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We study the mixing problem of the determinantlike operators in ABJM theory to two-loop order in the
scalar sector. The gravity duals of these operators are open strings attached to the maximal giant graviton,
which is a D4-brane wrapping a CP2 inside CP3 in our case. The anomalous dimension matrix of these
operators can be regarded as an open spin chain Hamiltonian. We provide strong evidence of its
integrability based on coordinate Bethe ansatz method and boundary Yang-Baxter equations.
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I. INTRODUCTION

In recent years, a lot of progress has beenmade in applying
techniques of integrability to planar AdS5=CFT4 correspon-
dence between IIB superstring theory on AdS5 × S5 and
four-dimensional N ¼ 4 super Yang-Mills (SYM) theory;
see [1] for a collection of reviews. Among all these notable
progresses, spin chains or strings with periodic boundary
condition are mostly studied and understood very well.
People are also interested in nonperiodic cases, including
twisted boundary conditions; see, e.g., [2,3] and open
boundary conditions[4–8]. See [9,10] for reviews of these
interesting topics.
In 2008, another example of AdS=CFT was proposed in

[11], where the authors gave very strong evidence that
type IIA string theory on AdS4 × CP3 background is dual
to N ¼ 6 superconformal Chern-Simons matter theory
(also known as Aharony-Bergman-Jafferis-Maldacena
(ABJM) theory) in three dimensional spacetime with
gauge group UðNÞ ×UðNÞ and Chern-Simons levels
ðk;−kÞ. The ’t Hooft coupling of ABJM theory turns
out to be λ ¼ N=k. People usually call this dual
as AdS4=CFT3 correspondence or ABJM=AdS4 × CP3

correspondence. The integrable structure in this setup
was also extensively studied [12].
Along a similar path, many studies on nonperiodic

integrable cases reemerged in the context of ABJM theory
[13–17]. However, there are still some potential integrable
setups which have not been investigated in the AdS4=CFT3

case, such as integrable Wilson loops [18–20] and integra-
bility from giant gravitons[8,21] found in the N ¼ 4 SYM
theory. In the SYM context, determinantlike operators are
dual to open strings attached to D-branes wrapping cycles in
S5. On the gravity side, suchD-braneswrapping some cycles
and carrying some angular momentum are usually called
giant gravitons. In the context of N ¼ 4 SYM, the integra-
bility of the open chain fromgiant gravitons has been studied
extensively [8,21–25]. However, such an integrable struc-
ture from the giant gravitons in theAdS4=CFT3 [26–28] case
has not been explored as far as we know, though the plane
wave limit in both sideswas studied in [29]. In this paper, we
would like to take a first step to fill these gaps. We study the
anomalous dimension matrix of the determinantlike scalar
operators in ABJM theory up to two-loop order in the scalar
sector. The anomalous dimension matrix can be viewed as
the Hamiltonian of an open spin chain. Using the coordinate
Bethe ansatz method, we calculate the reflection matrix for
fundamental excitations of this open chain. Based on the
known bulk two body S-matrix, it is not hard to verify that
the boundary Yang-Baxter equations (reflection equations)
are satisfied, hinting that this open spin chain is integrable.
The outline of this paper is as follows. In Sec. II,

we introduce the determinantlike scalar operators in
ABJM theory. To study the mixing problem, we calculate
their two-pointfunctions to two-loop order, giving the
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Hamiltonian of an open spin chain. In Sec. III, we compute
the reflection matrix of this open spin chain through the
coordinate Bethe ansatz method. Borrowing the two body
S-matrix in the bulk previously computed in [30], we
confirm that the boundaryYang-Baxter equations (reflection
equations) are satisfied. In the last section, we conclude and
briefly discuss some possible problems for further studies.

