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We analyze the edge mode structure of Euclidean three-dimensional gravity from within the quantum
theory as embodied by a Ponzano-Regge–Turaev-Viro discrete state sum with York-Gibbons-Hawking
boundary conditions. This structure is encoded in a pair of dual statistical models of the vertex and face
kind, which for specific choices of boundary conditions turn out to be integrable. The duality is just the
manifestation of a pervasive dual structure which manifests at different levels of the classical and quantum
theories. Emphasis will be put on the geometrical interpretation of the edge modes which leads, in
particular, to the identification of the quantum analogue of Carlip’s would-be normal diffeomorphisms.
Due to the presence of a quantum mechanical length gap, the boundary structures we identify are discrete.
Finally, we also provide a reinterpretation of our construction in terms of a non-Abelian 2þ 1 topological
phase with electric boundary conditions.
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I. INTRODUCTION

A. Edge modes

Consideration of physical theories in finite bounded
regions entails a choice of boundary conditions that
generically requires breaking the gauge invariance at the
region’s boundary. Gauge invariance can be fully restored
by the introduction of compensating fields at the boundary,
often referred to as “edge modes.” As a consequence of the
original gauge invariance, the edge theory has a large
symmetry group1 (e.g., [1–7].)
To discuss the physicality of the edge modes, it is useful

to introduce a distinction between physical and abstract
boundaries. By physical, we indicate the actual edge of a
chunk of metal or the interface between two materials; by
abstract, we mean purely theoretical subdivisions of a
region in two adjacent subregions.2

In the case of physical boundaries, preservation of gauge
invariance—be it effective as in quantum Hall states, or

fundamental as in electrodynamics—and avoidance of
anomalies require gauge fields to couple to something
which does actually live on the bounding surface, e.g.,
some electric charge density. In this sense, the full system
does not require the introduction of any new edge mode.
This is true, in particular, when the boundary represents the
interaction surface between the system and a measuring
apparatus.
The case of abstract boundaries is hence most easily

understood as an idealization of the first case, and the
introduction of abstract compensating fields as the simplest
model of a physical boundary or measuring device. To
achieve this, a simple possibility is that the compensating
fields coordinatize the fibers of the principal fiber bundle on
which the gauge theory is constructed—directions that
explicitlymanifest themselves only at the boundaries because
of gauge invariance itself.3 (A more general, and yet more
minimal, setup is discussed in [8–10] under the nameof “field
space connection.” This framework helps with modeling
cases where an abstract measuring device—or observer—is
composed of physical fields present also in the bulk, a
scenario particularly relevant for a theory of gravitation.)

B. A gauge theoretical example

The prototypical example of the principal fiber bundle
construction is the derivation of the Wess-Zumino-Witten
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1Symmetries distinguish themselves from gauge invariances
because they have associated nonvanishing charges.

2Physically, boundaries are always interfaces, either between
two materials or between regions of space(time). It is useful to
keep in mind this simple observation, especially when referring to
the bounding surface as a seemingly independent entity.

3On a boundary chart ∂U, the coordinates on the principal fiber
bundles are ðy; gÞ ∈ ∂U × G. Fixing the gauge at the boundary
defines the function gðyÞ, that can hence be promoted to be the
compensating field. Compensating fields do not necessarily have
to be of this form.
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model from the three-dimensional Chern-Simons action
[1–6]. The Chern-Simons action one has to start from
features a boundary contribution that guarantees, even in
presence of boundaries, its functional differentiability with
respect to the pullback of the connection on the boundary
along one of its two intrinsic directions. In formulas4

CSz½A� ¼
Z

Tr
�
A ∧ dAþ 2

3
A∧3

�
− i

I
AzAz̄ ð1:1Þ

so that (¼· indicates equality on-shell),

δCSz½A�¼· − 2i
I

Tr½Az̄δAz�: ð1:2Þ

The Wess-Zumino-Witten model then arises from the
comparison of the Chern-Simons action evaluated on
two different, gauge related, configurations A and AG ¼
G−1ðAþ dÞG5:

WZW½GjAz� ¼ CSz½A� − CSz½AG� ð1:3aÞ

¼ i
I

Tr½∂zGG−1∂ z̄GG−1 þ 2Az∂ z̄GG−1�

þ 1

3

Z
Tr½ðdGG−1Þ∧3�: ð1:3bÞ

The resulting compensating fields are hence valued in
the gauge group, representing the local gauge frames at
the boundary, while from the edge mode perspective the
boundary value of Az is a background (classical) field.
The local gauge frame G is akin to the local Lorentz

frame, or maybe three-dimensional orientation, of a fleet of
particle detectors: it does not have any absolute meaning
but it is still necessary to fix it somehow in order to
successfully compare particle momenta. This is especially
needed when the particles reach the detector from two
different sides of the bounding surface. A symmetry group
acting on the edge modes simply reflects the freedom in the
fixing of the detector’s orientation. The difference with
gauge invariance is subtle and spurs solely from the
demands of an eventual gluing of the two regions. From
the principal fiber bundle perspective, this corresponds to
the need of gluing consistently not only the base manifolds
but the whole bundles.6

C. Diffeomorphisms

Among theories with local symmetries, general relativity
has a somewhat special status. This is because its local
symmetry is diffeomorphism invariance. The latter can be
seen as acting either actively, by displacing the fields on the
spacetime manifold, or passively, by relabeling the points
of the spacetime manifold. The so-called “hole argument”
shows that this symmetry implies that spacetime points
have no physical meaning per se, i.e., in absence of fields,
and events can only be localized with respect to each other,
rather than with respect to the underlying manifold [12,13].
Similarly to gauge theories, therefore, also in general

relativity physical boundaries are defined by the presence
of something. Differently from gauge theories, however,
one cannot suppose that such boundaries have a fixed
location, or that the matter fields defining the boundary are
nondynamical, because either condition would fundamen-
tally violate diffeomorphism invariance. Hence, one must
appeal to a relational definition of the boundary surface,
e.g., as the level surface of some dynamical scalar quantity.
Again, for physically (relationally) defined boundaries
there is no need to introduce compensating fields.
Given the difficulties of working in a fully relational

approach, also in general relativity it is useful to study
compensating fields analogous to the above. At this
purpose, one can introduce a set of preferred near-boundary
coordinates morally representing a network of spacetime
beacons.
The striking physical content of general covariance—

sometimes obscured by the sheer power of the geometrical
formalism—is that any such network of beacons can be
used as a viable reference system and predictions are
independent of this choice. Now, with the idea that
boundaries are about the relation between a system and
a measuring apparatus, it is clear that boundaries must
know about the beacon system.
To detect the edge modes, it is enough to proceed as in

the Chern–Simons–Wess-Zumino-Witten case. First, we
pick an action which is differentiable, e.g., with respect to
the induced metric, even in presence of boundaries. This
requires the Einstein-Hilbert action to be augmented by the
York-Gibbons-Hawking boundary term [14,15]. We intro-
duce then a diffeomorphism-breaking beacon system to
fix the position of the boundary, and evaluate the gravi-
tational action on two diffeomorphism related configura-
tions. Due to the relation between active and passive
diffeomorphisms, it is enough to consider displacements
of the boundary. With notation adapted to three spacetime
dimensions, lPl ¼ 8πGN (ℏ ¼ 1), and a boundary set at the
value ρ of a ‘radial’ coordinate r,74We omit the normalized coupling constant k=4π, k ∈ Z, in

front of the action.
5The bulk term in the Wess-Zumino-Witten action is crucial for

the quantum consistency of the theory [11], but classically does
not play any dynamical role.

