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Euclidean gravity provides an interesting test system for an analysis of cosmological perturbations in an
effective Hamiltonian constraint with holonomy modifications from loop quantum gravity. This paper
presents a discussion of scalar modes, with a specific form of the holonomy modification function derived
from a general expansion in a connection formulation. Compared with some previous models, the
constraint brackets are deformed in a different and more restricted way. A general comparison of anomaly-
free brackets in various effective and operator versions shows an overall consistency between the different
approaches.
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I. INTRODUCTION

Loop quantum gravity [1–4] implements nonperturbative
and background-independent features in an approach to
quantizing general relativity. It could, therefore, provide
models of quantum spacetime structure. To this end, one
should address the long-standing anomaly problem of
spacetime gauge transformations in order to shed light
on consistent versions. Without such a derivation, assuming
certain properties of solutions, for instance in the form of an
effective line element, amounts to postulating a background
spacetime. Although overall consistency of the theory
remains to be shown, there are now several encouraging
results which indicate that a well-defined quantum space-
time structure may be realized. If this is the case, one could
potentially use the theory to derive possible effects, for
instance, in cosmological observations.
In addition to a consistent theory, a systematic effective

framework is required for a reliable evaluation of physical
phenomena. In the background-independent context of loop
quantum gravity, such methods have been explored by both
the canonical [5–10] and the path integral perspective [11–
14] in homogeneous models. For inhomogeneous modes of
cosmological perturbations, one encounters new questions

related to the consistency of coupled partial differential
equations or the anomaly problem of quantum gravity.
In order to understand the cosmological structure for-

mation and anisotropies of the cosmic microwave back-
ground in models of loop quantum gravity, one needs to
consider a cosmological perturbation theory with modifi-
cations including quantum-gravity effects. In the canonical
setting of loop quantum gravity, quantum-gravity effects
appear in an effective Hamiltonian constraint, rather than an
effective actionwhose covariance could be checked directly.
If the corrections implied by a canonical theory of quantum
gravity are not covariant, Hamiltonian (and diffeomor-
phism) constraints obey constraint brackets which do not
close but rather contain anomaly terms AIJ: Poisson
brackets of two constraints would not weakly vanish but
be of the form

fCI; CJg ¼ KK
IJCK þAIJ ð1Þ

with AIJ ≠ 0. If there is such an anomaly, the quantum
corrected perturbation equations cannot be expressed solely
in terms of gauge-invariant variables [15]. Therefore, how to
obtain anomaly-free constraints of cosmological perturba-
tions including loop quantum effects has become an impor-
tant question.
Several promising results have been obtained in this

direction, exploring the commutators of constraint oper-
ators [16–22] or Poisson brackets of effective constraints
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[15,23–30]. In models analyzed so far, it seems possible to
have closed brackets (AIJ ¼ 0), but usually with modifi-
cations of the structure functionsKK

IJ in (1), in particular for
real connections. The classical brackets corresponds to a
canonical version of spacetime coordinate transformations,
represented as deformations of spatial hypersurfaces in
spacetime [31]. If the brackets are modified (and not just its
generators), the gauge transformations generated by the
constraints are not broken but differ from coordinate
transformations, so that a new spacetime model is obtained.
Only in some cases may it be possible to map the effective
geometry to one of classical type by applying a field
redefinition [32,33]. The most dramatic effect found in this
context is the possibility of signature change [34–37] at
large density or curvature, indicated by a change of sign in
some of the structure functions. Such an effect is interest-
ing, but also dangerous, due to the indeterministic behavior
that it may imply [38]. In this article, we consider a model
which turns out to lead to different implications in
situations that would give rise to signature change in
previous models. In this respect, our results are related
to those of [28–30], but qualitatively they are obtained in a
different way.
In general, there are two main quantum-gravity effects in

loop-quantized models, so-called inverse-triad corrections
[39,40] and holonomy modifications [41,42]. In addition to
these two, there are generic quantum backreaction effects
which occur in all interacting quantum theories but have
not been explored much in inhomogeneous models of loop
quantum gravity. We will continue this tradition and mostly
ignore these terms in the present paper, focussing on the
two types of corrections directly related to quantum
geometry. (As shown in [43], under certain conditions
quantum backreaction terms from moments do not appear
in structure functions of constraint brackets.) For the case
of inverse-triad corrections, anomaly-free constraints and
the corresponding gauge-invariant cosmological perturba-
tion equations have been obtained for scalar modes [15,44],
vector modes [45] and tensor modes [46], respectively.
(For tensor modes, anomaly freedom of the constraints is
automatically fulfilled.) A characteristic feature, shared
with spherically symmetric models, is that the Poisson
bracket of two Hamiltonian constraints is modified by a
factor of the square of the inverse-triad correction function.
As this function is positive, signature change does not
happen. Some relevant applications, including potentially
observable effects in the primordial power spectrum and
non-Gaussianity, have already been studied [47–50].
Holonomy modifications have been implemented in con-

sistent versions slightlymore recently. The first papers used a
partial gauge fixing to the longitudinal gauge [51,52] and,
therefore, could not show all the effects with full confidence.
Without gauge fixing, a consistent version has been obtained
in Ref. [53] for vector modes and in Ref. [24] for scalar
modes. A combined treatment of holonomy-modified scalar,

vector, and tensor perturbations has been given in [54].
Again, anomaly-free constraints can be obtained by a rather
simple quantum correction for all types of perturbations. In
the presence of holonomy modifications, the constraint
brackets are modified in such a way that structure functions
may change sign, corresponding to a transition between
Lorentzian and Euclidean signature in the sense that either
hyperbolic or elliptic mode equations are implied [34–36].
There is agreement with consistent constraint brackets in
spherically symmetricmodels [23,26,27] even at theoperator
level [20]. (See [55] for a comparison.) Signature change is
not always realized in self-dual variables [28–30] because the
Hamiltonian constraint has a different formal structure in its
dependence on spatial derivatives of the fields.
Anomaly-free constraints for both inverse-triad and

holonomy modifications have been studied for all types
of perturbative modes. The corresponding equations of
motion are derived in [25], providing so far the most
complete treatment of consistent cosmological perturba-
tions in models of loop quantum cosmology. However, in a
certain sense, holonomy modifications so far have been
considered after rather than before perturbing the classical
Hamiltonian constraint: One modifies the background
constraint by replacing the classical quadratic dependence
on the connection q̄ (or Hubble parameter) by a bounded
function, q̄2 ↦ l−2 sin2ðlq̄Þ, as it has been found by
effective equations of isotropic models [41], and then looks
for a possible anomaly-free theory of perturbative modes
on such a background model. If one perturbs a modified
constraint, additional terms may appear. In particular, there
could be derivative corrections, even at or below the
classical derivative order, which happen to be absent in
the classical constraints but might be induced by quantum-
geometry effects. (See [27] for a discussion in spherical
symmetry.) In covariant effective actions, all quantum
corrections are expected to be of higher-derivative (or
higher-curvature) type, but lower-order terms may appear
if the spacetime structure is modified as in certain canonical
approaches. An effective treatment should include all
terms, up to a given order, consistent with what is known
about symmetries. If the precise form of quantum space-
time is unknown, one cannot assume much about sym-
metries and should include all possible terms in an ansatz
for an effective Hamiltonian. Symmetries will then be
implemented by the condition of anomaly freedom, and
their possible form can be derived from the effective system
rather than being assumed. By including additional deriva-
tive terms, we therefore fill in a gap in existing treatments.
In a canonical setting, the treatment of spatial and

temporal derivatives is different. The former appear directly
in an effective Hamiltonian while the latter would result in
an adiabatic approximation of quantum backreaction [56–
58]. Although both types of derivatives should usually be
considered in combination, holonomy modifications sug-
gest a larger role for spatial derivatives because holonomies
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are spatially nonlocal functions of the connection. If
holonomy modifications can be consistent in cosmological
perturbation theory, one should therefore be able to find
anomaly-free constraints with holonomy modifications of
the background and a set of higher spatial derivative terms.
In order to explore the perturbations in a framework

including holonomymodifications of loop quantum gravity,
allowing for more general derivative terms than considered
in [25], an effective holonomy-modified Hamiltonian in
Euclidean general relativity was first proposed in [59],
where the corresponding perturbative constraint brackets
were studied for vector modes. The Poisson brackets
between the modified Hamiltonian and diffeomorphism
constraints restricted to vector modes were calculated,
and a specific form of the holonomy-modification function
ficd giving rise to anomaly-free constraints was found. This
result indicates that in a perturbative framework it is indeed
possible to have nontrivial and anomaly-free holonomy
modifications with additional derivative terms up to first
order, as suggested by nonlocal holonomies in the full
theory. In this paper, we shall extend the study to scalar
modes in the same framework.
A brief review of the modification function of the full

theory and some basic elements of scalar modes will be
presented in Sec. II. Then, in Sec. III, the constraint brackets,
including those between the modified Hamiltonian con-
straint and the diffeomorphism constraint as well as between
the two modified Hamiltonian constraints, are derived.
Subsequently, a specific form of the holonomymodification
function is obtained from its general expression in Sec. IV.
We compare the results with those of [25] on one hand,
and those of [28–30] on the other, and discuss implications
for signature change in Sec. V. Results from operator
approaches are briefly discussed as well.
At a formal level, the difference between [25] and our

present treatment is that we use a connection formulation
and include additional derivative terms of the connection.
Interestingly, the outcome does not seem to be the same.
Our calculations lead to an intermediate set of deformed
constraint brackets which may show a way to avoid
signature change and the associated indeterministic behav-
ior, but we have not been able to produce a fully consistent
nonclassical system:While the brackets of Hamiltonian and
diffeomorphism constraints can be closed, the expressions
are not SU(2)-covariant unless there are no holonomy
corrections (while inverse-triad corrections may be pos-
sible). We interpret this result as an indication that nonlocal
modifications are essential in SU(2)-invariant connection
theories.