II. OPEN SPIN CHAIN IN ABJM THEORY

A. Determinantlike operators in ABJM theory

We begin with a very brief review of determinantlike
operators in ABJM theory. In ABJM theory, the scalar
fields ðA1; A2; B

†
1; B

†
2Þ transform in the fundamental repre-

sentation of the SUð4Þ R-symmetry group. We make the
following identification,

ðA1; A2; B
†
1; B

†
2Þ ¼ ðY1; Y2; Y3; Y4Þ: ð2:1Þ

Using the conventions of [31], the action of ABJM theory
can be written as

S¼
Z

d3xðLCSþLk−VF−VBÞ;

LCS¼
k
4π

εμνρtr

�
Aμ∂νAρþ

2i
3
AμAνAρ

− Âμ∂νÂρ−
2i
3
ÂμÂνÂρ

�
;

Lk¼ trð−DμY
†
ID

μYIþ iΨ†IγμDμΨIÞ;

VF¼
2πi
k

trðY†
I Y

IΨ†JΨJ−2Y†
I Y

JΨ†IΨJþϵIJKLY†
IΨJY

†
KΨL

−YIY†
IΨJΨ†J−2YIY†

JΨIΨ†JþϵIJKLYIΨ†JYKΨ†LÞ;

VB¼−
4π2

3k2
trðY†

I Y
JY†

JY
KY†

KY
IþY†

I Y
IY†

JY
JY†

KY
K

þ4Y†
I Y

JY†
KY

IY†
JY

K−6Y†
I Y

IY†
JY

KY†
KY

JÞ: ð2:2Þ

Covariant derivatives are defined as

DμYI ¼ ∂μYI þ iAμYI − iYIÂμ;

DμY
†
I ¼ ∂μY

†
I þ iÂμY

†
I − iY†

I Aμ

DμΨI ¼ ∂μΨI þ iAμΨI − iΨIÂμ: ð2:3Þ
In this paper, we focus on the determinantlike operators

OW ¼ ϵa1…aNϵ
b1…bN ðA1B1Þa1b1…ðA1B1ÞaN−1

bN−1
WaN

bN
; ð2:4Þ

with

W ¼ YI1Y†
J1
� � �YILY†

JL
: ð2:5Þ

It was suggested in [29] that the dual descriptions of these
operators are open strings attached to the giant graviton
D4-brane wrapping a CP2 inside CP3. The operator with
W ¼ A1B1 is dual to the D4-brane itself.

As discussed in [8], an open spin chain corresponding to
determinantlike operators in N ¼ 4 SYM has nontrivial
boundary conditions. One may expect that there are similar
boundary conditions in the case of open spin chain in
ABJM theory. To show this, we compute the tree-level two-
point function. The operator OW and its conjugate ŌW can
be rewritten as

OW ¼ 1

ðN − 1Þ! ϵ
½I�N−1c
½J�N−1a

ϵ½K�N−1b
½L�N−1c

ðA1Þ½J�N−1
½I�N−1

ðB1Þ½L�N−1
½K�N−1

Wa
b;

ŌW ¼ 1

ðN − 1Þ! ϵ
½M�N−1f
½S�N−1d

ϵ½Q�N−1e
½P�N−1f

ðA†
1Þ½P�N−1

½Q�N−1
ðB†

1Þ½S�N−1
½M�N−1

W̄d
e:

ð2:6Þ
Here, we use the shorthand notations

½I�N−1 ¼ I1…IN−1; ðA1Þ½J�N−1
½I�N−1

¼ ðA1ÞJ1I1…ðA1ÞJN−1
IN−1

:

ð2:7Þ
In the ’t Hooft limit of large N with a fixed ratio

λ ¼ N=k, we need to distinguish two cases. When YI1 ≠
A1 and Y†

JL
≠ B1 (I1 ≠ 1 and JL ≠ 3), we get

hOWŌWi ∼
1

ðN − 1Þ!2 ðN − 1Þ!2

× ϵ½I�N−1c
½J�N−1a

ϵ½K�N−1b
½L�N−1c

ϵ½L�N−1f
½K�N−1d

ϵ½J�N−1e
½I�N−1f

hWa
bW̄

d
ei

¼ ðN − 1Þ!4NhtrðWW̄Þi
∼ ðN − 1Þ!4N2Lþ2: ð2:8Þ

Here, we have omitted the spacetime dependence expli-
citly because they can be easily put back at the end of
the calculation. When YI1 ¼ A1 or Y†

