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We compute the entanglement entropy in a composite system separated by a finitely ramified boundary
with the structure of a self-similar lattice graph. We derive the entropy as a function of the decimation factor
which determines the spectral dimension, the latter being generically different from the topological
dimension. For large decimations, the graph becomes increasingly dense, yielding a gain in the
entanglement entropy which, in the asymptotically smooth limit, approaches a constant value. Conversely,
a small decimation factor decreases the entanglement entropy due to a large number of spectral gaps which
regulate the amount of information crossing the boundary. In line with earlier studies, we also comment on
similarities with certain holographic formulations. Finally, we calculate the higher order corrections in the
entanglement entropy which possess a log-periodic oscillatory behavior.
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I. INTRODUCTION

Entanglement is one of the most intriguing features of
the physical world. It lays the foundation of quantum
information theory as well as other branches of physics
such as quantum computing and cryptography [1–3]. It has
an important role in condensed matter physics, particularly
in strongly correlated systems [4,5], the latter providing a
natural ground for the emergence of collective quantum
phenomena. Entanglement is also responsible for long-
range correlations in the ground state of a given quantum
system and is therefore fundamental for understanding the
nature of quantum phase transitions [6–8]. Recently, the
time evolution of entanglement production has been inves-
tigated as well, see e.g., [9].
Entanglement entropy (EE) can be thought of as a

measure of quantum entanglement within a system. In
the specific case of an isolated composite system divided
into two subregions separated by a codimension-2 surface,
Σ, EE is the measure of the strength of correlations that
cross Σ. It was found that this entropy is proportional to the
area of Σ and depends on the UV cutoff which regulates the
short distance behavior in the quantum system—known as
the famous area law [10]. The EE for a massless scalar field
in a D-dimensional spacetime is of the typical form
SE ≃ AðΣÞϵ−Dþ2, where AðΣÞ is the area of Σ and ϵ denotes
the cutoff.
Being a fundamentally nonlocal quantity, EE depends on

the entire reduced density matrix of a given subsystem.
Therefore, it is extremely challenging to detect EE in an
actual experiment. However, there are recent proposals for

the measurement of EE in noninteracting as well as
interacting systems [11–13].
EE also plays an important role in holography [14],

specifically in the AdS=CFT correspondence [15] where it
serves as a characterization of the conformal boundary. It
has been found that EE on the boundary has a geometric
correspondence in the bulk in terms of the area of a minimal
[16,17]—in temporal settings, an extremal [18]—surface.
More recently, quantum entanglement has been shown to

govern the emergence of classical, smoothly connected
spacetime [19–22]. Such ideas even led to approach gravity
as a consequence of the quantum information theoretic
properties of spacetime [23–25].
In the present paper, we study the entanglement entropy

in a composite system with a separating boundary finitely
ramified in form of a self-similar lattice graph. Our analytic
results depend on the decimation factor characterizing the
underlying graph topology. Self-similar structures, also
referred to as deterministic fractals, appear in various bran-
ches of physics ranging from condensed matter [26–29] to
quantum field theory [30–35]. More precisely, they have
been applied to study phase transitions in critical many
body quantum systems by noticing the underlying scale
invariance at the critical point [36–38], which has notable
resemblance with the renormalization group approach [39].
Beyond that, there is a close similarity between quantum
fields on self-similar structures and quantum graphs/
networks with applications in various areas including
dynamical systems, superconductivity, quantum chaos
and mesoscopic physics [40–43]. More recently, lattice
graphs have also been employed as tensor networks to
study critical quantum phenomena [44].
The present paper is organized as follows: in Sec. II, we

introduce the basic quantities and sketch the computation*ibrahim.akal@desy.de
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strategy. In Sec. III, we describe the setup under consid-
eration. We discuss the graph structure and provide the
associated spectral quantities. Section IV is the main part of
this paper. We compute the EE and discuss our results. The
paper is finalized with a brief conclusion in Sec. V.

