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We study the chiral symmetry breaking and restoration in (2þ 1)-dimensional gauge theories from the
holographic hardwall and softwall models. We describe the behavior of the chiral condensate in the
presence of an external magnetic field for both models at finite temperature. For the hardwall model we find
magnetic catalysis (MC) in different setups. For the softwall model we find inverse magnetic catalysis
(IMC) and MC in different situations. We also find for the softwall model a crossover transition from IMC
to MC at a pseudocritical magnetic field. This study also shows spontaneous symmetry breaking for both
models. Interestingly, for B ¼ 0 in the softwall model, we found a nontrivial expectation value for the chiral
condensate.
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I. INTRODUCTION

Much theoretical progress on the nonperturbative phys-
ics of relativistic quantum field theories (RQFT) has been
achieved recently. In particular, the role played by an
external magnetic field in these RQFT has been inves-
tigated in many works, especially in connection with QCD
[1–12]. In the context of lattice QCD, for the chiral phase
transition, an inverse magnetic catalysis (IMC) has been
observed, i.e., the decreasing of the critical temperature
(Tc)with increasing magnetic field (B) for eB ∼ 1 GeV2

[13] and more recently for eB ∼ 3 GeV2 [14]. This is in
contrast with what would be expected: a magnetic catalysis
(MC), meaning the increasing of the critical temperature
with increasing magnetic field [4].
A promising approach to investigate the phenomena of

IMC and MC is based on the AdS=CFT correspondence,
or holographic duality [15–18]. Such duality has become
very useful to address strongly coupled gauge theories,
including the nonperturbative regime of QCD. However,

in order to reproduce the nonperturbative physics of
QCD, one must break the conformal invariance in the
original AdS=CFT correspondence. There are two well-
known models which do this symmetry breaking: the
hardwall [19–25] and softwall [26–28] models. In par-
ticular, some researchers have used these models to
discuss the IMC as a perturbation in powers of the
magnetic field [9–12], and can only be trusted for weak
fields, that means eB < 1 GeV2. Since their approach is
perturbative in the magnetic field B, they could not
predict what would happen for eB > 1 GeV2.
Concerning free fermions in 2þ 1 dimensions in the

presence of a magnetic field, we know that, perturbatively,
the phenomenon of magnetic catalysis is due to the effect of
the magnetic field itself, which is a strong catalyst of
dynamical chiral symmetry breaking, leading to the gen-
eration of a nonzero chiral condensate in the chiral limit
(m → 0), given by [3]

hψ̄ψi ∝ eB
2π

: ð1Þ

At finite temperature, also in the perturbative regime, it was
shown in [29] that the chiral condensate is extremely
unstable, meaning that it vanishes as soon as we introduce
a heat bath with and without chemical potential.
In this work we investigate, nonperturbatively, the chiral

phase transition and symmetry restoration in (2þ 1)-
dimensional holographic gauge theories in an external
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magnetic field from the hardwall and softwall models. We
confirm the picture mentioned before, but we also find
IMC, in the softwall model, for small magnetic fields (in
units of the string tension squared), in agreement with the
lattice results in 3þ 1 dimensions, while the traditional
MC behavior happens for large magnetic fields in this
nonperturbative approach. In the hardwall model, we only
find MC. At finite temperature our approach predicts a
very fast decrease in the chiral condensate as we increase
the temperature, which means that we do not observe the
instability found in the perturbative thermal field theory
computation presented in [29].

II. THE CHIRAL CONDENSATE AND CHIRAL
SYMMETRY BREAKING IN THE
HOLOGRAPHIC FRAMEWORK

A. Background geometry

Via Kaluza-Klein dimensional reduction, the supergrav-
ity theory on AdS4 × S7 may be consistently truncated to
Einstein-Maxwell theory on AdS4 [30]. The action for this
theory, in Euclidean signature, is given by

S ¼ −
1

2κ24

Z
d4x

ffiffiffi
g

p ðR − 2Λ − L2FMNFMNÞ; ð2Þ

where κ24 is the four-dimensional coupling constant, which
is proportional to the four-dimensional Newton’s constant
(κ24 ≡ 8πG4); d4x≡ dτdx1dx2dz;R is the Ricci scalar; and
Λ is the negative cosmological constant.
The field equations coming from the bulk action (2)

together with the Bianchi identity are [30]