JL
¼ B1 (I1 ¼ 1 or

JL ¼ 3), the operator factorizes [32,33], so the combina-
torics of contractions is different. For instance, when
YI1 ¼ A1, we have W ¼ A1V and

OW ¼ detA1ϵ
½K�N−1b
½L�N−1c

ðB1Þ½L�N−1
½K�N−1

Vc
b; ð2:9Þ

and then

hOWŌWi ∼ N!ðN − 1Þ!3N2L ¼ ðN − 1Þ!4N2Lþ1: ð2:10Þ
A similar analysis applies to the case when Y†

JL
¼ B1. There-

fore, the mixing between factorizing operators and nonfacto-
rizing operators is suppressed in the large-N limit.1 In this
paper,weonly consider operatorswithYI1≠A1 andY

†
JL

≠ B1.

B. Two-loop open spin-chain Hamiltonian

We now derive the two-loop anomalous dimension
matrix for determinantlike operators in the ’t Hooft limit.
We need to consider the mixing of two operators

1This can be checked at two-loop order by a simple large-N
counting.

HUI-HUANG CHEN, HAO OUYANG, and JUN-BAO WU PHYS. REV. D 98, 106012 (2018)

106012-2



W ¼ YI1Y†
J1
� � �YILY†

JL
; ¯̃W ¼ YMLY†

NL
� � �YM1Y†

N1
ð2:11Þ

where YI1 ≠ A1, Y
†
N1

≠ A†
1, Y

†
JL

≠ B1 and YML ≠ B†
1. Keeping one A1 and one B1 uncontracted with the corresponding A†

1

and B†
1, we get

hOWŌW̃i2-loop ∼ ðN − 1Þ2ϵ½I�N−2ic
½J�N−2ja

ϵ½K�N−2kb
½L�N−2lc

ϵ½L�N−2mf
½K�N−2sd

ϵ½J�N−2qe
½I�N−2pf

hðA1ÞjiðB1ÞlkðA†
1ÞpqðB†

1ÞsmWa
b
¯̃Wd
ei2-loop

¼ ðN − 2Þ!2ðN − 1Þ!2δqejaδicpfδmf
lc δkbsdhðA1ÞjiðB1ÞlkðA†

1ÞpqðB†
1ÞsmWa

b
¯̃Wd
ei2-loop: ð2:12Þ

Contractions of the generalized Kronecker deltas give

hδqejaδicpfδmf
lc δkbsdðA1ÞjiðB1ÞlkðA†

1ÞpqðB†
1ÞsmWa

b
¯̃Wd
ei2-loop

¼ ðN − 2ÞhtrðW ¯̃WÞtrðA1A
†
1ÞtrðB1B

†
1Þ − trð ¯̃WWB†

1B1ÞtrðA1A
†
1Þ − trðA1A

†
1W

¯̃WÞtrðB1B
†
1Þ

þ trðWB†
1B1

¯̃WA1A
†
1Þi2-loop þ htrðW ¯̃WÞtrðA1B1B

†
1A

†
1Þ − trðWB†

1A
†
1A1B1

¯̃WÞ
− trðW ¯̃WA1B1B

†
1A

†
1Þ þ trðWB†

1A
†
1ÞtrðA1B1

¯̃WÞi2-loop: ð2:13Þ

One can check that, in the large-N limit, the first, second, and third terms in the second line give bulk, right, and left
boundary contributions, respectively, and the contributions from other terms are suppressed. For example, one part of the
leading contribution from the second term corresponds to the contraction

