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We apply the relation between deep learning (DL) and the AdS=CFT correspondence to a holographic
model of QCD. Using lattice QCD data of the chiral condensate at a finite temperature as our training data,
the deep learning procedure holographically determines an emergent bulk metric as neural network
weights. The emergent bulk metric is found to have both a black hole horizon and a finite-height IR wall, so
it shares both the confining and the deconfining phases, signaling the crossover thermal phase transition of
QCD. In fact, a quark-antiquark potential holographically calculated by the emergent bulk metric turns out
to possess both the linear confining part and the Debye screening part, as is often observed in lattice QCD.
From this we argue the discrepancy between the chiral symmetry breaking and the quark confinement in the
holographic QCD. The DL method is shown to provide a novel data-driven holographic modeling of QCD,
and sheds light on the mechanism of emergence of the bulk geometries in the AdS=CFT correspondence.
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I. INTRODUCTION

Holographic modeling of QCD has provided novel
ways to look at various hadronic phenomena of QCD,
and has constructed a firmer bridge between strongly
coupled quantum field theories and classical/quantum
gravity. The bottom-up approach of holographic QCD,
initiated in Refs. [1,2], uses the dictionary of the renowned
AdS=CFT correspondence [3–5] to construct a five-
dimensional gravity model of QCD. Quite simple holo-
graphic models, together with various further refinement,
capture nicely nonperturbative properties of QCD, ranging
from hadron spectra to condensates, interquark forces,
phase transitions, and nonequilibrium dynamics.
Generic obstacles in any model building is to solve

inverse problems. Phenomenological models, based on
specific Hamiltonians, Lagrangians, or equations, include
many parameters which are determined once the calcu-
lated results of physical observables are compared with

experiments. Therefore, if the number of parameters is
large (and in general it could be infinite), determining
model parameters is increasingly difficult. Holographic
QCD models are of course of this sort—even worse, as a
bulk gravity metric is necessary to define a model, and the
metric has a functional degree of freedom. This is the
inverse problem: From given experimental data, how can
we fix the bulk gravity metric?
Conventional holographic QCDmodels assume a gravity

metric in the five-dimensional bulk spacetime. Typically, to
describe the quark gluon plasma phase at a high temper-
ature, one uses AdS-Schwarzschild black hole metric. On
the other hand, the confining phase at a low temperature is
described by so-called confining geometries, which end
with an IR wall. At any case, one should assume a metric to
define a holographic model, then calculate physical observ-
ables using the AdS=CFT dictionary, and compare them
with experimental values.
We here employ the virtue of the deep learning (DL)

[6–8]. In our previous paper [9], we provide a mapping
between the AdS=CFT and a deep neural network, and
identify the bulk metric with the weights of the network, to
generate an emergent metric from given data of the
boundary quantum field theory. This AdS/DL correspon-
dence is suitable for holographic QCD modeling, as it can
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solve the inverse problem. Figure 1 describes schematically
the difference between the conventional and our deep-
learning holographic modelings. We first use certain QCD
data to determine the bulk metric (and also some other
parameters of the model) via deep learning, and then
calculate other physical observables of QCD by the model
with the determined metric, as a prediction of the model.
Specifically, we study a ϕ4 theory in the bulk, to describe

the chiral condensate of QCD. We use lattice QCD data
[10] of the chiral condensate as a function of the quark
mass, at a finite temperature near the critical temperature of
the thermal phase transition. The DL determines the bulk
metric which reproduces the lattice data of the chiral
condensate. Then we use the metric to holographically
calculate the Wilson loop, the quark-antiquark potential,
which is our prediction of the model.
In any holographic QCD, precise comparison with

experiments is not expected, as the models should be able
to capture only generic property of QCD: the AdS=CFT
correspondence is valid at the strong coupling limit, and
any holographic QCD model is not expected to be
completely equivalent to QCD. So we concentrate on
how the DL method produces any novel feature of the
bulk metric. In fact, we find that the DL modeling works
beyond our imagination. The generated metric, surpris-
ingly, has two coexisting features: the confinement and the
Debye screening. Normally in AdS=CFT, due to the strong
coupling limit and the large Nc limit, the bulk spacetime is
governed by classical Einstein gravity, and thus the thermal
phase transition is described by the Hawking-Page tran-
sition [11], which is the first order. So there is no mixture of
the confinement and the Debye screening. On the other
hand, in our case, we simply use lattice QCD data (which is
of course not at the strong coupling limit), and the machine-
generated metric would capture both of the phases at the
same time. Resultantly, our holographically calculated

Wilson loops share the important properties with the lattice
QCD Wilson loops: the coexistence of the linear potential
part and the Debye screening part. Such a bulk metric has
not been employed in holographic QCD modeling, and
finding this new feature is a virtue of the deep learning
method.
It is often discussed in literature whether there exists any

relation between the chiral symmetry breaking and the
quark confinement (see Refs. [12–25] for various studies).
Our model, with the vanishing chiral condensate in the
chiral limit at a finite temperature, has a confining part in
the quark-antiquark potential, thus showing the discrepancy
between the nonvanishing chiral condensate and the quark
confinement [26].
Another aspect we would like to emphasize about our

approach is that the deep learningmethod can reconstruct the
bulk starting from the data of the boundary quantum field
theory. Besides other methods of reconstructing bulk geom-
etries, such as the entanglement entropy reconstruction
[27,28], our method utilizes physical observables of the
boundary theory directly. Furthermore, in our analysis it is
important to identify the neural network itself as a bulk
geometry [29]. In view of the quantum-information theoretic
understanding of the AdS=CFT correspondence, such as the
one through MERA [36], we are providing a way to obtain
a discrete network as a gravity dual, which may shed
some light on the mystery of the origin of the AdS=CFT
correspondence.
The organization of this paper is as follows. After we

review our holographic modeling based on deep learning
provided in Ref. [9] in Sec. II, we apply the AdS/DL
correspondence to QCD in Sec. III. We prepare lattice QCD
data there and describe how to convert it to the deep
learning training data. Section IV shows the training result
of the emergent metric of the bulk geometry and describes
its physical features which are automatically generated by
the neural network. In Sec. V, we calculate Wilson loops by
using the emergent metric obtained by the deep learning
and find that they capture nicely the features of Wilson
loops obtained in lattice QCD. Then we discuss the relation
and the origin of the chiral symmetry breaking and the
quark confinement. Section VI is for a summary and
discussions. Our Appendix A describes some details about
the numerical codes of the deep learning. Appendix B is to
fix the normalization of two-point functions in AdS=CFT.