II. HOLONOMY MODIFICATION FUNCTIONS
AND SCALAR MODES

In the connection formulation of Euclidean general
relativity [3,4], the gravitational Hamiltonian constraint
can be written as

H½N� ¼ 1

16πG

Z
Σ
d3xNϵjki

Ec
jE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp Fi

cd; ð2Þ

where Eb
j is the densitized triad, and the curvature of the

Ashtekar-Barbero connection Ai
a ¼ Γi

a þ Ki
a is given by

Fi
cd ¼ 2∂ ½cAi

d� þ ϵimnAm
c An

d: ð3Þ

In the expression for Ai
a, Γi

a is the spin connection
compatible with the triad, and Ki

a ¼ KabEbi=j detEc
j j is

obtained from extrinsic curvature Kab. More generally, one
can define Ai

a ¼ Γi
a þ γKi

a with the Barbero-Immirzi
parameter γ [60,61]. If γ ≠ 1, there will be additional terms
in the Hamiltonian constraint which contain spatial deriv-
atives of the densitized triad, on whose relevance we will
comment later. We use the value γ ¼ 1 in order to work
with the simplified expression (2).
In loop quantum gravity, the local dependence on the

connection Ai
a is replaced by a dependence on nonlocal (in

space) holonomies

heðAÞ ¼ P exp
Z
e
Ai
aτidxa ð4Þ

for suitable choices of spatial curves e, where the symbol P
represents path ordering, and τj ¼ − i

2
σj is a basis of theLie-

algebra su(2) with σj being the Pauli matrices. Holonomies,
unlike connection components, can be represented as
operators on the kinematical Hilbert space of loop quantum
gravity and, therefore, appear in candidates for the quantized
Hamiltonian constraint [62,63].
However, it is difficult to find anomaly-free versions

because the operators and their commutators are compli-
cated expressions depending sensitively on factor orderings
and other quantization choices. There has been some
progress in particular but not only in 2þ 1-dimensional
models [16–19,21,22], with consistent commutators on a
subset of states which partially solve the spatial diffeo-
morphism constraint (introduced in [64,65]). Attempts to go
beyond the restricted set of states [21,22] in Euclidean
gravity indicate that closed commutators of constraint
operators may be possible more generally. Unfortunately,
the complicated semiclassical limit of such theories makes it
difficult to see the full implications of holonomy modifica-
tions, in particular those related to potential deformations of
the constraint brackets and signature change.
An effective approach to constraints has proven to be

more powerful [8,43,66], in which one does not directly
compute commutators ½ĈI; ĈJ� of constraint operators but
rather Poisson brackets

fhĈIi; hĈJig ≔
h½ĈI; ĈJ�i

iℏ
ð5Þ
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of effective constraints hĈIi. Methods have been developed
bywhich one can evaluate the left-hand side in an expansion
by quantum moments, which turns out to be more feasible
than computing quantum commutators. These methods,
applied to a fixed order in ℏ, cannot show whether a
consistent operator version exists. But they can rule out
certain choices, or provide indications of necessary defor-
mations of the brackets when certain modifications, such as
holonomy terms, are to be implemented. (For a general
discussion, see [43].) So far, the expansions used in the
context of cosmological perturbations have been done to
lowest order in ℏ, which means that one ignores quantum
backreaction but allows for some quantum-geometry
effects.
In order to include holonomy modifications in an

effective theory of this form, we could, in general, consider
the following ansatz of holonomy modifications to the
Euclidean Hamiltonian [59]

δHQ ¼ ϵjki
Ec
jE

d
kffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp ficdðA; ∂A; ∂2A;…; ∂nA; ϵÞ; ð6Þ

where ficdðA;∂A;∂2A;…;∂nA;ϵÞþOð∂nþ1AÞ¼F̃i
cdðheðAÞÞ−

Fi
cdðAÞ is a function of Am

a and its derivatives up to order n.
(If the Hamiltonian is classical, we have ficd ¼ 0.) It is
obtained by expanding the corresponding function
F̃i
cdðheðAÞÞ that should appear in place of the classical

Fi
cdðAÞ in an effective Hamiltonian computed for a loop-

quantized operator. There may also be a dependence on Ea
i

and its spatial derivatives if there is lattice refinement [67,68],
in which case properties of the curves e used to construct a
quantumHamiltonianwould dependon the spatial geometry.
For simplicity, we ignore such a dependence for a first
analysis.
It is sufficient to assume that the holonomy-modification

function ficdðAm
a ; ϵÞ is an antisymmetric tensor, just as Fi

cd,
because it is contracted with the antisymmetric combina-
tion ϵjkiEc

jE
d
k of triad components. We write the modified

Hamiltonian constraint as

HQ½N� ¼ 1

16πG

Z
Σ
d3xNðHþ δHQÞ ¼ H½N� þ δHQ½N�:

ð7Þ

After this modification, motivated by full loop quantum
gravity, we may perturb the Hamiltonian in order to
describe cosmological inhomogeneity. We use the splittings
into background and inhomogeneity as given in [15] (see
also [55]). Considering perturbations around a spatially flat,
homogeneous and isotropic metric, the connection varia-
bles Ai

a and the densitized triad Ea
i can be expanded as

Ai
a ¼ Āi

a þ δAi
a ≔ q̄δia þ δAi

a ð8Þ

Ea
i ¼ Ēa

i þ δEa
i ≔ p̄δai þ δEa

i ð9Þ

where the homogeneous mode is defined by

q̄ ≔
1

3V0

Z
Σ
Ai
aδ

a
i d

3x; p̄ ≔
1

3V0

Z
Σ
Ea
i δ

i
ad3x ð10Þ

with V0 ¼
R
Σ d

3x (integrated over some fixed region, or all
of space if it is compact). We will assume p̄ > 0, fixing the
spatial orientation. In order to avoid over-counting the
degrees of freedom, the perturbations δEa

i and δAi
a do not

have homogeneous modes:

Z
Σ
δEa

i δ
i
ad3x ¼ 0;

Z
Σ
δAi

aδ
a
i d

3x ¼ 0: ð11Þ

Therefore, the Poisson brackets of the background and
perturbed variables can be constructed as

fq̄; p̄g¼ 8πG
3V0

; fδAi
aðxÞ;δEb

j ðyÞg¼ 8πGδijδ
b
aδ

3ðx−yÞ:

ð12Þ

We note [55] that there is a single inhomogeneous
perturbation δf for any field component f, instead of a
whole tower δð1Þf, δð2Þf and so on, as often used for linear
perturbation equations at all orders. The latter decompo-
sition would be convenient when one tries to solve a given
set of equations of motion. In our context, however, we first
need to derive consistent forms of equations of motion
using canonical methods, which requires a well-defined
Poisson or symplectic structure. Since linearized perturba-
tions δð1Þf, δð2Þf and so on would not provide independent
degrees of freedom, one cannot define a Poisson structure
for them. The decomposition (8), by contrast, gives a well-
defined Poisson structure (12).
The background variables of the lapse function and shift

vector can be chosen as

N̄ ¼ ffiffiffiffī
p

p ð13Þ

for conformal background time, and

N̄a ¼ 0 ð14Þ

for an isotropic background. Moreover, the perturbed lapse
δN does not have homogeneous modes:

Z
Σ
δNd3x ¼ 0; ð15Þ

just as (11).
In order to restrict attention to scalar modes, we shall

parametrize the basic perturbed phase space variables
ðδAi

a; δEb
j Þ in terms of suitable independent functions.
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As discussed in [15], δEb
j and the extrinsic-curvature

perturbation δKi
a can be parametrized as

δKi
a ¼ δiaκ1 þ ∂a∂iκ2; δEa

i ¼ δai ε1 þ ∂i∂aε2 ð16Þ

in terms of two pairs of scalar functions. In addition, the
spin connection is

Γi
a ¼ −

1

2
ϵijkEb

j

�
2∂ ½aEk

b� þ Ec
kE

l
a∂cEl

b − Ek
a
∂bðdetEÞ
detE

�
:

ð17Þ

Perturbing this equation at the linear level, one obtains

δΓi
a ¼

1

2p̄
ϵija ∂jðε1 þ Δε2Þ; ð18Þ

where Δε2 ≔ ∂a∂aε2. The connection variables δAi
a can,

therefore, be expressed as

δAi
a ¼ δKi

a þ δΓi
a

¼ δiaκ1 þ ∂a∂iκ2 þ
1

2p̄
ϵa

ij∂jðε1 þ Δε2Þ: ð19Þ

It is easy to see that the Gauss constraint,

G½Λ� ¼ 1

8πGγ

Z
Σ
d3xΛiGi

¼ 1

8πGγ

Z
Σ
d3xΛið∂aEa

i þ ϵij
kAj

aEa
kÞ; ð20Þ

is automatically satisfied for the scalar modes. However,
there is still a nontrivial gauge flow generated by the Gauss
constraint, so that we will have to make sure that all
expressions are invariant under SU(2) transformations
of the connection and densitized triad. The latter can be
done easily without computing the extended brackets
including the Gauss constraint. We will, therefore, first
focus on the brackets between Hamiltonian and diffeo-
morphism constraints.