6Of course, known transition functions can be used in the
gluing procedure.

7As usual: gμν is the three-metric onM, R its Ricci scalar, Λ the
cosmological constant, hμν the induced metric on ∂M, and K the
trace of the extrinsic curvature of ∂M. Finally, g ¼ j det gμνj and
similarly for h.
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GRρ½gμν� ¼
1

2lPl

�Z ffiffiffi
g
p ðR − 2ΛÞ þ 2

I
r¼ρ

ffiffiffi
h
p

K

�
ð1:4Þ

so that

δGRρ½gμν�¼·
1

lPl

I ffiffiffi
h
p
ðKμν − KhμνÞδhμν: ð1:5Þ

For an infinitesimal displacement φ, the edge mode action
is schematically

Sedge½φjhμν� ¼ ðGRρ½g� − GRρþφ½g�Þon-shell; ð1:6Þ

where hμν serves as a background metric for the edge mode
field φ.
In the case where the boundary beacon system is left

untouched—i.e., if a gauge fixing of the boundary coor-
dinate system is chosen—the only remaining compensating
field will be the one associated to radial diffeomorphisms.
This is the core of Carlip’s derivation of the Liouville field
theory as a would-be gauge edge mode at the conformal
boundary of an asymptotically AdS3 spacetime [16] (see
also [6] and references therein).8

D. Goal and layout of the article

The goal of this article is to give a quantum mechanical
account of the edge mode theories of Euclidean three-
dimensional gravity and, in particular, of the quantum
analogue of the field φ above. This is obtained by an exact
integration of the gravitational bulk degrees of freedom
(d.o.f.) at fixed (quantum) boundary conditions. The geo-
metrical picture is most transparent in absence of a cosmo-
logical constant and in the covariant setting, and for this
reason we will mostly concentrate on this case. The positive
cosmological case, as well as the canonical formulation, will
be also touched upon andwill allowus to draw a linkwith the
theory of topological phases of matter.
We start by reviewing first-order gravity as a BF topo-

logical gauge theory in Sec. II. Emphasis is placed on the
structure of its symmetries and its quantization will be
sketched in both connection andmetric variables in Secs. III
and IV, respectively. The latter will lead us to consider the
Ponzano-Regge–Turaev-Viro state sum. After a brief dis-
cussion of the bulk symmetry of the model in Sec. V, we
move to the core of the paper. In Sec. VI, we present the
quantum edge modes, with a focus on the pair of dual
theories emerging from the symmetry structure of BF
theory. The so-far local analysis is then integrated in

Sec. VII with information on how to deal with handlebody
topologies from a purely boundary perspective. At this
point, we exemplify the proposed constructions and dual-
itieswith the explicit example of an integrable edge theory in
Sec. VIII. A graphical notation is introduced in Sec. IX,
which will help us to deal more efficiently with the last part
of this article concerning the case of a nonvanishing
cosmological constant in Sec. X, as well as with the
translation to the canonical picture and the theory of
topological phases of matter in Sec. XI. Finally, after briefly
commenting on the role of the discrete structures entering
the quantization procedure in Sec. XII, we summarize and
conclude in Sec. XIII. The article finally contains two
Appendices, one of which—Appendix A—is devoted to
considerations about fixed-triad boundary conditions in the
first-order formulation of gravity. The reader may want to
refer to Sec. IX to decode some of the equations of Secs. IV
and VI.

II. FIRST-ORDER GRAVITY

In the absence of a cosmological constant, Λ ¼ 0, the
action of Euclidean three-dimensional gravity in the first-
order formalism is that of an ISUð2Þ BF topological field
theory [17–19]:

Sω½ω; e� ¼
1

lPl

Z
M
he;∧F½ω�i; ð2:1Þ

where the conjugated variables ω ¼ ωa
μdxμJa and e ¼

eaμdxμPa are the spin connection and local frame field
(triad), respectively. Here, ðJa; PaÞ is a basis of the Lie
algebra

g ¼ isuð2Þ ≅ suð2Þ ⋉ad suð2Þþ ∋ ðJa; PaÞ ð2:2Þ

where suð2Þþ stands for suð2Þ seen as an Abelian group
(isomorphic to its own Lie algebra) under the addition
operation:

½Ja;Jb�¼ϵab
cJc; ½Ja;Pb�¼ϵab

cPc; ½Pa;Pb�¼0: ð2:3Þ

The symbol F stands for the curvature of ω,
F ¼ dωþ ½ω ;∧ω�, while h·; ·i is the bilinear form (this
symbol will be left understood in the following)9:

hJa; Pbi ¼ δab; hJa; Jbi ¼ 0 ¼ hPa; Pbi: ð2:4Þ

The (on-shell) relation of e and ω to the spacetime metric
and Christoffel symbol is

8Excluding singularities, asymptotitc infinity, I , is possibly
the only example of an actual boundary in general relativity, at
least when considered in the unphysical, i.e., conformally
rescaled, spacetime. From the viewpoint of the physical space-
time, I exists only as an idealization of a far-away surface defined
as the limit of a set of level surfaces of an (auxiliary) scalar field,
which plays the role of a radial coordinate in the above sense.

9Using the second isomorphism of Eq. (2.2), one can re-
express Sω as an SU(2) BF theory, by setting Ja ¼ − i

2
σa ¼ Pa

and h·; ·i ¼ 2Trð··Þ with the trace taken in the fundamental
representation of suð2Þ.
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gμν ¼ δabeaμebν ; Γμ
ρσeaμ ¼ ð∂ρeaσ þ ϵabcω

b
ρecσÞ: ð2:5Þ

The subindex ‘ω’ in Sω indicates that in presence of
boundaries, ∂M ≠ ∅, this action is differentiable with
respect to the connection variable:

δSω ¼
1

lPl

Z
M
δe ∧ F þDωe ∧ δω −

1

lPl

I
∂M

e ∧ δω:

ð2:6Þ

Notice that the equations of motion imply the flatness of ω
and torsion-freeness of e:

F¼· 0; Dωe¼· 0: ð2:7Þ

General (local) solutions to these equations are,

ω ¼ g−1dg; e ¼ g−1dλg: ð2:8Þ

As we will review in a moment, these expressions indicate
that ω and e are pure-gauge, which testifies to the
topological nature of three-dimensional gravity.
The (bulk) invariances of Sω are generated by infinitesi-

mal (i) spacetime diffeomorphisms,10 ξ ∈ X1ðMÞ

δξe ¼ £ξe; δξω ¼ £ξω; ð2:9Þ

(ii) local Lorentz (gauge) symmetry,11 X ∈ C∞ðM; suð2ÞÞ

δXe¼−adXe; δXω¼−adXωþdX¼DωX; ð2:10Þ

and (iii) shift symmetry, λ ∈ C∞ðM; suð2ÞþÞ

δλe ¼ eþ Dωλ; δλω ¼ 0; ð2:11Þ

The internal symmetries are nicely compatible with each
other, and locally organize themselves in the Poisson–Lie
group structure

G ¼ ISUð2Þ ≅ SUð2Þ ⋉Ad suð2Þþ ≅ T�SUð2Þ: ð2:12Þ

The first isomorphism emphasizes the Lie structure, while
the second the Poisson structure of G. The two satisfy
compatibility requirements. This Possoin–Lie symmetry is
the classical counterpart of a quantum double (Hopf
algebra) symmetry of the quantum theory.
It is useful to think of SU(2) Lorentz symmetry as being

associated to the connection variable ω, while suð2Þþ shift
symmetry to the triad e.