−ðN − 2Þhtrð ¯̃WWB†
1B1Þiconnected; 2-looptrð A1A

†
1

⎴

Þ ∼ N2Lþ6

k2
: ð2:14Þ

Note that the contraction between A1 and A†
1 gives a factor N2ðN − 1Þ−1, here the factor ðN − 1Þ−1 is from avoiding

repeatedly counting of contractions. The Hamiltonian of the bulk part the open chain is the same as that of the closed spin
chain which was derived in [34,35]. We need to consider the boundary contributions. We first focus on the left boundary
corresponding to the term

h−trðA1A
†
1W

¯̃WÞtrðB1B
†
1Þi2-loop → N2Lh−trðA1A

†
1Y

I1Y†
J1
YM1Y†

N1
Þi2-loop: ð2:15Þ

Contributions from wave function renormalization
(self-interactions) are proportional to δI1N1

and thus flavor
blind. To get contributions from gluon exchange and
fermion exchange, one needs to contract YM1 with Y†

N1

and, thus, get ð…ÞδM1

N1
. Because I1 ≠ 1 and N1 ≠ 1, the

contributions must be proportional to δI1N1
δM1

N1
. Therefore,

contributions from gluon exchange and fermion
exchange are also flavor blind. We only need to consider
the following contribution from sextet scalar potential VB
given in (2.2)

N2Lh−trðA1A
†
1Y

I1Y†
J1
YM1Y†

N1
ÞVBi

∝ −
4π2N2Lþ6

3k2
ð−3δI1J1δ

M1

N1
− 12δM1

1 δ1J1δ
I1
N1

þ 6δI1N1
δM1

J1
Þ;

ð2:16Þ

where I1 ≠ 1 and N1 ≠ 1 have been taken into account.
Then we get

H0
left ¼

λ2

2

�
1

2
δI1J1δ

M1

N1
þ 2δM1

1 δ1J1δ
I1
N1

− δI1N1
δM1

J1
þ CδI1N1

δM1

J1

�
:

ð2:17Þ

Here, the normalization is fixed by comparing with bulk
Hamiltonian from sextet scalar potential. In fact, the first
term in the second line of (2.13) leads to, among other
terms,

N2LhtrðYI1Y†
J1
YI2Y†

N2
YM1Y†

M1
ÞVBi

∝ −
4π2N2Lþ6

3k2
ð3δI1N1

δI2J1δ
M1

N2
þ 3δI1J1δ

I2
N2
δM1

N1
þ 12δI1N2

δI2N1
δM1

J1

−6δI1J1δ
I2
N1
δM1

N2
− 6δI1N1

δI2N2
δM1

J1
− 6δI1N2

δI2J1δ
M1

N1
Þ; ð2:18Þ

and the contribution of this part to the spin chain
Hamiltonian is [34,35]
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λ2

2

�
−
1

2
δI1N1

δI2J1δ
M1

N2
−
1

2
δI1J1δ

I2
N2
δM1

N1
− 2δI1N2

δI2N1
δM1

J1
þδI1J1δ

I2
N1
δM1

N2
þ δI1N1

δI2N2
δM1

J1
þ δI1N2

δI2J1δ
M1

N1

�
: ð2:19Þ

The constant C in (2.17) comes from the contributions from gluon exchange, fermion exchange and self-interactions.
An analogous discussion applies to the right boundary. We will show in the Appendix that the anomalous dimension of
the operator with W ¼ ðA2B2ÞL is zero in the large-N limit, which allows us to determine the sum of the constant C and
a similar constant from the right boundary. At the end, the total Hamiltonian is given by

H ¼ λ2
X2L−3
l¼2

�
I − Pl;lþ2 þ

1

2
Pl;lþ2Kl;lþ1 þ

1

2
Pl;lþ2Klþ1;lþ2

�
QA1

1 QB1

2L

þ λ2QA1

1

�
I þ 1

2
K1;2 − P1;3 þ

1

2
P1;3K1;2 þ

1

2
P1;3K2;3

�
QA1

1 QB1

2L

þ λ2QB1

2L

�
I þ 1

2
K2L−1;2L − P2L−2;2L þ 1

2
P2L−2;2LK2L−2;2L−1 þ

1

2
P2L−2;2LK2L−1;2L

�
QA1

1 QB1

2L

þ λ2ðI −Q
A†
1

2 ÞQA1

1 QB1

2L þ λ2ðI −Q
B†
1

2L−1ÞQA1

1 QB1

2L; ð2:20Þ

where the trace operator K and permutation operator P are
defined as

ðKijÞIiIjJiJj
¼ δIiIjδJiJj ; ðPijÞIiIjJiJj

¼ δ
Ij
Ji
δ
Ij
Ji
; ð2:21Þ

and the Q operators are defined as [8]