II. REVIEW: ADS/DL CORRESPONDENCE

Here we review our map used in Ref. [9] to relate a
neural network to the scalar field equation in asymptoti-
cally AdS spacetime. The idea is to regard the depth
direction of a deep neural network as the AdS radial
direction (see Fig. 2), to have a neural network representa-
tion of the equation of motion of the scalar field in the
curved spacetime. Then the input data at the initial layer is a
one-point function hOiJ of the boundary quantum field

FIG. 1. A schematic view of our deep learning holographic
modeling, emphasizing the difference from the conventional
holographic modeling.
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theory (QFT). It is a function of the source J for the
operator O. The output data are the black hole horizon
conditions for the bulk scalar field. A supervised learning
provides an emergent bulk metric which is consistent
with hOiJ.
First we briefly describe a standard deep neural network.

It is a map from the data at the input layer to the data at the
output layer. Between the input and the output layers, we
prepare piles of layers, and between the adjacent layers, the
data are transmitted through a linear transformation xi →
Wijxj and a nonlinear transformation xi → φðxiÞ. Normally
the latter, called an activation function, is a fixed function,
while the former,W, called weights, are tunable parameters
to be trained in the learning process. A successive trans-
formation among layers results in a relation between the
input data xð1Þ and the output data y,

yðxð1ÞÞ ¼ fiφðWðN−1Þ
ij φðWðN−2Þ

jk � � �φðWð1Þ
lm xð1Þm ÞÞÞ: ð1Þ

The linear transformation fi is for the final layer to wrap up
the neural network to give an output number. Supervised

training is to tune the weights of the network ðfi;WðnÞ
ij Þ for

n ¼ 1; 2;…; N − 1 so that it makes the loss function
decrease,

E≡X
data

���yðx̄ð1ÞÞ − ȳ
���þ EregðWÞ: ð2Þ

Once the training data fðx̄ð1Þ; ȳÞg are given, then the loss
function E can be calculated, and the weights are trained so

that the loss function decreases. Ereg is a regularization
term, which we later use for extracting a particular kind of
weight distributions.
Next, we present a neural network representation of

a scalar field equation in an asymptotically (dþ 1)-
dimensional AdS spacetime. We suppose that the metric
takes the following form in a gauge gηη ¼ 1:

ds2 ¼ −fðηÞdt2 þ dη2 þ gðηÞðdx21 þ � � � þ dx2d−1Þ; ð3Þ

where η is the coordinate for the AdS radial direction
(0 ≤ η < ∞). Then, the action of a scalar field ϕ, which is
homogeneous along t and xi, is given by

S¼ VT
Z

dη
ffiffiffiffiffiffiffiffiffiffiffi
fgd−1

q �
−
1

2
ð∂ηϕÞ2−

1

2
m2ϕ2−VðϕÞ

�
: ð4Þ

Asymptotically ðη ≈∞Þ, the metric needs to be AdS,

f ≈ g ≈ exp½2η=Lþ k0�; ð5Þ

where L is the AdS radius and k0 is a constant. On the other
hand, we assume the existence of a planar black hole
horizon at the other side of the AdS radial direction (η ≈ 0),

f ≈ ð2πTBHÞ2η2; g ≈ const; ð6Þ

where TBH is the Hawking temperature of the black hole,
corresponding to the temperature of the boundary QFT.
The classical equation of motion for ϕðηÞ is

∂ηπ þ hðηÞπ −m2ϕ −
δV½ϕ�
δϕ

¼ 0; π ≡ ∂ηϕ; ð7Þ

where the metric function is

hðηÞ≡ ∂η log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðηÞgðηÞd−1

q
: ð8Þ

We discretize the η axis, and then

ϕðηþ ΔηÞ ¼ ϕðηÞ þ ΔηπðηÞ; ð9Þ

πðηþ ΔηÞ ¼ πðηÞ − Δη
�
hðηÞπðηÞ −m2ϕðηÞ − δVðϕÞ

δϕðηÞ
�
:

ð10Þ

This Hamilton-like form, (9) and (10), is in fact a neural
network representation of the bulk AdS scalar field
equation. We interpret the weights as a metric,

WðnÞ ¼
�

1 Δη
Δηm2 1 − ΔηhðηðnÞÞ

�
; ð11Þ

and the activation function as the interaction term [37],

FIG. 2. The AdS=CFT and the DL [9]. Top: A typical view of
the AdS=CFT correspondence. The CFT at a finite temperature
lives at a boundary of asymptotically AdS spacetime with a black
hole horizon at the other end. Bottom: A typical neural network
of a deep learning.
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�φðx1Þ ¼ x1;

φðx2Þ ¼ x2 þ Δη δVðx1Þ
δx1

:
ð12Þ

These bring (9) and (10) to the form (1), once we interpret
the vectors xi as ðϕ; πÞ and the layer index as the discretized
η. See Fig. 3.
The input data are the pair ðϕðη ¼ ∞Þ; πðη ¼ ∞ÞÞ. The

values are obtained once the one-point function of a QFT
operator O is given under the source J in the boundary
QFT. In fact, hOiJ and J correspond to coefficients of the
normalizable and non-normalizable modes of ϕ in the
asymptotically AdS spacetime [39], and later we will
provide an explicit formula for relating these for the case
of QCD chiral condensate. For numerical simulations, we
introduce a cutoff η ¼ ηini and regard that point as the
location of the asymptotic AdS boundary.
On the other hand, at η ¼ 0, there is a black hole horizon,

and we put another regularized cutoff η ¼ ηfin close to
η ¼ 0. There, if the bulk scalar field consistently satisfies
the ingoing boundary condition, then we need to require
(see e.g., [40])

0 ¼ F≡
�
2

η
π −m2ϕ −

δVðϕÞ
δϕ

�
η¼ηfin

: ð13Þ

In the limit ηfin → 0, the condition (13) is equivalent to
πðη ¼ 0Þ ¼ 0, so this is the output data of the neural
network.
The training of the neural network is given by these

positive data, (ϕðη ¼ ∞Þ, πðη ¼ ∞Þ) as the input and
πðη ¼ 0Þ ¼ 0 as the output. For the training we also need

negative data which can be generated easily by looking at
the data points away from the positive data. We may assign
πðη ¼ 0Þ ¼ 1 for the negative data for convenience.
In summary, the dictionary between the AdS=CFT

correspondence and the deep learning method, specifically
for the bulk scalar field equation in the background of black
hole geometry, is given in Fig. 4. The most important aspect
of the dictionary is the fact that the weights in the neural
network correspond to the bulk geometry. See Appendix A
for details of the numerical training of the machine
learning.