The origin of shift symmetry lies in the Bianchi identity
DωF≡ 0. Shift symmetry is peculiar to three-dimensional
gravity and is the symmetry that makes this theory
topological and solvable. On a flat background (i.e., on-
shell of the equation of motion), shift symmetry plays the
role of active diffeomorphisms. A first hint of this fact is
that (on-shell) the action of an infinitesimal diffeomor-
phism on the fields is reproduced by a field-dependent shift
transformation λ ¼ iξe (modulo a field-dependent Lorentz
transformation X ¼ iξω) [20,21]. Spacetime points are left
untouched.
From a canonical perspective, on a spacetime of the

form12 M ≅ Σ ×R, ∂Σ ¼ ∅, the conjugated variables on
phase space are

A ¼ ω
←
; E ¼ e

←
; ð2:13Þ

where the under-arrow stands for the pullback onto Σ, with

fEa
μðxÞ; Ab

νðyÞg ¼ δabϵμνδ
ð2Þðx − yÞ ð2:14Þ

(all other brackets vanish).
The remaining components of e and ω are Lagrange

multipliers for the first class constraints

CL ¼ Dωe ¼ DAE; Csh ¼ F½ω�
 
¼ F½A�; ð2:15Þ

which symplectically generate on ðA;EÞ Lorentz and shift
symmetry, respectively. They are known as the Gauss and
flatness constraint.
In the presence of boundaries, the action Sω is fully

invariant under Lorentz transformations, and changes by a
boundary term proportional to F under a shift symmetry
transformations:

δXSω ¼ 0; δλSω ¼
1

lPl

I
∂M

λF¼· 0: ð2:16Þ

This makes the connection polarization particularly well
suited for quantization. (See Appendix A for a brief
discussion of the triad polarization.)

III. QUANTIZATION

We will now proceed formally to sketching the quanti-
zation of this theory. Its justification can be found either in
the more rigorous treatments of [22–27], or in the fact that a
direct deformation of the final result leads to a well-defined
topological field theory, the UqðSUð2ÞÞ Turaev–Viro

10According to the Cartan formula, the Lie derivative acts on
one-forms η ∈ Ω1ðMÞ as £ξη ¼ diξηþ iξdη.

11The term ‘symmetry’ here is used in a looser sense than in
the introduction, meaning a transformation that leaves the action
invariance.

12We ignore here the Lorentz structure of the spacetime M.
First, because we are dealing with Euclidean gravity, second
because if we were dealing with a Lorentzian theory, the Lorentz
structure would be fixed only dynamically by a given configu-
ration of the triad field.
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model, which is equivalent to the quantization of Chern–
Simons gravity for Λ > 0 [28] (see Sec. X). In any case, we
will highlight various hints to the correctness of our
manipulations.
In the Schroedinger picture, define

ZM½A� ¼
Z
A
DωDeeiSω½ω;e� ¼

Z
A
DωδðF½ω�Þ; ð3:1Þ

where the subscript A means that the functional integral is
performed keeping ω

←
¼ A fixed. The above formula says

that ZM½A� is a uniform distribution on the moduli space of
boundary-flat connections A admitting a bulk-flat exten-
sions ω. Notice the dependence on the topology of M.
To help make sense of this expression, we introduce a

discretization Δ of M, such that ∂Δ is a discretization of
∂M. The physical significance of this discretization will be
briefly discussed in Sec. XII. Δ is a cellular complex,
whose d-dimensional cells cd are denoted for growing
d ¼ 0;…; 3, vertices v, edges l, faces f, and 3-cells σ,
respectively. It is conventional to discretize the connection
along the Poincaré dual complex Δ�. The treatment is
consistent if we assign dual cells separately in the bulk and
on the boundary of Δ: in the bulk we set c�d ↔ c3−d, while
on the boundary c�d ↔ c2−d. In other terms, we demand for
the boundary dual graph Γ that

Γ ≔ ∂Δ� ¼ ð∂ΔÞ�: ð3:2Þ

In particular, consider a (directed) dual edge l� extending
between source and target dual vertices, sðl�Þ and tðl�Þ, and
define along it the parallel transport or, with a slightly
improper language, the holonomy

hl� ¼ P exp
Z
l�
ω: ð3:3Þ

Notice that in the bulk l� is a dual edge which crosses a face
f shared between two adjacent 3-cells σ1 and σ2, while on
the boundary l� is a dual edge which crosses a boundary
edge l∂ shared between two adjacent boundary faces f∂;1
and f∂;2.
Gauge transformations act at dual vertices,

hl� ↦ gtðl�Þhl�g−1sðl�Þ; ð3:4Þ

while flatness means that along each dual face the hol-
onomy is trivial,

Hf� ¼
Y

l�∈∂f�

 ��
hϵðl

�;f�Þ
l� ¼ 1: ð3:5Þ

Here ϵðl�; f�Þ ¼ �1 according to the relative orientation of
f� and l�; to avoid clutter, we leave it understood in the
following formulas.

Shift transformations have a trivial action in the hol-
onomy polarization, cf. Eq. (2.11).
Supposing that Dω is a uniform measure, we discretize

ZM½A� as

ZΔ½hl�∂ � ¼
� Y
l�∉∂Δ�

Z
dhl�

� Y0
f�∈IntðΔ�Þ

δðHf� Þ; ð3:6Þ

where dh is the Haar measure on SU(2), IntðΔ�Þ stands for
the bulk part of the dual discretization, and the prime on the
product means that certain faces are omitted to avoid
redundancies among delta functions. More generally, they
can be replaced with any class function of the total face
holonomy with value 1 at the identity. This makes ZΔ into a
well-defined distribution over13 H0Γ ¼ L2ðSUð2Þ×L� Þ,
L� ¼ #fl� ∈ Γg. This is the gauge-variant Hilbert space
of discretized connections over Γ.
Because of Eq. (2.16), ZM½A� is (on-shell) formally

invariant both under Lorentz and shift transformations.
And so is ZΔ. In particular, it acts as a projector over the
gauge invariant part of H0, to which we will now restrict:

HΓ ¼ L2ðSUð2Þ×L�==SUð2Þ×V�Þ; ð3:7Þ

where V� ¼ #fv� ∈ Γg.

IV. METRIC BOUNDARY CONDITIONS AND
THE PONZANO-REGGE MODEL

So far we have worked with boundary conditions that
require the boundary connection A to be fixed. This is so
becausewe started from a path integral formulation based on
an action differentiable in A, i.e., δSω¼· − l−1

Pl

H
E ∧ δA.

Equation (2.16) explains why this action principle is a
convenient choice: it is fully compatiblewith the symmetries.
What if we wanted to consider more general boundary

conditions? In particular, what if we wanted to fix the
induced boundary metric in a quantum analogue of
Eqs. (1.4) and (1.5)?
Building a quantization from an action differentiable in

E is possible, but various difficulties have to be overcome.
The reason is that such an action, Se ¼ Sω þ l−1

Pl

H
e ∧ ω,

is neither Lorentz nor shift invariant (even on-shell of the
constraints). And, in this form, it does not admit a fully
natural discretization either—see, however, [30] and also
Appendix A.
An alternative perspective consists in looking within HΓ

for superpositions of boundary connections which fix some
property of our interests. In other words, boundary states
Ψ½A� ∈ HΓ can be thoughts as implementing different
boundary conditions to the path integral.