III. CONSTRAINTS

We now perturb the constraints to second order in
inhomogeneity, so that nontrivial constraints are obtained
which govern the gauge system of linear perturbations. We
will not restrict the inhomogeneity to scalar modes right
away, but only when doing so entails crucial simplifications.

A. Perturbative constraints

The diffeomorphism constraint of Euclidean general
relativity can be expressed as

D½Na�≔ 1

8πG

Z
Σ
d3xNcð−Fk

cdE
d
kÞ

≈
1

8πG

Z
Σ
d3xNc½ð−∂cAk

dþ∂dAk
cÞEd

k þAi
c∂aEa

i �;

ð21Þ

where in the second line the Gauss constraint (20) has been
used. Since (20) vanishes for scalar modes, we do not need
to distinguish between the diffeomorphism and vector
constraints, and either expression in (21) is good for our
purposes. Perturbing the first expression (usually identified
as the vector constraint), we have

D½Na� ¼ 1

8πG

Z
Σ
d3xδNc½−p̄∂cðδdkδAk

dÞ þ p̄ð∂kδAk
cÞ

− q̄ p̄ ϵdcnδAn
d − q̄2ϵkcdδEd

k �: ð22Þ

The perturbative expression of the Hamiltonian density
up to the second order has been derived in the Appendix of
[59] as H ¼ Hð0Þ þHð1Þ þHð2Þ with

Hð0Þ ¼ 6q̄2
ffiffiffiffī
p

p
; ð23Þ

Hð1Þ ¼ 4q̄
ffiffiffiffī
p

p
δcjδA

j
cþ q̄2ffiffiffiffī

p
p δjcδEc

j þ2
ffiffiffiffī
p

p
ϵi

cd∂cδAi
d; ð24Þ

Hð2Þ ¼ −
ffiffiffiffī
p

p
δAj

cδAk
dδ

c
kδ

d
j þ

ffiffiffiffī
p

p ðδAj
cδcjÞ2 þ

2q̄ffiffiffiffī
p

p δEc
jδA

j
c

þ q̄2

2p̄3=2 δE
c
jδE

d
kδ

k
cδ

j
d −

q̄2

4p̄3=2 ðδEc
jδ

j
cÞ2

þ 1ffiffiffiffī
p

p ð4ϵickδEd
k − ϵi

cdδEa
jδ

j
aÞ∂ ½cδAi

d�: ð25Þ

For a Hamiltonian constraint of the form (6), we write

ficd ¼ fið0Þcd þ fið1Þcd þ fið2Þcd ð26Þ

expanded up to second order in inhomogeneity, and obtain
the modification terms

δHð0Þ
Q ¼ ffiffiffiffī

p
p

fið0Þcd ϵi
cd; ð27Þ

δHð1Þ
Q ¼ ffiffiffiffī

p
p

fið1Þcd ϵi
cdþfið0Þcdffiffiffiffī

p
p

�
2ϵi

ckδEd
k −

1

2
ϵi

cdδEa
jδ

j
a

�
;

ð28Þ

δHð2Þ
Q ¼ ffiffiffiffī

p
p

fið2Þcd ϵi
cd þ fið1Þcdffiffiffiffī

p
p

�
2ϵi

ckδEd
k −

1

2
ϵi

cdδEa
jδ

j
a

�

þ fið0Þcd

p̄3=2

�
ϵi

jkδEc
jδE

d
k − ϵi

ckδEd
kδE

a
jδ

j
a

þ 1

8
ϵi

cdðδEa
jδ

j
aÞ2 þ 1

4
ϵi

cdδEa
jδE

b
kδ

j
bδ

k
a

�
: ð29Þ
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For later convenience, we denote F ð0Þ ¼ fið0Þcd ϵi
cd, F ð1Þ ¼

fið1Þcd ϵi
cd and F ð2Þ ¼ fið2Þcd ϵi

cd.
At this stage, we pause and compare the parametrization

with the one used in [25] and related work. In these papers,
δKi

a was used instead of δAi
a, and the derivative term

present in the classical constraint (25) could be eliminated
using the Gauss constraint. The Hamiltonian constraint
then contains no derivatives of the field conjugate to δEa

i .
However, even if such terms can be eliminated from the
classical Hamiltonian, they may appear in an effective
constraint with a derivative expansion of nonlocal holon-
omy modifications. Here, we assume that they may be

induced via the terms fið1Þcd and fið2Þcd , up to a certain order in
derivatives.

B. Brackets

For computational purposes, it is convenient to split the
perturbed Hamiltonian and its modification terms into two
parts each,

H½N� ¼ 1

16πG

Z
d3xNH ¼ H½N̄� þH½δN�; ð30Þ

δHQ½N� ¼ 1

16πG

Z
d3xNδHQ ¼ δHQ½N̄� þ δHQ½δN�:

ð31Þ

According to Eqs. (11) and (15), the integrals
R
Σ d

3xN̄Hð1Þ,R
Σ d

3xδNHð0Þ,
R
Σ d

3xN̄δHð1Þ
Q and

R
Σ d

3xδNδHð0Þ
Q are zero.

Therefore, the explicit expressions for the perturbed
Hamiltonian constraint are [15]

H½N̄� ¼ 1

16πG

Z
d3xN̄½Hð0Þ þHð2Þ� ð32Þ

H½δN� ¼ 1

16πG

Z
d3xδNHð1Þ; ð33Þ

δHQ½N̄� ¼ 1

16πG

Z
d3xN̄½δHð0Þ

Q þ δHð2Þ
Q � ð34Þ

δHQ½δN� ¼ 1

16πG

Z
d3xδNδHð1Þ

Q : ð35Þ

In a perturbative treatment, one may fix the background
gauge so that H½N̄� would generate equations of motion of
background and perturbation variables, while H½δN� gen-
erates gauge transformations for the modes. However, for
consistency in the form of a closed set of gauge-invariant
observables, the constraints must be preserved by evolu-
tion. Both types of generators must then come from a
closed bracket of constraints H½N̄ þ δN� together with
D½Na�. As we have the explicit expression for the perturbed

Hamiltonian constraint at hand, we can calculate the
Poisson brackets between Hamiltonian and diffeomor-
phism constraints and between two Hamiltonian constraints
and check whether they can be closed.
Before proceeding, we shall assume that the holonomy-

modification function ficd is a function of the connection
variable Am

a up to first-order derivative, that is ficd ≡
ficdðA; ∂A; ϵÞ, as used for vector modes in [59]. Higher
spatial derivatives require a more-involved treatment by a
systematic expansion as developed and applied to spheri-
cally symmetric systems in [27]. Here we assume the
classical derivative order but allow for all coefficients
to be modified, thereby extending the treatment of [25].
In this case, the holonomy-modification function can be
expanded as

ficdðA;∂A;ϵÞ¼ ficdðA;∂A;ϵÞjĀm
a
þ∂ficdðA;∂A;ϵÞ

∂Am
a

����
Ām
a

δAm
a

þ∂ficdðA;∂A;ϵÞ
∂ð∂eAm

a Þ
����
Ām
a

∂eδAm
a

þ1

2

∂2ficdðA;∂A;ϵÞ
∂Am

a ∂An
b

����
Ām
a

δAm
a δAn

b

þ∂2ficdðA;∂A;ϵÞ
∂Am

a ∂ð∂eAn
bÞ

����
Ām
a

δAm
a ∂eδAn

b

þ1

2

∂2ficdðA;∂A;ϵÞ
∂ð∂eAm

a Þ∂ð∂fAn
bÞ
����
Ām
a

∂eδAm
a ∂fδAn

bþ���

¼ fið0Þcd ðq̄;ϵÞþAið1Þ
cd ðq̄;δA;ϵÞþBið1Þ

cd ðq̄;∂δA;ϵÞ
þAið2Þ

cd ðq̄;δA;ϵÞþBið2Þ
cd ðq̄;δA;∂δA;ϵÞ

þCið2Þcd ðq̄;∂δA;ϵÞþ �� � : ð36Þ

For later convenience,we have denotedfið1Þcd ≡Aið1Þ
cd þ Bið1Þ

cd

and fið2Þcd ≡Aið2Þ
cd þ Bið2Þ

cd þ Cið2Þcd , where superscripts indi-
cate orders of inhomogeneity, and A, B, C derivative
orders. We note that specific expressions for coefficients
in a derivative expansion could be derived, for instance,
by using expectation values in coherent states as done
for spherically symmetric models in [69]. This paper also
shows that the Lorentzian constraint may have further
derivative corrections compared with the Euclidean
term.
Since we expand the Hamiltonian and diffeomorphism

constraints up to second order in inhomogeneity, higher-
order terms in a power-series expansion by Ai

a of the
holonomy-modification function will not provide inde-
pendent contributions of products of δAi

a but just modify
the background dependence of coefficients included
here. Therefore, it is enough to consider the holonomy-
modification function up to the second order in inhomo-
geneity, even if it may come from nonpolynomial
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functions such as the sine used in the usual background
modification. As already stated, our only assumption is
that no spatial derivatives of Ai

a of orders higher than the
classical one appear.
We first consider the Poisson bracket between