RMN ¼ 2L2

�
FP
MFNP −

1

4
gMNF2

�
−

3

L2
gMN; ð3Þ

∇MFMN ¼ 0: ð4Þ

Our ansatz for the metric and the background magnetic
field to solve (3) are given by

ds2 ¼ L2

z2

�
fðzÞdτ2 þ dz2

fðzÞ þ dx21 þ dx22

�
; ð5Þ

F ¼ Bdx1 ∧ dx2: ð6Þ

Using this ansatz, the field equations (3) are simplified
and given by

z2f00ðzÞ − 4zf0ðzÞ þ 6fðzÞ − 2B2z4 − 6 ¼ 0; ð7Þ

zf0ðzÞ − 3fðzÞ − B2z4 þ 3 ¼ 0; ð8Þ

with F2 in (2) given by

F2 ¼ 2B2z4

L4
: ð9Þ

The general solution for Eqs. (7) and (8) is given by

fðzÞ ¼ 1þ B2z4 þ bz3: ð10Þ
If we impose the horizon condition fðz ¼ zHÞ ¼ 0, we find

fBTðzÞ ¼ 1þ B2z3ðz − zHÞ −
z3

z3H
: ð11Þ

This solution was found recently in [31,32]. Equation (11)
corresponds to the AdS4 in the presence of a background
magnetic field at finite temperature, T, where zH is the
horizon position, such that fBTðz ¼ zHÞ ¼ 0. One can note
that this solution indeed satisfies both differential equa-
tions (7) and (8). Note that the solution Eq. (11) implies the
existence of an inner and outer horizon. The outer horizon
satisfies f0BTðz ¼ zHÞ < 0 and is the physically relevant
one. The temperature is given by the Hawking formula

T ¼ jf0BTðz ¼ zHÞj
4π

: ð12Þ

Using (11) and the condition f0BTðz ¼ zHÞ < 0, we have

TðzH; BÞ ¼
1

4π

�
3

zH
− B2z3H

�
; z4H <

3

B2
: ð13Þ

In what follows and in the rest of this work we set the
AdS radius L ¼ 1.

B. Holographic setup for chiral symmetry breaking

Here we describe how to realize the chiral symmetry
breaking of SUðNfÞL × SUðNfÞR → SUðNfÞdiag in the
hardwall and softwall models. For both models we consider
the action

S ¼ −
1

2κ24

Z
d3xdz

ffiffiffi
g

p
e−ΦTrðDMX†DMX þ VX

− ðF2
L þ F2

RÞÞ; ð14Þ
where X is a complex scalar field; DM is the covariant
derivative defined as DMX ¼ ∂MX þ iAL

MX − iXAR
M,

with AL;R
M being the chiral left- and right-handed gauge

fields; FMN the field strength defined as FMN ¼ ∂MAN −
∂NAM − i½AM; AN �; and VX ¼ M2

4X
†X þ λðX†XÞ2 þ… is

the potential for the complex scalar field, where M4 is the
mass of the complex scalar field X. From the AdS4=CFT3

correspondence we have

M2
4 ¼ ΔðΔ − 3Þ: ð15Þ

Since the complex scalar field in four spacetime dimen-
sions is supposed to be dual to the chiral condensate
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σ ≡ hψ̄ψi in three spacetime dimensions, whose dimension
is Δ ¼ 2, we have therefore M2

4 ¼ −2. So, we have the
potential VX ¼ −2X2 þ λX4, where the first term is just the
mass term and the second is the term needed to realize
the spontaneous symmetry-breaking mechanism [33–35].
The field equations coming from (14) are given by

DM½
ffiffiffi
g

p
e−ΦðzÞgMNDNX� −

ffiffiffi
g

p
e−ΦðzÞ∂XVX ¼ 0: ð16Þ

Here, we also assume that the expectation value for X takes
a diagonal form hXi ¼ 1

2
χI2 for the SUð2Þ case [9,11],

where I2 is the 2 × 2 identity matrix. For the general case
of SUðNfÞ, we would have hXi ¼ 1ffiffiffiffiffiffi