13See [27,29] for possible subtleties on more involved
topologies.
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In other words, the expression

hZΔjΨoi ¼
� Y
l�∈∂Δ�

Z
dhl�

�
ZΔ½hl�∂ �Ψo½hl�∂ � ð4:1Þ

can be thought as the implementation of the path integralZ
ψ¼Ψo

DωDeeiSψ ð4:2Þ

where ψ represents a class of boundary conditions andΨo a
particular choice therein, while Sψ ¼ Sωþðsome bdry termÞ
is the corresponding action principle.
Let us focus on metric, or York-Gibbons-Hawking,

boundary conditions. In the discrete context, we expect
these to correspond to a state diagonalizing the lengths of
the boundary edges l∂ ∈ ∂Δ. Constructing this kind of
states, known as spin networks, was one of the early
successes of loop quantum gravity [31].
They read

Ψðj;ιÞ½hl�∂ � ¼ trΓ
h
⨂
l�∂∈Γ

Djlðhl�∂ Þ⨂
v�∂∈Γ

ιv�∂

i
: ð4:3Þ

Here, DjðhÞ∶ Vj → Vj is a Wigner matrix in the spin-j
representation of SU(2), and ιv� ∈ Invð⊗l�∶v�∈∂l� Vjl�Þ is an
intertwining operator associated to the (original) dual
vertices of Γ. It implements gauge invariance. In our
conventions, every dual vertex is outwardly oriented.
Supposing it is N valent:

�
⨂
N

i¼1
DjiðgÞnimi

�
ιm1���mN ¼ ιn1���nN : ð4:4Þ

Dual edges are oriented so that in the matrix element
DjðhÞnm the indices m and n are attached to the source
and target vertices, respectively. Finally, trΓ represents
the contraction of all the magnetic indices according to
the pattern determined by the dual boundary graph Γ,
leaving understood that two upper indices are contracted
via the spin j generalization of the SU(2) invariant tensor
ϵn0n ¼ �1, i.e., ð−1Þnδn0;−n, which intertwines between Vj

and its contragradient representation V̄j (thus adjusting for
discording orientations at the targets of l�). See [25] for
details. This construction guarantees gauge invariance, i.e.,

Ψðj;ιÞ½hl�∂ � ¼ Ψðj;ιÞ½gtðl�∂Þhl�∂g−1sðl�∂Þ� ð4:5Þ

for any choice of fgv�∂ ∈ SUð2Þg (cf. Eq. (3.4).
Notice that for Δ a triangulation, the dual vertices are

trivalent and the intertwiners unique and equal to 3j
symbols—i.e., modulo dualizations, to Clebsh-Gordan
coefficients.
Here, the spin jl ∈ 1

2
N is the quantum number associated

to the length operator along l. This operator corresponds to
the quantization of

ll ¼
����
Z

1

0

AdhðτÞeμðlðτÞÞ
dlμ

dτ
dτ

����; ð4:6Þ

where hðτÞ is the ω-parallel transport along l from sðlÞ ¼
lðτ ¼ 0Þ to lðτÞ, and the norm in suð2Þ is defined by
kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δabXaXb

p
. Notice that for flat and torsionless

configurations, by Stokes theorem, the ‘length’ of a closed
loop vanishes. Thus, on shell, ll has to be interpreted as the
geodesic distance between the endpoints of the edge l,
rather than the length of a curve. Its spectrum is given by
the square root of the Casimir [32,33],

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
; j ∈

1

2
N



: ð4:7Þ

Following the Peter–Weyl theorem, DjðhÞ is best under-
stood as the non-Abelian generalization of the Fourier
transform providing the spectral decomposition of square
integrable functions on (multiple copies of) SU(2). What is
suggested by this construction is that the analogy with the
Fourier transform goes further to include the property of
transforming one polarization of the quantum wave func-
tion to its conjugate one.
In turn, this suggests to apply the transform to ZΔ itself, so

to obtain a purely metric formulation of three-dimensional
quantum gravity. In the case of a triangulation, this is well
known to lead to the Ponzano-Regge model [25]:

ẐΔ½jl∂ � ¼ hZΔjΨðj;ιÞi

¼
X0

fjl∶l∉∂Δg

Y
l

ð−1Þ2jldjl
Y
f

ð−1Þkf
Y
σ

f6jgσ ð4:8Þ

where dj ¼ dimðVjÞ ¼ 2jþ 1, kf ¼
P

l∈∂fjl and f6jgσ is
a 6j symbol associated to the lengths of the sides of a
tetrahedron. The prime means that one keeps fixed those
spins attached to those edges which correspond to the
omitted delta functions in (3.6).
The above formula is essentially a consequence of the

following two identities14:

δðhÞ ¼
X
j

djχjðhÞ ð4:9Þ

Z
dgðDJ ⊗ Dj ⊗ Dj0 ÞðgÞ ¼ δJjj0CJ

jj0 ⊗ CJ
jj0 ð4:10Þ

where χjðhÞ ¼ trðDjðhÞÞ is the spin j character, δJjj0 is 1 if
the three spins satisfy the triangular inequalities and zero
otherwise, and ðCJ

jj0 ÞMmm0 ¼
ffiffiffiffiffi
dJ
p hJMjjj0; mm0i is a rescaled

Clebsch-Gordan coefficient.

14Recall that a 6j-symbol is essentially a contraction of four
Clebsch-Gordan coefficients.
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What prompted Regge and Ponzano to propose the above
as a quantum gravitational model of three-dimensional
gravity in 1968 is the fact that for large quantum number
(homogeneously large spins), the asymptotic of the 6j
symbol reproduces a discretized version of the Einstein-
Hilbert–York-Gibbons-Hawking action, proposed a few year
before by Regge himself [34–36].
Even more compelling evidence emerges from the fact

that the Biedenharn-Elliot identity for the 6j-symbols
admits the interpretation of a discrete version of the action
of the Hamiltonian constraint, and other related facts
[37–39].

V. BULK SYMMETRIES

As we have already observed, in the connection repre-
sentation, shift transformations act trivially, while invari-
ance under Lorentz transformations is ensured by the
structure of the amplitude.
In the dual Ponzano-Regge formulation, on the other

hand, Lorentz transformations act trivially. This is because
the utilized variables are the lengths ll rather than the triads
ea. To track the action of shift symmetry, we can look at
Eq. (4.6): on a flat background, the geodesic distances
between the endpoints of a path l associated to two shift-
related triads, say e and eþ Dωλ, differ exactly by
kΔλk ¼ kλðtðlÞÞ − λðsðlÞÞk. This observation justifies
the identification of shift symmetry as a kind of active
diffeomorphism [20,21]. This modifies the geodesic dis-
tances between pairs of endpoints by altering the value of the
metric field without altering the ‘position’ of the endpoints
themselves—we are thinking of this endpoints as the
coordinate spacetime beacons discussed in the introduction.
Upon discretization, shift transformations correspond to