III. LATTICE QCD DATA AS INPUT

As explained in the Introduction, one of the virtues of our
holographic modeling with the use of the deep neural
network is to construct a gravitational metric from a QCD
data. We use the input data as the one-point function of a
QCD operator under a source J, and the simplest and most
popular example of such in QCD is the chiral condensate
O≡ q̄q. The source for the chiral condensate is the quark
massmq, since in the QCD Lagrangian the quark mass term
is written as mqO.
There are various lattice QCD data for the chiral

condensate, among which we chose a data of the RBC-
Bielefeld collaboration [10] because of the following two
reasons: First, the data are taken near the critical temper-
ature of QCD, and second, the quark mass dependence and
its temperature dependence is clearly interpreted from the
data. Since our output data are the black hole boundary
condition, the lattice data need to be that above the thermal
phase transition temperature. Normally, AdS=CFT corre-
spondence is studied at a strong coupling limit, and at the
limit the thermal phase transition is the first order. On the
other hand, the thermal phase transition of QCD is a
crossover. So it is interesting to ask our neural network
what is the emergent metric out of the lattice data near the
phase transition temperature. We will see a surprising
consequence in later sections.
The lattice QCD data [10] for the chiral condensate as a

function of the quark mass is shown in Table I [41]. The
unit is the lattice spacing a, and the data are for the QCD
coupling constant βlat ¼ 6=g2lat ¼ 3.3300, where glat is the
gauge coupling constant at the cutoff scale a−1, namely
glat ¼ gðμ ¼ a−1Þ.
Here we briefly review the determination of the lattice

spacing a in the physical scale [42]. First of all, the cutoff
a−1 and the gauge coupling βlat ¼ 6=g2ðμ ¼ a−1Þ are
related by the QCD beta function,

μ
dgðμÞ
dμ

¼ −b0gðμÞ3 þ � � � ; ð14Þ

where μ is a scale and b0 is the first coefficient of the QCD
beta function. By solving this differential equation, we can

FIG. 3. Our deep neural network for the emergence of the bulk
metric [9].

FIG. 4. Our dictionary between the AdS=CFT correspondence
and the deep learning.
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determine the relation between βlat and the cutoff a−1.
However, we cannot fix the absolute energy scale, as in the
perturbative renormalization procedure; therefore we need
physical observables to fix it. Sommer introduced the heavy
quark potential to fix the scale [42],

r2
∂
∂r VðrÞ

���
r¼r0

¼ 1.65; ð15Þ

where VðrÞ is the potential energy between two heavy
quarks, which is calculated using Wilson loops on the
lattice. The left-hand side is a dimensionless combination.
A constant in the right-hand side is chosen such that r0 is
equal to 0.469ð7Þ ≈ 0.5 [fm]. By measuring the left-hand
side of (15) on the lattice, we can determine a dimension-
less number r0=a, and using r0 ≈ 0.5 [fm], we can
determine the absolute scale a in the physical unit.
In Ref. [43], they determined r0=a ¼ 1.995ð11Þ for

βlat ¼ 3.335 and r0=a ¼ 1.823ð16Þ for βlat ¼ 3.290 for
dynamical two-flavor staggered QCD. Since the above
data for the chiral condensate is for βlat ¼ 3.3300, we
interpolate the two values of r0=a and obtain r0=a ¼
1.976ð16Þ for βlat ¼ 3.3300. Using r0 ¼ 0.469ð7Þ [fm],
we obtain a ¼ 0.238ð6Þ [fm], which means 1=a ¼
829ð19Þ ½MeV�. This value is used to translate the lattice
simulation values in the left panel of Table I to their
physical values, as given in the right panel of Table I. It is
also used to determine the temperature T ¼ 1=ð4aÞ ¼
207ð5Þ ½MeV�, where the factor of 4 is for the temporal
size of the used lattice in the lattice unit a. The value of the
temperature shows that the input lattice data are around the
critical temperature of the QCD thermal phase transition.
Using the lattice QCD data of hOiJ ¼ hq̄qimq

in physical
units, described in the right panel of Table I, we may

generate a data set to train the neural network. Since the
error expected in converting the lattice data to physical
units is at most 8% (which mainly comes from the error of
the value of 1=a3), we take it into account for generating the
training data set. The generated data set which we use is
shown in Fig. 5.
We generate the positive and negative data as follows.

First, using the lattice data of the right panel of Table I, we
fit it with a polynomial function up to the third power inmq.
Then we randomly pick a point in the region 0 < mq <
0.022 and 0 < hq̄qi < 0.11 and judge whether it belongs to
the positive data set or the negative data set by checking
whether the vertical distance from the fitted curve is less
than or more than 0.004. We collect 10000 positive data
points and 10000 negative data points. They are plotted
in Fig. 5.
Next, we need to map the generated data to the first layer

of the neural network by using the map given in Ref. [39].
We consider a ϕ4 theory in the bulk, and take

V½ϕ� ¼ λ

4
ϕ4: ð16Þ

The coupling constant λ is to be trained, and it should be
positive (λ > 0). Furthermore, the chiral condensate hq̄qi
has mass dimension 3 at the UVGaussian fixed point, so we
have to take m2 ¼ −3=L2, according to the well-known
relation between the bulk scalar mass and the conformal
dimensionΔO of the operatorO in d spacetime dimensions,

ΔO ≡ ðd=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2L2

q
: ð17Þ

At the asymptotic boundary of the geometry, the spacetime
is the AdS with the AdS radius L. This means hðηÞ ≈ 4=L.
Then the bulk equation of motion is written near the
asymptotic boundary as

∂2
ηϕþ 4

L
∂ηϕ −

3

L2
ϕ − λϕ3 ¼ 0: ð18Þ

TABLE I. Left: Lattice data of the chiral condensate as a
function of quark mass [10], in the unit of lattice spacing a.
Right: Its translation to the physical units, using 1=a ¼
0.829ð19Þ [GeV].
mq hψ̄ψi
0.0008125 0.0111(2)
0.0016250 0.0202(4)
0.0032500 0.0375(5)
0.0065000 0.0666(8)
0.0130000 0.1186(5)
0.0260000 0.1807(4)

mq [GeV] hψ̄ψi [ðGeVÞ3]
0.00067 0.0063
0.0013 0.012
0.0027 0.021
0.0054 0.038
0.011 0.068
0.022 0.10

FIG. 5. Data used for training the neural network. The
horizontal axis is the quark mass [GeV], and the vertical axis
is the chiral condensate [GeV3]. Blue dots are positive data, while
orange dots are negative data.
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The solution of the scalar field equation near the asymptotic
AdS spacetime is