Hamiltonian and diffeomorphism constraints,

fH½N�;D½Na�g¼ fH½N̄�;D½Na�gþfH½δN�;D½Na�g: ð37Þ

It is straightforward to show that the Poisson bracket
fH½N̄�; D½Na�g vanishes, and hence we have

fH½N�; D½Na�g ¼ fH½δN�; D½Na�g ¼ H½δNc∂cδN�: ð38Þ

Note that, in the Euclidean signature, one commonly
employs the diffeomorphism constraint with a sign
opposite to that in Lorentzian general relativity, so that
there is a sign difference between the above Poisson

bracket and corresponding one in Lorentzian signature.
There are similar results in the following Poisson
brackets, including the classical case and that with
holonomy modifications. Thus the Poisson bracket
between perturbed classical Hamiltonian and diffeomor-
phism constraints agrees with the bracket between the
original classical constraints. This indicates the consis-
tency between the perturbed constraint expressions and
elementary Poisson brackets including the background
and perturbed basic variables.
We shall now derive the Poisson bracket between the

Hamiltonian and the diffeomorphism constraints when the
former includes holonomy modifications. It should be
noted that for vector modes in [59], there is no lapse
perturbation, that is δN ¼ 0, and δHQ½δN� vanishes. But
for scalar modes we have δN ≠ 0, so that we need to
calculate both Poisson brackets, fδHQ½N̄�; D½Na�g
and fδHQ½δN�; D½Na�g.
We calculate the first Poisson bracket:

fδHQ½N̄�; D½Na�g ¼ 1

16πG

Z
d3xδNc

�
−
1

2
q̄δic

∂Að1Þ

∂ðδAi
aÞ
∂aðδEd

kδ
k
dÞ þ fið0Þbc ϵi

bj∂jðδEd
kδ

k
dÞ −

2

3
F ð0Þδkcð∂dδEd

kÞ

− 2fið0Þcd ϵi
jk∂jδEd

k þ 2q̄
∂Ajð1Þ

bd

∂ðδAi
aÞ
ϵj

bkδic∂aδEd
k þ

q̄
2

∂Bð1Þ

∂ð∂eδAi
aÞ
δic∂a∂eðδEd

kδ
k
dÞ

− 2q̄
∂Bjð1Þ

bd

∂ð∂eδAi
aÞ
ϵj

bkδic∂a∂eδEd
k þ

1

3
p̄
∂F ð0Þ

∂q̄ ∂kδAk
c þ q̄ p̄ δic∂a

∂Að2Þ

∂ðδAi
aÞ

þ q̄ p̄ δic∂a
∂Bð2Þ

∂ðδAi
aÞ

− q̄ p̄ δic∂a∂e
∂Bð2Þ

∂ð∂eδAi
aÞ

− q̄ p̄ δic∂a∂e
∂Cð2Þ

∂ð∂eδAi
aÞ

þ p̄∂cAð1Þ þ p̄∂cBð1Þ

− 2p̄ϵibj∂jA
ið1Þ
bc − 2p̄ϵibj∂jB

ið1Þ
bc −

p̄
3

∂F ð0Þ

∂q̄ ∂cðδdkδAk
dÞ
�
: ð39Þ

Hence, in contrast to the classical case, the Poisson bracket fHQ½N̄�; D½Na�g does not vanish identically due to the
introduction of holonomy effects. The second Poisson bracket is

fδHQ½δN�; D½Na�g ¼ 1

16πG

Z
d3x

�
ðδNi∂aδNÞ

�
q̄

ffiffiffiffī
p

p ∂Að1Þ

∂ðδAi
aÞ

− 2
ffiffiffiffī
p

p
fkð0Þdi ϵk

da

�

þ ðδNc∂cδNÞ ffiffiffiffī
p

p
F ð0Þ − ðδNi∂a∂eδNÞq̄ ffiffiffiffī

p
p ∂Bð1Þ

∂ð∂eδAi
aÞ
�
: ð40Þ

The Poisson bracket we are looking for is the sum of Eqs. (38), (39), and (40),

fHQ½N�; D½Na�g ¼ fH½δN�; D½Na�g þ fHQ½N̄�; D½Na�g þ fHQ½δN�; D½Na�g: ð41Þ

We will discuss possible anomaly-free versions in the next
section.
We now calculate the Poisson bracket between

two Hamiltonian constraints, smeared with different
functions N1 ¼ N̄ þ δN1 and N2 ¼ N̄ þ δN2. We have

fH½δN1�; H½δN2�g ¼ 0 because the absence of a back-
ground term in the diffeomorphism constraint implies that
the leading nonzero contribution would be of third order,
which is eliminated in our second-order expansion. We,
therefore, have
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fH½N1�; H½N2�g ¼ fH½δN1�; H½N̄�g þ fH½N̄�; H½δN2�g ¼ fH½δN1 − δN2�; H½N̄�g

¼ −D
�
N̄
p̄
∂cðδN2 − δN1Þ

�
: ð42Þ

Again, Eq. (42) confirms the consistency between the perturbed constraint expressions and elementary Poisson brackets
including the background and perturbed basic variables.
With holonomy modifications, we similarly have

fHQ½N1�; HQ½N2�g ¼ fHQ½δN1 − δN2�; HQ½N̄�g
¼ fH½δN1 − δN2�; H½N̄�g þ fH½δN1 − δN2�; δHQ½N̄�g þ fδHQ½δN1 − δN2�; H½N̄�g
þ fδHQ½δN1 − δN2�; δHQ½N̄�g ð43Þ