II. ENTANGLED SUBSYSTEMS

Consider a pure quantum state in a spacelike region with
degrees of freedom (d.o.f.) taken to be located inside certain
subregions. Let Σ be the surface separating the original
region in two complementary subregions, SA and SB. The
resulting global system is the unification SA ∪ SB and the
Hilbert spaceH readsH ¼ HA ⊗ HB. The density matrix,
ρ, for the global nondegenerate ground state at zero
temperature has zero entropy. Tracing, for instance, over
the d.o.f. in SA, the local, reduced density matrix associated
with SB is ρB ¼ TrAρ. The following statistical quantity

SB ¼ −TrρB ln ρB ð1Þ

is called the von Neumann entropy and

SðαÞB ¼ 1

1 − α
ln TrBραB ð2Þ

is referred to as the αth moment Rényi entropy [45]. Since
ρ is assumed to be a pure quantum state, the relations

SA ¼ SB and SðαÞA ¼ SðαÞB are fulfilled and only determined
by the size of Σ. Due to this, EE can be defined as SE ¼
SA;B where SE > 0 corresponds to correlations in the global
system crossing Σ.
It should be noticed that in the case of mixed quantum

and classical correlations, SE cannot be taken as an
appropriate EE measure. On the contrary, in the situation
described above, calculating the Rényi entropy for any
α ≥ 1 yields the EE according to SE ¼ limα→1SðαÞ.
Although the latter relation dictates a clear prescription,
computing the trace in (2) can be challenging. A workable
strategy relies on the Euclidean path integral formulation
and the replica trick.
Let Σ be separating the hypersurface at zero time. Then,

the trace can be related to the effective actionWα evaluated
on a Euclidean manifold. More precisely, the manifold is
taken as a flat cone Cα with angle deficit 2πð1 − αÞ where Σ
sits in the conical singularity [46]. Once Wα is computed,
by assuming the analytical continuation of n to nonintegers
the entropy can be obtained from

SE ¼ lim
α→1

½α∂α − 1�Wα: ð3Þ

Performing the standard modifications using Frullani’s
integral, we end up with the following effective action:

Wα ¼ −
1

2

Z
∞

ϵ2

ds
s
KαðsÞ: ð4Þ

The integrand Kα is the heat kernel trace defined on
the Euclidean space with the aforementioned conical
singularity.
What remains to be done is the computation of the latter

for which, fortunately, a shortcut does exist. A space that is
the α-fold covering of a smooth manifold, i.e., Cα, can be
seen as a direct product of the stationary point of an Abelian
isometry generated by the corresponding Killing vector,
here Σ, and a two-dimensional cone C2;α with the same
angle deficit as above [47].
As a result, we may approximate Cα ≈ C2;α ⊗ Σ which

immediately leads to Kα ≈ K2 × KΣ. The computation of
K2 can be done with the help of the Sommerfeld formula.
From now on, we focus on the massless Klein-Gordon
field. In this case, the trace of the heat kernel on C2;α reads

K2 ¼
αV
4πs

þ αCðαÞ
2

: ð5Þ

The function CðαÞ ¼ ð1 − α2Þ=ð6α2Þ stems from the res-
idues associated with the corresponding contour integral in
the Sommerfeld formula [47]. The first term is proportional
to the spacetime volume and contributes to the ground state
energy of the system. The relevant contribution for SE is the
second term ∝ CðαÞ.

III. SELF-SIMILAR RAMIFICATIONS

In this section we discuss the separating boundary in
detail. As previously commented, we assume a graph
structure that is finitely ramified, which means it can be
disconnected by removing a finite number of appropriately
chosen vertices. The specific graphs we consider are
referred to as diamond graphs [26,48]. These are defined
as infinitely iterated, self-similar graphs [49]. For any finite
iteration a diamond graph can be identified as a quantum
graph [50,51].
Here we do not consider these constructions as some

effective model for a quantum spacetime [34,52]. Instead,
our goal is to identify how the modified spectral properties
on the graphs are reflected in the ground state EE. On top of
that, the notion of an area law as present for a smooth
manifold shall be examined. Also note that diamond graphs
belong to the class of constructions for which certain
interesting connections to holographic duals have recently
been observed. More details will be discussed in Sec. IV.
Having said this, in addition to the self-similarity, which

basically enables the underlying problem to be solved
exactly, diamond graphs have further remarkable proper-
ties. For instance, the trace of the heat kernel on the graph
shows a log-periodic oscillatory behavior in its small time
asymptotics. This is generic for many deterministic con-
structions due to the appearance of a whole tower of poles
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in the meromorphic plane which can be identified with an
associated complex dimension [53]. Notably, even for a
finite number of iterations, the heat kernel trace behaves
equivalently [51].
In the ideal case, i.e., for infinitely iterated constructions,

there exists a direct relation between different notions of
dimensions which exceed the usual topological dimension
of a smooth manifold. These can most compactly be
introduced via the relation dwds ¼ 2dh. The spectral
dimension ds determines the scaling properties of the
system’s eigenvalues, although an alternative definition
for ds is possible as will be seen below. The Hausdorff
dimension dh refers to the spatial scaling properties. The
third quantity, dw, called the walk dimension, has the
physical meaning of a diffusion parameter which general-
izes the usual Einstein relation for Brownian motion [54].
For self-similar constructions, one generally has dw > 2
which leads to a slower spread compared to smooth
manifolds.
Let us make the current setup explicit: we start with an