Qϕjϕi ¼ 0; Qϕjψi ¼ jψi; for ψ ≠ ϕ: ð2:22Þ
Half of the 1

2
K1;2 (

1
2
K2L−1;2L) term in (2.20) comes from the

third (second) term in (2.13), and another half comes from
the first term in (2.13).

III. INTEGRABILITY FROM COORDINATE
BETHE ANSATZ

In this section, we discuss the integrability of the above
open spin chain in the framework of coordinate Bethe
ansatz. The reflection equations are necessary conditions
for the integrability of the open spin chain Hamiltonian. We
want to know whether the boundary reflection matrices
satisfy the reflection equations or not.
We chose A2 and B2 to be the vacuum flavors and,

therefore, the vacuum of this open chain is chosen to be

W ¼ ðA2B2Þ � � � ðA2B2Þ: ð3:1Þ
The fundamental one-particle excitations include

replacing A2 by A1 or B†
1 at the odd site and replacing

B2 by B1 or A
†
1 at the even site. And we should keep in mind

that the first A2 cannot be replaced by A1 and the last B2

cannot be replaced by B1. So the one-particle excitations
include

bulk odd site ðA2B2Þ � � � ðA1B2Þ � � � ðA2B2Þ ð3:2Þ

ðA2B2Þ � � � ðB†
1B2Þ � � � ðA2B2Þ ð3:3Þ

bulk even site ðA2B2Þ � � � ðA2B1Þ � � � ðA2B2Þ ð3:4Þ

ðA2B2Þ � � � ðA2A
†
1Þ � � � ðA2B2Þ ð3:5Þ

left boundary ðB†
1B2Þ � � � ðA2B2Þ ð3:6Þ

right boundary ðA2B2Þ � � � ðA2A
†
1Þ: ð3:7Þ

We denote the open chain as ð1Þð2Þ � � � ðxÞ � � � ðLÞ with
every site (x) containing two fields. Then the above
excitations can be simply denoted as

jxiA1
; 2 ≤ x ≤ L;

jxiB†
1
; 1 ≤ x ≤ L;

jxiB1
; 1 ≤ x ≤ L − 1;

jxiA†
1
; 1 ≤ x ≤ L; ð3:8Þ

where j1iB†
1
is the left boundary excitation state and jLiA†

1
is

the right boundary excitation state while all others are bulk
one-particle excitation state.
Let us begin with

jkiB†
1
¼

XL
x¼1

fB†
1
ðxÞjxiB†

1
; ð3:9Þ

where

fB†
1
ðxÞ ¼ FB†

1
eikx þ F̃B†

1
e−ikx: ð3:10Þ

On the states jxiB†
1
, the Hamiltonian acts as follows

HjxiB†
1
¼ λ2ð2jxiB†

1
− jxþ 1iB†

1
− jx − 1iB†

1
Þ; ð3:11Þ
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when 2 ≤ x ≤ L − 1, and