where

fH½δN1 − δN2�; δHQ½N̄�g ¼ 1

8πG

Z
d3xðδN1 − δN2Þ

��
q̄

24
ffiffiffiffī
p

p
�
8F ð0Þ þ q̄

∂F ð0Þ

∂q̄
�
þ q̄2

8
ffiffiffiffī
p

p ∂Að1Þ

∂ðδAi
aÞ
δia

�
δEd

kδ
k
d

−
�
q̄ffiffiffiffī
p

p fið0Þcd ϵi
ck þ q̄2

2
ffiffiffiffī
p

p ∂Ajð1Þ
cd

∂ðδAi
aÞ
δiaϵj

ck

�
δEd

k þ
ffiffiffiffī
p

p
6

�
F ð0Þ − q̄

∂F ð0Þ

∂q̄
�
δAk

dδ
d
k

þ 1

2
q̄

ffiffiffiffī
p

p
F ð1Þ −

q̄2
ffiffiffiffī
p

p
4

δia

� ∂Að2Þ

∂ðδAi
aÞ

þ ∂Bð2Þ

∂ðδAi
aÞ
�	

þ 1

8πG

Z
d3x∂eðδN1 − δN2Þ

��
1

2
ffiffiffiffī
p

p fið0Þcb ϵi
cjϵj

eb þ q̄2

8
ffiffiffiffī
p

p ∂Bð1Þ

∂ð∂eδAi
aÞ
δia

�
δEd

kδ
k
d

þ 1ffiffiffiffī
p

p
�
−
F ð0Þ

4
− fið0Þbd ϵi

jkϵj
eb þ q̄2

2
δiaϵj

ck ∂Bjð1Þ
cd

∂ð∂eδAi
aÞ
�
δEd

k þ
ffiffiffiffī
p

p
12

∂F ð0Þ

∂q̄ ϵi
edδAi

d

− fið1Þdb ϵi
djϵj

eb þ
ffiffiffiffī
p

p
q̄2

4

� ∂Bð2Þ

∂ð∂eδAi
aÞ

þ ∂Cð2Þ
∂ð∂eδAi

aÞ
�
δia

	
ð44Þ

for the first nonclassical bracket,

fδHQ½δN1−δN2�;H½N̄�g¼ 1

8πG

Z
d3xðδN1−δN2Þ

�
−

q̄2

8
ffiffiffiffī
p

p
�∂F ð0Þ

∂q̄ þ ∂Að1Þ

∂ðδAi
aÞ
δia

�
δEd

kδ
k
d−

ffiffiffiffī
p

p
2

F ð0ÞδAk
dδ

d
k

þ
�
q̄ffiffiffiffī
p

p
�
fið0Þcd þ q̄

4

∂fið0Þcd

∂q̄
�
þ q̄2

4
ffiffiffiffī
p

p ∂Að1Þ

∂ðδAi
aÞ
δkaδ

i
d

�
δEd

k þ
�
1

2
q̄

ffiffiffiffī
p

p ∂Að1Þ

∂ðδAi
aÞ
þ ffiffiffiffī

p
p

fjð0Þca ϵj
cdδak

�
δAk

d

þ q̄
ffiffiffiffī
p

p
4

�
q̄
∂F ð1Þ

∂q̄ −2F ð1Þ
�	

þ 1

8πG

Z
d3x∂eðδN1−δN2Þ

��
q̄2

8
ffiffiffiffī
p

p ∂Bð1Þ

∂ð∂eδAi
aÞ
δiaþ

1

2
ffiffiffiffī
p

p fjð0Þba ϵj
biϵi

ea

�
δEd

kδ
k
d

þ
�
−

q̄2

4
ffiffiffiffī
p

p ∂Bð1Þ

∂ð∂eδAi
aÞ
δkaδ

i
dþ

1

4
ffiffiffiffī
p

p F ð0Þϵdek−
1ffiffiffiffi
p

p fjð0Þbd ϵj
biϵi

ekþ 1ffiffiffiffi
p

p fjð0Þba ϵj
biϵi

akδed

�
δEd

k

þ 1

4
ffiffiffiffī
p

p ∂Að1Þ

∂δAi
a
ϵa

edδAi
dþ

1

4
ffiffiffiffī
p

p ∂Bð1Þ

∂ð∂eδAi
aÞ
ϵa

cd∂cδAi
d

	
ð45Þ

for the second nonclassical bracket, and
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fδHQ½δN1 − δN2�; δHQ½N̄�g

¼ 1

8πG

Z
d3xðδN1 − δN2Þ

�
−

1

24
ffiffiffiffī
p

p F ð0Þ ∂F ð0Þ

∂q̄ δEd
kδ

k
d þ

�
1

12
ffiffiffiffī
p

p F ð0Þ ∂fið0Þcd

∂q̄ ϵi
ck þ 1

12
ffiffiffiffī
p

p fið0Þcd
∂F ð0Þ

∂q̄ ϵi
ck

þ 1

8
ffiffiffiffī
p

p F ð0Þ ∂Að1Þ

∂ðδAi
aÞ
δidδ

k
a −

1

4
ffiffiffiffī
p

p fjð0Þcd ϵj
ck ∂Að1Þ

∂ðδAi
aÞ
δia þ

1

2
ffiffiffiffī
p

p fjð0Þad ϵj
ik ∂Að1Þ

∂ðδAi
aÞ

−
1

2
ffiffiffiffī
p

p
�
−
1

2
F ð0Þδia þ 2fkð0Þca ϵk

ci

� ∂Ajð1Þ
cd

∂ðδAi
aÞ
ϵj

ck

�
δEd

k þ
ffiffiffiffī
p

p
24

�
F ð0Þ ∂F ð1Þ

∂q̄ − F ð1Þ ∂F ð0Þ

∂q̄
�

−
ffiffiffiffī
p

p
8

F ð1Þ ∂Að1Þ

∂ðδAi
aÞ
δia þ

ffiffiffiffī
p

p
2

fkð1Þca ϵk
ci ∂Að1Þ

∂ðδAi
aÞ

−
ffiffiffiffī
p

p
4

�
−
1

2
F ð0Þδia þ 2fkð0Þca ϵk

ci

�� ∂Að2Þ

∂ðδAi
aÞ

þ ∂Bð2Þ

∂ðδAi
aÞ
�	

þ 1

8πG

Z
d3x∂eðδN1 − δN2Þ

� ffiffiffiffī
p

p
4

�
−
1

2
F ð0Þδia þ 2fkð0Þca ϵk

ci

� ∂Bð1Þ

∂ð∂eδAi
aÞ

þ
�
−

1

8
ffiffiffiffī
p

p F ð0Þ ∂Bð1Þ

∂ð∂eδAi
aÞ
δidδ

k
a þ

1

4
ffiffiffiffī
p

p fjð0Þcd ϵj
ck ∂Bð1Þ

∂ð∂eδAi
aÞ
δia −

1

2
ffiffiffiffī
p

p fjð0Þad ϵj
ik ∂Bð1Þ

∂ð∂eδAi
aÞ

−
1

2
ffiffiffiffī
p

p
�
−
1

2
F ð0Þδia þ 2flð0Þba ϵl

bi

�
ϵj

ck ∂Bjð1Þ
cd

∂ð∂eδAi
aÞ
�
δEd

k þ
ffiffiffiffī
p

p
8

F ð1Þδia
∂Bð1Þ

∂ð∂eδAi
aÞ

−
ffiffiffiffī
p

p
2

fkð1Þca ϵk
ci ∂Bð1Þ

∂ð∂eδAi
aÞ

−
ffiffiffiffī
p

p
4

�
−
1

2
F ð0Þδia þ 2flð0Þba ϵl

bi

�� ∂Bð2Þ

∂ð∂eδAi
aÞ

þ ∂Cð2Þ
∂ð∂eδAi

aÞ
�	

ð46Þ

for the last bracket.

IV. HOLONOMY MODIFICATION FUNCTION
AND ANOMALY FREEDOM

We can now check whether there are some specific forms
of the holonomy modification function which imply that
the constraints are anomaly free. The general form [59],

ficd ¼ σðq̄Þϵicd þ =σðq̄ÞϵicdAj
aδaj þ μðq̄ÞAi

bϵ
b
cd

þ νðq̄ÞðϵimdAm
c þ ϵicnAn

dÞ þ =̃σðq̄ÞϵicdðAj
aδaj Þ2

þ =μðq̄ÞAi
bϵ

b
cdA

j
aδaj þ =νðq̄ÞðϵimdAm

c þ ϵicnAn
dÞAj

aδaj

þ ρðq̄ÞϵimnAm
c An

d þ τðq̄Þ∂ ½cAi
d�; ð47Þ

of holonomy modification functions satisfies our previous
assumptions: antisymmetry in c and d as well as up to first-
order derivatives of Ai

a. At this point, there is no term of the
form Ai

a∂bA
j
c because on shell Ai

a appears as a first-order
(time) derivative. The omitted term would, therefore, be
considered to be of second total derivative order and should
not be included in a first-order derivative expansion. This
treatment of derivatives has been shown to be consistent in
[27]. The dependence of coefficients on the background
connection q̄ is unrestricted, as it may result from an
expansion of a nonquadratic function of the connection.
However, if ficd is expected to result from a function of
holonomies, expanded up to n-th order in a dependence on

Ai
a, the perturbation expansion implies that σðq̄Þ is a

polynomial of the same degree n, while =σðq̄Þ, μðq̄Þ, νðq̄Þ
and τðq̄Þ are polynomials of degree n − 1, and =̃σðq̄Þ, =μðq̄Þ,
=νðq̄Þ and ρðq̄Þ are polynomials of degree n − 2.
In the notation of (36), the expressions of the

holonomy modification function ficd up to first order can
be found as

fið0Þcd ¼ ðσ þ 3=σq̄þ μq̄þ 2νq̄þ ρq̄2 þ 9=̃σq̄2

þ 3=μq̄2 þ 6=νq̄2Þϵicd;
Aið1Þ

cd ¼ ðνþ ρq̄þ 3=νq̄ÞðϵimdδAm
c þ ϵicnδAn

dÞ
þ ð=σ þ 6=̃σ q̄þ=μq̄þ 2=νq̄ÞδAj

aδaj ϵ
i
cd

þ ðμþ 3=μq̄ÞδAi
bϵ

b
cd;

Bið1Þ
cd ¼ τ∂ ½cδAi

d�;

Aið2Þ
cd ¼ ρϵimnδAm

c δAn
d þ =̃σðδAj

aδaj Þ2ϵicd
þ =νðϵimdδAm

c þ ϵicnδAn
dÞδAj

aδaj þ =μδAi
bϵ

b
cdδA

j
aδaj ;

Bið2Þ
cd ¼ 0;

Cið2Þcd ¼ 0: ð48Þ

Note that for vector modes, with δbjδA
j
b ¼ 0, these equa-

tions reduce to Eq. (35) in [59]. We list the following
relations for later convenience,
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F ð0Þ ¼ 6ðσ þ 3=σq̄ þ μq̄ þ 2νq̄ þ ρq̄2 þ 9=̃σq̄2 þ 3=μq̄2 þ 6=νq̄2Þ;
Að1Þ ¼ ð4ν þ 6=σ þ 2μ þ 4ρq̄ þ 24=νq̄ þ 36=̃σ q̄ þ12=μq̄ÞδAk

dδ
d
k;

