first in classicalGR, to later implement these
ideas in the quantum GFT formalism. Reference matter
backreacts on the geometry, although we will consider
limiting cases in which this backreaction can be negligible.
First, consider a single massless, free scalar field, used as

a relational clock in a flat FLRW metric, with action

Sϕ ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
gμν∂μϕ∂νϕ ¼ V0

Z
dt

a3

2N
_ϕ2 ð1Þ

where VðtÞ ¼ a3ðtÞV0 is the 3-volume of space given in
terms of a fiducial volume V0. The conjugate momentum

πϕ ≔ V _ϕ=N is a conserved quantity; for any choice of time
variable t, then, ϕðtÞ is strictly monotonic (unless πϕ ¼ 0,
which has to be excluded). Hence ϕ is a good clock, and the
dynamics of the Universe can be expressed in terms of ϕ;
the Friedmann equation becomes

�
1

V
dV
dϕ

�
2

¼ 9

�
_a
aN

V
πϕ

�
2

¼ 12πG; ð2Þ

and its solutions are

VðϕÞ ¼ α expð�
ffiffiffiffiffiffiffiffiffiffiffi
12πG

p
ϕÞ; ð3Þ

where the sign depends on the choice of time orientation.
The scalar action (1) is invariant under translations

ϕðtÞ ↦ ϕðtÞ þ ϕ0 and time reversal ϕðtÞ ↦ −ϕðtÞ.
This construction can be straightforwardly generalized:

given four scalars ϕI , one can identify the points fpg of an
open (connected) region by the values ϕIðpÞ if the gradients
of ϕI are everywhere nondegenerate, detð∂αϕ

IÞ ≠ 0.
Similarly to a clock scalar field, one has to impose

symmetries on the dynamics of these four scalars to be used
as a material reference frame. For instance, consider the
class of models in Ref. [15], with action

Sm ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðgμν½ρ∂μT∂νT þ AðρÞVμVν

þ2BðρÞ∂μTVν� þ ΛðρÞÞ; Vμ ≔ Wk∂μZk ð4Þ

depending on eight scalars ðT; Zk; ρ;WkÞ. The dynamical
fields T and Zk give a local reference frame for space and
time. Depending on AðρÞ, BðρÞ and ΛðρÞ, Eq. (4) can
reduce to Brown-Kuchař dust or null, nonrotational or
Gaussian dust. Equation (4) is invariant under constant
shifts in T and Zj, sign reversal of all four fields,

TðxÞ ↦ TðxÞ þ T0; ZjðxÞ ↦ ZjðxÞ þ Zj
0; ð5Þ

ðTðxÞ ↦ −TðxÞ; ZjðxÞ ↦ −ZjðxÞÞ; ð6Þ

and O(3) transformations

ZkðxÞ ↦ Ok
jZjðxÞ; WkðxÞ ↦ ðO−1ÞkjWjðxÞ: ð7Þ

Equation (7) implements isotropy of space: rotating the
“rods” will define another, equivalent set of rods. We will
assume all these transformations are symmetries of our
reference scalar matter; they would also be symmetries of
the coordinates of a good reference frame.
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III. GROUP FIELD THEORY WITH REFERENCE
SCALAR MATTER

We work with GFT models for gravity coupled to four
reference scalar fields, defined in analogy to known models
for gravity and a single (clock) field [7,16].
The basic ingredient of any GFT is a quantum field on an

abstract group manifold [2], whose excitations form quanta
of geometry labeled by data in the domain space of this
field. We picture these quanta as tetrahedra equipped with a
discrete SU(2) connection (parallel transports across the
four faces) and with real labels for the scalar degrees of
freedom (d.o.f.). The same variables are associated to a
LQG spin network vertex with four open links, for gravity
coupled to four scalar fields [3]. Concretely, our GFT field
is a complex field on SUð2Þ4 ×R4, denoted by φðgI;ϕJÞ
where gI ∈ SUð2Þ, ϕJ ∈ R.
One can then define the quantum GFT in the path

integral or operator formalism; the latter is well suited
for the study of GFT condensates [3,6]. Here one postulates
canonical commutation relations