modifications of the lengths of the edges of Δ.15 In a sense,
this symmetry is imposed in Eq. (4.8) by group averaging.
Since the group of translations is noncompact and the
gauge orbit volume infinite, one is forced to introduce a
gauge fixing—hence, the prime notation.
What about the diffeomorphisms of Eq. (2.9)? On a

given discretization, our choice of diffeomorphism invari-
ant variables (hl� and ll) fully takes care of them. However,
any such discretization tests only a measure zero portion of
the spacetime points. It is possible to argue that the residual
version of diffeomorphisms in this setup consists in the
requirement of an invariance of the amplitude under
changes in the discretization [41,42].
On a closed manifold, such an invariance is self-evident

in the holonomy formulation (provided the discretization is

fine enough to capture all the topological features ofM). In
the Ponzano-Regge formulation, on the other hand, it is
either a consequence of its equivalence to the holonomy
formulation, or—more fundamentally—of the invariance
under the 2–3 and 1–4 Pachner moves—the first is nothing
but the Biedenharn–Elliot identity, while the second holds
in this context only formally (i.e., the equality contains an
infinite prefactor).
On a manifold with boundary, however, the amplitude is

a function of a certain number of boundary variables, and
its invariance under changes of the boundary discretization
is a priori explicitly broken. In the connection polarization,
flatness (and cylindrical consistency [43–45]) guarantee
that only global discretization invariant d.o.f. survive. In
the metric one, flatness is explicitly broken, and the
above is not the case. Nevertheless, upon gluing two bulk
regions M1 and M2 across a common boundary B12, the
invariance is readily restored, since this operation requires
summing over the boundary data on B12 precisely in a way
that turns the resulting amplitude equal to the amplitude
for M1 ∪B12

M2.
For now, we leave a deeper study of a discretization

invariant continuum limit to future work (see, however,
Sec. XIII for more comments on this). Instead, we focus on
the identification of the quantum boundary d.o.f. on a fixed
boundary discretization and metric boundary conditions.

VI. QUANTUM EDGE MODES

After all these preliminaries, we can finally delve into the
main topic of this article: the identification of the quantum
edge modes of three-dimensional gravity directly from the
quantum theory. As it will be clear soon, the edge mode
theory one finds by integrating out all the bulk d.o.f.,
depends on the imposed boundary conditions. For defi-
niteness, we will perform our analysis for metric boundary
conditions constructed as in Sec. IV. This will allow a more
direct comparison to the results summarized in the
Introduction.
We start from the simplest bulk topology, that of a 3-ball,

M ¼ B3 and ∂M ¼ S2.

A. Quantum Lorentz symmetry compensating fields

(This section reprises work done by the author and
collaborators in [46–48]—to which we refer for details on
the following formal manipulations. With respect to that
work, however, this section contains a more organic and
complete discussion of the general structure of the edge
mode theory.)
Putting together Eqs. (3.6), (4.1), and (4.3), it is easy to

see that these expressions can be rearranged into one
involving only delta functions on the boundary dual faces16

15on-shell of the flatness constraint, the above modifications of
the lenghts ll reflect displacements of the vertices of the
discretization thought as locally embedded in R3.This is true
at least for ‘small’ displacements: in presence of boundaries and
for ‘large’ shifts, the corresponding vertex displacement might
pull vertices “out” of the manifold [40].

16Since ∂M ≅ S2, in this case the prime means that one
redundant dual face in Γ is omitted.
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hZB3
jΨS2

ðj;ιÞi ¼
�Y

l�∂

Z
dhl�

�Y0
f�∂

δðHf� ÞΨðj;ιÞ½hl�∂ �: ð6:1Þ

The flatness condition implied by the above delta functions
together with the spin-network’s gauge invariance—
Eq. (4.5)—mean that

hZB3
jΨS2

ðj;ιÞi ¼ ΨS2

ðj;ιÞ½hl�∂ ¼ 1� ¼ trΓ
h
⨂
v�∂∈Γ

ιv�∂

i
: ð6:2Þ

Notice that the two rightmost expressions above are purely
boundary expressions: the bulk has been solved for and the
bulk d.o.f. have been completely integrated out. This type
of expression is known as a ‘spin-network evaluation’.
To understand what kind of edge mode theory is secretly

encoded there, we observe that to obtain the last expression
above we used the simple identity

Djðh ¼ 1Þm0m ¼ δm
0
m: ð6:3Þ

This means that the amplitude is obtained summing over a
single magnetic index per vertex and depends only on the
intertwiners. Thus, we can rewrite this as

hZB3
jΨS2

ðj;ιÞi ¼
X
fml� g

Y
fv�g
ðιv� Þm…

m0… ð6:4Þ

(to avoid clutter we omitted the ∂ labels, and lowered half
of the indices with the tensor ϵm0m or its spin j
generalization).
We claim that it is useful to interpret this expression as a

(complex) statistical model, where the magnetic indices
fml�g are the configuration variables and ðιv�Þm…

m0… the
corresponding Boltzmann weights. This kind of statistical
models are called “vertex models,” because the interaction
happens around the vertices of the graph.
Somewhat equivalently, one can think of it also as a

discrete (complex) path integral where the magnetic indices
fml�g label a basis of the local Hilbert spaces (d.o.f.) and
ðιv� Þm…

m0… are the local matrix elements of the
Hamiltonian—of course, a bit of caution has to be used,
since the topology of the underlying two-dimensional
spacetime is that of the 2-sphere, S2 ¼ ∂M.
According to the logic developed so far, the magnetic

boundary d.o.f. demand to be interpreted as the theory’s
edge modes—and this is how we will interpret them.
Nonetheless, in a connection picture one would more
naturally expect group elements representing the local
gauge transformations at the boundary to be the natural
candidates for the edge modes. This is what happens e.g., in
the derivation of the Wess–Zumino–Witten model sketched
in the Introduction.
To at least partially close this gap, we observe that the

magnetic indices fmg label the orientations of a quantum

angular momentum vector J⃗ of length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

; indeed,
they constitute the most efficient orthonormal such labeling
which is compatible with the uncertainty principle under-
lying the algebra ½Ja; Jb� ¼ ϵab

cJc. In the above descrip-
tions, the fmg d.o.f. can thus be interpreted as the quantized
orientations of a reference frame, which, in turn, can be
classically encoded in SO(3) group elements.
The gap can now be fully closed by using an

overcomplete basis of ‘coherent’ intertwiners [49]. A p-
valent coherent intertwiner is labeled by p SU(2) repre-
sentations Vji , and p normalized spinors ηi ∈ C2 ≅ V1=2,
hηijηii ¼ η̄0i η

0
i þ η̄1i η

1
i ¼ 1. Each such spinor defines an SU

(2) group element

gη ¼
�
η0 −η̄1

η1 η̄0

�
: ð6:5Þ

Supposing all the p dual edges attached to the intertwiner
are outgoing, the coherent intertwiner ι½η� is defined,
modulo a normalization factor, by

ι½j; η�n1���np ∼
Z
SUð2Þ

dG
Yp
i¼1

DjiðGgηiÞnimi¼ji : ð6:6Þ

These objects admit a beautiful geometrical interpreta-
tion in terms of (dual) quantum polygonal linkages
embdeed in R3 of edge lengths given by the spins ji
and edge directions v̂i ¼ hηijσ⃗jηii [49,50].17
Without entering into the details, we just point out that

the assignment of coherent intertwiners ι½j; η� to the dual
vertices in Γ ¼ ∂Δ� is equivalent to the assignement of
a discrete quantum metric attached to ∂Δ, in perfect
agreement with the picture we are developing. See [[47],
Sec. IIB] for details.
Plugging the coherent intertwiners of Eq. (6.6) into the

vertex model amplitude of Eq. (6.4), gives after some
simple algebra

hZB3
jΨS2

ðj;ιÞi ¼
�Y

v�

Z
SUð2Þ

dGv�

�
eSΓ½Gv� � ð6:7Þ

where the holomorphic discrete boundary action is18

SΓ½Gv� jj; η� ¼
X
l�
2jl ln½ηtðl�ÞjG−1

tðl�ÞGsðl�Þjηsðl�Þi; ð6:8Þ

where jηi↦ ½ηj is the map ηA ↦ ηBϵBA. Passing to the
coherent basis, we have traded the sum over magnetic
indices for integrals over group elements associated to

17There is also a three-dimensional geometrical interpretation
in terms of polyhedra of face areas given by the ji. This plays a
role in 3þ 1d loop quantum gravity.

