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We present evidence for the connection between the potential of different fields and complexity growth
rates both in conformal and confining cases. By studying different models, we also establish a strong
connection between phase transitions and the discontinuities in the complexity growth rates. In the first
example, for dyonic black holes that are dual to van der Waals fluids, we find a similar first-order phase
transition in the behavior of the complexity growth rate. We then compare the Schwinger effect and also
the behavior of complexity in the anti–de Sitter (AdS) and AdS soliton backgrounds and comment on the
connection between them. Finally, in a general Gubser model of QCD, we present the connections between
the potentials, entropies, speeds of sound, and complexity growth rates during crossover and first- and
second-order phase transitions, and also the behavior of quasinormal modes.
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I. INTRODUCTION

In addition to the Ryu-Takayanagi formula [1]—
which connects the entanglement entropy as a quantum-
information quantity in the boundary and the area of a
codimension-two hypersurface as a geometric quantity in
the bulk—holographic quantum complexity [2–4] has
recently been proposed as another connection between
quantum information and geometry.
On the quantum-information side, complexity would be

the number of gates needed to go from one specific quantum
state to another, and thus it quantifies how difficult a
computational task would be. On the geometrical side, it
could be calculated from the volume of a codimension-
one surface which extends between two boundaries
(complexity ¼ volume; the CV conjecture) or the action
on the Wheeler-DeWitt patch (complexity ¼ action; the CA
conjecture) [3,5]. These conjectures have been studied
extensively; see Refs. [6–26] for some examples.
In order to make this new connection more precise and

use it in the holographic context, a more exact definition
of complexity for field theories is needed. The initial
attempts were for free scalar fields [27,28], simple fer-
mionic fields [29–31], and recently coherent [32] and
simple interacting quantum field theories [33]. Generally,

there are some ambiguities in defining the specific gates
needed for each case.
In this work, we first examine if a relationship exists

between quantum fluctuations of the system in different
models (for instance, between particle pair-creation and
annihilation rates) and the rates of growth of complexity.
There are actually several reasons one might conjecture that
such a connection between them exists. One reason is that
the only physical processes that would still occur after
thermal equilibrium are quantum fluctuations, which could
be the main source of complexity growth. Also, it has been
found that the complexity growth rate of black holes and
also the world sheet of a string dual to an entangled particle-
antiparticle would both saturate the Lyapunov bound [34].
Also, generally increasing the energy of the system would
increase the complexity growth rate.
To further examine this idea, in Sec. II we study the

potential wells and barriers of different fields in different
models and their complexity growth rates, and in fact we
observe such a relationship.
To learn more about the nature of holographic com-

plexity, one could study its behavior in more exotic cases
[35–43] such as various phase transitions and then try to
establish the connections with other physical quantities of
the system. This quest is the main purpose of this work.
In Ref. [36], the complexity in an interesting QCDmodel

was studied, and similarities between the first, second, and
crossover phase transitions in both the entropy and com-
plexity growth rate were observed. Therefore, in that work
it was shown that complexity could in fact act as a probe of
different phase transitions, particularly confinement. Also,
in Ref. [40], using models of quantum harmonic oscillators,
it was shown that complexity can act as a probe of quantum
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quenches and can even capture features that entanglement
entropy is not capable of probing. Along the lines of those
papers, we would like to study the complexity growth rates
in various phase transition setups.
Therefore, in Sec. III Awe first study the charged dyonic

black hole model which is the system that could mimic the
properties of a van der Waals fluid, and—using the Gibbs
free energy—we observe the first- and second-order phase
transitions. Using the full time-dependent complexity
growth rate, we also observe a phase transition in the
complexity growth rate of this model.
Then, in Sec. III B we consider anti–de Sitter (AdS) and

AdS soliton backgrounds, study their potentials and the
complexity growth rate in each background, and examine
the connection between the phase transitions (such as
tachyon condensation and complexity growth rate behav-
iors), specifically in the IR and UV regions. We also
compare the Schwinger effect phase diagrams in these two
cases and comment on their relationship with complexity.
Finally, in Sec. IV we study the phase transitions in the

Gubser model of QCD. In this model, by fine-tuning the
parameters of the confining potential in the diagram of
entropy versus temperature, one can obtain crossover, first-,
and second-order phase transitions for VQCD, V1, and V2,
respectively. Also, we study another model of improved
holographic QCD, VIHQCD, which could present a first-
order phase transition while providing a more effective
model for the dynamical properties of QCD, such as
asymptotic freedom and a more realistic bulk viscosity.
This model shows substantial differences in the behavior of
quasinormal modes and complexity, which we will discuss
in detail.
Therefore, we study the behavior of entropy, the com-

plexity growth rate, the speed of sound, and the potentials
for all four of these models and compare their behavior at
lower temperatures and specifically near the phase tran-
sitions. We also outline the relationship between the
crossover from hydrodynamic to nonhydrodynamic modes
of each model, and the resulting topological jump in the
complexity growth rate around the phase transition point.
Finally, we conclude with a discussion in Sec. V.

II. THE RELATIONSHIP BETWEEN
PHYSICAL PARAMETERS AND
COMPLEXITY GROWTH RATES

By comparing the results for the complexity growth rates
in different black hole solutions with different fields, in this
section we study the connections between the action
growth rates and mass, charges with different physical
properties, and their coupling to gravity. Specifically, we
study solutions with dilaton, Maxwell, and phantom fields
(which have ghosts) and compare their behaviors.
In this section, we first review the already calculated

results for different backgrounds which have fields with
different natures, and then we discuss the connection

between the complexity growth rate and the parameters
of the solution and the physical interpretations.

A. Charged dilaton black hole in AdS space

First, we consider the Einstein-Maxwell-dilaton
model [6]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ð∂ϕÞ2 − VðϕÞ − e−2ϕF2Þ;

ð2:1Þ
where the potential VðϕÞ, shown in Fig. 1, for the dilaton
field is

VðϕÞ ¼ −
4

l2
−

1

l2
½e2ðϕ−ϕ0Þ þ e−2ðϕ−ϕ0Þ�: ð2:2Þ

Here ϕ0 is a constant and l is the AdS radius. So, this
potential is the combination of a constant value and two
Liouville-type potentials. The spherically symmetric
charged dilaton black hole solution of this action would be

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þU2ðrÞdΩ2;

Frt ¼
Qe2ϕ

U2
; e2ϕ ¼ e2ϕ0

�
1 −

2D
r

�
; ð2:3Þ

where

fðrÞ ¼ 1 −
2M
r

þ rðr − 2DÞ
l2

; U2ðrÞ ¼ rðr − 2DÞ;

D ¼ Q2e2ϕ0

2M
; ð2:4Þ

where D is the dilaton charge and ϕ0 is the asymptotic
constant value of the dilaton [44]. Note that when
ϕ ¼ ϕ0 ¼ 0, this solution reduces to the Reissner-
Nordström black hole.
In Ref. [6], for the charged dilaton AdS black hole, the

complexity growth rate at late times was found to be

charged dilationAdSBH∶

_C ∼
dS
dt

¼ 2M −Q2e2ϕ0

�
1

2M
þ 1

rþ

�
; ð2:5Þ

where, as one expects, for the case of Q ¼ 0 the result
reduces to that for the AdS-Schwarzschild solution. Also,
note that this black hole has only one horizon rþ, which is a
function of M, Q, and l. It could be found simply by using
fðrÞjr¼rþ ¼ 0, but as it is a long relation we do not display
it here.
We want to study the effect of each parameter on the

complexity growth rate while other parameters are fixed,
and find a physical explanation for the specific behaviors.
First, we keep M and Q constant and only study the

effect of the boundary dilaton field ϕ0 on the complexity

MAHDIS GHODRATI PHYS. REV. D 98, 106011 (2018)