L3=2ϕ ≈ αe−η=L þ βe−3η=L −
λα3

2L2
ηe−3η=L: ð19Þ

The first two terms are non-normalizable and normalizable
modes, corresponding to the quark mass and the chiral
condensate, according to the AdS=CFT dictionary. The
third term is present and necessary, when the conformal
dimension is an integer. In numerical simulations we deal
with dimension-less quantities, and everything is measured
in units of the AdS radius L. The normalization of
dimensionless α and β is determined (see Appendix B),

α ¼
ffiffiffiffiffiffi
Nc

p
2π

mqL; β ¼ πffiffiffiffiffiffi
Nc

p hq̄qiL3: ð20Þ

We take Nc ¼ 3, and the value of the AdS radius, L, needs
to be trained in the machine learning procedures.
In summary, the input data for the neural network is

given by

ϕðηiniÞ ¼ αe−ηini þ βe−3ηini −
λα3

2
ηinie−3ηini : ð21Þ

πðηiniÞ ¼ −αe−ηini −
�
3β þ λα3

2

�
e−3ηini

þ 3λα3

2
ηinie−3ηini ; ð22Þ

with the coefficients (20) with Nc ¼ 3, with the positive
and negative data given in Fig. 5. The variables to be trained
are λ, L, and hðηÞ.

IV. DEEP LEARNING AND EMERGENT METRIC

A. Preparation of the neural network

First, let us discretize the η direction. We prepareN ¼ 15
layers, and the UVand IR cutoffs are introduced as ηini ¼ 1
and ηfin ¼ 0.1, in units of L. So we discretize the region
ηfin ≤ η ≤ ηini to 15 points which are apart equidistantly.
Note that the η cutoff values are not relevant except for the
difference ηini − ηfin, because the bulk equations of motion
(9) and (10) are invariant under translation along η. We will
see later that this arbitrariness is used to fit the emergent
metric with the location of the black hole horizon.
Since we are interested in a smooth continuum limit of

hðηÞ which asymptotes to the AdS spacetime, we employ
the following two regularization terms [44], Ereg ¼
EðsmoothÞ
reg þ EðbdryÞ

reg . The first one is

EðsmoothÞ
reg ≡ creg

XN−1

n¼1

ðηðnÞÞ4ðhðηðnþ1ÞÞ − hðηðnÞÞÞ2 ð23Þ

with creg ¼ 0.01. With this regularization, the weights hðηÞ
which are smooth in η are favored. The factor η4 is
introduced such that the regularization also allows a func-
tional form hðηÞ ∝ 1=η near η ≈ 0. In the continuum limit
N → ∞, this regularization is roughly equivalent to
creg

R
dηðh0ðηÞη2Þ2. The value of creg is chosen such that

the training rejects zigzag-shaped metric functions and at
the same time the training proceeds smoothly. The second
one is

EðbdryÞ
reg ≡ cregðd − hðηð1ÞÞÞ2 ð24Þ

with the QFT spacetime dimension d ¼ 4. Since for
the pure AdS spacetime we have hðηÞ ¼ d, at the asymp-
totic region η ¼ ηð1Þ ¼ ηini our metric needs to be smoothly
connected to h ¼ d. This regularization is to choose
weights which are consistent with the asymptotically
AdS spacetime. Again, for simplicity, we choose
creg ¼ 0.01.
In our numerical training, we use PYTORCH for a

PYTHON deep learning library to implement our network.
The trained variables are 15 values of hðηðnÞÞ, the coupling
constant λ, and the AdS radius L. The initial metric function
is randomly chosen (the standard deviation of magnitude 3
with the mean value h ¼ 4), and the initial values of λ and L
are chosen as λ ¼ 0.2 and L ¼ 0.8 ½GeV−1�. In the learning
process, we choose the batch size equal to 10 and the stop
training at 1500 epochs.

B. Obtained metric function

We collect eight statistical data under the criterion that
the total loss after the 1500 epochs is less than 0.08 [45].
The statistical result of the metric function hðηðnÞÞ is shown
in Table II, and its plot is given in Fig. 6. We also obtained
the trained values of the coupling constant and the AdS
radius,

λ ¼ 0.01243� 0.00060; ð25Þ

L ¼ 3.460� 0.021 ½GeV−1�: ð26Þ

Using 5.0677 ½GeV−1� ¼ 1 ½fm�, our AdS radius is deter-
mined as L ¼ 0.6828� 0.0041 ½fm�.
There are three important aspects of the obtained metric

function hðηÞ:
(i) All eight metrics converge to almost the same curve,

so there is a universality of the obtained metric
functions.

(ii) The obtained hðηðnÞÞ diverges when η approaches
the horizon n ¼ 15. This is consistent with the
black hole horizon behavior h ≈ 1=η expected from
Einstein equations. Note that we have not introduced
any regularization to force the metric to prefer the
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divergence. The neural network automatically cap-
tures the horizon behavior from the training data.

(iii) The obtained metric function hðηÞ goes negative in
the middle region. This behavior is unexpected, and
it turns out that this is quite an important new feature
which the machine automatically figures out, as we
will explain below.

All of these properties are important and point to successful
training of the metric function in our deep learning holo-
graphic modeling.
To emphasize the importance of the regularization, we

show in Fig. 7 the two representative cases of the training.
The upper panels show the training with the regularization

Ereg ¼ EðsmoothÞ
reg þ EðbdryÞ

reg , while the lower panels show that

with only the second regularization Ereg ¼ EðbdryÞ
reg . We find

that without the first regularization EðsmoothÞ
reg the obtained

metric function is not smooth.
However note also that the training without the first

regularization EðsmoothÞ
reg gets a smaller loss, E ¼ 0.0074,

compared to the case of the full regularization, E ¼ 0.094.
The difference is apparent in the left two panels which
show the extent of the coincidence between the original
lattice data (green dots) and the ones judged as positive data
by the trained metric function (orangeþ green dots). The
upper left panel has a broader coincidence while the lower

left panel (which is without EðsmoothÞ
reg ) has a better coinci-

dence. This is apparently due to the difference of the
regularizations. Since we look for a gravity dual which has
a smooth metric, we are led to conclude that we have to
allow a broader coincidence of the data to have a gravity
dual [46].