18The introduction of the logarithm is artificial, and its branch
cut does not introduce any ambiguity.
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the dual vertices. Gauge transformations act simply by
translating the new group-valued d.o.f., Gv� ↦ gv�Gv� , and
leave the amplitude manifestly invariant.
Thus, we found a description equivalent to the vertex

model above, where not only the edge modes are com-
pensating fields for the gauge transformations, but the fixed
(metric) boundary conditions ðj; ηÞ explicitly constitute the
background structure for the edge modes theory. This is in
complete analogy with the structure of Eqs. (1.3) and (1.6).
For a discussion of the continuum limit of the spin-network
action and its relation to the fixed-triad boundary con-
ditions, see Appendix A.
This description in terms of the group continuous

variables plays the role of a path integral in terms of a
classical action principle—albeit on a discrete spacetime—
whereas the sum over magnetic indices is akin to the
equivalent description in terms of matrix elements of
the corresponding Hamiltonian. In general, one expects
the classical theory to provide a good approximation for
large quantum numbers. This is indeed the case: when the
spins are large, 2j ≫ 1, and the magnetic indices are
numerous (m ∈ f−j;−jþ 1;…; jg), one can use the above
action principle in the stationary phase approximation to
provide a good estimate of the total amplitude.19 Moreover,
well-developed techniques allow us to turn the equation of
motions of SΓ into geometrical statement about the (local)
embedding of ∂Δ in R3 [47,51,52], thus showing that SΓ is
essentially an off-shell (discretized) version of the York-
Gibbons-Hawking boundary term.20 This is a concrete
version of the heuristic considerations about the correspon-
dence between boundary states and boundary conditions put
forward around Eq. (4.2).

B. Quantum shift symmetry compensating fields

The appeal of the above construction consists in having
turned the amplitude of a spin-network boundary state, i.e.,
a spin-network evaluation, into an edge theory for Lorentz-
gauge compensating fields. Nonetheless, the original
theory we started from, three-dimensional SU(2) BF-
theroy, featured shift symmetry as well, and no compensat-
ing field for this symmetry appears in any of the above
formulations of the edge theory.
Recall, however, that we had also observed in Sec. II that

the shift symmetry is ‘conjugate’ to the Lorentz symmetry,
and it is indeed for this reason that the two do not naturally

manifest at the same time. An edge theory of shift
symmetry compensating fields indeed exists and is dual
to the two formulations presented so far. It will provide us
with a new quantum realization of Carlip’s construction of
the edge modes as ‘would-be normal diffeomorphisms’.
The most immediate way to find this theory is to use the

Ponzano-Regge formulation of Eq. (4.8) on a discretization
that trivializes as much as possible the role of the bulk. For
M ¼ B3, such a natural candidate exists and consists in
choosing Δ to have single internal vertex directly con-
nected through bulk radial edges to the boundary. The
quantum lengths of such bulk radial edges would be the
only d.o.f. one has to sum over. Therefore, they readily
provide a quantum version of Carlip’s ‘would-be radial
diffeomorphisms’ compensating fields—recall the discus-
sion of Sec. V for the relation between shift symmetry and
the value of the bulk spins.
Although this derivation fully captures the substance

of the shift-symmetry edge modes, it is nonetheless
restricted to the case of a triangulated 3-ball. We will
now sketch a slightly different derivation, which has the
advantage of being completely general and applicable to
any cellular decomposition of the 3-ball and—with little
adaptation—to any handlebody topology. In particular,
the focus will stay on the boundary surface, with no
reference to the bulk.
To proceed, we start again from Eq. (6.1), but instead of

using gauge invariance and solving for the delta functions
to fix all hl� to the identity, we rather expand the delta
functions using Eq. (4.9) and use eq. (4.10) to get rid of the
remaining integrals. Indeed, this is always possible because
a given group element hl� appears precisely in three Wigner
Dj matrices: one is the spin-network contribution associ-
ated to the dual edge l� and the other two come from the
expansions of the delta functions associated to the two
boundary faces it bounds,21 l� ¼ ∂f�1 ∩ ∂f�2.
Then, the so-obtained amplitude reads22:

hZB3
jΨS2

ðj;ιÞi ¼
X0
fJf� g

Y
v�

Wv� ½Jjj; ι�;

Wv� ½Jjj; ι� ¼ trΓv�

�
⨂
pv�

i¼1
C
jl�
i

Jf�
1;i
Jf�

2;i

⊗ ιv�
�

ð6:9Þ

where Γf is a spin-network graph obtained by isolating a
vertex v� ∈ Γ and connecting its subsequent open ends23

with edges labeled by spins Jf� . See Sec. IX.

19In this case, the coadjoint orbit corresponding upon quan-
tization to the irreducible representation of spin j is large with
respect to a ‘Planck-sized’ cell. This is what makes the classical
theory a good approximation.

20Recall, the York-Gibbons-Hawking boundary term is the
integral of the boundary’s extrinsic curvature. It turns the (on-
shell) Einstein-Hilbert action into a differentiable functional of
the induced boundary metric. Notice that the bulk part of this
action, given by the Ricci scalar, vanishes on-shell of the flatness
condition.

21The delta function omitted because of the gauge fixing can
be replaced with any function of Hf� whose value at the identity
is 1, e.g., χJðHf� Þ=dJ .