106011-2



growth rate. The plot is shown in Fig. 2(a). (In all cases we
take l ¼ 1).
From Fig. 2(a) one can notice that for all of the negative

and small positive values of ϕ0, the complexity is constant.
Then, at a specific positive value of ϕ0, it decreases
exponentially. Therefore, as a first observation one could
generally say that increasing the dilaton field decreases the
complexity growth rate. The specific value of ϕ0 at which
this sudden decrease would happen would decrease by
increasing Q, but it does not change much by varying M.
However, increasing M would greatly increase the initial
value of _C for negative dilaton fields.
Recently, in Ref. [45] the effect of a dilaton field on the

complexity growth rate was studied further, and the full
time behaviors of the action growth rate for the AdS dilaton
black hole and asymptotically Lifshitz black holes were
considered. Generally, as it was shown in Ref. [45] using
another method, the dilaton field should actually decrease
the growth rate of complexity, which we observe here as
well. In Sec. IV, the same result is seen in models of
confining potentials, so we conjecture that this is a
universal effect.
The physical reason behind this could be explained by

noting that in string theory, the dilaton field actually
describes how strongly open strings couple to one another.
In fact, in perturbation theory, the coupling constant of

open strings is proportional to the exponential value of the
dilaton’s expectation value, gs ¼ ehϕi. So the more that the
strings are coupled to each other, the more difficult it would
be to go from one state to another, and the rate of
computation and complexification would be lower.
In Fig. 2(c), the relationship between the complexity

growth rate and mass is shown. The explanation for this
relationship is much simpler: for bigger masses there are
more degrees of freedom and a correspondingly higher
number of gates in the dual boundary, and therefore the rate
of complexity growth is higher. In fact, the growth is linear
which intuitively makes sense as the mass and number of
gates are linearly connected.
The behavior of the complexity growth rate with respect

to charge [Fig. 2(b)] can also be explained by considering
the relation between the complexity growth rate and the
height of potential barriers. Note that for the case of a
Schwarzschild black hole, which has no charge, the height
of the potential barrier is just equal to the temperature,
while for the case of charged black holes, such as a
Reissner-Nordström (RN) black hole, this barrier (due to
its charge) is much higher [46], which would decrease the
rate of complexity growth.
In Ref. [46], the scrambling behavior in the field of a

“near-extremal charged black hole” was studied. There it
was noted that due to the buildup of momentum of a
particle accelerating through the long throat of the
Reissner-Nordström geometry, some degrees of freedom
become decoupled and cannot enter in the process of
computation and complexification. The greater the charge
of the black hole, the longer the throat of a RN black hole
would be, which causes more degrees of freedom to
decouple and therefore the complexity growth rate would
decrease.
Also, note that a charge in the bulk would be dual to a

current in the boundary field theory. A larger black hole
charge would be dual to higher current with higher
momentum. The larger momentum of the current would
actually decrease the complexification rate.
The dependence of the complexity growth rate on two

parameters of a black hole (while keeping the third one

FIG. 1. Two Liouville-type potentials (2.2), for l ¼ ϕ0 ¼ 1.

(a) (b) (c)

FIG. 2. The dependence of the complexity growth rate on each parameter of the charged dilaton black hole.
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constant) is shown in Fig. 3. In Fig. 3(a) we see that for
higher masses a changing charge does not drastically
change the complexity growth rate, while for lower masses
an increasing charge would dramatically decrease the
growth rate.
In Fig. 3(b) we see that when the dilaton field is negative

or very small and close to zero, even for higher charges, the
complexity growth rate does not change. This is because for
small and negative ϕ0 the string couplings would be very
weak, and therefore even for high charges the complexity
growth rate would not change. On the other hand, increas-
ing the dilaton would increase the couplings between string
modes, which would subsequently increase the dependence
of the growth rate on the charge.
In Fig. 3(c), we again see that for a negative dilaton field

the complexity growth rate is constant, and even increasing
the mass M cannot change this flat behavior. However,
increasing the mass at each ϕ0 would linearly increase the
complexity growth rate. Also, note that for larger masses an
increasing dilaton field causes a milder decrease of the
complexity growth rate.

B. Born-Infeld black hole in AdS Space

Another example of a charged black hole in AdS is a
Born-Infeld black hole, which has the action

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
"
Rþ 6

l2
þ 4β2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

2β2

s !#
;

ð2:6Þ

where one can get a static spherically symmetric black hole
solution as follows:

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2;

Frt ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þQ2=β2
p ; ð2:7Þ

where

fðrÞ ¼ 1 −
2M
r

þ r2

l2
þ 2β2

r

Z
∞

r
dx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4 þQ2=β2

q
− x2

�

¼ 1 −
2M
r

þ r2

l2

þ 2β2

r

�
Iðr ¼ ∞; a2 ¼ Q2

β2
− I

�
r; a2 ¼ Q2

β2

��
;

ð2:8Þ
and Iðr; a2Þ≡ R r dxð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 þ a2
p

− x2Þ.
Here, M and Q are the mass and charge of the black

hole. Also note that when β → ∞, the Born-Infeld theory
reduces to the Maxwell theory with LðFÞ ¼ −F2. The
chemical potential of this black hole is

μðrÞQ ¼ Q2

r 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

β2r4

�
: ð2:9Þ

As found in Ref. [6], when β2Q2 ≥ 1=4 the black hole
solution has two horizons, and when β2Q2 < 1=4 it only
has one horizon with the inner one being absent. So
changing the coupling β or the charge Q could greatly
impact the complexity as it significantly changes the
geometry.
For the case with two horizons, Ref. [6] found the action

growth as

dS
dt

¼
�
Q2

r 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

β2r4

������r−
rþ

¼ μ−Q − μþQ;

ð2:10Þ

and for the case with one horizon, it is

dS
dt

¼ 2M −
Q2

rþ
2F1

�
1

4
;
1

2
;
5

4
;−

Q2

β2r4þ

�
− β

1
2Q

3
2

Γð1
4
ÞΓð5

4
Þ

3Γð1
2
Þ ;

ð2:11Þ

FIG. 3. The dependence of the complexity growth rate on two parameters of a charged dilaton black hole.
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where

rþ ¼ l2

12β2l2 þ 9

�
−3 − 2β2l2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β4l4 þ 3β2Q2ð4β2l2 þ 3Þ

q 	
ð2:12Þ

Again, one can see that the relationship with respect to
massM is linearly increasing. From Fig. 4 one can see that
in this case (similar to the previous case) increasing the
chargeQwould decrease the complexity growth rate, while
increasing the coupling constant β (which couples the
gauge field Fμν to the metric g) would decrease the
complexity growth rate.
Note that due to a strong singularity in this case,

at low charges, low temperatures, or low β the complexity
growth would not be smooth, which can be seen from
the plot.