½φ̂ðgI;ϕJÞ;φ̂†ðg0I;ϕ0JÞ�¼
Z

dhδ4ðg0Ihg−1I Þδ4ðϕJ−ϕ0JÞ ð8Þ

while two φ̂ or two φ̂† operators commute.
The Hilbert space is defined starting from a “no-space”

vacuum j∅i, annihilated by φ̂ðgI;ϕJÞ. The bosonic exci-
tations over j∅i, created by φ̂†ðgI;ϕJÞ, are interpreted as
geometric tetrahedra. A state describing a macroscopic,
approximate continuum geometry contains a very large
number (potentially infinite) of such excitations.
The dynamics is governed by an action of the form

S½φ; φ̄� ¼ −
Z

d4gd4ϕφ̄ðgI;ϕJÞKφðgI;ϕJÞ þ V½φ; φ̄� ð9Þ

where the kernelK is taken to be local and contain derivatives
with respect to gI and ϕJ. The precise forms ofK and V will
not be used in the following. They can be chosen such that the
GFT Feynman amplitudes correspond to the amplitudes of a
given spin foammodel [17], i.e., to a discrete path integral for
gravity coupled to four scalar fields. The perturbative
expansion in Feynman diagrams is then a sum over such
path integrals for different discretizations [2,3]. In order to
have a sum over simplicial lattices, the interaction V would
involve five fields, gluing five tetrahedra to a 4-simplex.
Other interactions, and general forms ofK, are suggested by
work on random tensor models and GFT renormalization.
We are interested in models that use scalar fields as

reference matter. Following the above discussion, we
assume that the GFT dynamics is invariant under

(i) arbitrary (constant) shifts in ϕI,
(ii) the parity/time-reversal transformation ϕI ↦ −ϕI ,
(iii) rotations ϕi ↦ Oi

jϕ
j where i, j ¼ 1, 2, 3.

The first of these forbids explicit dependence on ϕI.

We then work in an effective field theory/hydrodynamic
expansion of K in derivatives with respect to the ϕJ (as
developed in Refs. [7,16]); this leads to an effective low-
energy GFT dynamics that can be compared with cosmol-
ogy on large scales, where one can truncate K to second
derivatives.
The assumed symmetries (i)–(iii) force this derivative

expansion to be of the form

K¼K0þK1Δϕi þ K̃1∂2
ϕ0 þ…; Δϕi ≡X3

i¼1

∂2
ϕi ð10Þ

where … includes fourth and higher derivatives.
Beyond the symmetries (i)–(iii), we make no assump-

tions about the form of V. We will employ a weak-coupling
approximation in which the effect of V on the dynamics is
negligible.

IV. EFFECTIVE COSMOLOGICAL DYNAMICS

The proposal of GFT condensate cosmology [6] is that a
macroscopic, nearly homogeneous universe is well
approximated by a GFT condensate with a nonvanishing
field expectation value, σðgI;ϕJÞ ≔ hφ̂ðgI;ϕJÞi ≠ 0. In the
mean-field approximation, this condition is implemented
by choosing the coherent state

jσi≡NðσÞexp
�Z

d4gd4ϕσðgI;ϕJÞφ̂†ðgI;ϕJÞ
�
j∅i ð11Þ

and all dynamical information is determined by the mean
field σðgI;ϕJÞ. This corresponds to the Gross-Pitaevskii
approximation for weakly interacting Bose-Einstein con-
densates [18]. One then considers the expectation value

0 ¼ hσj δS½φ; φ̄�
φ̄ðgI;ϕJÞ jσi ¼

δS½σ; σ̄�
σ̄ðgI;ϕJÞ

¼ ðK0 þK1Δϕi þ K̃1∂2
ϕ0 þ � � �ÞσðgI;ϕJÞ − δV½σ; σ̄�

σ̄ðgI;ϕJÞ ;