2Nf

p χINf
, where the

factor
ffiffiffiffiffiffiffiffiffi
2Nf

p
is introduced to maintain the kinetic term

of χ canonical [34,35]. In addition, we assume that
χðxμ; zÞ≡ χðzÞ. With all these assumptions, we can write
(16) as

χ00ðzÞ þ
�
−
2

z
−Φ0ðzÞ þ f0ðzÞ

fðzÞ
�
χ0ðzÞ − 1

z2fðzÞ ∂χVðχÞ ¼ 0;

ð17Þ

where 0means derivative with respect to z. For our purposes
the dilatonic field is ΦðzÞ ¼ kz2 with k a dimensional
constant. For the hardwall model we set k ¼ 0. On the other
hand, for the softwall model k ≠ 0. Finally, we take
VðχÞ≡ TrVX ¼ −χ2 þ λχ4, in both models.
First, let us consider only the quadratic term in the

potential VðχÞ, i.e., VðχÞ ¼ −χ2, which implies a linear and
analytically solvable equation of motion. In this case we
can clearly see that the UV behavior (z → 0) of (17) takes
the form

χ00ðzÞ − 2

z
χ0ðzÞ þ 2

z2
χðzÞ ¼ 0; ð18Þ

whose solution is given by

χðz → 0Þ ¼ c1zþ c2z2; ð19Þ

where c1 and c2 are integration constants. Since the
complex scalar field χðzÞ is dual to the operator
hψ̄ψi, we can identify these two integration constants
as proportional to

c1 ∝ mq ð20Þ

c2 ∝ σ; ð21Þ

with mq being the fermion mass in 2þ 1 dimensions, and
σ ¼ hψ̄ψi is the chiral condensate.
In this work we solve numerically Eq. (17) using the

quartic potential VðχÞ ¼ −χ2 þ λχ4, with λ ¼ 1. The
boundary conditions used to solve (17) are the UV

(z → 0) behavior of χðzÞ, that is, χðzÞ ¼ mqzþ σz2 and
the regularity of χðzÞ at the horizon, zH, meaning
χðzHÞ < ∞.

C. Zero temperature case

Here the background metric is pure AdS, without
singularity, and there is no natural boundary condition at
the horizon. Numerically, one cannot take the horizon
exactly at infinity. Thus, to analyze the chiral symmetry
breaking in the confining region (T ¼ 0), we need to
perform some coordinate transformations in order to bring
the boundary condition at z → ∞ to a finite position. To
this end, we are going to split the analysis into two cases:
(i) T ¼ 0 and B ¼ 0; (ii) T ¼ 0 and B ≠ 0.
In the first case (i), fðzÞ ¼ 1 in Eq. (17), so we have

χ00ðzÞþ
�
−
2

z
−Φ0ðzÞ

�
χ0ðzÞ− 1

z2
ð−2χðzÞþ4λχ3ðzÞÞ¼ 0:

ð22Þ

In the z coordinate, the two boundaries are z → 0 and
z → ∞.
For the hardwall model, k ¼ 0, we can do the following

coordinate transformation:

z ¼ 1 − t
t

; t ¼ 1

1þ z
: ð23Þ

Under this transformation, the two boundaries in the t
coordinate become t ¼ 1ðz → 0Þ and t ¼ 0ðz → ∞Þ, and
the equation of motion (22) becomes

χ00ðtÞ þ 2ð2 − tÞ
tð1 − tÞ χ

0ðtÞ þ 2χðtÞ − 4λχ3ðtÞ
t2ð1 − tÞ2 ¼ 0; ð24Þ

which has the following IR (t ¼ 0) and UV (t ¼ 1)
asymptotic behaviors,

χIRðtÞ ¼
1ffiffiffiffiffi
2λ

p þ ctþOðt2Þ; ð25Þ

χUVðtÞ ¼ −mqðt − 1Þ þ ðmq þ σÞðt − 1Þ2 þOððt − 1Þ3Þ;
ð26Þ

where c is a constant and mq and σ were defined in z
coordinate by χðz → 0Þ≡ χUV ¼ mqzþ σz2.
Now for the softwall model, still in case (i), we have

ΦðzÞ ¼ −z2, where we have set k ¼ −1. In this case
equation (22) becomes

χ00ðzÞ −
�
2

z
− 2z

�
χ0ðzÞ − 1

z2
ð−2χðzÞ þ 4λχ3ðzÞÞ ¼ 0;