C. Charged black hole with a phantom
Maxwell field

As another example, we consider the action of Einstein-
phantom-Maxwell theory with a negative cosmological
constant,

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

l2
þ FμνFμν

�
; ð2:13Þ

whose solution is

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2;

Ftr ¼
Q
r2

; fðrÞ ¼ 1þ r2

l2
−
2M
r

−
Q2

r2
: ð2:14Þ

Note that in this case the Maxwell term has the wrong
sign. Its Penrose diagram is the same as that of an AdS
Schwarzschild black hole. The action growth rate is
dS
dt ¼ 2M þ μþQ.
From Fig. 5, one can see that increasing M would

linearly increase the complexity growth rate; however,
unlike previous cases, increasing the charge Q would
increase the complexity growth rate.
Note that the phantom Maxwell field is different from

other cases in several significant ways. As mentioned
before, the Maxwell term has the wrong sign. Also,
other cases satisfy the Lloyd bound at late times but this
case violates it, even at late times; this is because the
phantom field is actually a “ghost field” which violates
the strong energy condition. So generally one could say
that the charges that violate the strong energy condition
(such as ghosts) would increase the complexity growth
rate, note Fig. 6.

FIG. 4. Complexity growth rate for the case of a black hole with
one horizon in Born-Infeld theory, with M ¼ 10 and l ¼ 1.

FIG. 5. Complexity growth rate for the case of a phantom
Maxwell field with a ghost.

FIG. 6. The behavior of the complexity growth rate for the case
of a phantomMaxwell field (ghost) is opposite that of other cases,
such as in Fig. 2(b) which has physical charges.
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III. PHASE TRANSITIONS AND THE
COMPLEXITY GROWTH RATE
WITH A CHARGE OR KINK

We now study the full time behaviors of the complexity
growth rates for the dyonic and AdS soliton black holes and
compare them with their different phase transitions. We
find that generally the complexity growth rate could probe
any kind of phase transition and instability.

A. Complexity in dyonic black holes

First, we consider the dyonic black hole in the holo-
graphic setup similar to Ref. [47]. We chose this type of
black hole as it has both electric and magnetic charges. It
could be a solution to the Reissner-Nordström action with a
negative cosmological constant,

I ¼ 1

16π

Z
dd

ffiffiffi
g

p ½R − 2Λ − FμνFμν�; ð3:1Þ

where the static spherically symmetric solution is

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2;

fðrÞ ¼ 1 −
Λr2

3
−
2m
r

þ q2E þ q2M
r2

;

A ¼
�
−
qE
r
þ qE

rþ

�
dtþ ðqM cos θÞdϕ: ð3:2Þ

The charge and mass of this solution are

M ¼ 2Ω2

16π

�
rþ þ r− þ 1

l2
r4þ − r4−
rþ − r−

�
;

Q2 ¼ 2Ω2

8π
rþr−

�
1þ 1

l2
r3þ − r3−
rþ − r−

�
; ð3:3Þ

and the chemical potentials are μ− ¼ Q=r−, μþ ¼ Q=rþ,
and Q2 ¼ q2M þ q2E.
The complexity growth rate for this solution at late times

is [21]

dSbkþbd

dt
¼ ðM − μþQÞ − ðM − μ−QÞ: ð3:4Þ

Note Fig. 7.
Now we find the full, time-dependent, holographic

complexity. First, we divide the bulk action as

IbulkI ¼ Ω2

8πGN

Z
rmax

rþ
dr

�
−
2r3

l2
−
2rþr−

r

�
1þ 1

l2
r3þ − r3−
rþ − r−

���
t
2
þ r�ð0Þ − r�ðrÞ

�
;

IbulkII ¼ Ω2

4πGN

Z
rþ

r−

dr

�
−
2r3

l2
−
2rþr−

r

�
1þ 1

l2
r3þ − r3−
rþ − r−

��
ðr�ð0Þ − r�ðrÞÞ;

IbulkIII ¼ Ω2

8πGN

Z
rm

rþ
dr
�
−
2r3

l2
−
2rþr−

r

�
1þ 1

l2
r3þ − r3−
rþ − r−

���
−t
2
þ r�ð0Þ − r�ðrÞ

�
:

The sum of these terms is

Ibulk ¼ Ω2

8πGN

Z
rmax

rm

dr

�
−
2r3

l2
−
2rþr−

r

�
1þ 1

l2
r3þ − r3−
rþ − r−

���
t
2
− r�ð0Þ þ r�ðrÞ

�
;

þ Ω2

4πGN

Z
rmax

r−

dr

�
−
2r3

l2
−
2rþr−

r

�
1þ 1

l2
r3þ − r3−
rþ − r−

��
ðr�ð0Þ − r�ðrÞÞ:

FIG. 7. Penrose diagram of the dyonic charged black hole. The
Wheeler-DeWitt patch is shown in green.
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By choosing the normal vectors

ka1 ¼ α

�
1

fðrÞ ð∂tÞa þ ð∂rÞa
�
;

ka2 ¼ β

�
−

1

fðrÞ ð∂tÞa þ ð∂rÞa
�

ð3:5Þ

and the joint action

Ijoint ¼ 1

8πGN

Z
ddx

ffiffiffi
γ

p
log

���� k1:k22

����; ð3:6Þ

the contribution from this term at r ¼ rm is

Ijoint ¼ Ω2

8πGN
r2m log

���� αβ

fðrmÞ
����: ð3:7Þ

Also, for the counterterm

1

8πGN

Z
dλddx

ffiffiffi
γ

p
log

Θ
d
; ð3:8Þ

we find

Θ ¼ 1ffiffiffi
γ

p ∂ ffiffiffi
γ

p
∂λ ¼ 2α

r
: ð3:9Þ

Here, λ is the affine parameter for the null surface. For
the null vector k1 it is

∂r
∂λ ¼ α: ð3:10Þ

So, finally we get

Ict¼ Ω2

8πGN
r2m logjαβjþ

Ω2

8πGN
ðr2m−2r2m logrmÞ; ð3:11Þ

where the first term can eliminate the ambiguity coming
from the normalization factors of the null vectors.
Summing all of these terms, taking the time derivative,
removing some remaining constant terms, and using
drm
dt ¼ − fðrmÞ

2
, we finally get the relationship

d
dt

C ∝ −
fðrmÞr3m

16
ð1þ 4 log rmÞ þ fðrmÞrm log

�
fðrmÞ
r2m

�

þ r2mf0ðrmÞ
2

: ð3:12Þ

The plots for the behaviors of the complexity of dyonic
black holes are shown in Fig. 8(b), where α is just a
constant defined as Λ ¼ m ¼ qE ¼ qM ¼ α.
From these diagrams, one can see that the Lloyd bound

at early times is violated, and at later times it is saturated
from above, similar to other studies [8,43,48,49].
In addition, we notice that by increasing the electric and

magnetic charges qE and qM, the maximum of dCdt increases
and therefore the violation of the Lloyd bound at early
times becomes stronger. Also, the limit of the Lloyd
bound at late times increases as well. Note that this again
could point to a relationship between quantum fluctua-
tions (like the Schwinger mechanism) and the complexity
growth rate, as we have conjectured before. Of course, to
study this relation further one could study the Schwinger
effect for other charged black holes with various gauge
field setups. For instance, the electric and magnetic fields
might have different directions with respect to each other,
and then one could study the complexity growth rate for
those various angle setups, and therefore further quantify
this connection.