ð12Þ

the GFT analogue of the Gross-Pitaevskii equation for a
Bose-Einstein condensate.
We neglect higher than second derivatives, and use an

approximation in which the contribution of V is neglected.
The latter is compatible with the weak correlations in the
simple state (11) and, tentatively, with small spatial
gradients of the effective geometry. Including interactions
is possible [9], but we will show that our approximation
already allows for interesting cosmological dynamics.
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The GFT equation of motion for σ becomes

ðK0 þK1Δϕi þ K̃1∂2
ϕ0ÞσðgI;ϕJÞ ¼ 0: ð13Þ

We further restrict σ to isotropic (equilateral) tetrahedra
[7] (again this can be relaxed [19]); σ can then be expanded
in irreducible SU(2) representations as

σðgI;ϕJÞ ¼
X∞
j¼0

σjðϕJÞDjðgIÞ ð14Þ

where the DjðgIÞ encode the equilateral shape of the
tetrahedra. Because this shape is taken to be fixed, σ only
depends on a single j, whose value specifies the local
volume and thus the cosmological scale factor. The volume
can be computed within full GFT as the expectation value
of a second quantized operator, see below.
The isotropic mean field σjðϕJÞ then satisfies

ð−Bj þ Aj∂2
ϕ0 þ CjΔϕiÞσjðϕJÞ ¼ 0; ð15Þ

K0, K1 and K̃1 have been rewritten as j-dependent
couplings with no further derivatives.
The results of Ref. [7] are recovered for a mean field of

the form

σjðϕJÞ≡ σ0jðϕ0Þ; ð16Þ

with a relational 3-volume operator at “time” ϕ0

V̂ðϕ0Þ ¼
Z

d4gd4g0φ̂†ðgI;ϕ0ÞVðgI; g0IÞφ̂ðg0I;ϕ0Þ: ð17Þ

VðgI; g0IÞ are matrix elements of the LQG volume operator
[20] between single-vertex spin network states.
Given a GFT state, hV̂ðϕ0Þi gives its total 3-volume

at relational time ϕ0. This appears in the Friedmann
equation (2), which connects GFT condensates to
cosmology.
In this case, generic initial conditions lead to a semi-

classical regime, in which the Universe expands to macro-
scopic size [7,8] and the 3-volume follows the classical
Friedmann solution (3). At small volumes, the Universe
undergoes a bounce, avoiding the classical singularity [7].
For example, if only a single spin j0 is excited, the

3-volume behaves as

hV̂ðϕ0Þi ∼ϕ0→�∞ jσ�j2 exp
�
�2

ffiffiffiffiffiffiffi
Bj0

Aj0

s
ϕ0

�
ð18Þ

for generic initial conditions (σ� ≠ 0), if Bj0=Aj0 > 0; this
is precisely Eq. (3) with Bj0=Aj0 ≕ 3πG. VðϕÞ interpolates
between the classical contracting and expanding solutions,
and only ever vanishes for special initial conditions

[7,8,10]. Including interactions can prolong the accelerated
expansion after the bounce and cause a later recollapse,
producing a cyclic cosmology [9].

V. VOLUME PERTURBATIONS
IN GFT CONDENSATES

Our GFT model has enough d.o.f. to describe inhomo-
geneous quantum geometries and their dynamics. Here we
consider situations relevant for fundamental cosmology: we
study quantum fluctuations of the local 3-volume around a
nearly homogeneous background, seeking a quantum
gravitational mechanism for explaining the origin of
inhomogeneities, in a similar spirit to the inflationary
paradigm, where this mechanism is the imprint of quantum
fluctuations of the inflaton [21]. We show how such
mechanism, natural in any quantum field theory for gravity
and matter, is realized by GFT condensates, without
requiring an inflaton.
We start by generalizing Eq. (17) to a GFT for gravity

coupled to four reference scalar fields ϕI,

V̂ðϕJÞ ¼
Z

d4gd4g0φ̂†ðgI;ϕJÞVðgI; g0IÞφ̂ðg0I;ϕJÞ: ð19Þ

Now all four ϕJ take fixed values: V̂ðϕJÞ defines a local
volume element at the spacetime point specified by values
of the reference fields. The total 3-volume (17) is obtained
by integrating over the rods ϕi,