initial object, called a link. This link has a onefold
branching which splits into two legs where each of the
legs is divided into two edges. By doing so, the original link
is divided into four edges which are located between the
vertices depicted in the left panel in Fig. 1. With the next
iteration step, each of the edges becomes a link itself. In this
way, the number of links for which the initial one is divided
into is four whereas, the decimation factor is two.
The class of diamond graphs can be described by two

integer numbers. We introduce the following notation Dldh ;l

for identifying the specific graph topology. Here we restrict
ourselves to graphs for which the number of links the initial
one is divided into, ldh , is always twice that of the decimation
factor, resulting in the corresponding branching factor
ldh−1 − 1 ¼ 1. Thus, the previously described construction
with l ¼ 2 belongs to the class D4;2 with dh ¼ 2, since
dh ¼ lnð2lÞ= lnðlÞ. The case with l ¼ 3 is sketched in the
right panel in Fig. 1. All diamond graphs have a fixed walk
dimension dw ¼ 2. Hence, the diffusion is anomaly free or,
in other words, the spectral and Hausdorff dimensions
coincide, ds ¼ dh. This coincidence is a unique feature that
does not affect the characteristic spectral properties.
In what follows, we assume l ∈ N>2 corresponding to

1 < ds < 2 where D ¼ ð1þ dsÞ þ 1. Separating the zero
mode, the zeta function can be solved exactly [55],

ζðsÞ ¼ 2ζRð2sÞ
π2s

�
1 − l1−2s

1 − lds−2s

�
ð6Þ

with ζR denoting the standard Riemann zeta function. The
function ζ has meromorphic continuation to the complex
plane with a whole tower of poles sn

sn ¼
ds
2
þ iπn
lnðlÞ ; n ∈ Z ð7Þ

such that ds can alternatively be defined as the (largest, if
other towers exist) real part of the poles. Using the residues,
we can compute the inverse Mellin transform which leads
to the following heat kernel trace KðsÞ:

KðsÞ ≃ ζ0 þ
As

sds=2
þ
X
n≥1

…; ð8Þ

where

ζ0 ≔ ζRð0Þ
�
2 − lds

1 − lds

�
;

As ≔
1

2 lnðlÞ
�
ζRðdsÞΓðds=2Þ

πds

�
: ð9Þ

Here, Γ represents the standard Gamma function. The first
expression in (9) can be dropped, since the relevant terms
are the s dependent one in (8). The second line, As, is taken
as the spectral area.
Generally, the notion of an area for some graph is not

so obvious and one has to specify an appropriate definition.
It has been shown that random graph states generally
satisfy an area law on average [56]. For the present case, a
possible way out can be achieved by probing the geometry
of the region in terms of a given test particle at thermal
equilibrium [57,58].
Starting from the thermodynamic equation, it has been

shown that the area on smooth manifolds, A, scales as

A ∼ Resd=2½ζsðsÞ�Γðd=2Þ ð10Þ

where ζs denotes the zeta function on the manifold under
consideration, see e.g., [51,59]. Here we have used the
(rescaled) length L ¼ 1. In close analogy, the area on the
graph can be defined upon replacing d by ds and ζs by ζ,
respectively, which corresponds (up to some constants) to
the definition As in (9). Of course, as soon as the graph
becomes denser, i.e., when it approaches a smoothly
connected space, one recovers the usual area, As → A.
Referring to (8), we already see that the spectral

dimension determines the nonoscillatory part in the small
time asymptotics. The oscillatory terms, represented by the
dots, depend on the walk dimension dw ¼ 2. For the
spectral dimension we find liml→∞ds ¼ 1, corresponding

FIG. 1. Diamond graphs with different topologies D4;2 (left)
andD6;3 (right). For both cases, the initial link is shown on the left
side with vertices of level k. Next to that, the corresponding
iterated graphs are depicted including vertices of level kþ 1. The
associated Hausdorff dimension dh and decimation factor l are
consistent with Dldh ;l.
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to the rescaled line segment with unit length, which can be
also deduced from the zeta function ζðsÞ. Namely, for
l → ∞ the expression in the brackets yields a factor 1=2
such that ζðsÞ → ζRð2sÞ=π2s, which is equivalent to the
zeta function for the line segment. Since the diffusion is
anomaly free (dw ¼ 2), this leads to the expected smooth
limit with D ¼ 2þ 1.
In the next section we examine how the previous

observations get reflected in the EE for the case Σ ¼ D2l;l.