Að2Þ ¼ ðρ þ 6=̃σ þ 2=ν þ 2=μÞðδAk
dδ

d
kÞ2 − ρδAm

c δAn
dδ

c
nδ

d
m;

fið0Þcd ¼ F ð0Þ

6
ϵicd;

Bð1Þ ¼ τ∂cðδAi
dϵi

cdÞ: ð49Þ

A. Hamiltonian and diffeomorphism constraints

Substituting Eq. (48) into the expression of the Poisson bracket (39) and using the relations in Eq. (49), we have

fδHQ½N̄�; D½Na�g ¼ 1

16πG

Z
d3xδNc

�
−2

�
σ

q̄
þ 3=σ þ 2μþ νþ 9q̄ =̃σþ6q̄=μþ 3q̄=ν

�
q̄δkcð∂dδEd

kÞ

þ 2

�∂σ
∂q̄þ 3q̄

∂=σ
∂q̄þ q̄

∂μ
∂q̄þ 2q̄

∂ν
∂q̄þ 3q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ 9q̄2

∂=̃σ
∂q̄þ 6q̄2

∂=ν
∂q̄

þ 3=σ þ 2μþ νþ 18q̄ =̃σþ9q̄=μþ 9q̄=ν

�
p̄∂kδAk

c

− 2

�∂σ
∂q̄þ 3q̄

∂=σ
∂q̄þ q̄

∂μ
∂q̄þ 2q̄

∂ν
∂q̄þ 3q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ 9q̄2

∂=̃σ
∂q̄þ 6q̄2

∂=ν
∂q̄þ 2=σ þ μþ νþ 3q̄=μ

þ 5q̄=νþ 6q̄ =̃σ

�
p̄∂cðδdkδAk

dÞ þ ð=σ þ 6q̄ =̃σþμþ 4q̄=μþ 2q̄=νÞq̄∂cðδEd
kδ

k
dÞ
�
: ð50Þ

For scalar modes (16) and (19), we have the relations

δkcð∂dδEd
kÞ ¼ ∂cε1 þ ∂cðΔε2Þ;

∂cðδEd
kδ

k
dÞ ¼ 3∂cε1 þ ∂cðΔε2Þ;

∂kδAk
c ¼ ∂cκ1 þ ∂cðΔκ2Þ;

∂cðδAk
dδ

d
kÞ ¼ 3∂cκ1 þ ∂cðΔκ2Þ;

ϵkcdδEd
k ¼ 0;

ϵdcnδAn
d ¼ −

1

p̄
∂cε1 −

1

p̄
∂cðΔε2Þ ð51Þ

The diffeomorphism constraint in term of the scalar
functions ðε1; ε2Þ and ðκ1; κ2Þ is

D½Na� ¼ 1

8πG

Z
Σ
d3xδNc½−2p̄∂cκ1 þ q̄∂cε1 þ q̄∂cðΔε2Þ�:

ð52Þ

Using these relations, the Poisson bracket (50) is

fδHQ½N̄�;D½Na�g¼ 1

16πG

Z
d3xδNc

�
−
�
2
σ

q̄
þ3=σþμþ2ν

�
q̄∂cε1−

�
2
σ

q̄
þ5=σþ3μþ2νþ12=̃σþ8q̄=μþ4q̄=ν

�
q̄∂cðΔε2Þ

−2

�
2

�∂σ
∂q̄þ3q̄

∂=σ
∂q̄þ q̄

∂μ
∂q̄þ2q̄

∂ν
∂q̄þ3q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ9q̄2

∂=̃σ
∂q̄þ6q̄2

∂=ν
∂q̄

�

þ3=σþμþ2νþ6q̄=ν

�
p̄∂cδκ1þ2ð=σþμþ12q̄ =̃σþ6q̄=μþ4q̄=νÞp̄∂cðΔκ2Þ

	
: ð53Þ

This contribution would vanish classically, but may be
nonzero here as long as the scalar modes can be combined
in the right form to produce a multiple of the diffeo-
morphism constraint (52). Comparing the Poisson bracket

(53) with the expression of the diffeomorphism constraint
(52), we observe that the conditions

=σ ¼ −μ − 2q̄=μ; ð54Þ

JIAN-PIN WU, MARTIN BOJOWALD, and YONGGE MA PHYS. REV. D 98, 106009 (2018)

106009-10



=̃σ ¼ −
1

3
ð=μþ =νÞ; ð55Þ

∂σ
∂q̄þ3q̄

∂=σ
∂q̄þ q̄

∂μ
∂q̄þ2q̄

∂ν
∂q̄þ3q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ9q̄2

∂=̃σ
∂q̄

þ6q̄2
∂=ν
∂q̄¼−

σ

q̄
−6=σ−4μ−2ν−27q̄ =̃σ−15q̄=μ−12q̄=ν

ð56Þ

imply a closed Poisson bracket:

fHQ½N̄�; D½Na�g ¼ −
�
σ

q̄
− μþ ν − 3q̄=μ

�
D½Na�: ð57Þ

Substituting Eqs. (54) and (55) into Eq. (56),

∂σ
∂q̄ − 2q̄

∂μ
∂q̄þ 2q̄

∂ν
∂q̄ − 6q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ 3q̄2

∂=ν
∂q̄

¼ −
σ

q̄
þ 2μ − 2νþ 12q̄=μ − 3q̄=ν: ð58Þ

Similarly to the case of vector modes [59], we find that
the form of the Poisson bracket fHQ½N̄�; D½Na�g may be
modified by holonomy terms. One of the conditions for
scalar modes, Eq. (56), is the same as that for vector modes
(Eq. (38) in [59]). For scalar modes, however, we need the
additional conditions (54) and (55). The requirement of
having anomaly-free constraints, therefore, imposes tighter
restrictions on the parameters of the holonomy-modifica-
tion function (47) when we consider scalar modes.
Moreover, for the contribution (40) to the Poisson

bracket, we have

fδHQ½δN�; D½Na�g

¼ δHQ½δNc∂cδN� − 1

16πG

Z
d3xðδNc∂cδNÞ4q̄ ffiffiffiffī

p
p

×

�
σ

q̄
− μþ ν − 3=μq̄

�
ð59Þ

using Eqs. (54) and (55). The condition of anomaly-free
constraints requires

σ

q̄
− μþ ν − 3=μq̄ ¼ 0; ð60Þ

so that fδHQ½N�; D½Na�g in (57) vanishes. Therefore,
when the conditions (54), (55), (58), and (60) are satisfied,
the Poisson bracket between the holonomy-modified
Hamiltonian and diffeomorphism constraints becomes

fδHQ½N�; D½Na�g ¼ δHQ½δNc∂cδN�; ð61Þ
which is identical to the classical case. The conditions (54),
(55), (58), and (60) can be combined as

σ¼ q̄μ− q̄νþ3q̄2=μ;

=σ¼−μ−2q̄=μ;

=̃σ¼−
1

3
ð=μþ=νÞ;

− q̄
∂μ
∂q̄þ q̄

∂ν
∂q̄−3q̄2

∂=μ
∂q̄þ q̄2

∂ρ
∂q̄þ3q̄2

∂=ν
∂q̄¼ 3q̄=μ−3q̄=ν:

ð62Þ

B. Two Hamiltonian constraints

We now turn to the study of the Poisson bracket between
two holonomy-modified Hamiltonian constraints. Using
Eq. (62), the terms of the holonomy modification function
(48) can be rewritten as

fið0Þcd ¼ ð−μq̄þ νq̄ − 3=μq̄2 þ 3=νq̄2 þ ρq̄2Þϵicd;
Aið1Þ

cd ¼ ðνþ ρq̄þ 3=νq̄ÞðϵimdδAm
c þ ϵicnδAn

dÞ
− ðμþ 3=μq̄ÞδAj

aδajϵ
i
cd þ ðμþ 3=μq̄ÞδAi

bϵ
b
cd;

Bið1Þ
cd ¼ τ∂ ½cδAi

d�;

Aið2Þ
cd ¼ ρϵimnδAm

c δAn
d −

1

3
ð=μþ =νÞðδAj

aδaj Þ2ϵicd
þ =νðϵimdδAm

c þ ϵicnδAn
dÞδAj

aδaj þ =μδAi
bϵ

b
cdδA

j
aδaj ;

Bið2Þ
cd ¼ 0;

Cið2Þcd ¼ 0: ð63Þ

In terms of

F ð0Þ ¼ 6ð−μq̄þ νq̄ − 3=μq̄2 þ 3=νq̄2 þ ρq̄2Þ;
Að1Þ ¼ ð−4μþ 4ν − 12=μq̄þ 12=νq̄þ 4ρq̄ÞδAk

dδ
d
k

¼ 2

3

F ð0Þ

q̄
δAk

dδ
d
k;

Að2Þ ¼ ρðδAk
dδ

d
kÞ2 − ρδAm

c δAn
dδ

c
nδ

d
m;

∂F ð0Þ

∂q̄ ¼ 6ð−μþ ν − 3=μq̄þ 3=νq̄þ 2ρq̄Þ ¼ F ð0Þ

q̄
þ 6ρq̄;

fið0Þcd ¼ F ð0Þ

6
ϵicd;