C. Reconstruction of full metric

The metric function obtained by the training of the neural
network is hðηÞ≡ ∂η½log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðηÞgðηÞ3

p
�, and in order to

calculate other physical quantities in the holographic model
we need to reconstruct components of the metric, fðηÞ and
gðηÞ, from the obtained hðηÞ. There are two obstacles in
getting them: First, the function hðηÞ includes a derivative,
so in the integration there appears an integration constant.
Second, the deep learning gives only a combination
fðηÞgðηÞ3, so one needs to assume gðηÞ to obtain fðηÞ,
for example. Fortunately the first obstacle can be fixed by
requiring the temperature. The lattice data used for our
training are at the temperature T ¼ 207ð5Þ ½MeV�, and we
can use it to determine the integration constant by demand-
ing the consistency between the temperature value and the
near horizon metric; see (6).
Let us describe our procedure to find the metric

components fðηÞ and gðηÞ consistent with the trained
hðηÞ. We describe everything in units of L below. Write
the gðηÞ component as

gðηÞ ¼ exp½2ηþ kðηÞ�: ð27Þ

For this to be consistent with the asymptotically AdS
spacetime, we require

kðη ¼ ∞Þ ¼ k1; ð28Þ

which is a constant. We also define k0 ≡ kðη ¼ 0Þ. With the
obtained metric function hðηÞ we define its deviation from
the AdS-Schwartzschild metric,

H ≡ h − 4 coth½4η�: ð29Þ

From the definition, f and g satisfy

fg3 ¼ exp

�
2

Z
η

c
ðHðη0Þ þ 4 coth½4η0�Þdη0

�
: ð30Þ

Here c is the integration constant. Together with (27), we
obt7ain

TABLE II. Values of the trained metric function hðηðnÞÞ for the
layer index n − 1 ¼ 0; 1;…; 14. We collected eight metrics and
the standard deviation of them is also given.

n − 1 h

0 3.0818� 0.0081
1 2.296� 0.016
2 1.464� 0.025
3 0.627� 0.035
4 −0.141� 0.045
5 −0.727� 0.049
6 −0.974� 0.043
7 −0.687� 0.032
8 0.374� 0.087
9 2.50� 0.19
10 6.03� 0.30
11 11.46� 0.35
12 19.47� 0.27
13 31.07� 0.17
14 46.70� 0.52

FIG. 6. Plot of the trained metric function hðηÞ given in Table II.
The horizontal axis is the layer index n − 1 ¼ 0;…; 14.
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f
e2η

¼ exp

�
2 log

sinh½4η�
sinh½4c� − 8η − 3kþ 2

Z
η

c
Hdη0

�
: ð31Þ

With this expression, we require two consistency condi-
tions; first, we require that asymptotically (η → ∞) the
spacetime is AdS, that is, f ≈ exp½k1 þ 2η�. Then we obtain

k1 ¼ −
1

2
log ½2 sinh½4c�� þ 1

2

Z
∞

c
Hðη0Þdη0: ð32Þ

Second, we require the temperature condition for f, which
is the first equation of (6). This leads to

k0 ¼
2

3

Z
0

c
Hðη0Þdη0 − 2

3
log

�
π

2
TBHL sinh½4c�

�
: ð33Þ

These two equations, (32) and (33), are necessary con-
ditions for g to satisfy.
The choice of gðηÞ, which is the choice of kðηÞ, cannot be

fixed in our learning approach, and we choose it by hand.
Our natural choices are (i) gðηÞ ¼ αe2η, and (ii) gðηÞ ¼
α cosh½2η�. The latter case (ii) is the form for the AdS-
Schwartzschild black hole. For given kðηÞ, one can solve
(32) and (33) to obtain the integration constant c. For
example, for the case (ii), from (32) and (33) we obtain

log sinh½4c� þ
Z

c

0

Hdη0 þ 3

Z
∞

0

Hdη0 ¼ log
2

ðπTBHLÞ4
:

ð34Þ

Solving this equation numerically gives the explicit value
of c.
Now, let us fit the numerical data of Table II and obtain a

smooth function hðηÞ. We first fit the data in the region
ηfin¼1=15≤η≤ηini¼1 by a fifth order polynomial. Then
we extrapolate the function to the regions 0 < η < ηfin and
ηini < η. As we mentioned, the origin of the η axis can be
shifted slightly, and since we need to require that hðηÞ ≈
1=η near η ≈ 0 which is the black hole horizon condition,
we fit the values of the polynomial-fit h near the final layer
1=15 < η < 1=15þ 0.05 as hðηÞ ≈ 1=ðηðnÞ − c1Þ þ c2.
This determines c1 ¼ 0.0227 and c2 ¼ 25.257. It means
that η should be shifted by the small value c1. With this
shifted η, we also fit the values near the initial layer
1 − c1 − 0.05 < η < 1 − c1 as hðηÞ ≈ 4 − c3e−c4η. This
determines c3 ¼ 8.248 × 103 and c4 ¼ 9.280. Using these
variables, we obtain the fitted hðηÞ for all the region of
0 < η < ∞, with the desired asymptotic behavior at the
black hole horizon and the asymptotic AdS spacetime. See
Fig. 8 for the plot of hðηÞ.
For the choice (i), Fig. 9 is the numerically obtained

metric function fðηÞgðηÞ3, and Fig. 10 shows fðηÞ. The
obtained gðηÞ is

FIG. 7. Data reproduction and the trained metrics. Top left: Reproduced data of one-point function. Green dots are original data, while
orangeþ green dots are the data judged as positive by the neural network with the regularization. Top right: The emergent metric
function hðηÞ. The loss is 0.073. Bottom: The trained metric and data without the regularization. The metric function is not smooth,
while the loss goes down to 0.0079.
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gðηÞ ¼ c5e2η ð35Þ

with c5 ¼ 43.92. Another choice (ii) provides quite a
similar plot for these functions.
Let us discuss a physical implication of the obtained

metric. As clearly seen in Fig. 10, the temporal component

of the metric has a peculiar feature: It has a big wall
(bump) before it reaches the black hole horizon η ¼ 0.
This is different from the standard black hole metric.
The AdS-Schwartzschild black hole metric is fðηÞ ∝
sinh2½2η�= cosh½2η�, which monotonically decreases when
η approaches the horizon η ¼ 0, so there is no wall. On the
other hand, our fðηÞ has a big wall.
The existence of the wall around η ¼ 0.4 is due to

the fact that the trained hðηÞ is negative around there.
Integrating hðηÞ to obtain the volume form fðηÞgðηÞ3
generates the wall. The physical interpretation of the wall
is striking: it resembles a confining geometry. In a generic
confining geometry in AdS=CFT, the curved spacetime
ends at an IR wall. The radial location of the wall
corresponds to the energy scale of the confinement. In
our case, the deep learning automatically finds out that
there exists such a confining behavior, just from the data.
In fact, the output data of our neural network is arranged

such that the geometry ends with the black hole horizon.
So, the emergence of the IR wall of the confining geometry
in the neural network is counterintuitive. Nevertheless, the
trained metric acquires the wall to explain the data of the
chiral condensate as a function of the quark mass.
Remember that in AdS=CFT, the boundary QFT is at the

strong coupling limit, so the thermal phase transition is at
the first order. It means that there is no sense of a metric
“between” the confining geometry and the black hole
geometry. However, the realistic QCD is not at the strong
coupling limit, and the thermal phase transition is a
crossover. We used the lattice data at T ¼ 207ð5Þ ½MeV�
which is near the thermal phase transition, so the data is
expected to capture features of both the confining and the
black hole geometries. And indeed the trained metric
acquires the features.
It is quite interesting that the metric trained in the deep

learning automatically learns the physical features of the
phases. The wall behavior has not been studied in the
context of holographic QCD, to our knowledge, so it is a
novel feature. This is the powerful point of our deep
learning holographic QCD modeling, which solves the
inverse problem.