V̂ðϕ0Þ≡
Z

d3ϕV̂ðϕ0;ϕiÞ: ð20Þ

In a simple coherent state of the form (11), the expect-
ation value of V̂ðϕJÞ can be evaluated immediately,

hV̂ðϕJÞi ¼
Z

d4gd4g0σ̄ðgI;ϕJÞVðgI; g0IÞσðg0I;ϕJÞ: ð21Þ

For the isotropic wave function (16), we obtain

hV̂ðϕJÞi ¼
X∞
j¼0

Vjjσ0jðϕ0Þj2; ð22Þ

with eigenvalues Vj ∼ VPlj3=2 of the volume operator. The
local and total 3-volume coincide [up to regularization of
the integral over ϕi in Eq. (20)], as expected in a
homogeneous geometry.
In cosmology the pattern of cosmic structure is encoded

in correlation functions for geometric observables. Here we
focus on local volume fluctuations hV̂ðϕJÞV̂ðϕ0JÞi in the
state (11), which depend on the one-body matrix elements
V2ðgI; g0IÞ of the squared volume operator. Using “squared
matrix elements” to characterize perturbations has been
suggested before [12], but without rods only global
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information was obtained. Here we can extract local
information about cosmological perturbations: Fourier
transforming from ϕi to their momenta ki introduces a
notion of wave number, defined with respect to the
reference matter.
We then obtain, within the full quantum gravity formal-

ism, a power spectrum of cosmological perturbations.
Consider a mean field perturbed around homogeneity,

σjðϕJÞ ¼ σ0jðϕ0Þð1þ ϵψ jðϕJÞÞ: ð23Þ

In this state, fluctuations of the volume take the form

h ˆ̃Vðϕ0; kiÞ ˆ̃Vðϕ00; k0iÞi − h ˆ̃Vðϕ0; kiÞih ˆ̃Vðϕ00; k0iÞi
¼ δðϕ0 − ϕ00Þ

X
j

V2
j jσ0jðϕ0Þj2½ð2πÞ3δ3ðki þ k0iÞ

þ ϵðψ̃ jðϕ0; ki þ k0iÞ þ ψ̃ jðϕ0;−ki − k0iÞÞ�; ð24Þ

where we have Fourier transformed V̂ and ψ j; the delta
function in ϕ0 arises because V̂ðϕJÞ is a density on scalar
field space. This power spectrum is a genuine quantum
correlation in the GFT condensate.
Remarkably, the dominant part of the power spectrum

ð2πÞ3δ3ðki þ k0iÞδðϕ0 − ϕ00Þ
X
j

V2
j jσ0jðϕ0Þj2 ð25Þ

is naturally scale invariant: it only depends on ϕ0. This
property follows from computing cosmological perturba-
tions on an exactly homogeneous background. Due to
quantum fluctuations, even in this case Eq. (24) is not zero:
it must then be scale invariant, with scale defined by the
reference matter. Within our mean-field approximation,
scale invariance and translational invariance, as expressed
by the momentum delta function in Eq. (24), are necessarily
connected.
In cosmology, the usual notion of scale invariance refers

to the dimensionless power spectrum, which is not directly
the quantity we compute here. Converting our expressions
into those appearing in the measured spectrum of inho-
mogeneities may introduce a dependence on k, in particular
since our notion of scale refers to reference matter, not
Cartesian coordinates. This is why we do not take over the
usual terminology from cosmology, but focus on the
spectrum that can be computed.
Deviations from exact scale invariance are encoded in

the last line of Eq. (24). They arise from inhomogeneous
fluctuations around a homogeneous condensate, which
should generically be present; approximate scale invariance
is intrinsically linked to such GFT fluctuations being small.
These fluctuations must solve the mean-field condensate
dynamics, so both their exact shape and their relative
amplitude are determined dynamically. Further deviations
will come from relaxing the mean-field approximation,

i.e., from using more refined quantum states. Such devia-
tions from scale invariance depend both on the coupling of
inhomogeneities with the homogeneous background and
on their own dynamics, as expected physically and in
agreement with usual cosmological perturbations. They are
fully determined by the GFT perturbation density field,
itself a solution to mean-field equations. A more detailed
study of solutions of such perturbed equations, and their
initial conditions, would be crucial to identify the precise
form of these deviations.
The amplitude of volume fluctuations relative to the

background, i.e., of cδṼðϕ0; kiÞ≡ ˆ̃Vðϕ0; kiÞ=hV̂ðϕ0Þi, is
obtained by dividing Eq. (24) by the squared background
volume hV̂ðϕ0Þi2 ≡ ðR dϕi