(a) (b)

FIG. 8. The full time behaviors of the complexity growth rate of dyonic black holes.
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Additionally, from these diagrams we see that keeping
the charges constant while increasing m or Λ decreases the
maxima in the plots of dC

dt versus t as well as the final late-
time limit, which is the Lloyd bound. It would also decrease
the time which is needed to reach to that specific
Lloyd bound.
By keeping m and Λ constant and changing qE and qM,

one can observe different phases which are shown in the
plots of dC

dt versus time in Fig. 9.
We see that for very small charges, the complexity

growth rates at the beginning are very close to zero and only
fluctuate a little bit at early times, suddenly increase and
reach their maximum, and finally at late times approach the
corresponding Lloyd bound [Fig. 9(a)].
Increasing the charges would smooth out the fluctuations

at the beginning and make the complexity growth rate reach
its maximum (and thus its Lloyd bound) much faster, which
can be seen from the time axes in Figs. 9(b) and 9(c).
For very large charges the complexity growth rate

diverges. This means that the dyonic black hole is unstable
for this range of charge; see Fig. 9(d). So, in addition to the
various phase transitions, the complexity growth rate could
capture the instabilities in the solutions of black holes.

One could also consider some additional counterterms
for these dyonic black holes (similar to Ref. [43]) and their
effects. This might solve the peculiar behavior at the
beginning of our diagrams, or it might even solve the
issue of the violation of the Lloyd bound at early times.
Note that as the dyonic black holes are the dual holo-

graphic model for van der Waals fluids [47,50,51], we
expect that the behavior of the complexity growth rate for
these systems would be similar to the diagrams in Fig. 8(b)
and this could probably be tested in the lab.

B. Complexity in the AdS soliton background

In this section we study the AdS soliton solution, which
is a confining geometry but still very similar to the
conformal AdS case, as it can be transformed to it by a
double Wick rotation.
The AdS soliton background is

ds2 ¼ r2

l2

�
−dt2 þ

�
1 −

rdþ
rd

�
dχ2 þ dx⃗2

�

þ
�
1 −

rdþ
rd

�−1 l2

r2
dr2; ð3:13Þ

(c) (d)

(a) (b)

FIG. 9. The change of the behavior of the complexity growth rate by changing the charges of dyonic black holes.
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where χ is the circle with the smallest period that has
antiperiodic boundary conditions. The periodicity of χ, Δχ,
and the parameter rþ are related by Δχ ¼ 4πl2

drþ
, which

comes from the smoothness at r ¼ rþ. Note that as the
boundary here is d dimensional, there are d − 2 coordinates
x⃗ and the volume of these transverse d − 2 xi’s would
be Vx.
This solution has the following negative boundary

energy [31]:

E ¼ −
rdþΔχVx

ldþ1
¼ −

Vxld−1ð4πÞd
ddΔχd−1

: ð3:14Þ

This ground state energy is the result of the variance
between the Casimir energies of bosons and fermions,
which exists due to the antiperiodic boundary conditions
for the fermions. Increasing the antiperiodicity would
increase this negative Casimir energy, and thus the
complexity.
Using the CV conjecture, the complexity in the AdS

soliton case is [31]

CV ¼ 8VxΔχ
π

rd−1max − rd−1þ
ld−1 ; ð3:15Þ

where r ¼ rmax is a UV cutoff.
We note that increasing the periodicity Δχ and volume

Vx linearly increases the complexity. This result could be
confirmed by calculating the complexity using the CA
conjecture as well [31].
Note that for the case of pure AdS the complexity is

CV ¼ 8ld−1Vx

πϵd−1
, where ϵ is the cutoff in the radial direction.

So from the CV conjecture one can find that the
difference between these two complexities is negative
and is in fact the second term of Eq. (3.15). So, from
Eq. (3.15) we see that the complexity of the AdS soliton
case is smaller than that of the AdS case. This can be
explained by the fact that, relative to the AdS soliton
case, the pure AdS case is the excited state and therefore
(as its energy is higher) the complexity of the AdS
background would also be higher than in the AdS soliton
background.
However, using the CA conjecture the authors of

Ref. [31] found a different result for the relation between
the complexity and rþ. Using the CA conjecture, they
calculated the full IR/UV behavior of the complexity
growth rate and found that as the IR scale increases, the
action first increases until reaching a maximum, and then
decreases to zero at the UV cutoff. They justified this result
(that the complexity of the AdS soliton is higher that of the
AdS case) by calculating the complexity using Nielsen
approach [52] and from field theory calculations for
fermions on a rectangular lattice. However, during that
calculation they used the Manhattan metric and made many

approximations, and thus using other metrics or assump-
tions could actually change the final result.
For instance, by considering gates with penalty factors

that could take into account both the entanglement between
such gates and nonlocality, one could again calculate the
complexity. Doing this might change the result of Ref. [31]
from field theory and lattice calculations, so then their
calculation of the complexity from the CV conjecture
would match the result from field theory.
We reproduce their plot for the whole action versus the

radial distance for the case of the AdS soliton in Fig. 10,
which actually comes from Eq. (38) of Ref. [31]. Note that
there is no time dependence here, as time is constant and we
plot the complexity rather than its growth rate. The
complexity growth rate for the AdS soliton could be
studied in future works.
We could examine which one of their results would be

more compatible with other observations regarding the
relationship between complexity and other physical quan-
tities such as changes in the potential. Comparing the
behavior of the complexity, potentials, and phase diagrams
of Schwinger pair creation in the AdS and AdS soliton
backgrounds (Fig. 11) could give some hint about the
correct answer for the complexity.
In Ref. [53] it was shown that there is a connection

between AdS bubbles (AdS solitons) and closed string
tachyon condensations, and it was also found that the
degrees of freedom and therefore the entanglement entropy
would decrease under this tachyon condensation (which is
a second-order phase transition). In addition, the energy
density would decrease in this process [54,55]. So, because
both the energy and entanglement entropy of the AdS
soliton are lower than in the AdS case, and because the AdS
soliton is more stable than the AdS background, one could
propose that the complexity of the AdS soliton should be
lower than the AdS case, and therefore that the calculation
using the CV conjecture in Ref. [31] is the correct answer.
One could repeat the calculations for the “twisted” AdS
bubble which is a better gravity dual of the corresponding
Yang-Mills theory on S1 × R3 and compare the results.

FIG. 10. S versus rþ for d ¼ 4, rmax ¼ 10000, and l ¼ 1.
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Moreover, recently in Ref. [56] it was found that among
different holographic (CV and CA) and field theory
methods [Fubini-Study metric (FS) and Finsler geometry
(FG)] for calculating complexity, the holographic CV
conjecture and field-theoretic FG method are actually
correlated. So if one actually repeated the calculation of
Ref. [31] for the AdS soliton using FG, a result more
correlated with CV could be derived. We hope to come
back to this problem in future works.
To get further information, one could compare the phase

diagrams of the Schwinger effect in both the AdS and AdS
soliton backgrounds while an electric field is present.
At each value of α (which here is the dimensionless

quantity for the strength of the electric field, i.e., α ¼ E
Ec
),

the potential of the AdS soliton would be higher, pointing
to smaller fluctuations and therefore smaller complexity.
There are also three phases in the AdS soliton background,
while there are two phases for the AdS case. These richer
possibilities for the phases could also be seen from the
behavior of complexity.
The quasinormal modes in the AdS soliton case were

plotted in Ref. [57]. We note that for higher radial distances
these modes are exponentially damped, which explains the
decrease of complexity.
This connection could be examined further in future

works. For instance, one could turn on a magnetic field in
addition to the electric field and change the angle between
the directions of the two, which could significantly
change the Schwinger pair creation rate. As a universal
result, Ref. [58] found that when the electric field is
parallel to the magnetic field the pair creation rate is
higher relative to the setup where they are perpendicular.
The complexity growth rates in these two setups would
also be different. The results could be compared with the
pair creation rates to find more evidence for the

connection between quantum fluctuations, boundary
periodicity, and complexity.