V. QUARK CONFINEMENT

One of the most popular observables of QCD is the
Wilson loop, and its calculation in holographic QCD
models is established [47–49]. As a concrete example of
the “prediction” part of our holographic QCD modeling in
Fig. 1, we shall compute a quark-antiquark potential in
Sec. VA. The result is intriguing: the potential has a linear
confining part, in addition to a part corresponding to the
Debye screening. That is, although our model at the
temperature higher than the critical temperature has a
vanishing chiral condensate at mq ¼ 0, the Wilson loop
exhibits a confining part. We study in Sec. V B this
interesting relation between the quark confinement and

FIG. 8. The fitted hðηÞ which has the desired asymptotic
behavior: hðηÞ ≈ 1=η near η ≈ 0 and hðηÞ ≈ 4 at η → ∞, while
reproducing the trained values of Table II in the region
1=15 − c1 < η < 1 − c1.

FIG. 9. The metric function fðηÞgðηÞ3 as a function of η in
units of L.

FIG. 10. The metric function fðηÞ as a function of η in
units of L.
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the chiral symmetry breaking, and we discuss the holo-
graphic origin of the relation.

A. Calculation of Wilson loop

The calculation is straightforward, and we describe here
only the formulas and results. The Nambu-Goto string
which hangs from the boundary of the asymptotic AdS
spacetime, whose ends are separated by the distance d,
reaches η ¼ η0 at its deepest in the radial η direction. The
relation between d and η0 is

d ¼ 2

Z
∞

η0

1ffiffiffiffiffiffiffiffiffi
gðηÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðη0Þgðη0Þ

fðηÞgðηÞ − fðη0Þgðη0Þ

s
dη: ð36Þ

The quark-antiquark potential energy VðdÞ is

2πα0V ¼ 2

Z
∞

η0

ffiffiffiffiffiffiffiffiffi
fðηÞ

p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðη0Þgðη0Þ

fðηÞgðηÞ − fðη0Þgðη0Þ

s
− 1

!
dη

− 2

Z
η0

0

ffiffiffiffiffiffiffiffiffi
fðηÞ

p
dη: ð37Þ

Note that if VðdÞ is positive, we should instead take
VðdÞ ¼ 0 which corresponds to separated two quarks
(two parallel Nambu-Goto strings stuck to the black hole
horizon). Eliminating η0 in (36) and (37) provides the
function VðdÞ.
Using the trained metric determined in the previous

section, the explicit form of VðdÞ is calculated. The result
for the case (i) is shown in Fig. 11, and the case (ii) is in
Fig. 12. [Since the overall string tension 1=ð2πα0Þ cannot be
fixed in the holographic model, in the figures the vertical
axis is 2πα0VðdÞ.]

The important novel feature of the calculated quark-
antiquark potential is the coexistence of the linear potential
and the Debye screening. As clearly seen in the plots in
Figs. 11 and 12, in addition to the flat part at larger η which
means the Debye screening of the color-charged quarks,
there exists the region of the linear potential in the middle
range of η. This coexistence has not been seen in previous
holographic QCD models because the phase transition
between the confining and the deconfining phases is the
first order at the strong coupling limit.
In fact, in the standard lattice QCD data of the quark-

antiquark potential, one can find the coexistence of the
Debye screening and the linear confining behavior. For an
example of such lattice QCD data, see Fig. 13. In this
manner, the deep learning method can reproduce unex-
pectedly the important features of physical observables
(which are not used for the training of the network), from
the emergent geometry.

FIG. 11. Quark-antiquark potential VðdÞ, as a function of the
interquark distance d, calculated holographically with the gen-
erated emergent metric using the case (i) [gðηÞ ∝ expð2η=LÞ].
The distance d is measured in units of the AdS radius
L ¼ 0.6828 ½fm�.

FIG. 12. Quark-antiquark potential VðdÞ, using the case
(ii) [gðηÞ ∝ coshð2η=LÞ]. The shape is quite similar to the plot
of Fig. 11, and the difference only appears in the overall scaling
of the horizontal axis.

FIG. 13. A quark-antiquark potential (singlet free energy)
measured at finite temperature in lattice QCD. This figure is
taken from Ref. [50]. It shows the coexistence of the Debye
screening and the linear confining potential.
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B. Quark confinement and chiral
symmetry breaking

It is often discussed in literature whether the quark
confinement and the chiral symmetry breaking are indepen-
dent of each other (see e.g., Refs. [12–25] for various studies
on this question). In realistic QCD, the thermal deconfine-
ment phase transition occurs at a temperature close to that of
the chiral transition, which brings about the natural question.
Here, in our holographic model, the deep learning found a
novel emergent metric which possesses both the features of
the confinement and the deconfinement phases, and the
metric itself has been determined by the lattice data of the
chiral condensate. So our holographic model is a good arena
for discussions about the relation between the confinement
and the chiral symmetry breaking.
Since our lattice data used to feed the neural network is

the one measured at T ¼ 207ð5Þ ½MeV� which is above the
critical temperature, the chiral condensate at mq ¼ 0

vanishes. So there is no spontaneous breaking of the chiral
symmetry. Nevertheless, the Wilson loop, or the quark-
antiquark potential of probe quarks, exhibits a linear
confining part, as seen in Figs. 11 and 12. This leads to
a conclusion that the chiral symmetry breaking is not
directly related to the quark confinement, in our simplest
holographic model.
Even though our result of the calculation of the Wilson

loop suggests that there is no direct relation to the chiral
symmetry breaking, if we look more carefully at how the
Wilson loop and the chiral condensate are calculated in the
holographic model, we find an intimate relation between
them.
As we have seen in Sec. III, since h is the radial

derivative of the metric, the negative h means that there
exists a wall in fðηÞ. This wall produces the linear potential
in the quark-antiquark potential, as demonstrated explicitly
above. In fact, an infinitely high wall is the IR confining
wall which is often used in any holographic QCD model of
confinement. Our wall is of a finite height, and leads to the
partially linear behavior of the quark-antiquark potential.
Since the confinement is attributed to the wall in the

metric, let us study the chiral condensate from the view-
point of the metric. The equation for the bulk scalar field
(7), at the linear level in ϕ, is