IV. ENTANGLEMENT ENTROPY

A. Leading order

We begin with the nonoscillatory part of the heat kernel
trace, dropping all higher order terms with n ≥ 1 in (8).
Using Eq. (4), the effective action is given by

Wα ¼
Asðα2 − 1Þ
12αdsϵds

: ð11Þ

Afterwards, applying the formula (3), we find the main
result in this paper,

SE ≃
As

dsϵds
∼

1

ϵds

�ζRðlnð2lÞlnðlÞ ÞΓð lnð2lÞ2 lnðlÞÞ
2 lnð2lÞ

�
; ð12Þ

the leading term in the EE.
Note that the first expression on the right-hand side of

(12) directly follows from a sub-Gaussian estimate for the
heat kernel trace [60]. As an interesting side note, the
mentioned expression in (12) could provide evidence for a
possible dual description of a fractal boundary within
holographic hyperscaling violating theories. Namely, refer-
ring to the Ryu-Takayanagi formula, the leading order
contribution to SE in the case of such bulk theories has been
shown to obey SE ∼ ðdθϵdθÞ−1 where dθ equals the dimen-
sion of the corresponding boundary theory. Apparently,
such a scaling behavior perfectly coincides with the one in
(11) if we allow dθ ↔ ds. An analogy is further supported
via a comparison with the associated thermal entropy [60].
In addition to these insights, although in a different context,
note the recent findings in [61] which also indicate certain
connections between a fractal geometry and the AdS=CFT
correspondence. These are interesting coincidences which
deserve further investigations.
Apart from the general scaling behavior, in the present

case we have derived an explicit expression for SE depend-
ing on the decimation factor which can be seen as a
measure for the size of the spectral gaps. Note that for
ds → D − 2 [codimðΣÞ → 2] we regain the usual area law
for a smooth manifold. In Fig. 2, S̃E ≔ SEϵds is plotted
versus l which clearly shows that increasing the decimation
factor raises the EE. With sufficiently large values the curve
gets flattened and settles at S̃E ≈ 1.28 marked by the red
dashed horizontal line in the inset. Recall that l → ∞ is the

asymptotically smooth limit where the EE has to be
independent of any discrete quantity. A large decimation
factor fills in more gaps which, subsequently, leads to a
larger spread of the entangling d.o.f. across the separating
boundary. This continues until the boundary becomes
perfectly smooth. So, for l → ∞ the EE only depends
on the topological area, which explains the described
saturation in Fig. 2. On the other hand, for moderate l,
the effect of the ramifications manifests itself in a smaller
EE. This observation, for instance, is interesting from the
following perspectives.
A small decimation factor yields a separating boundary

having large spectral gaps, though it is infinitely iterated.
This implies that quantum information cannot uniformly
spread as on a smooth manifold—see also [62,63] for
similar reduction effects. It is worth stressing that diffusion
in disordered systems (e.g., the motion of a particle in a
fluid) or percolation phenomena (e.g., the soaking process
in a porous medium) can show a variety of interesting
properties such as anomalous spread (percolation being
distinguished by the possibility of trapping and blocking)
and non-Gaussian probability density [64]. Notably, in
quantum percolation [65] an additional complexity appears
due to Anderson localization [66], as a consequence of
quantum interference at the nodes. This effect has recently
been observed on random fractal lattices resulting in a
strong dependence on the spectral dimension [67].
Referring to our findings on the diamond graph, one
may therefore consider analogies to quantum percolation.
Recall that the spread in our case is anomaly free by
construction. Hence, the described reduction of the EE
unveils itself as a consequence of the spectral gaps.
Moreover, the observed behavior reflects the interesting
relation between the level of smoothness and information
flow. This may in particular be relevant for mesoscopic
systems with some disordered structure [27,68,69]. Note
that we may interpret l as an effective measure for the
number of vertices on the graph [59].

FIG. 2. S̃E is plotted versus the decimation factor l. The
behavior for large l is depicted in the inset. The horizontal red
dashed line at S̃E ≈ 1.28 is obtained for l → ∞.
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In summary, the curve for S̃E reveals a clear trend with
respect to the decimation factor. It would be particularly
interesting to identify how SE declines with increasing the
size of the spectral gaps. In the present setup, the smallest
decimation factor we can apply is limited to l ¼ 3. For
l < 3, there is no possibility to find an exact expression for
ζðsÞ. However, the present example provides substantial
evidence that lowering SE should be possible in an appro-
priate setting.
Finally, note that even if the spectral volume As can be

reduced to sufficiently small values, the entropy SE still
remains divergent in the deeply UV regime. Such a
behavior is naturally predicted by the microscopic structure
of any local quantum field theory having a large number of
d.o.f. at high energies, see e.g., [70,71]. An additional
dimensional flow can render the entropy finite [72]—see
also [73] for recent findings. Such insights could be of
interest for multi-self-similar graphs. In fact, it has been
observed that the entropy can extract universal information
about a system’s inherent multifractal structure [74].