ð27Þ
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with the leading expansion at z → ∞ given by

χIRðzÞ ¼
1ffiffiffiffiffi
2λ

p − c
e−z

2

z
; ð28Þ

while at z → 0we still have χðz → 0Þ≡ χUV ¼ mqzþ σz2.
Note that in this case (the softwall with T ¼ 0 and B ¼ 0)
there is no need to change the coordinates to obtain the
asymptotic behaviors at IR and UV due to the presence of
the dilaton.
Finally, in case (ii) for T ¼ 0 and B ≠ 0, we have (17)

with fðzÞ given by (11) with zH ¼ 31=3ffiffiffi
B

p , where we have used

the definition of the Hawking temperature (13). Doing the
coordinate transformation s ¼ z=zH, the boundaries in the s
coordinate are s ¼ 0 (UV), and s ¼ 1 (IR), and Eq. (17) in
this coordinate becomes

χ00ðsÞ −
�
2

s
−
2

ffiffiffi
3

p
k

B
sþ 12s2

ð1 − sÞð1þ 2sþ 3s2Þ
�
χ0ðsÞ

þ −2χðsÞ þ 4λχ3ðsÞ
s2ð1 − sÞ2ð1þ 2sþ 3s2Þ ¼ 0: ð29Þ

One can check that the near boundary (s → 0) solution of
the above equation is

χUVðsÞ ¼ asþ bs2; ð30Þ

with the two integral constants a and b related to the
fermion mass mq and the chiral condensate σ by the
following relations:

a ¼ 31=4
mqffiffiffiffi
B

p ; b ¼ 31=2
σ

B
: ð31Þ

Now, keeping the divergent terms as s → 1 in Eq. (29), one
reaches

χ00ðsÞ − 2

1 − s
χ0ðsÞ þ −2χðsÞ þ 4λχ3ðsÞ

6ð1 − sÞ2 ¼ 0; ð32Þ

whose solution is given by

χIRðsÞ ¼
1ffiffiffiffiffi
2λ

p þ cð1 − sÞ−1
2
þ
ffiffiffi
33

p
6 þ c0 × ðsingular solutionÞ;

ð33Þ

with c and c0 being two integral constants at IR (s ¼ 1). In
order to have a nonsingular solution, we set c0 ¼ 0.
In the following sections we present our results for IMC

and MC in the context of the chiral phase transition for the
hardwall and softwall models.

III. RESULTS FOR THE HARDWALL MODEL

In this section we present our results for the hardwall
model concerning the dependence of the chiral conden-
sate, σ, with the external magnetic field, B, for T ¼ 0 and
some finite temperatures. We also study the dependence
of σ with temperature, T, for some values of magnetic
field. These analyses allow us to investigate whether there
is IMC or MC and the role played by the thermal effects.
We will also investigate whether the chiral symmetry is
spontaneous or explicitly broken at the nonperturbative
level. It is worth remembering that we are working in
2þ 1 dimensions so that all observable quantities like σ,
B, T, and mq will always be measured in units of the
string tension (

ffiffiffiffiffi
σs

p
). Then, the temperature and mass will

be measured in units of
ffiffiffiffiffi
σs

p
, as, for instance, in

Refs. [36–38]. On the other hand, the magnetic field
and the chiral condensate will be measured in units of the
string tension squared ð ffiffiffiffiffi

σs
p Þ2. One should note that the

hardwall model can be defined setting k ¼ 0 in Eq. (14)
for the dilaton field, given by ΦðzÞ ¼ kz2 and introducing
a hard cutoff zmax such that the holographic coordinate z
obeys 0 ≤ z ≤ zmax [19–25]. Note that the temperature of
the black hole is related to the horizon position zH,
subjected to zH < zmax.
In Fig. 1 we show the behavior of the chiral condensate

as a function of the magnetic field at T ¼ 0 for three
fermion masses mqffiffiffiffi