22All labels refer to the boundary graph Γ.
23At this purpose recall that Γ is embedded in the oriented two

surface ∂M.
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In the direct-discretization’s labeling, v� ↔ f, l� ↔ l,
and f� ↔ v, this reads

hZB3
jΨS2

ðj;ιÞi ¼
X0
fJvg

Y
f

Wf½Jjj; ι�;

Wf½Jjj; ι� ¼ trΓf

�
⨂
pf

i¼1
C
jli
Jf¼tðliÞJf¼sðliÞ

⊗ ιf
�
: ð6:10Þ

In these expressions, the shift symmetry compensating
fields fJvg live at the vertices of the triangulation and
geometrically represent their radial coordinate. The
Boltzmann weight is a somewhat complicated quantity
built out of Clebsch-Gordan coefficients contracted among
themselves and with the face intertwiner (representing the
shape of the face f ∈ ∂Δ).
In Eq. (6.10), the interaction takes place around the

faces (ofΔ), and as such defines an IRF (interaction round a
face) statistical model. By construction, it is equivalent—or
dual—to the vertex model of Eq. (6.4).
Once again, in the edge theory, the spin-network’s spins

and intertwiners play the role of coupling constants.
The face model formula for the spin-network evaluation

is of course not new, although the physical interpretation
we are proposing to the best of our knowledge is. See e.g.,
Turaev’s ‘shadow calculus’ [53,54], as well as [55,56].
Moreover, in [57], a semiclassical version of the face model
of Eq. (6.10) was used in the study of flat-space holog-
raphy, with a tentative identification of Jv as Liouville-like
dual fields, in analogy with Eq. (1.6).
It is important to notice that the shift symmetry com-

pensating fields identified here are those associated to
radial displacements of the boundary. In this, they are
completely analogous to Carlip’s identification of would-be
normal diffeomorphisms with the Liouville field in
AdS3 [16].
On the other hand, diffeomorphisms tangential to the

boundary surface should also play a role [7,58]. Since the
boundary spins are kept fixed by construction, one sees that
tangential diffeomorphism symmetry is explicitly broken in
this setup. We leave a discussion of this point to the closing
section, Sec. XIII.
Finally, we notice that a first-order model where both the

Lorentz and shift symmetry compensating fields appear at
the same time can in principle be written by plugging
Eq. (6.6) into Eq. (6.10). The ensuing expression, however,
does not seem particularly enlightening—at least in
that form.

VII. SOLID TORUS AND THERMAL
FIELD THEORY

So far we dealt with the case of a 3-ball. A more general
case of interest, however, is that of a handlebody. In
particular, the solid torus, ST2 ≅ B2 × S1, has a special
status in that it is the background for thermal field theory,

both for the 1þ 1 edge theory, and the 2þ 1 gravitational
bulk theory in presence of spacelike boundaries. For this
interpretation to be consistent, the noncontractible cycle of
ST2 has to represent the Euclidean time (inverse temper-
ature) direction for both theories. This geometrical setup
can be understood as a finite-space, Λ ¼ 0, analogue of the
thermal AdS/CFT correspondence [59] (see also [[46],
Sec. II] and references therein).
For this reason, we will focus on the solid torus.

Generalization to arbitrary handlebodies can in principle
be achieved through the same techniques.
We start again from Eqs. (3.6), (4.1), and (4.3). In this

case, however, the delta functions and gauge invariance are
not enough to fix all holonomies to the identity. Indeed, the
delta functions impose only local—not global—flatness: a
nontrivial holonomy around the noncontractibe cycle of the
solid torus is left.
To make the calculation more explicit, we “cut open” the

solid torus ST2 into a solid-cylinder
24 SC2 ≅ B2 × ½0; 1�, in

a way compatible with the triangulation Δ. In this way, the
cut is transverse to a set of dual edges. Denote R—’ring’—
the set of edges of ∂Δ along which the boundary of ST2 is
cut, and by R� the corresponding set of dual edges of Γ.
The topology of such a cylinder is now trivial, and

one can fix via flatness and gauge invariance all the
holonomies—except those associated to dual edge in
R�—to the identity, as in the previous sections. Local
flatness forces the remaining holonomies—those associ-
ated to l� ∈ R�—to be all equal to some g ∈ SUð2Þ, which
is simply the holonomy around the noncontractible cycle of
ST2. Integration over all possible locally flat bulk holon-
omies implicit in Eqs. (3.6) leads to

hZST2
jΨT2

ðj;ιÞi ¼
Z

dgΨT2

ðj;ιÞ½hl�∉R� ¼ 1; hl�∈R� ¼ g�

¼ trΓ
h
⨂
v�
ιv� ⊗ HR�

i
; ð7:1Þ

where HR� is an operator acting on the dual edges in R�:

HR� ¼
Z

dg ⨂
l�∈R�

Djl� ðhl�∈R� ¼ gÞ: ð7:2Þ

Equation (7.1) emphasizes that the local theory is the
same as above, modulo the insertion of an extra opera-
tor, HR� .
The operator HR� is nothing but a so-called Haar

intertwiner, which decomposes simply as

24Of course the solid-cylinder is homeomorphic to the 3-ball.
We keep nevertheless this nomenclature to emphasize the role of
the bottom and top disks, B2 × f0g and B2 × f1g respectively,
upon gluing into a solid torus.
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HR� ¼
X
I

jιIihιIj; ð7:3Þ

with I labeling an orthonormal basis of r-valent inter-
twiners, r ¼ #R�.
The location of the ring R is completely irrelevant as a

consequence of local flatness and gauge invariance. As a
consequence, HR� is a topological operator for the edge
theory.

VIII. EXAMPLE: SPIN 1=2 QUADRANGULATION
OF THE TORUS AND INTEGRABLE MODELS

Consider now the case of a cellular decomposition Δ of
ST2 such that ∂Δ is a quadrangulation of T 2, and fix the
boundary conditions to be those imposed by a spin-network
with all spins jl ¼ 1=2 [46].
The quadrangulation has T “timelike” edges “parallel” to

the noncontractible cycle, and L horizontal “spacelike”
edges parallel to the contractible one. Spacelike edges are
dual to “vertical” dual edges, and timelike edges to
“horizontal” dual edges. A ‘twist’ of Nγ units can be
inserted before identifying back the spacelike edges
belonging to the ring R. The twisting angle will be

γ ¼ 2π
Nγ

L
: ð8:1Þ

The ratios T=L and Nγ=L constitute the modulus of
the torus.
The space of 4-valent intertwiners between spin 1=2

representations is two-dimensional. In fact, choosing an
arbitrary recoupling channel (s, t, or u) for its decomposition
onto two 3-valent intertwiners, the recoupling spin can take
only the values 0 or 1, e.g., jιi ¼ αjs ¼ 0i þ βjs ¼ 1i, α,
β ∈ C. A more convenient basis is provided by picking two
different spin-zero recoupling channels jιi ¼ λjs ¼ 0iþ
ρju ¼ 0i, or for brevity of notation

jι½α; ρ�i ¼ αjsi þ βjui: ð8:2Þ
In components,25

ι½α; β�m1m4
m2m3
¼ αδm1

m2
δm4
m3
þ βδm1

m3
δm4
m2
; ð8:3Þ

where ðm1; m2Þ are indices on the horizontal dual edges,
while ðm3; m4Þ on the vertical dual edges.
In the conventions of [60],

ι½α; β� ¼ iβ
2
LðλÞ; λ ¼ α

−iβ
þ i
2
; ð8:4Þ

where LðλÞ is the Lax operator for the isotropic Heisenberg
spin-chain, or XXX spin-chain The parameter λ is called
the “spectral parameter.”