P
jVjjσ0jðϕ0Þj2Þ2. This ampli-

tude is of order 1=N, for N ≫ 1 quanta in the condensate.
For instance, considering only the scale-invariant contri-
bution and with only a single spin j0 excited, the power
spectrum of such perturbations is

PδVðkÞ ¼
V2
j0
jσ0j0ðϕ0Þj2

ðR dϕiVj0 jσ0j0ðϕ0Þj2Þ2 ¼
Vj0

ðR dϕiÞVðϕ0Þ ; ð26Þ

with Vðϕ0Þ ¼ Nðϕ0ÞVj0 . A small amplitude of scalar
perturbations, decreasing as the Universe expands, arises
naturally from the simplest GFT condensates.
For Cj=Bj < 0 in Eq. (15), inhomogeneous perturba-

tions decay relative to the homogeneous background at
large volumes; one approaches scale invariance even more
closely, further suppressing the deviations coming from the
inhomogeneous term. GFT interactions that produce a
long-lasting accelerated expansion after the bounce [9]
further suppress deviations from scale invariance.
The choice of vacuum, e.g., as made in inflation, is

replaced by the GFT condensate state (11) that refers to
both quantum geometric and matter d.o.f. This is because
such fluctuations are computed directly within the complete
quantum gravity formalism, which also defines the ultra-
violet completion of the theory.

VI. EXTENDING THE FORMALISM
TO DENSITY PERTURBATIONS

We showed that the statistics of scalar perturbations can
be computed explicitly for GFT condensates, fully within
the quantum gravity formalism, assuming that the mean
field describing the condensate is close to homogeneity. We
found a nearly scale-invariant power spectrum for volume
perturbations, with naturally small amplitude. Exact
scale invariance is found if the mean field is exactly
homogeneous.
The reason for using volume perturbations was that these

are simplest to compute in our formalism: they can be
expressed through expectation values and fluctuations of
local volume elements, given by the GFT Fock space
operator (19). Our principal goal was to show the feasibility
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of these computations in the full quantum gravity formal-
ism, and the generic features of the results.
Connecting our results to observation, however, ulti-

mately requires also considering perturbations in the matter
density. Their relation to volume perturbations is in general
gauge dependent, so one cannot a priori assume that the
spectrum of volume perturbations we found can be trans-
lated into an observational prediction. To close this gap, in
this section we show how to extend the arguments to
perturbations in the matter density. This is a more involved
calculation since in our formalism, in which spacetime is a
many-body quantum system, the natural observables are
“extensive” quantities such as volume or total energy. The
matter energy density is obtained from taking a quotient of
expectation values of primary extensive quantities.
We start with the kinetic energy density in a scalar field,

which is classically given by ρIkin ¼ ðπIϕÞ2=ð2V2Þ where
V ≡ ffiffiffi

h
p

corresponds to the local volume element, and πIϕ is
the momentum conjugate to the scalar field ϕI . Hence, to
construct a kinetic energy density we need to consider
operators corresponding to the conjugate momenta for the
four scalars; these are