Bð1Þ ¼ τ∂cδAi
dϵi

cd;

∂Að1Þ

∂q̄ ¼ 4ρδAk
dδ

d
k; ð64Þ

the sum of the holonomy-modified Poisson brackets, (44),
(45), and (46) is
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fH½δN1− δN2�;δHQ½N̄�gþfδHQ½δN1− δN2�;H½N̄�gþfδHQ½δN1− δN2�;δHQ½N̄�g

¼ 1

8πG

Z
d3x∂cðδN2− δN1Þ

N̄
p̄

�
−
�
1

4
τ2þ τ

�
½p̄∂kδAk

c− p̄∂cðδAk
dδ

d
kÞ�

þ
�
−

1

24
ðF ð0Þ þ 6q̄2Þ ∂τ∂q̄þ

�
1þ τ

2

�
ðμþ 3=μq̄Þþ 1

6

F ð0Þ

q̄
þ 1

2
τq̄þ 1

4
τ2q̄

�
p̄δAn

dϵ
d
cn−

1

12
ðτF ð0Þ þ 2F ð0Þ þ 6τq̄2ÞϵkcdδEd

k

	

þ 1

8πG

Z
d3xðδN2− δN1Þ

1

72
ðF ð0Þ þ 6q̄2ÞðF ð0Þ− 6ρq̄2Þ

�
1

q̄
ffiffiffiffī
p

p δEd
kδ

k
d− 2

ffiffiffiffī
p

p
q̄2

δAk
dδ

d
k

�
: ð65Þ

By using Eqs. (51), we express the Poisson bracket (65) in terms of the scalar modes ðε1; ε2Þ and ðκ1; κ2Þ as

fH½δN1 − δN2�; δHQ½N̄�g þ fδHQ½δN1 − δN2�; H½N̄�g þ fδHQ½δN1 − δN2�; δHQ½N̄�g

¼ 1

8πG

Z
d3x∂cðδN2 − δN1Þ

N̄
p̄

��
1

2
τ2 þ 2τ

�
p̄∂cκ1

−
�
−

1

24
ðF ð0Þ þ 6q̄2Þ ∂τ∂q̄þ

�
1þ τ

2

�
ðμþ 3=μq̄Þ þ 1

6

F ð0Þ

q̄
þ 1

2
τq̄þ 1

4
τ2q̄

�
∂cðε1 þ Δε2Þ

	

þ 1

8πG

Z
d3xðδN2 − δN1Þ

1

72
ðF ð0Þ þ 6q̄2ÞðF ð0Þ − 6ρq̄2Þ

�
1

q̄
ffiffiffiffī
p

p ð3ε1 þ Δε2Þ − 2

ffiffiffiffī
p

p
q̄2

ð3κ1 þ Δκ2Þ
�
: ð66Þ

Equation (66) implies that, in order to have a closed
Poisson bracket, we should impose the conditions

ðρþ 1Þq̄ ∂τ
∂q̄ − 4

�
1þ τ

2

��
μ

q̄
þ 3=μ

�
þ 2τ − 4ρ ¼ 0;

μ ¼ ν − 3=μq̄þ 3=νq̄: ð67Þ

The Poisson bracket (66) can then be expressed as

fH½δN1 − δN2�; δHQ½N̄�g þ fδHQ½δN1 − δN2�; H½N̄�g
þ fδHQ½δN1 − δN2�; δHQ½N̄�g

¼ −
�
1

4
τ2 þ τ

�
D½N̄p̄−1∂cðδN2 − δN1Þ�: ð68Þ

Using (67), we obtain

−q̄
∂μ
∂q̄þ q̄

∂ν
∂q̄ ¼ q̄

∂
∂q̄ ð3q̄ð=μ − =νÞÞ

¼ 3q̄2
∂ð=μ − =νÞ

∂q̄ þ 3q̄ð=μ − =νÞ ð69Þ

such that (62) simplifies to q̄2∂ρ=∂q̄ ¼ 0. We arrive at the
conditions

ρ ¼ c1;

ðc1 þ 1Þq̄ ∂τ
∂q̄ − 4

�
1þ τ

2

��
μ

q̄
þ 3=μ

�
þ 2τ − 4c1 ¼ 0;

σ ¼ 3q̄2=ν;

=σ ¼ −νþ q̄=μ − 3q̄=ν;

=̃σ ¼ −
1

3
ð=μþ =νÞ;

μ ¼ ν − 3=μq̄þ 3=νq̄; ð70Þ
on anomaly-free constraints, where ρ ¼ c1 is now a
constant independent of q̄. In these conditions, there are
three free functions of q̄: ν, =μ and =ν.
In [59], a different-looking equation, (38), has been

derived for the anomaly freedom of the vector modes.
Slightly adapted to our notation, this condition reads

0 ¼ ∂σ
∂q̄þ 3q̄

∂=σ
∂q̄þ 9q̄2

∂=̃σ
∂q̄þ q̄

∂μ
∂q̄þ 2q̄

∂ν
∂q̄þ 3q̄2

∂=μ
∂q̄

þ 6q̄2
∂=ν
∂q̄þ q̄2

∂ρ
∂q̄þ σ

q̄
þ 6=σ þ 27q̄ =̃σþ4μþ 15q̄=μ

þ 2νþ 12q̄=ν: ð71Þ

If we insert (70), this equation is identically satisfied, such
that the formulations for scalar and vector modes are
consistent with each other.
We have found a candidate for a nontrivial holonomy-

modified function ficd, which satisfies anomaly-free con-
straint brackets for both scalar and vector modes up to
second order. This nontrivial function can be written as
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ficd ¼ 3q̄2=νϵicdþð−νþ q̄=μ−3q̄=νÞϵicdAj
aδaj

þðν−3=μq̄þ3q̄=νÞAi
bϵ

b
cdþνðϵimdAm

c þ ϵicnAn
dÞ

−
1

3
ð=μþ=νÞϵicdðAj

aδaj Þ2þ=μAi
bϵ

b
cdA

j
aδaj

þ=νðϵimdAm
c þ ϵicnAn

dÞAj
aδaj þc1ϵimnAm

c An
dþ τ∂ ½cAi

d�:

ð72Þ

Here, τ is determined by the second equation in Eq. (70).
When ν ¼ =μ ¼ =ν ¼ 0, τ ¼ 2c1, the modification function

returns to the form of classical curvature as ficd ¼ c1Fi
cd, in

which ρ ¼ c1 is a constant and can be absorbed in the
definition of G.

C. SU(2) covariance

It remains to check the SU(2) covariance of the hol-
onomy-modification function ficd in (72). To this end, we
calculate the Poisson bracket between the holonomy
modifications of the Hamiltonian constraint, δHQ½N�,
and the Gauss constraint G½Λ�:

fδHQ½N�; G½Λ�g ¼ 1

16πG

Z
d3xN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detEj

p �
4q̄=νð3 − Ak

bδ
b
kÞDlΛl þ ðτ − 2c1ÞðAk

be
b
kDlΛl − Ak

be
b
l DkΛlÞ

þ 2Λl

�
ð2ν − 3=μq̄þ 3q̄=νÞAk

bϵ
b
lk þ ð=μþ =νÞAj

aδajA
k
bϵ

b
lk þ

�
c1 −

1

2
τ

�
ϵdmnAm

c An
de

c
l

��
: ð73Þ

We have introduced the covariant derivative defined as

Davi ¼ ∂avi − ϵijkA
j
avk: ð74Þ

From Eq. (73), it is easy to conclude that the Poison
bracket fδHQ½N�; G½Λ�g vanishes only if the parameters
satisfy ν ¼ =μ ¼ =ν ¼ 0, τ ¼ 2c1. The modification function
then returns to the classical case of ficd ∝ Fi

cd. Therefore, if
we now combine the constraint brackets with the condition
that all expressions be invariant under SU(2) transforma-
tions, the system turns out to be strongly restricted: In (72),
only the last two terms (with coefficients ρ and τ) can
appear in an SU(2)-covariant expression, as is well known
from the possible covariant combinations of connection
components. Moreover, the combination of the last two
terms is covariant only if τ ¼ 2ρ ¼ 2c1. All other terms in
(72) which are quadratic in δAi

a must be zero, so that
=μ ¼ =ν ¼ ν ¼ 0, and also the first background contribution
is ruled out. In particular, background holonomy modifi-
cations are ruled out in this model, which would give rise to
a function =νðq̄Þ ¼ ðlq̄Þ−2 sin2ðlq̄Þ − 1 ≠ 0. This result is
in contrast to [25], where a consistent version with back-
ground holonomy modifications has been found using an
extrinsic-curvature formulation instead of a connection
formulation. (If there were background holonomy mod-
ifications similar to [25], they should contribute to (68) a
factor of ∂2=ν=∂q̄2 in addition to τ2.) The only allowed
correction here is a function τ which would multiply the
classical Fi

cd. Such a modification resembles the results
from inverse-triad rather than holonomy modifications.
The appearance of this modification, however, shows an

interesting analogy with the results of [25]: A crucial factor
in the deformation function found in this paper is called
1þ τ3 there, which is the coefficient of ∂c∂jδEc

j in the
linear term of the Hamiltonian constraint. Such a second

derivative of the triad perturbation also appears here, when
one writes ∂ ½cδAi

d� in terms of the spin connection and

extrinsic curvature, and this term in (72) has the coefficient
that appears in the deformation function in (68). Also the
deformed brackets (68) resemble those found for inverse-
triad corrections: The deformation function in the full
constraintH þ δHQ is one plus a correction function which
does not necessarily change the sign. There is an indication
that signature change may be avoided in the presence of
holonomy modifications because the deformation function
in (68) does not depend on =ν, but then holonomy mod-
ifications are ruled out altogether in this model.