�
ω2

f
þ ∂2

η þ hðηÞ∂η þ 3

�
ϕ ¼ 0: ð38Þ

Here we introduced a time dependence ϕ ∝ expð−iωtÞ so
that we can find the energy dependence of the modes
explicitly. Redefining the scalar field as

ϕðη; tÞ ¼ IðηÞϕ̃ðη; tÞ ð39Þ

with ∂ηI=I ¼ ð−3=4Þ∂ηg=g, we find that the equation
above is rewritten as

½
ffiffiffi
f

p ∂η

ffiffiffi
f

p ∂η þ ω2 − VðηÞ�ϕ̃ ¼ 0; ð40Þ

with

VðηÞ≡ −3f − f
∂2
ηI

I
− hf

∂ηI

I
: ð41Þ

Introducing a new radial coordinate y ¼ yðηÞ which
satisfies

ffiffiffi
f

p d
dη

¼ d
dy

; ð42Þ

the equation above can be recast to

�
−

d2

dy2
þ VðηðyÞÞ

�
ϕ̃ ¼ ω2ϕ̃; ð43Þ

which is of the form of a Schrödinger equation, with the
energy eigenvalue ω2.
For our previous choice gðηÞ ¼ c5e2η, the calculation of

the Schrödinger potential is simplified and we find

VðηÞ ¼ 3

4
ð∂ηf − fÞ: ð44Þ

See Fig. 14 for a plot of the potential VðηÞ. Because of the
wall in fðηÞ, the resulting potential VðηÞ has a deep valley
which is separated away from the black hole horizon
(η ¼ 0) by a wall. In general, a normalizable mode
localized at the valley is expected. The chiral condensate
means the existence of such a mode with ω ¼ 0. Our metric
does not have such a mode, since our chiral condensate
vanishes. However, the potential VðηÞ has a deep valley due
to the confining wall of fðηÞ, and it could have generated a
chiral condensate. This means that the wall in fðηÞ can
generate both the confinement and the chiral condensate,
and whether they actually develop in physical quantities
depend on more details.

FIG. 14. The potential VðηÞ felt by the fluctuation of the bulk
scalar field ϕðηÞ.
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Another supportive argument for a relation between the
chiral condensate and the wall in the metric is as follows.
For a generic operator in AdS to be condensed, the bulk
mass has to violate the Breitenlohner-Freedman (BF)
bound [51,52]. The BF bound signals a tachyonic insta-
bility of any bulk field, which for the scalar field case is
given by

m2 þ d2

4L2
≥ 0: ð45Þ

This bound is equivalent to the reality condition of the
conformal dimension of the operator O, as seen from the
AdS=CFT formula (17). Since our metric function h
measures effectively the combination d=L (since at a pure
AdS spacetime we have h ¼ d=L), and d2=L2 ≃ h2 appears
in the inequality above, we notice that a smaller hðηÞ
compared to its value at the spatial infinity hðη ¼ ∞Þ ¼
d=L can generate the tachyonic instability and resultantly
the chiral condensate hq̄qi [53]. In fact, the emergent
geometry which the deep learning obtained (Fig. 6) has a
region in which the value of h is smaller than that of the
asymptotic value h ¼ 4 in units of L ¼ 1. It becomes even
negative, which results in the wall structure of fðηÞ. So, this
negative region could have been an origin generating the
chiral condensate. In other words, possible chiral symmetry
breaking is due to the wall in the metric f.
We conclude that the wall structure in the metric could be

a common origin of both the chiral symmetry breaking and
the quark confinement. These two phenomena could be
generated from the simple wall structure in the bulk, in the
simplest holographic setup. However, our calculated results
of the holographic QCD model show that the quark-
antiquark potential has a confining part although the
input data of the chiral condensate at mq ¼ 0 vanishes.
Therefore, the actual relation between the chiral symmetry
breaking and the quark confinement is more subtle [54].

VI. SUMMARY AND DISCUSSION

In this paper, we used a map [9] between the deep
learning and the AdS=CFT to obtain explicitly a holo-
graphic QCD model. The bulk metric function was deter-
mined as neural network weights, and as the input data for
the training of the neural network, we chose the lattice
QCD data [10] of the chiral condensate hq̄qi as a function
of the quark mass mq of QCD. The emergent metric
function turned out to have a unique structure: it has a
wall and the horizon. We calculated the quark-antiquark
potential (Wilson loop) using the bulk metric, and found
that the potential has both the linear potential part and the
Debye screening part, which coincides qualitatively with
the quark-antiquark potential obtained in lattice QCD.
It should be emphasized that the emergent metric has

both the features of the confinement phase and the
deconfinement phase, at the same time. As mentioned in

Sec. I, normally in holographic QCD models the two
phases are completely separate, and there exists a first order
phase transition separating the two phases. In our case, we
trained the neural network using the lattice QCD data, and
the realistic QCD has a crossover phase transition. We
attribute to the training data the reason why the emergent
metric gained automatically both of the phases.
With this new feature of the metric, we could discuss that

both the quark confinement and the chiral symmetry
breaking are possibly generated by the wall structure of
the metric in the bulk. However, our model has the
vanishing chiral condensate at mq ¼ 0 while the quark-
antiquark potential has a confining part; thus there exists a
discrepancy between the quark confinement and the chiral
symmetry breaking.
In this manner, our approach explores a wider class of

holographic QCDmodels. Using the realistic QCD data not
only makes the holographic model more precise (as it is
ensured to reproduce the training data) but also provides
unexpectedly novel parameters of the model (which, in our
case, is the wall-shaped metric of the bulk).
If we look at the calculated Wilson loop (Fig. 11) more

carefully, the string-breaking distance d is Oð0.1Þ ½fm�,
while the lattice QCD result in Fig. 13 has a larger string-
breaking distance. The reason for this discrepancy would be
allocated to the limitation of the holographic model
Lagrangianwe employed.Note that ourmodel is understood
as a probe limit of the meson sector. Since our training data
have many sets of pairs ðmq; hq̄qiÞ to determine a single
metric, the obtained metric does not take into account any
backreaction from the bulk scalar field. Although incorpo-
rating a backreaction would make the neural network
complicated, it may lead to more unexpected features of
the geometry. We leave it as a future work.
QCD is a QFT which has been most widely and deeply

studied; thus there exists a tremendous amount of data on
the physical observables of QCD. Therefore, to explore the
mystery of the AdS=CFT correspondence and the emergent
bulk spacetime using data science, QCD is the most
suitable playground. Spatial structure of the emergent
geometry and possible gravitational degrees of freedom
emergent in the bulk are of interest, and we expect that deep
learning method will provide us with more intuitions on
those interesting issues.
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APPENDIX A: DETAILS ABOUT
OUR TRAINING CODE