π̂IϕðϕJÞ ¼ −
i
2

Z
d4g

�
φ̂†ðgI;ϕJÞ ∂φ̂ðgI;ϕ

JÞ
∂ϕI

−
∂φ̂†ðgI;ϕJÞ

∂ϕI φ̂ðgI;ϕJÞ
�
; ð27Þ

as already defined for the homogeneous case in previous
work [7], where the scalar field momentum enters correctly
in the energy density appearing in the Friedmann equations.
From the expectation values of (19) and (27), we can

then define

ρIkinðϕJÞ ¼ 1

2

�hπ̂IϕðϕJÞi
hV̂ðϕJÞi

�2

; ð28Þ

and the total kinetic energy is ρkin ¼
P

Iρ
I
kin. At leading

order, fluctuations in the kinetic energy density are given by
δρ=ρ ¼ P

Iπ
I
ϕδπ

I
ϕ=ðρV2Þ − 2δV=V. Their two-point func-

tion is

hδρkinðϕ0; kiÞδρkinðϕ00; k0iÞi
ρkðϕ0Þ2

¼
P

IJπ
I
ϕðϕ0ÞπJϕðϕ0ÞhδπIϕðϕ0; kiÞδπJϕðϕ00; k0iÞi

ρkðϕ0Þ2Vðϕ0Þ4

− 4

P
Iπ

I
ϕðϕ0ÞhδπIϕðϕ0; kiÞδVðϕ00; k0iÞi

ρkðϕ0ÞVðϕ0Þ3

þ 4
hδVðϕ0; kiÞδVðϕ00; k0iÞi

Vðϕ0Þ2 : ð29Þ

We can now simplify calculations for the right-hand side by
again using a homogeneous mean field of the form

σjðϕJÞ≡ σ0jðϕ0Þ: ð30Þ

For this choice of mean field, we have already computed
the last term on the right-hand side and shown that it
gives a scale-invariant power spectrum with small ampli-
tude. For the other two terms, we use the fact that
derivatives of σj with respect to the rod fields vanish,
and that we hence have πiϕ ≡ hπiϕi ¼ 0 (i ¼ 1; 2; 3) and
thus ρkin ¼ ρ0kin. Strictly speaking, there needs to be a
nonzero energy density in these fields for them to form a
good reference frame. However, this energy density can be
arbitrarily small, so that an infinitesimal perturbation of
Eq. (30) will lead to a good reference frame. We assume the
validity of a perturbative expansion around Eq. (30), and
can consider the leading term in which such perturbations
are exactly zero.
The fluctuations in the kinetic energy then reduce to

hδρkinðϕ0; kiÞδρkinðϕ00; k0iÞi
ρkðϕ0Þ2

¼ 4
hδπ0ϕðϕ0; kiÞδπ0ϕðϕ00; k0iÞi

π0ϕðϕ0Þ2 − 8
hδπ0ϕðϕ0; kiÞδVðϕ00; k0iÞi

π0ϕðϕ0ÞVðϕ0Þ

þ 4
hδVðϕ0; kiÞδVðϕ00; k0iÞi

Vðϕ0Þ2 : ð31Þ

All terms on the right-hand side now give a scale-invariant
power spectrum: all expectation values involve observables
that do not depend on the rod fields (neither multiplica-
tively or in derivatives), and the mean field does not depend
on these fields either. Hence, we find a scale-invariant
power spectrum even for density perturbations, with
amplitude still scaling as 1=N (a generic property of
macroscopic observables for many-particle states).
Scale invariance will be broken by two types of correc-

tions: first, as for volume perturbations, departures from
exact homogeneity in the mean field lead to non-scale-
invariant terms. The details will be different for density
perturbations, since the rod fields will also acquire a
nonzero background energy density and hence contribute
to the expressions for perturbations; for instance, we
find

hδπiϕðϕ0; kiÞδπjϕðϕ00; k0iÞi

¼ N
4
kikjð2πÞ3δ3ðki þ k0iÞδðϕ0 − ϕ00Þ ð32Þ

at leading order, which breaks scale invariance.
More importantly, we have ignored gradient energy in

the scalar fields in these calculations, which will be
expressed in terms of more complicated observables that
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each involve more than one scalar field. For the contribu-
tion in gradient energy, we would in general not expect
scale invariance even for a homogeneous mean field. The
assumption of subdominance for the gradient energy with
respect to kinetic energy is what one would expect in a
near-homogeneous geometry, and it is thus reasonable in a
realistic cosmological scenario. In other contexts, other
terms may dominate over the kinetic energy as well,
e.g., in slow-roll inflation; such additional terms are
however not necessary, it seems, in our context. More
work is certainly needed to verify whether our assumptions
are dynamically justified, even in presence of more realistic
matter fields.
The possibility of deviations from scale invariance for

gradient energy is consistent with the fact that in classical
cosmology volume and density perturbations are not
necessarily proportional to one another. Indeed, any such
statement depends on the chosen gauge. Consider for
instance the gauge-invariant “curvature perturbation on
uniform-density hypersurfaces” (see e.g., [22])