IV. COMPLEXITY AND PHASE
TRANSITIONS IN QCD MODELS

To further study the relationship between potentials,
quantum fluctuations, phase transitions, and complexity
growth, we study the Gubser model of QCD [59–63],
which is the main part of this work.
By tuning the parameters of the potential, in this model

several kinds of phase transitions can be displayed.
Based on the parameters of the dilaton potential, it
can generate three types of phase transitions: crossover,
first order, and second order. We study the full time
behavior of complexity growth rates around these phase
transitions and their correlations with other thermody-
namical quantities.
In Ref. [36], by using the CA conjecture, the late-time

behavior of the complexity of this holographic QCD model
was studied. There, it was shown that the complexity
growth rate can also be used as a parameter to detect the
phase transitions. This is because the behavior of the
entropy and complexity growth rate versus temperature
would be the same for each type of phase transition. We
then study the connection between the behaviors of the
complexity growth rate, speed of sound, entropy, and
potential for four different models of confining potentials.
The action of this model is

S ¼ 1

16πG5

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�

þ 1

8πG5

Z
∂M

K; ð4:1Þ

(a) (b)

FIG. 11. Comparing the Schwinger phase diagrams of the AdS and AdS soliton cases.
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where K is the trace of the extrinsic curvature. For
simplicity, we also take 16πG5 ¼ 1 and ℏ ¼ 1.
In this model the five-dimensional gravity is coupled to a

single scalar field. This setup then contains the minimum
freedom needed to match the equation of states and also
reproduce the desired phase diagrams of QCD.
The general ansatz for the dilaton potential is

VðϕÞ¼−12ð1þaϕ2Þ1=4 coshðγϕÞþb2ϕ2þb4ϕ4þb6ϕ6;

ð4:2Þ

where ða; γ; b2; b4; b6Þ are the parameters shown below.

Potential a γ b2 b4 b6 Δ Tc

VQCD 0 0.606 1.4 −0.1 0.0034 3.55 0.181033
V2nd 0 1=

ffiffiffi
2

p
1.958 0 0 3.38 0.243901

V1st 0
ffiffiffiffiffiffiffiffiffiffi
7=12

p
2.5 0 0 3.41 0.156841

VIHQCD 1
ffiffiffiffiffiffiffiffi
2=3

p
6.25 0 0 3.58 0.295847

To compare the behavior of the potential with regard to
the different parameters, which would then lead to various
phase transitions, we plot VðϕÞ and ∂ϕV

V versus ϕ in Fig. 12.
The parameters in this potential [59,60,64] have been
chosen in such a way that the plots of c2s versus T=Tc
would match the phenomenological results of a hadron gas
and the lattice models. We discuss the properties of each
model later in this section.
First, we consider the following ansatz:

ds2 ¼ e2Að−hdt2 þ dx⃗2Þ þ e2B

h
dr2; ϕ ¼ r; ð4:3Þ

where A, B, and h are only functions of r (or ϕ). Note that
the asymptotic boundary is at r → 0 and the singularity is
where r → ∞.

The equations of motion are

A00 − A0B0 þ 1

6
¼ 0;

h00 þ ð4A0 − B0Þh0 ¼ 0;

6A0h0 þ hð24A02 − 1Þ þ 2e2BV ¼ 0;

4A0 − B0 þ h0

h
−
e2B

h
V 0 ¼ 0;

and the horizon is where hðϕHÞ ¼ 0.
In Ref. [65], using the method of Refs. [59,60], the field

equations were solved as

AðϕÞ ¼ AH þ
Z

ϕ

ϕH

dϕ̃Gðϕ̃Þ;

BðϕÞ ¼ BH þ ln

�
GðϕÞ
GðϕHÞ

�
þ
Z

ϕ

ϕH

dϕ̃

6Gðϕ̃Þ ;

hðϕÞ ¼ hH þ h1

Z
ϕ

ϕH

dϕ̃e−4Aðϕ̃ÞþBðϕ̃Þ;

where GðϕÞ≡ A0ðϕÞ. Then, using the initial and boundary
conditions, the constants were found to be

AH ¼ lnϕH

Δ − 4
þ
Z

ϕH

0

dϕ

�
GðϕÞ − 1

ðΔ − 4Þϕ
�
;

BH ¼ ln

�
−

4VðϕHÞ
Vð0ÞV 0ðϕHÞ

�
þ
Z

ϕH

0

dϕ
6GðϕÞ ;

hH ¼ 0;

h1 ¼
1R

0
ϕH

dϕe−4AðϕÞþBðϕÞ :

To find the solution of GðϕÞ, one actually needs to solve
the equation

(a) (b)

FIG. 12. QCD potentials and their derivative versus ϕ.
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G0

Gþ V=3V 0 ¼
d
dϕ

ln

�
G0

G
þ 1

6G
− 4G −

G0

Gþ V=3V 0

�
;

ð4:4Þ

from which one can find the series expansion of GðϕÞ near
the horizon ϕ ¼ ϕH as

GðϕÞ ¼ −
VðϕÞ
3V 0ðϕÞ þ

1

6

�
VðϕHÞV 00ðϕHÞ

V 0ðϕHÞ2
− 1

�
ðϕ − ϕHÞ

þOðϕ − ϕHÞ2: ð4:5Þ

This result can be used as the boundary condition to
solve GðϕÞ.
Assuming 16πG5 ¼ 1 and ℏ ¼ 1, the temperature,

entropy, and speed of sound cs are written as

T ¼ eAH−BH

4π
jh0ðϕHÞj ¼

eAHþBH

4π
jV 0ðϕHÞj; s ¼ 4πe3AH ;

c2s ¼
d logT
d log s

: ð4:6Þ

We can solve for these parameters numerically, and the
plots of the entropy and speed of sound versus temperature

for the four potential models are shown in Figs. 13 and 14.
Note that in all of these models s=T3 is actually propor-
tional to the number of degrees of freedom [65]. Therefore,
one would expect that the behavior of the complexity
growth rate would be similar to the entropy.
For the late-time interval ½t; tþ δt�, the bulk term of the

on-shell action inside the horizon is

Sbulk ¼
Z

d5x
2

3πGN
e4AþBVðrÞ

¼ 2V3

3πGN

Z
tþδt

t
dt
Z

∞

rH

e4AþBVðrÞdr; ð4:7Þ

and the Gibbons-Hawking-York (GHY) term is

SGHY ¼ δtV3½e−4A−B∂rðe8AhÞ�j∞rH ; ð4:8Þ

where V3 ≡ R d3x⃗ is the volume of the boundary field
system.
So the growth rate of the holographic complexity density

c≡ C=V3 at late time is

(a)

(c) (d)

(b)

FIG. 13. Phase transition of entropy versus temperature for four nonconformal cases.