σs
p ¼ 0.001, 0.01, 0.1, where

ffiffiffiffiffi
σs

p
is the

string tension. One can clearly see that in the confining
regime the chiral condensate in the hardwall model is
enhanced by the magnetic field yielding, as a result,
MC. In Fig. 2 we just plot the chiral condensate σ
normalized by the fermion mass mq versus the magnetic
field B.
In Fig. 3, at nonzero temperature but still in the

confining phase, one continues to observe MC at low
temperature ( Tffiffiffiffi

σs
p ¼ 0.005) for the same three fermion

FIG. 1. The chiral condensate σ in units of
ffiffiffiffiffi
σs

p
versus the

magnetic field B in units of the string tension squared σs in the
confining regime at T ¼ 0.
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masses mqffiffiffiffi
σs

p ¼ 0.001, 0.01, 0.1. Also, in this picture one

can note that for very weak magnetic fields the chiral
condensate is almost independent of the fermion masses,
implying that, in the chiral limit (mq → 0), the chiral
symmetry is spontaneously broken due to the presence of
the magnetic field. As a last comment, for weak fields one
can see an approximate linear behavior for the chiral
condensate consistent with the perturbative result found in
[3], as can be seen in Eq. (1).
In Fig. 4 we can see that the increasing of the temper-

ature still provides MC in the hardwall model. In this case
the temperature is now 40 times greater ( Tffiffiffiffi

σs
p ¼ 0.200) than

in Fig. 3, and we still use the same values for the three
fermion masses.
In Figs. 5 and 6 we present the dependence of the chiral

condensate σ with respect to the temperature T. These

figures show the restoration of the chiral symmetry (σ → 0)
for different values of the external magnetic field and of
the fermion mass mq.
Comparing Figs. 5 and 6 one can note the MC behavior

since the values of the chiral condensate increases when
the magnetic field is also increased as shown explicitly in
Figs. 3 and 4.
We also show in Fig. 7 the behavior of the critical

temperature (Tc) against the magnetic field (B) for the
hardwall model. Here, we use the definition of Tc as
the temperature where σðTÞ ¼ 0, like in Ref. [9]. Note
that Tc increases as we increase the magnetic field as
a consequence of the MC observed, for instance, in
Fig. 3.

FIG. 2. The chiral condensate σ normalized by the fermion
massmq in units of

ffiffiffiffiffi
σs

p
versus the magnetic field B in units of the

string tension squared σs in the confining regime at T ¼ 0.

FIG. 3. The chiral condensate σ normalized by the fermion
massmq in units of

ffiffiffiffiffi
σs

p
versus the magnetic field B in units of the

string tension squared σs. This plot shows MC for low temper-
ature Tffiffiffiffi

σs
p ¼ 0.005 for three values of the fermion mass in the

hardwall model.

FIG. 4. The chiral condensate σ normalized by the fermion
massmq in units of

ffiffiffiffiffi
σs

p
versus the magnetic field B in units of σs.

This plot shows MC for the temperature Tffiffiffiffi
σs

p ¼ 0.200 for three

values of the fermion mass in the hardwall model.

FIG. 5. The chiral condensate σ normalized by the fermion
mass mq versus the temperature T, both in units of

ffiffiffiffiffi
σs

p
. This plot

also shows the restoration of the chiral symmetry ½σðTÞ ¼ 0� for
the hardwall model for a fixed and weak external magnetic field
B
σs
¼ 2.0 and different values of the fermion mass mq.
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IV. RESULTS FOR THE SOFTWALL MODEL

In this section we do the entire analysis of the previous
section, but this time for the softwall model [26–28],
characterized by a dilatonlike field ΦðzÞ. We assume the
dilaton profile to be of the form ΦðzÞ ¼ kz2, where the
constant k was set as k

ð ffiffiffiffi
σs

p Þ2 ¼ −1. Further, one can note that
the soft wall linear spectrum persists in 2þ 1 dimensions,
as has been shown in the Appendix of Ref. [31]. There, one
uses the dilaton constant k in units of the string tension. In
this model we are also assuming that there is no back-
reaction due to the dilatonlike field so that the equations of
motions for this model are still given by (3), whose solution
corresponds to (11). In the following we present our results
for this model.
We begin by presenting the behavior of the chiral

condensate σ as a function of the magnetic field B in

the confining regime (T ¼ 0) for three fermion masses mq.
This result is shown in Fig. 8. Unlike the results for the
hardwall model in the previous section, one observes that
the chiral condensate in the softwall model presents two
different behaviors depending on the value of the magnetic
field. These behaviors are separated by a pseudocritical
magnetic field, Bc, such that for B < Bc we have an IMC
phase and for B > Bc we have a MC phase.
Figures 9 and 10 show IMC and MC for the softwall

model at finite temperature for both low and high

FIG. 7. The critical temperature, Tc, in units of
ffiffiffiffiffi
σs

p
, as a

function of the magnetic field, B, in units of σs for the hardwall
model for different values of the fermion mass.