−ζ ¼ ΨþH
_ρ
δρ; ð33Þ

defined in terms of a metric perturbation Ψ, the Hubble
parameter H, background matter density ρ and density
perturbation δρ. One can choose a gauge in which δρ ¼ 0
and Ψ is proportional to the volume perturbation, or a
different gauge in which Ψ ¼ 0. Thus, the gauge-invariant
quantity ζ can be proportional either to volume or to density
perturbations, but this is not true in general.
In our formalism, due to the introduction of reference

scalar matter fields which are used as relational coordinates,
there is no gauge freedom and gauge choices that make
certain quantities vanish are not possible (instead, our rela-
tional coordinates define a harmonic gauge [23]). We should
then focus on density perturbations, and as we saw, if
gradient energy contributes to density perturbations, they
in general depart from the scale invariance found for volume
perturbations. For subdominant gradient energy and a mean
field close to homogeneity, however, we also find scale-
invariant density perturbations, and the general result is the
same: in the regime we considered, quantum gravity natu-
rally produces an approximately scale-invariant spectrum
also for density perturbations, with small amplitudes.
The detailed relation between our gauge-invariant quan-

tities and the perturbation variables normally used in
cosmology will need to be worked out to have a full
comparison with observations; we leave this to future work.
This detailed comparison can be based on previous work,
e.g., in the canonical gravity context [24].

VII. DISCUSSION

By introducing in the GFT formalism scalar field d.o.f.
that can be used as physical reference frames, we could

extend the mean-field approximation for GFT condensates
beyond homogeneity. This approximation has already
been shown to provide an effective cosmological dynamics
in which not only a semiclassical large Friedmann universe
is reproduced under generic conditions, but also the
cosmological singularity is replaced by a quantum
bounce, followed by an accelerated phase of expansion
of quantum gravity origin. We then considered the typical
setup of early universe cosmology within this full quantum
gravity framework: we computed the power spectrum of
quantum fluctuations of the local volume in a homo-
geneous background geometry perturbed by small inho-
mogeneities. We found that this is approximately scale
invariant, with a small amplitude that decreases as the
volume of the Universe grows. This confirms the potential
of the GFT condensate cosmology framework to provide a
quantum gravitational foundation for early universe
cosmology.
While we initially showed how volume perturbations

arise as quantum fluctuations in a GFT condensate, we
then also saw that similar statements can be made for
density perturbations, which are more directly related to
observation. In particular, for perturbations in the kinetic
energy of the scalar fields, the same general conclusions
follow: for the mean field (23), quantum fluctuations of
such observables have scale-invariant power spectrum at
leading order, as in Eq. (24). This is in general not true
for gradient (potential) energy, and hence fluctuations
in the total density will in general not be scale invariant
as soon as gradient energy contributes non-negligibly
to the total energy density. The second main property
we identified, a small amplitude scaling inversely with
the particle number, is more generic and extends to other
observables.
As we have stressed, precise details of the power

spectrum depend on identifying a particular choice of
mean field as a solution to the condensate hydrodynamics.
In addition, obtaining classical inhomogeneities from
quantum fluctuations requires studying the propagation,
amplification and “freeze-out” of the initial quantum
fluctuations, which all again depend on the dynamics.
The details of this transition from the initial quantum
fluctuations in the deep quantum gravity regime to classical
observable inhomogeneities will be the focus of future
work. It is however a remarkable result that generic
properties of the spectrum of observables of cosmological
interest can be identified from the general formalism of
cosmology as GFT hydrodynamics alone, as we have
demonstrated.
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