MAHDIS GHODRATI PHYS. REV. D 98, 106011 (2018)

106011-12



dc
dt

¼ 2

3πGN

Z
∞

rH

e4AþBVðrÞdrþ 1

π
½e−4A−B∂rðe8AhÞ�j∞rH :

ð4:9Þ
We plot the behavior of the late-time complexity during

each phase transition are presented in Fig. 15. As one
would expect and as found in Ref. [36], they are very
similar to the diagrams of the entropy for each potential,
demonstrating that complexity could also act as a good
probe of confinement and phase transitions.
Interestingly, the jump that we see in the complexity

for all of these cases during the phase transition is close to
the topological jump of ΔC ¼ 2π found in Refs. [12,26].
So it is worth noting that the results coming from the
“complexity ¼ action” conjecture are fairly consistent
with the results of Ref. [12] which came from the
“complexity ¼ volume” and the “subregion complexity”
conjectures [4,5,66,67].

Comparing these diagrams with those for the speed of
sound [68] would be interesting too. Note that for high
temperatures where the first three models become con-
formal, the speed of sound becomes constant and close to
0.3, and the complexity growth rate would become constant
as well. For the low-temperature case, note that when the
slope of the c2s versus T=Tc diagram is negative, the slope
of the c2s versus T=Tc diagram would be positive, and vice
versa. This could be qualitatively explained by the fact that
when the speed of sound grows in a region, information can
propagate easier; thus, it would be easier to go from one
state to another, and therefore the complexity growth rate
would decrease.
Now we study the full time behavior of the complexity

growth rate in this model. Similar to Refs. [8,69], the
time evolution of complexity can be found by adding
the null boundary and joint terms to the action and GHY
terms:

(a) (b)

(c) (d)

FIG. 14. Speed of sound versus T=Tc for four nonconformal cases.

COMPLEXITY GROWTH RATE DURING PHASE TRANSITIONS PHYS. REV. D 98, 106011 (2018)

106011-13



I ¼ 1

16πGN

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − VðϕÞ

�

þ 1

8πGN

Z
B
d4x

ffiffiffiffiffiffi
jhj

p
K þ 1

8πGN

Z
Σ
d3x

ffiffiffi
σ

p
η

−
1

8πGN

Z
B0
dλd3θ

ffiffiffi
γ

p
κ þ 1

8πGN

Z
Σ0
d3x

ffiffiffi
σ

p
a: ð4:10Þ

The affine parametrization could be chosen in such a way
that κ ¼ 0 so as to make the contribution of the null
boundary vanish.
Now, assuming GN ¼ 1 and tL ¼ tR ¼ t

2
, we can divide

the evolution of the black hole into two stages: the time
before the critical time tc, and after it. Before the critical
time, the past null boundary intersects the past singularity
and there is a GHY boundary term. After the critical time,
however, the two null boundaries from the left and right
conformal field theories intersect, and therefore there
would be a contribution from the null joint term instead
of a GHY term.

The critical time tc can be found by using

tc
2
− r�ð∞Þ ¼ t − r�ð0Þ;

−
tc
2
þ r�ð∞Þ ¼ tþ r�ð0Þ; ð4:11Þ

so that

tc ¼ 2ðr�ð∞Þ − r�ð0ÞÞ: ð4:12Þ

From Fig. 16, for a state at rR ¼ tL ¼ t
2
> tc

2
, one gets

SbulkI ¼
2V3

3πGN

Z
rmax

rH

dre4AþBVðrÞ
�
t
2
þ r�ð0Þ − r�ðrÞ

�
;

SbulkII ¼
4V3

3πGN

Z
rH

δ
dre4AþBVðrÞðr�ð0Þ − r�ðrÞÞ;

SbulkIII ¼
2V3

3πGN

Z
rm

rH

dre4AþBVðrÞ
�
−
t
2
þ r�ð0Þ − r�ðrÞ

�
;

ð4:13Þ

(a)

(c) (d)

(b)

FIG. 15. Phase transition of the complexity growth rate versus temperature for four nonconformal cases.
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so that

Sbulk ¼
4V3

3πGN

Z
rmax

δ
dre4AþBVðrÞðr�ð0Þ − r�ðzÞÞ

þ 2V3

3πGN

Z
rmax

rm

dre4AþBVðrÞ
�
t
2
− r�ð0Þ þ r�ðrÞ

�
:

ð4:14Þ
Note that r�ðrÞ ¼ R eB−A

h dr. Also, the GHY boundary term
at r ¼ rmax is

Sbound ¼
V3

8πGN

�
t
2
þ r�ð0Þ − r�ðrmaxÞ

�
× ðe−4A−B∂rðe8AhÞÞr¼rmax

: ð4:15Þ

Now, to consider the contribution of joint terms (which
occurs at r ¼ rm), we first take two normal vectors of the
null boundaries,

ka1 ¼ α

�
e−2A

h
ð∂tÞa þ e−A−Bð∂rÞa

�
;

ka2 ¼ β

�
−
e−2A

h
ð∂tÞa þ e−A−Bð∂rÞa

�
: ð4:16Þ

Then, the joint action

Sjoint ¼
1

8πGN

Z
ddx

ffiffiffi
γ

p
log

���� k1:k22

���� ð4:17Þ

would be

Sjoint ¼
V3

8πGN
e3AðrmÞðlog je2AðrmÞj − log jhðrmÞjÞ

þ V3

8πGN
e3AðrmÞ logαβ: ð4:18Þ

In the above action, γ is the determinant of the induced
metric on the joint point and α and β are two constants that
appear because of the ambiguity in the normalization of the
null boundaries. To remove the ambiguity, one can add the
following counterterm:

1

8πGN

Z
dλddx

ffiffiffi
γ

p
log

Θ
d
; ð4:19Þ

where

Θ ¼ 1ffiffiffi
γ

p ∂ ffiffiffi
γ

p
∂λ : ð4:20Þ

Here, λ is the affine parameter for the null surface. For
the null vector k1 it would be

∂r
∂λ ¼ αe−A−B: ð4:21Þ

For the null surface, which is associated with k1, we have
Θ ¼ 3αA0e−A−B, while for k2 we get Θ ¼ 3βA0e−A−B.
Then, the counterterm would be

Sct ¼ −
V3

4πGN

Z
rm

δ
dr3A0e3A logð3A0e−A−BÞ

−
V3

8πGN
e3AðrmÞ log αβ; ð4:22Þ

where the second term cancels the contribution from the
normalization factors of Eq. (4.18).
So, by summing all of the terms and taking the time

derivative and also using drm
dt ¼ hðrmðtÞÞ

2
eAðrmðtÞÞ−BðrmðtÞÞ,

we get

dS
dt

= V3

πGN

¼ hðrmÞeAðrmÞ−BðrmÞ
�
1

3
e4AðrmÞþBðrmÞVðrmÞr�ðrmÞ

þ 3rm
8

e9r
2
m

�
2þ 18rm2 − 3 logðhðrmÞÞ −

h0ðrmÞ
6hðrmÞrm

�

−
3

8
A0ðrmÞe3AðrmÞ log j3A0ðrmÞe−AðrmÞ−BðrmÞj

�

þ 1

3

Z
rmax

rm

dze4AþBVðzÞ þ 1

16
ðe−4A−B∂rðe8AhÞÞ

���
r¼rmax

:

The relationship between ϕm and t can be read numeri-
cally from the relation t ¼ 2ðr�ð0Þ − r�ðrmÞÞ (note that
ϕ ¼ r), and the plots for various ϕH for the different
potential models are shown in Fig. 17.
Interestingly, these plots are very similar to the

corresponding plots in Ref. [70]. In that work, the con-
fining Einstein-Maxwell-dilaton model was studied, and a

FIG. 16. Penrose diagram for the black brane ansatz and the
null boundaries.
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relationship was found between the length of a strip l of a
subsystem (which were is used to calculate the entangle-
ment entropy) and the turning point of the minimal area
surface z�. Note that z� actually corresponds to ϕm ¼ rm in
our model. This actually would make sense as t and l are
directly connected. Note that when ϕm is smaller than ϕH,
the relationship between t and ϕm is almost linear, but when
ϕm reaches ϕH, t suddenly blows up. These features could
constitute a universal behavior of the confining models.
In Fig. 18, we present the full, time-dependent behavior

of the complexity growth rate coming from Eq. (4.23) for
the case of VQCD. The general behavior is qualitatively very
similar for other potential models. From this figure it is
obvious that the Lloyd bound would be violated at early
times and it would be violated more strongly for black holes
with higher temperatures.
However, one might expect that after this sudden

increase, the rate of growth would decrease and then
saturate at the Lloyd bound. However, with only the
terms that we consider here we do not observe such
behavior. Therefore, adding some necessary counterterms
to Eq. (4.23) would probably solve this issue and, similar to
other studies, the Lloyd bound would be saturated from

above. We leave finding such terms for these QCD models
to future works.
In Fig. 19, we show the behavior of the complexity

growth rate dC
dt versus ϕH for late times. One can see that at

later times increasing ϕH decreases the complexity growth

(a)

(c) (d)

(b)

FIG. 17. The relation between t and ϕm.

FIG. 18. The complexity growth rate at early times for various
black holes in the VQCD model, with different ϕH , corresponding
to different temperatures.
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rate. Also, the range of complexity growth for VIHQCD is
much larger than the others. The phase transitions of this
model for higher ϕH are also evident from the diagram.
By adding gauge fields to the action and using models

such as the one in Refs. [71–73] and by doing the same
calculations, one can similarly study the full time behavior
of the complexity growth rate for the superconducting
phases, specifically during the phase transitions [74], which
could have many practical applications in quantum
information.
We are also interested in studying the effects of hydro-

dynamics and nonhydrodynamic modes on the complexity
growth rate and how these modes affect the different phase
transitions during the complexity growth. We discuss this
briefly below.

A. VQCD

The parameters of this confining model have actually
been chosen to fit the data for the temperature dependence
of the speed of sound, which have been obtained from
lattice QCD.
With this potential we observe a crossover behavior at

zero baryon charge density. In this case, at lower temper-
atures near the pseudocritical temperature T ¼ Tc, there is
a rapid change in the large momentum dependence of the
imaginary part of the hydrodynamic mode. As momentum
increases, the imaginary part flows to minus infinity. As
mentioned in Ref. [62], this would point to a novel effect
around T ¼ Tc in the sound channel where there would be
a crossing between the hydrodynamic and nonhydrody-
namic modes. It can be seen in Fig. 14(a) that at this point
there is actually a sharp decrease in the speed of sound.
Then, from Fig. 20(a) one can see that at this point there is a
sharp increase in the complexity growth rate.
Also, we note that in all of the figures, at high temper-

atures, the speed of sound reaches 1=3, which is the

expected value for the conformal case or plasmas with a
very high T.
In the higher-temperature regions, where the results

match the conformal case, the nonhydrodynamic modes
are actually the most effective ones, while in the lower-
temperature regions the hydrodynamic modes play the
most important role. Also, it is worth noticing that the
hydrodynamic modes (at lower temperature, and around
T ¼ Tc) are much more affected by the “ultra locality
property” of the system, as mentioned in Ref. [75]. This
could actually greatly affect the complexity growth rate of
the QCD systems, as we have observed.

B. V1

This model is actually the most interesting one as it has
some distinctive features. The parameters for this model
have been constructed in such a way as to generate a first-
order phase transition. In this case one observes an
instability or spinodal region for a certain temperature
range; this behavior can also be seen in the phase diagrams
for the entropy, complexity growth, and especially the
speed of sound.
In fact, the first-order phase transition appears in two

different scenarios [62]. One is similar to the Hawking-Page
scenario where the transition is between a black hole and a
thermal gas. The other is between two black holes with
different sizes. In this case, for our V1 model the first-order
phase transition is actually between two black holes [76].
The fact that both of these cases can happen is due to the
functional dependence of the dilaton field potential on the
radial distance in the deep infrared region. Another distinc-
tive feature is the existence of a nonpropagating sound mode
in the very low-temperature range which also shows its
effects on the complexity growth rate phase diagram.
However, the most important feature in this model is the

presence of the spinodal region which was studied in

(a) (b)

FIG. 19. The relation between dC
dt and ϕH .
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nuclear physics in the context of spinodal multifragmenta-
tion [77]. One can also see from the diagram for the speed
of sound (as c2s < 0) that there exists a dynamical instability
during the phase transition which is caused by the bubble
formation in this region.
The same kind of behavior has also been observed in

gravitational studies of black strings and p-branes in the
context of Gregory and Laflamme instability [78]. Note that
in this case the hydrodynamical modes are purely imagi-
nary and this shows its effect on the complexity growth
rate as well. This can be seen from the fact that—unlike
the crossover and second-order phase transition where the
slopes of dCdt versus T=Tc are positive—in this case the slope
of the complexity growth during the phase transition is
actually negative. This behavior could be a universal
property of complexity for regions with“hydrodynamical
instabilities” with a purely imaginary mode.

C. V2

In this model, at a critical temperature T ¼ Tc the speed
of sound vanishes, which can be see in Fig. 14(c). Also,
near the critical temperature the entropy behaves as

sðTÞ ∼ s0 þ s1ðT=Tc − 1Þ1−α; ð4:23Þ

where, according to Ref. [60], the constant in the power
should be α ¼ 2=3. As the complexity growth rate phase
diagram is very similar to the entropy diagram, we expect
that this relation could approximately describe the com-
plexity growth rate behavior near the critical temperature
as well.
Notice that in all of the diagrams for the entropy,

complexity growth rate, speed of sound (Fig. 20), and
the time dependences of ϕm (Fig. 17) the behavior for the
V2 case is very similar to the VQCD case. The main
difference is that V2 is lagging behind VQCD.
As mentioned in Ref. [62], the generic temperature

dependences of the frequencies of the quasinormal modes
are also very similar to those of the crossover case.
Therefore, this would make all of the corresponding
quantities in these two models act similarly around the
critical temperature.
Actually, the hydrodynamic description of the system

would break down at smaller momenta scales [62]. This
would make the critical temperature of V2 be lower than in
the crossover case. For higher temperatures, all of these

(a)

(c) (d)

(b)

FIG. 20. Comparing different quantities for three models of QCD.
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models including V2 would behave the same way and
similarly to the conformal case.
In order to get more detailed results about the relation-

ship between the different characteristics of the model and
the behavior of the growth of complexity, the numerical
data points for the plot of the complexity could be
increased. This would then increase the calculation time
dramatically.