FIG. 6. The chiral condensate σ normalized by the fermion
massmq versus the temperature T, both in units of

ffiffiffiffiffi
σs

p
. This plot

also shows the restoration of the chiral symmetry ½σðTÞ ¼ 0� for
the hardwall model for a fixed and strong external magnetic field
B
σs
¼ 20 and different values of the fermion mass mq.

FIG. 8. The chiral condensate σ versus the magnetic field B,
both in units of σs. This plot shows IMC for B < Bc and MC for
B > Bc for the softwall model at zero temperature (T ¼ 0) and
three fermion masses. The dots in the lines represent the
pseudocritical magnetic field Bc, which characterizes a crossover
between the IMC and MC phases. In particular, one can read
Bc
σs
¼ 6.17 for mqffiffiffiffi

σs
p ¼ 0.001, Bc

σs
¼ 5.94 for mqffiffiffiffi

σs
p ¼ 0.01, and Bc

σs
¼

5.12 for mqffiffiffiffi
σs

p ¼ 0.1.

FIG. 9. The chiral condensate σ versus the magnetic field B,
both in units of σs. This plot shows IMC for B < Bc and MC for
B > Bc for the softwall model with fixed temperature Tffiffiffiffi

σs
p ¼

0.005 and three fermion masses. The dots in the lines represent
the pseudocritical magnetic field Bc, which characterizes a
crossover between the IMC and MC phases. In particular, one
can read Bc

σs
¼ 10.44 for mqffiffiffiffi

σs
p ¼ 0.001, Bc

σs
¼ 9.67 for mqffiffiffiffi

σs
p ¼ 0.01,

and Bc
σs
¼ 5.59 for mqffiffiffiffi

σs
p ¼ 0.1.
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temperatures and three fermion masses mqffiffiffiffi
σs

p ¼ 0.001, 0.01,
0.1. In Fig. 9 the temperature is Tffiffiffiffi

σs
p ¼ 0.005, while in

Fig. 10 the temperature is Tffiffiffiffi
σs

p ¼ 0.200. One should note

that these two figures present a crossover between the two
phases IMC and MC around a pseudocritical magnetic field
Bc which depends on the temperature. Note that the
comparison between Figs. 9 and 10 also shows implicitly
a chiral symmetry restoration since σ decreases for an
increasing temperature, for B < Bc.

Figures 11–13 represent closer looks for the chiral
condensate behavior in the region of weak magnetic fields.
In Fig. 11 for very low temperature, one can note that the
chiral condensate’s behavior is approximately the same for
the three values of the fermion mass, indicating a sponta-
neous chiral symmetry breaking. On the other hand, as one
increases the temperature as shown in Figs. 12 and 13, its
effect on the chiral condensate is more visible for the lowest
fermion masses ( mqffiffiffiffi

σs
p ≤ 0.01), close to the chiral limit. In

this case we still have an approximate chiral symmetry
breaking. Comparing Figs. 12 and 13, one can see that a

FIG. 10. The chiral condensate σ versus the magnetic field B,
both in units of σs. This plot shows IMC for B < Bc and MC for
B > Bc for the softwall model with fixed temperature Tffiffiffiffi

σs
p ¼

0.200 and three fermion masses. The dots in the lines represent
the pseudocritical magnetic field Bc, which characterizes a
crossover between the IMC and MC phases. In particular, one
can read Bc

σs
¼ 15.78 for mqffiffiffiffi

σs
p ¼ 0.001, Bc

σs
¼ 15.77 for mqffiffiffiffi

σs
p ¼ 0.01,

and Bc
σs
¼ 15.52 for mqffiffiffiffi

σs
p ¼ 0.1.