B. Higher orders

As discussed in Sec. III, the heat kernel trace receives
log-periodic corrections from the imaginary part of the
poles sn for any finite decimation factor. Log-periodic
oscillations have been observed in several other contexts as
a consequence of discrete scale invariance associated with
critical phenomena [75]. In the present case, the exact trace
result is [51]

KðsÞ ≃ ζ0 þ
As

sds=2

�
1þ

X
n≥1

Δℜ;n cos ðlnðsnπ= lnðlÞÞÞ

þ
X
n≥1

Δℑ;n sin ðlnðsnπ= lnðlÞÞÞ
�
: ð13Þ

Using the latter, we find the following EE when including
the higher order terms:

SE ≃
As

dsϵds

�
1þ

X
n≥1

Πc cos

�
π lnðϵ2Þ
lnðlÞ

�

þ
X
n≥1

Πs sin

�
π lnðϵ2Þ
lnðlÞ

��
: ð14Þ

The prefactors Πc, Πs are of the form

Πc ≔
Δℜ;n þ 2πΔℑ;n

ds lnðlÞ
1þ ð 2π

ds lnðlÞÞ2
; Πs ≔

Δℑ;n −
2πΔℜ;n

ds lnðlÞ
1þ ð 2π

ds lnðlÞÞ2
ð15Þ

where we have defined

Δℜ;n ≔
2π2s0

ζRð2s0ÞΓðs0Þ
ℜ

�
ζRð2snÞΓðsnÞ

π2sn

�
;

Δℑ;n ≔
2π2s0

ζRð2s0ÞΓðs0Þ
ℑ

�
ζRð2snÞΓðsnÞ

π2sn

�
: ð16Þ

Starting with the zeta function ζðsÞ in (6), the trace in the
limit l → ∞ simplifies to

KðsÞ ≃ ζRð0Þ þ
A

sd=2
: ð17Þ

Observe that the correction terms in (14) turn out to be UV
finite, cf. [60], which is expected to hold for other deter-
ministic self-similar constructions as well. For illustrative
reasons, we have plotted the prefactors Πc, Πs in Fig. 3, for
integers n ∈ f1; 2; 3; 4g. A substantial variation between the
different orders is present where the peak strength decreases
with n. For any fixed cutoff the oscillations become
increasingly weakened for sufficiently large l.

V. CONCLUSION

We have computed the EE across a finitely ramified
boundary with the structure of a self-similar lattice graph.
We have found that increasing the topological decimation
factor leads to an increase in the EE. In the limit where the
decimation factor approaches infinity, the EE settles at a
constant value. This is the case in which the separating
boundary becomes a perfectly smooth line and hence
independent of any discrete quantity. Accordingly, the
entangling d.o.f. are maximally spread and the EE satisfies
the known area law on a smooth manifold.
For small decimation factors, the EE drops substantially.

In this case, the size of the spectral gaps increases. Large
gaps hinder the spread of the d.o.f. and, thus, the information
flow across the boundary. Resorting to an appropriate
definition of the area relying on the thermodynamic proper-
ties of a bosonon the graph,wehave seen that in the presence
of these spectral gaps the EE still obeys an area law.
In addition, we have shown that higher order corrections,

as a remnant of the underlying graph symmetry, result in
characteristic log-periodic oscillations.
A potential extension of our results would be the

computation of the mass induced logarithmic terms in
the EE to ascertain the related central charges of the
underlying graphs. Such an endeavor would be exciting
due to the presence of a similar scaling behavior found in
certain holographic formulations.

FIG. 3. Πc (left) and Πs (right) are plotted versus l. The
numbers in the legends correspond to n introduced in (7).

ENTANGLEMENT ENTROPY ON FINITELY RAMIFIED GRAPHS PHYS. REV. D 98, 106003 (2018)

106003-5



ACKNOWLEDGMENTS

I would like to thank Zhanybek Alpichshev, Benjamin Bahr and Jim Talbert for valuable discussions and helpful
comments on the manuscript. I acknowledge the support of the Collaborative Research Center SFB 676 of the German
Research Foundation DFG.

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
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