For generating the training data fðx̄ð1Þ; ȳÞg where ȳ ¼ 0
(ȳ ¼ 1) corresponds to the positive (negative) data, we
follow the steps described below. First, we plot the data of
the right panel of Table I ðmq; hq̄qiÞ to a two-dimensional
scattered plot and fit it by a polynomial with respect to mq

up to the fifth order, and call it fðmqÞ. By using this fðmqÞ,
we prepare the training data fðX̄ð1Þ; ȳÞg as follows:

(i) Randomly choose mq ∈ ½0; 0.022�, hq̄qi ∈ ½0; 0.11�.
(ii) Convert ðmq; hq̄qiÞ to ϕðηiniÞ and πðηiniÞ by (21) and

(22), and regard them as the input x̄ð1Þ.
(iii) Define the answer signal

ȳ¼
�
0 if hq̄qi ∈ ½fðmqÞ− noise; fðmqÞ þ noise�
1 otherwise

;

where the noise is sampled from a Gaussian with the
average 0 and the standard deviation 0.004.

The total training data D consist of

D ¼ ð104 positive dataÞ ⊕ ð104 negative dataÞ;

where

�
positive data ¼ fðx̄ð1Þ; ȳ ¼ 0Þg
negative data ¼ fðx̄ð1Þ; ȳ ¼ 1Þg

:

To compare ȳ and the neural network output y, at the final
layer we calculate F≡ πðηfinÞ [which is the right-hand side
of (13) in the limit ηfin → 0], and then we define y≡ tðFÞ
with

tðFÞ≡ tanhð100ðF−0.1ÞÞ
2

−
tanhð100ðFþ0.1ÞÞ

2
þ1: ðA1Þ

This function measures how F ¼ πðηfinÞ is small: roughly
speaking, tðFÞ ≈ 0 for jFj < 0.1 and tðFÞ ≈ 1 for jFj > 0.1.
As the training, we repeat the following training

iteration:
(i) Randomly divide the training data to a direct

sum of size 100 mini data: D ¼ ðmini dataÞ1 ⊕
ðmini dataÞ2 ⊕ … ⊕ ðmini dataÞ200.

(ii) Calculate loss (2) and update hðηðnÞÞ by Adam
optimizer [55] for all mini data.

Hyperparameters of the Adam optimizer are taken as
follows: α ¼ 0.002, β1 ¼ 0.9, β2 ¼ 0.999, ϵ ¼ 10−8.
When the loss (2) becomes less than 0.08, we stop the
iterations 1 and 2.

APPENDIX B: NORMALIZATION OF THE
TWO-POINT FUNCTION

When we map the boundary data to the boundary
behavior of the bulk scalar, we need to take care of the
normalization of the operator. Suppose that the bulk scalar
ϕ is dual to the CFT operator O with dimension Δ. If the
real scalar ϕ has the canonical kinetic term and the
boundary behavior is as follows [56]

ϕ ≈ e−ðd−ΔÞηbJ þ e−Δη
hOi

bð2Δ − dÞ ; ðB1Þ

the standard holographic computation [39] says that the
two point function of O results in

hOðxÞOð0Þi ¼ b2
ð2Δ − dÞπ−d

2ΓðΔÞ
ΓðΔ − d

2
Þ

1

jxj2Δ : ðB2Þ

Here, the constant b can be used to tune the normalization
without changing the coefficient of the source term JO
(see Ref. [57]).
We now argue that this b should be set as b ¼

ffiffiffiffi
Nc

p
2π for the

case of O ¼ q̄q where the Dirac fermion q has the
canonical normalization. The canonical dimension of q̄q
in d ¼ 4 is Δ ¼ 3. Thus, (B2) becomes

hOðxÞOð0Þi ¼ b2
4

π2jxj6 : ðB3Þ

On the other hand, the canonical Euclidean Lagrangian
of the free Dirac fermion is

L ¼ q̄að∂ þmqÞqa ða ¼ 1;…; NcÞ: ðB4Þ

The Wick contraction gives

ðB5Þ

Using this propagator, we can compute the two-point
function of the composite operator O ¼ q̄q at the
Gaussian fixed point (mq ¼ 0). It is given by

hOðxÞOð0Þi

¼ −Nc

Z
d4q
ð2πÞ4 e

iqx

Z
d4k
ð2πÞ4 tr

�
−i=k
k2

·
iðq − =kÞ
ðq − kÞ2

�
: ðB6Þ

We evaluate the k integral by using the dimensional
regularization (d ¼ 4 − ϵ)

IðqÞ ¼
Z

ddk
ð2πÞd tr

�
−i=k
k2

·
iðq − =kÞ
ðq − kÞ2

�
: ðB7Þ

Using the Feynman integral formula, the loop integral
becomes
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IðqÞ ¼ −d
Z

1

0

dx
Z

ddl
ð2πÞd

l2 − xð1 − xÞq2
½l2 þ xð1 − xÞq2�2 : ðB8Þ

We now use the formula

Z
ddl
ð2πÞd

1

½l2 þ Δ�2 ¼
Γð2 − d

2
Þ

ð4πÞd2 Δd
2
−2; ðB9Þ

Z
ddl
ð2πÞd

l2

½l2 þ Δ�2 ¼
dΓð1 − d

2
Þ

2ð4πÞd2 Δd
2
−1: ðB10Þ

Then the loop integral is given by

IðqÞ ¼ −
2dðd − 1ÞΓð2 − d

2
ÞΓðd

2
Þ2

ð2 − dÞð4πÞd2ΓðdÞ jqjd−2: ðB11Þ

By expanding it around ϵ ¼ 0where d ¼ 4 − ϵ, we can find
that IðqÞ has a finite term

−
1

8π2
q2 log q2: ðB12Þ

Therefore, we have

hOðxÞOð0Þi ¼ Nc

8π2

Z
d4q
ð2πÞ4 e

−iqx½q2 log q2 þ � � ��: ðB13Þ

We compare this result with (B3). By a similar dimen-
sional regularization approach, one can find that the Fourier
transformation of (B3),

Z
ddxeiqxhOðxÞOð0Þi ¼ b2

Z
ddxeiqx

4

π2jxj6 ; ðB14Þ

has a term containing q2 logq2. It is given by

b2

2
q2 log q2: ðB15Þ

Comparing it to (B13), we conclude

b ¼
ffiffiffiffiffiffi
Nc

p
2π

: ðB16Þ
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