FIG. 11. The chiral condensate σ versus the magnetic field B,
both in units of σs for the softwall model. This plot shows IMC
for weak magnetic fields and low temperature. This plot also
shows spontaneous breaking of the chiral symmetry. The inde-
pendence of the fermion mass for the chiral condensate is more
evident for mqffiffiffiffi

σs
p ≤ 0.01.

FIG. 12. The chiral condensate σ versus the magnetic field B,
both in units of σs for the softwall model with temperature
Tffiffiffiffi
σs

p ¼ 0.150. This plot shows IMC for weak magnetic fields and

high temperature and spontaneous breaking of the chiral sym-
metry. The approximate independence of the fermion mass for the
chiral condensate occurs for mqffiffiffiffi

σs
p ≤ 0.01.

FIG. 13. The chiral condensate σ versus the magnetic field B,
both in units of σs for the softwall model with temperature
Tffiffiffiffi
σs

p ¼ 0.200. This plot shows IMC for weak magnetic fields and

high temperature and spontaneous breaking of the chiral sym-
metry. The approximate independence of the fermion mass for the
chiral condensate is more evident for mqffiffiffiffi

σs
p ≤ 0.01.
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small increase of the temperature from Tffiffiffiffi
σs

p ¼ 0.150 to
Tffiffiffiffi
σs

p ¼ 0.200 affects the lighter fermions’ masses more.

Figures 14–16 show the behavior of the chiral con-
densate with respect to the temperature for different values
of the fermion mass and different values of the magnetic
field. All three figures show the restoration of the chiral
symmetry as one increases the temperature, so that the
chiral condensate goes to zero. In particular, in Fig. 14,
one notes that even at zero external magnetic field this
model provides a nonzero value for the chiral condensate
at low temperatures. This is in contrast with the pertur-
bative result, Eq. (1), so one could associate this behavior
with a nonperturbative effect. However previous studies

concerning the chiral symmetry breaking in 2þ 1 dimen-
sions without magnetic field (B ¼ 0) were done in the
context of QED3, within the large N approximation
[39,40]. There it was shown that it is energetically
preferable for this theory to dynamically generate a mass
for fermions. In a subsequent analysis by the same authors
it was shown, in the lowest order in the large N
approximation, that the dynamical chiral symmetry break-
ing happens only when the number of fermions N is less
than a critical number Nc ¼ 32=π2 [41]. After that, in
[42], it was shown that higher order corrections do not
modify the nature of the chiral symmetry breaking.
We also plot in Figs. 17 and 18 the behavior of the

critical temperature (Tc) against the magnetic field (B). In
this case for the softwall model Tc is defined such that σðTÞ
decreases fastest [a maximum of −dσðTÞ=dT], as in
Ref. [35]. Note that for weak fields, Fig. 17, Tc decreases

FIG. 14. The chiral condensate σ, in units of σs, versus the
temperature T, in units of

ffiffiffiffiffi
σs

p
for the softwall model. This plot

shows the chiral symmetry restoration ½σðTÞ ¼ 0� for different
values of the fermion mass without external magnetic field. This
picture also shows an approximate independence of the chiral
condensate with the fermion mass, in particular for mqffiffiffiffi

σs
p ≤ 0.01.

FIG. 15. The chiral condensate σ, in units of σs, versus the
temperature T, in units of

ffiffiffiffiffi
σs

p
for the softwall model. This plot

shows the chiral symmetry restoration ½σðTÞ ¼ 0� for different
values of the fermion mass with external magnetic field B

σs
¼ 2.0.

This picture also shows an approximate independence of the
chiral condensate with the fermion mass, in particular for
mqffiffiffiffi
σs

p ≤ 0.01.

FIG. 16. The chiral condensate σ, in units of σs, versus the
temperature T, in units of

ffiffiffiffiffi
σs

p
for the softwall model. This plot

shows the chiral symmetry restoration ½σðTÞ ¼ 0� for different
values of the fermion mass with external magnetic field B

σs
¼ 20.

This picture also shows an approximate independence of the chiral
condensate with the fermion mass, in particular for mqffiffiffiffi

σs
p ≤ 0.01.