D. VIHQCD

The improved holographic QCD model is very unique
and exhibits very different behavior than the other models.
It has been constructed in order to better model the
dynamical properties of QCD (specifically, asymptotic
freedom and color confinement) and to obtain a more
realistic value for the bulk viscosity. In this model there is a
first-order phase transition, but it is between a black hole
and a thermal gas or a vacuum confining geometry, similar
to a Hawking-Page phase transition. This fact could
actually explain the sharp drop in the phase diagram for
the complexity growth rate of this model; see Fig. 15(d).
The exact critical temperature were the first-order phase

transition occurs is very difficult to determine for this case,
as there are several solutions with instabilities and the
temperature of the reference geometry (which is the thermal
gas) would be infinite. However, from the diagrams we see
the phase transition point has a very distinct behavior since
at that point the geometry changes dramatically, which is
also apparent in the diagrams for the speed of sound and
complexity growth rate.
From these diagrams one can actually detect two

characteristic temperatures that are very close to each
other. As mentioned in Ref. [62], for temperatures between
these two and for low momenta, the lowest-lying excitation
modes become purely imaginary which leads to ultra-
locality violation in this section. This greatly impacts the
first phase of the complexity growth rate. Then, we notice
that at T ¼ Tm, for some modes, the hydrodynamic mode
and the first nonhydrodynamic mode have the same
dispersion relation. At a critical temperature Tc (a bit
higher than Tm), a transition takes place that substantially
changes the geometry. This would cause the rapid increase
and then decrease in the plot of the complexity growth rate.
The plot shown in Fig. 14(d) is actually for an unstable

smaller black hole. The stable case (which models the
behavior of the pure glue system [79]) is not shown here,
and we leave it for future studies. The plot of the speed of
sound shown here still shows the existence of a spinodal
instability and therefore bubble formation. Specifically, for
the small black hole region the speed of sound is anoma-
lously large and then becomes superluminal, violating
causality. This actually points to a “dynamical” instability,
which is different from the “spinodal case” seen before.
This difference in behavior could also be detected from the
behavior of normal modes [62], and specifically from the

complexity growth rate behavior shown in Figs. 13(d),
14(d), and 15(d), and even Fig. 19.
By studying the poles of the Green’s functions, the

behavior of the hydrodynamic and nonhydrodynamic
modes was discussed in more detail in Ref. [62]. It has
been shown that the modes are degenerate close to the
minimal black hole temperature, and there exists a region of
temperatures where the nonhydrodynamical modes are
unstable.
In Ref. [62], it was pointed out that a small gap between

the degrees of freedom at low momenta could exist. The
nonhydrodynamical modes show ultralocal properties as
they have weak dependences on the momentum scale. It
would be interesting to study the effects of such nonlocal
modes on the behavior of the complexity growth rates.
Also, a more careful study of the behavior of the complex-
ity growth rate close to the mode gap between the two
solutions would be very interesting.
Finally, it is worth noting that as the modes of this system

match the results from the holographic dual of superfluid
systems [62,80], one would expect that the behavior of
the growth of quantum complexity shown in Fig. 15(d)
would actually match the behavior of the growth of
complexity in superfluid systems, which again could be
tested experimentally.

V. DISCUSSION

In this work we showed the relationship between differ-
ent field potentials and the complexity growth rate behavior
in several models, including a charged dilaton, and Born-
Infeld and dyonic black holes. We conjectured that it is a
universal feature of complexity that, for potential wells, the
complexity growth rate is higher, and for parameters of the
model where there is a steep potential barrier the complex-
ity growth rate would decrease to zero. This could indicate
that quantum fluctuations such as tunneling are the main
source of the complexity growth rate after the thermal-
ization point.
Also, we studied the complexity growth rates during

different phase transitions. First, for the dyonic black hole,
we studied the full time behavior. Similar to other studies,
we found that the Lloyd bound is violated at early times,
but then at later times it is saturated from above. Changing
the charges of the black hole could reveal a second-order
phase transition in the complexity growth rate, which is
similar to the phase transition of a van der Waals fluid. For
very large charges, the complexity growth rate would
diverge (as expected), since in those ranges of charge
the black hole would be unstable. Therefore, we found that
the complexity growth rate could be a very suitable probe to
observe different phase transitions and instabilities.
To further explore this point, we considered the complex-

ity growth rate of AdS soliton black holes, which was
studied for the first time in Ref. [31]. We compared the
behavior of the complexity growth rates in the AdS soliton
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and pure AdS cases and the potential behavior in the AdS
soliton case with tachyonic condensation. We also com-
pared the Schwinger phase diagrams, and again observed
strong correlations.
Finally, for the main part of this work we studied the

Gubser model of QCD [59,60], and—by tuning the para-
meters of the potential for the VQCD, V1, and V2 cases—we
were able to generate the crossover, first-order, and second-
order phase transitions. We also studied the improved
holographic QCD potential model VIHQCD, which improves
the modeling of the dynamical properties. Solving for the
entropies, complexity rates, speeds of sound, and potentials
numerically, we observed similarities in their behaviors
near the phase transition points in each model. By con-
sidering the crossings between hydrodynamic and non-
hydrodynamic modes, we then explained different features
of the complexity growth rates and phase diagrams.
For the full, time-dependent phase diagrams, however,

we showed that additional counterterms in the action for
this QCD model would be needed to produce the desired
behavior considering the Lloyd bound.
For future works, one could make the argument about the

relationship between the complexity growth rate and
particle creation and annihilation rates more precise. To
do that, one could imagine the Schwinger mechanism as the
motion in the space of unitary operators and then, using the
intuition from Refs. [27,28], calculate how much pair
creation or vacuum quantum fluctuations would increase
the distance between the initial state at t0 and the state at
later times after the creation of only one pair. Holographic
methods of considering an open string, writing the Nambu-
Goto action and the induced metric on the string world
sheet, and adding proper boundary and joint terms to
calculate the action could be used to solve this problem.

The first few steps were taken in the final part of Ref. [34].
The most important step is determining the correct
Wheeler-DeWitt patch. By solving these issues and com-
paring with the results from field theory methods (such as
the one in Ref. [30]), one could check whether the creation
of these particles would actually move on the optimal path
of increasing computational complexity, which would be a
very interesting problem.
As a side note, in Refs. [37,58], the decay rate for dif-

ferent backgrounds was found to increase with a magnetic
field parallel to the electric field, while it decreases with a
magnetic field perpendicular to the electric field, which
seems to be a universal feature of the Schwinger effect. One
could then check how the complexity growth rates differ in
the two setups (i.e., parallel or perpendicular fields).
Comparing the results could strengthen our conjecture.
The relationship between the “shear viscosity” of black

holes and the complexity growth rate (especially around the
critical temperature) could also be studied. This specifically
would be an interesting problem with practical applica-
tions. For instance, as suggested in Ref. [81], in quark-
gluon plasmas there would be a sharp increase in the bulk
viscosity near the deconfinement transition, which actually
points to the “soft statistical hadronization” of the plasma.
So, it would be interesting to study the complexity growth
rate at this point and depict the relationship between the
complexity and shear or bulk viscosity of black holes and
the corresponding QCD phases.
We hope to study these questions in future works.
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