Hj1iB†
1
¼ λ2ðj1iB†

1
− j2iB†

1
Þ; ð3:12Þ

HjLiB†
1
¼ λ2ð2jLiB†

1
− jL − 1iB†

1
Þ: ð3:13Þ

So we get

HjkiB†
1
¼ λ2

XL−2
x¼2

ð2fB†
1
ðxÞ − fB†

1
ðx − 1Þ − fB†

1
ðxþ 1ÞÞjxiB†

1

þ λ2ðfB†
1
ð1Þ − fB†

1
ð2ÞÞj1iB†

1

þ λ2ð2fB†
1
ðLÞ − fB†

1
ðL − 1ÞÞjLiB†

1
: ð3:14Þ

Then equation

HjkiB†
1
¼ EðkÞjkiB†

1
; ð3:15Þ

leads to the following dispersion relation

EðkÞ ¼ λ2ð2 − 2 cos kÞ; ð3:16Þ

and

fB†
1
ð1Þ ¼ fB†

1
ð0Þ; ð3:17Þ

fB†
1
ðLþ 1Þ ¼ 0: ð3:18Þ

Since the reflections of B†
1 excitation at both sides are

diagonal, we define the left reflection coefficient to be

KL;B†
1
¼ FB†

1
=F̃B†

1
; ð3:19Þ

and the right reflection coefficient to be2

KR;B†
1
¼ e2ikðL−1ÞFB†

1
=F̃B†

1
: ð3:20Þ

They are determined by Eqs. (3.17) and (3.18), respec-
tively. The results are

KL;B†
1
¼ e−ik; ð3:21Þ

KR;B†
1
¼ −e−4ik: ð3:22Þ

For the other three excitations, the computations are
similar. So we only list the action of the Hamiltonian,
obtained boundary conditions and reflection coefficients.
For jxiA1

; 2 ≤ x ≤ L we have

HjxiA1
¼ λ2ð2jxiA1

− jxþ 1iA1
− jx − 1iA1

Þ;
3 ≤ x ≤ L − 1 ð3:23Þ

Hj2iA1
¼ λ2ð2j2iA1

− j3iA1
Þ; ð3:24Þ

HjLiA1
¼ λ2ðjLiA1

− jL − 1iA1
Þ: ð3:25Þ

This gives

fA1
ð1Þ ¼ 0; fA1

ðLþ 1Þ ¼ fA1
ðLÞ; ð3:26Þ

which leads to

KL;A1
¼ −e−2ik; KR;A1

¼ e−3ik: ð3:27Þ

For jxiB1
; 1 ≤ x ≤ L − 1, we have

HjxiB1
¼ λ2ð2jxiB1

− jxþ 1iB1
− jx − 1iB1

Þ;
2 ≤ x ≤ L − 2 ð3:28Þ

Hj1iB1
¼ λ2ðj1iB1

− j2iB1
Þ; ð3:29Þ

HjL − 1iB1
¼ λ2ð2jL − 1iB1

− jLiB1
Þ: ð3:30Þ

this leads to

fB1
ð1Þ ¼ fB1

ð0Þ; fB1
ðLÞ ¼ 0; ð3:31Þ

then

KL;B1
¼ e−ik; KR;B1

¼ −e−2ik: ð3:32Þ

Finally for jxiA†
1
; 1 ≤ x ≤ L, we have

HjxiA†
1
¼ λ2ð2jxiA†

1
− jxþ 1iA†

1
− jx − 1iA†

1
Þ;

2 ≤ x ≤ L − 1 ð3:33Þ

Hj1iA†
1
¼ λ2ð2j1iA†

1
− j2iA†

1
Þ; ð3:34Þ

HjLiA†
1
¼ λ2ðjLiA†

1
− jL − 1iA†

1
Þ: ð3:35Þ

This gives

fA†
1
ð0Þ ¼ 0; fA†

1
ðLÞ ¼ fA†

1
ðLþ 1Þ; ð3:36Þ

and

KL;A†
1
¼ −1; KR;A†

1
¼ e−3ik: ð3:37Þ

With the order of the excitations as A1, B
†
1; A

†
1; B1, the left

reflection matrix is
2We have taken into account that for every excitation, there are

L − 1 bulk sites.
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KL ¼

0
BBBBB@

−e−2ik

e−ik

−1
e−ik

1
CCCCCA
; ð3:38Þ

and the right reflection matrix is

KR ¼

0
BBBBB@

e−3ik

−e−4ik

e−3ik

−e−2ik

1
CCCCCA
: ð3:39Þ

The two reflection matrices are diagonal in the chosen
natural basis. This is quite different from the results in [17],
where the reflection matrices are anti-diagonal in the same
basis.3 Also notice that each excitation always has Dirichlet
boundary condition on one end of the open chain, and
Neumann boundary condition on the other end. This is
different from the SYM case [8,33] where the boundary
conditions are always left-right symmetric. The S-matrix in
ABJM theory can be found in [30]. It satisfies the Yang-
Baxter equation