FIG. 17. Critical temperature,Tc, in units of
ffiffiffiffiffi
σs

p
, as a function of

the magnetic field, B, in units of σs, for the softwall model in the
IMCphase (lowB regime), for different values of the fermionmass.
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as we increase the magnetic field, as a consequence of the
IMC, as, for instance, in Figs. 9 and 10. On the other hand,
in Fig. 18, for strong fields, Tc increases as we increase the
magnetic field as a consequence of MC, as for instance in
Figs. 9 and 10.

V. DISCUSSION AND CONCLUSION

In this work we have described holographically the chiral
phase transition in 2þ 1 dimensions in the presence of an
external magnetic field B at finite temperature T. We have
used two well-known holographic models: the hardwall
and the softwall. In the first one we have observed just
magnetic catalysis (MC); that is, the chiral condensate σ
is enhanced due to the presence of the magnetic field and
is zero in the absence of magnetic field, in qualitative
agreement with the perturbative analysis in [3–5].
Moreover, in the region of small magnetic field, the
behavior of the chiral condensate as a function of the
magnetic field seems to be approximately linear with B.
This can be seen in Figs. 1–3 for very low T. This is also in
agreement with Eq. (1), derived from a perturbative
quantum field theory approach for free fermions in a
magnetic field in 2þ 1 dimensions at T ¼ 0. Although
these results for the hardwall model look very similar to the
perturbative one, we considered in this work a nonpertur-
bative approach, since we are in the framework of the
AdS=CFT correspondence. Moreover, our results for the
hardwall model agree with the one found in [9], in
the context of the holographic QCD in 3þ 1 dimensions.
There the authors concluded that there is no IMC for the
hardwall, but instead what they obtained was just MC.
Our results within the softwall model, on the other hand,

reveal some new interesting features. First of all, we
obtained chiral symmetry breaking even for zero magnetic
field (B ¼ 0), as can be seen in Fig. 14, completely in
contrast with the perturbative result described by Eq. (1).
This fact seems to be associated with the nonperturbative
feature of our holographic approach. Also, we have

concluded, for zero and nonzero B, that the breaking of
the chiral symmetry is a spontaneous one, since the
dependence on the chiral condensate σ with the magnetic
field B for different fermion masses mq is approximately
the same, as can be seen in the plots of σ versus B,
represented by Figs. 11–13. Remarkably, the softwall
model provides a crossover between the IMC/MC phases
as shown in the plots of σ versus B in Figs. 8–10,
characterized by a pseudocritical magnetic field Bc for
each fermion mass for a given temperature. Therefore, in
this sense, for B > Bc we recover approximately the linear
behavior σ ∼ B as in the perturbative result given by (1). On
the other hand, for B < Bc, we found IMC which is in
qualitative agreement with those found in lattice QCD
[13,14] and the holographic approaches dealing with QCD
in 3þ 1 dimensions [11,34,35]. Note that all of these
features that our holographic model presents in 2þ 1
dimensions were not observed in the other holographic
approaches for QCD because their results are perturbative
in B. Therefore, they could trust the numerical results only
for small B, while ours is exact in the magnetic field,
meaning that it is valid for any B.
Now, concerning the thermal effects on the chiral

condensate σ, as can be seen in the plots of σ versus T,
in Figs. 5 and 6 for the hardwall and Figs. 14–16 for the
softwall, we have observed that the restoration of the chiral
symmetry (σ ¼ 0) happens at some critical temperature Tc
for each model, depending on the fermion mass and on the
magnetic field (see also Figs. 7, 17, and 18). This
phenomenon is consistent with lattice QCD results and
with the holographic approaches for QCD in 3þ 1 dimen-
sions, previously mentioned.
Finally, in comparison with the perturbative counterpart at

finite temperature T in 2þ 1 dimensions [29], in which the
authors have shown that the chiral condensate σ is extremely
unstable (it vanishes as soon as one introduces a heat bath,
with or without a chemical potential), we have seen that in
the models we have considered the chiral condensate persists
up to some critical temperature, and that instability of the
perturbative approach does not happen here, perhaps due to
the nonperturbative nature of our approach.
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FIG. 18. Critical temperature,Tc, in units of
ffiffiffiffiffi
σs

p
, as a functionof

the magnetic field, B, in units of σs, for the softwall model in the
MCphase (highB regime), for different values of the fermionmass.
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