V. CONCLUSIONS

We have extended the investigation of inhomogeneous
perturbations of the effective Hamiltonian constraint with
holonomy modifications in Euclidean models of loop
quantum gravity to include scalar modes. The Poisson
brackets between a holonomy-modified Hamiltonian con-
straint and the diffeomorphism constraint as well as that
between the two holonomy-modified Hamiltonian con-
straints have been calculated. It turns out that anomaly-free
scalar modes impose stronger restrictions on the parameters
of the holonomy-modification function than vector modes,
but nontrivial modifications remain possible such that the
Poisson brackets of the Hamiltonian and diffeomorphism
constraints are anomaly free. If SU(2) covariance is
implemented, however, the modifications are much more
tightly restricted, even ruling out background holonomy
modifications. These results have several new implications
and help to clarify relationships between previous studies.

A. Spatial derivatives

The main new ingredient used here, compared with
existing models which allow background holonomy
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modifications, is the possibility of new corrections even at
the classical form of, at most, first-order derivatives of the
connection. We have motivated these new terms by starting
with a connection rather than extrinsic-curvature formu-
lation, in which case the derivative structure of the
Hamiltonian constraint is different. The appearance of
derivatives, in turn, affects possible modifications of con-
straint brackets derived using integration by parts.
If one does not implement SU(2) covariance, one does

not obtain a physical model but may still consider algebraic
aspects of the system of Hamiltonian and diffeomorphism
constraints, which turns out to be quite nontrivial. In this
case, there are several free coefficients in (72), including
background holonomy modifications =ν. However, the
resulting bracket (68) does not show the characteristic
form found in other such cases, which have led to signature
change at high density: Structure functions in the classical
bracket would be multiplied by 1

2
∂2=ν=∂q̄2 for this form to

be realized, but we have seen no such factor.
Although our results do not provide a physical model in

this case, they may indicate that it is possible to avoid
signature change and the associated indeterministic behav-
ior, provided one starts with a connection formulation. The
appearance of spatial derivatives in the Hamiltonian con-
straint is then different from an extrinsic-curvature formu-
lation, which can affect the constraint brackets when
integrating by parts. An extrinsic-curvature formulation
has a classical Hamiltonian constraint without derivatives
of the extrinsic curvature, while the densitized triad appears
with up to second-order derivatives. In a connection
formulation, the connection appears with up to first-order
derivatives, while the densitized triad does not have
derivative terms in the version used here, that is with
γ ¼ 1. The fact that signature change appears in the former
but not in the latter case is consistent with the simple one-
dimensional model of [38].
In a comparison with results from self-dual variables

[28–30], we see similar properties in that signature change
or, more generally, modifications of the constraint brackets
do not seem generic. Also, at a formal level, there are
similarities, in particular the appearance of spatial deriv-
atives of the connection in the constraint, which do not
appear in extrinsic-curvature versions, and a more impor-
tant role played by the Gauss constraint. The latter is
usually solved explicitly in extrinsic-curvature formula-
tions, which automatically ensures compatibility with its
flow but also leads to less ambiguity in identifying the
Hamiltonian constraint. In a connection formulation, by
contrast, the Hamiltonian constraint is defined only up to
multiples of the Gauss constraint. The form (2) used here is
conventional, but not unique. One could use the Gauss
constraint in order to eliminate spatial derivatives of the
connection, which may bring the structure closer to an
extrinsic-curvature formulation. Such brackets, however,
are beyond the scope of the present paper.

Since SU(2) covariance leads to significant restrictions
of the allowed modifications, the form of holonomies as
covariant functionals of the connection gives further
indications as to how a fully anomaly-free system could
be found in a connection formulation. Holonomies are
nonlocal in space because they are computed by integrating
the connection over a curve. In an effective theory, such an
expression appears in the form of a derivative expansion
that does not end at any finite order. Therefore, SU(2)-
covariant formulations may require higher spatial deriva-
tives beyond the classical order. Holonomies as used in
kinematical constructions of loop quantum gravity suggest
that higher spatial derivatives are unaccompanied by
higher time derivatives because one uses only spatial curves
in holonomies. However, this picture suggests problems
with spacetime covariance because it is difficult to maintain
different orders of space and time derivatives in a
covariant formulation or, alternatively, because a spatial
curve embedded in spacetime may no longer be spatial after
a general coordinate transformation.

B. Comparison between effective and operator
approaches

The preceding arguments provide intuitive reasons why
it seems difficult to have spacetime covariance and SU(2)
covariance in the same holonomy-based theory. At a formal
level, these difficulties have been confirmed in spherically
symmetric models [27]. On the other hand, [21,22] suggest
that very careful routings of loops used to construct
holonomies for a quantization of the Hamiltonian con-
straint could lead to a full anomaly-free quantum theory. A
comparison between these results, therefore, seems useful.
The operator constructions of [21,22] so far have not

given indications about possible deformations of the con-
straint brackets. Since they have been obtained in Euclidean
gravity, our present results help to reconcile this outcome
with those of effective derivations based on real variables,
which generically lead to deformed constraint brackets. In
the present paper, we used Euclidean gravity with a
derivative structure of the Hamiltonian constraint that is
more similar to the constraints quantized in [21,22] than
those of effective approaches in real variables. And here, as
in the case of self-dual connections [28–30], the constraint
brackets are subject to different modifications compared
with Lorentzian models in real variables, and no deforma-
tions are possible if SU(2) covariance is imposed.
While these are qualitative similarities, we emphasize

that a comparison of constraint brackets in effective and
operator approaches is not straightforward. Effective
approaches, by construction, lead to constraints and brack-
ets of the classical type and, therefore, implicitly assume
that there is an underlying semiclassical state in which one
has taken expectation values. Using the systematic treat-
ment of canonical effective constraints [8,43,56,57,66], one
can derive properties of such a semiclassical state within the
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effective formalism, but not much has been done in this
direction in spherically symmetric or perturbed cosmologi-
cal models. The operator treatment, on the other hand,
results in commutators instead of brackets. A detailed
comparison would, therefore, require an understanding
of the semiclassical limit of loop quantum gravity, perhaps
with input from effective results about semiclassical states.
Consistent versions of effective constraint brackets should
then be compared with expectation values of consistent
commutators of constraint operators computed in a semi-
classical state. Only the latter step of computing semi-
classical expectation values would give unambiguous
results about possible deformations of constraint brackets
in operator approaches. Unfortunately, no such results are
available due to the complicated nature of the semiclassical
limit of loop quantum gravity.

C. Spacetime structure

The question whether it is possible to avoid indetermin-
istic behavior in effective models of loop quantum gravity
remains open, but at least the present results have con-
firmed the indications of [28–30] pointing to an affirmative
answer. The form of signature change appears to depend on
the specific formulation used, so that its absence would
provide an additional restrictive condition together with
anomaly freedom alone. However, existing results need to
be extended in several directions before a firm conclusion
can be drawn. First, the derivative nature of the
Hamiltonian constraint and, therefore, the constraint brack-
ets are different for γ ≠ 1, even if one still considers
Euclidean gravity. Second, spatial derivatives in an effec-
tive constraint may be generated by quantum corrections
even if they are absent from the classical constraint. All

such derivatives should be included unless they are pro-
hibited by symmetries. In background-independent quan-
tum theories of gravity, symmetries of spacetime are to be
derived and do not restrict the terms in effective constraints
used before anomaly-free brackets have been obtained. For
the same reason, our calculations should be extended by
including a general derivative expansion not just of Ai

a but
also of Eb

j . In the same vein, one should extend our setup in
this paper to the Lorentzian case, where the construction of
the effective holonomy-modified Hamiltonian of full loop
quantum gravity and the calculation of constraint brackets
would be more complicated, as even the classical constraint
would contain spatial derivatives of Eb

j via Γi
a. Matter terms

added in an anomaly-free way provide another large
question, as do the possible forms of higher-derivative
corrections in both space and time.
There are, therefore, several extensions of existing

calculations which should be completed before reliable
conclusions about the potential consistency of loop quan-
tum gravity can be drawn. Our present results differ in some
crucial respects from previous calculations and should,
therefore, help to provide a better estimate of the options
realized in models of cosmological perturbations within
this framework.
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