S12ðk1; k2ÞS13ðk1; k3ÞS23ðk2; k3Þ
¼ S23ðk2; k3ÞS13ðk1; k3ÞS12ðk1; k2Þ: ð3:40Þ

Now we are ready to check the reflection equations. It can
be straightforward to verify that reflection equations are
satisfied

KL2ðk2ÞS12ðk1;−k2ÞKL1ðk1ÞS21ð−k2;−k1Þ
¼ S12ðk1; k2ÞKL1ðk1ÞS21ðk2; k1ÞKL2ðk2Þ; ð3:41Þ

KR2ð−k2ÞS21ðk2;−k1ÞKR1ð−k1ÞS12ðk1; k2Þ
¼ S21ð−k2;−k1ÞKR2ð−k1ÞS12ðk1;−k2ÞKR2ð−k2Þ:

ð3:42Þ

The 1
2
K1;2 and 1

2
K2L−1;2L terms in the Hamiltonian (2.20)

have no effect in the above calculation. To understand their
role in the coordinate Bethe ansatz, one needs to consider
impurities A†

2 and B†
2. These impurities can be described as

bound states of the form ϕϕ†;ϕ ¼ A1; B
†
1. Although not

shown here, we have checked that the 1
2
K1;2 and

1
2
K2L−1;2L

terms in the Hamiltonian are necessary in the construction
of the eigenstates involving ϕϕ† scattering and the above
bound states using coordinate Bethe ansatz.

IV. CONCLUSIONS AND DISCUSSIONS

We have obtained the two-loop Hamiltonian of the open
spin chain corresponding to the determinantlike operators
in ABJM theory which are dual to open strings attached to
D4-branes wrapping cycles in CP3. The Hamiltonian is
different from the periodic spin chain only in the boundary
terms. Using the coordinate Bethe ansatz, we present strong
evidence that the Hamiltonian may be integrable. In other
words, the giant graviton may provide integrable boundary
conditions for the open string. It is possible to go beyond
the two-loop order to an all-loop prediction which is similar
to previous studies in the SYM context [21,23] using
symmetries as the guide, and even further to solve the full
open string spectrum through boundary thermodynamical
Bethe ansatz and/or Y-system which have already been
done in the SYM case [24,25]. To have a more solid ground
for integrability of our two-loop Hamiltonian, it would be
better to have an algebraic Bethe ansatz construction [37] as
people have done in the SYM theory [38].
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APPENDIX: VACUUM OF THE OPEN CHAIN

In this Appendix, we show that the anomalous dimen-
sion of the operator

O0 ¼ ϵa1…aNϵ
b1…bN ðA1B1Þa1b1…ðA1B1ÞaN−1

bN−1
ððA2B2ÞLÞaNbN

ðA1Þ

is suppressed in the large-N limit with λ ¼ N=k fixed.
As discussed in [39], at two-loop order the contributions
from bosonic D-terms, gluon exchange, fermion exchange
from fermionic D-terms and self-interactions cancel for
operators in the SUð2Þ × SUð2Þ sector, and the fermionic
F-terms do not contribute to the anomalous dimension.
We only need to consider the contributions from bosonic
F-terms [31]

Vbos
F ¼ −

16π2

k2
trðA†

i B
†
jA

†
kAiBjAk − A†

i B
†
jA

†
kAkBjAi

þ B†
i A

†
jB

†
kBiAjBk − B†

i A
†
jB

†
kBkAjBiÞ: ðA2Þ

Using (2.13), one can check that the anomalous dimension
of O0 is subleading in 1=N.

3A nonsupersymmetric flavored ABJM theory was constructed
in [36], where the corresponding reflection matrices are diagonal.
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