The XXX spin-chain is the isotropic version of the XXZ
spin-chain, a protitypical example of a quantum integrable
system. The Hamiltonian of the periodic XXZ spin-chain
acts on the Hilbert space of L spins 1=2,HL ¼ V⊗L

1=2, and is
given by

HXXZ ¼ −
1

4

XL
n¼1
ðσ1nσ1nþ1 þ σ2nσ

2
nþ1 þ Δσ3nσ3nþ1Þ; ð8:5Þ

where nþ L≡ n labels the sites of the chain, and a ¼ 1, 2,
3 the three space directions. The XXX Hamiltonian is
obtained in the isotropic limit Δ ¼ 1. Integrable higher-
spin generalizations also exist, but the integrability con-
dition makes their Hamiltonian more complicated [60]
(see below).
As a 1þ 1 quantum integrable system, the XXZ spin-

chain is equivalent to a 6-vertex model with Boltzmann
weights ða; b; cÞ such that

Δ ¼ a2 þ b2 − c2

2ab
: ð8:6Þ

The spectral parameter above maps onto the following
Boltzmann weights for the isotropic (i.e., Δ ¼ 1) version of
the 6-vertex model26

a ¼ α; b ¼ αþ β; c ¼ β: ð8:7Þ

The equivalence of the edge theory of Eq. (6.4) for the
4-valent spin 1=2 case to the isotropic 6-vertex model can
also be found by simple inspection, mapping the m ¼
�1=2 d.o.f. onto arrow directions [61].
In particular, it is immediate to see that—modulo an

unimportant overall normalization factor—each spacelike
slice of the edge theory provides a copy of the isotropic
spinchain (or 6-vertex model) transfer matrix27

FðλÞ ¼ trh
h
⨂
L

n¼1
LnðλÞ

i
∶HL → HL: ð8:8Þ

Here, trh means that only the magnetic indices correspond-
ing to the horizontal dual edges have been contracted. FðλÞ
is a polynomial of order L in λ.
The origin of integrability is to be found in the Yang-

Baxter equation satisfied by the Lax operators

Rh1;h2ðλ − λ2ÞLn;h1ðλ1ÞLn;h2ðλ2Þ
¼ Ln;h2ðλ2ÞLn;h1ðλ1ÞRh1;h2ðλ − λ2Þ ð8:9Þ

where the labels (h1, h2, n) explain that multiplication
among the Lax operators takes place along the vertical dual
edges at a given site n of the chain, while the R-matrix,

25In components, jti reads ϵm1m4ϵm2m3
.

26Or, equivalently, to a ¼ αþ β, b ¼ α, c ¼ β.
27We keep following the notation of [60].
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RðμÞ∶ V1=2 → V1=2;

RðμÞmn0
nm0 ¼ μδmn δ

n0
m0 þ iδmm0δ

n0
n ; ð8:10Þ

contracts along the horizontal dual edges.
A direct consequence of this equation is that
½FðλÞ; Fðλ0Þ� ¼ 0 for any value of λ and λ0. In turn, this
means that the coefficients in FðλÞ of λp, p ¼ 0;…; L,
commute among them. Among these coefficients28 one
finds the XXX Hamiltonian HXXX, the 1-site translation
operator U, and the chain’s total spin

S⃗ ¼ −
i
2

XL
n¼1

σ⃗n: ð8:11Þ

Consequently, this allows us to identify as many conserved
charges as d.o.f. (integrability).
We mentioned the total spin charge explicitly, because,

when the ring R of Sec. VII coincides with one spacelike
slice of ∂Δ, the insertion of the Haar operator is equivalent
to that of a projector onto the vanishing total-spin sector of
the chain, i.e.,

HR� ¼ PS¼0: ð8:12Þ

Putting all this ingredients together, we can finally
express the edge theory partition function on Δ in the
transfer matrix language as29

hZST2
jΨT2

ðj¼1
2
;ι½α;β�Þi ¼ trHL

½FðλÞTUNγPS¼0�: ð8:13Þ

Since in the vertex model representation of the edge
theory we have found a well-known integrable model, it is
worth investigating its face model dual.
The latter turns out to be the (somewhat degenerate)

isotropic limit of another well-known (of course integrable)
IRF model of the SOS type. This acronym stands for Solid
on Solid and is meant to allude to the growth of a surface.
Curiously the gravitational interpretation fits this physical
picture: here the surface in question is the spacelike
boundary of a portion of spacetime and its growth happens
in the radial direction.
Notice that the difference between two neighboring

(radial) heights Jv is necessarily 1=2,30 since δj¼1=2;J1v;J2v
in Eq. (4.10) would vanish otherwise.
The correspondence between the 6-vertex and RSOS

model is a well-known one [54,62], and goes beyond what
we presented here to incorporate the more general 8-vertex
model (see e.g., [63]). However, it is interesting to notice

how our framework casts this correspondence in terms of a
Fourier duality between two edge theories associated to the
two conjugate gauge symmetries of three-dimensional
quantum gravity.
In working out the partition function in the solid torus

case, the only subtlety one has to deal with is the translation
of the Haar operatorHR�. Recall thatHR� is the operator that
tells the boundary theory which cycle of the torus is
contractible in the bulk—the boundary delta functions that
we Fourier transformed to get to Eq. (6.10) impose local
flatness only, and have no global information. For this, we
refer to Appendix B.
Extensions beyond the spin 1=2 case that preserve

integrability exist. They are known as descendent models
(see e.g., [64]), and essentially consist in restricting to
homogeneous and isotropic 4-valent spin-network states
characterized by a spin j and intertwiners of the form of
Eq. (8.2) [55]. In fact, the use of general intertwiners31

would break integrability since it would not correspond to a
Lax operator satisfying a Yang-Baxter, as in Eqs. (8.4)
and (8.9).
Staying with the spin 1=2 case, correspondences with

nonisotropic models are also possible, provided the gravi-
tational theory is modified by the addition of a cosmo-
logical constant. Before delving into this subject we present
in the next section a graphical notation that will simplify
our task—and possibly clarify what we have accomplished
so far.

IX. GRAPHICAL NOTATION

To a certain cellular decomposition of the boundary ∂Δ
(in black) we associate its Poincaré dual Γ ¼ ∂Δ� (in red)

To define the spin-network function Ψðj;ιÞ½hl� �—which
imposes metric boundary conditions to the gravitational

28Actually, the following quantities appear as combinations of
these coefficients.

29We neglect an overall, unimportant, normalization factor.
30This is often renormalized to 1 via the obvious change of

variables J ↦ 2J.

31Here we are using the terminology common in loop quantum
gravity. In the integrable model literature, by “intertwiner” one
often means an R-matrix, while here we generally use the word
intertwiner for something less constrained and more akin to an S-
matrix (scattering matrix) of two spin j quasi-particles scattering
among themselves, possibly exchanging fundamental spin-chain
excitations of spin 1=2.
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amplitude—we first associate to dual edges (red lines)
l� ∈ Γ labeled by a spin jl� the Wigner matrix (composition
is from left to write),

ð9:1Þ

and to dual vertices (intersections of red lines) the inter-
twiner ιv� (all dual edges are outgoing)

ð9:2Þ

The spin-network function is finally obtained by con-
tracting32 all the magentic indices m according to the
combinatorics imposed by Γ (Eq. (4.3):

ð9:3Þ

We then represent the delta function on SU(2) by a
dashed line [Eq. (4.9)],

ð9:4Þ

Denoting integration over a common variable by a box
crossing multiple dual edges, i.e.,

ð9:5Þ

we write Eq. (4.10) as

ð9:6Þ

Thus, if M ¼ B3 and ∂Δ is a cellular decomposition of
∂M ¼ S2, the spin-network evaluation of Eq. (6.1) can be
represented as

ð9:7Þ

For a general topology, this equation imposes on Ψðj;ιÞ the
local flatness condition for the boundary surface ∂M, with
no reference to the bulk topology.
Using the graphical calculus described above, Eq. (9.7)

can be turned into the following graphical expression

ð9:8Þ

Here we kept the dashed-line notation with a spin Jf� at the
center of each dual face to underline which spins are
summed over, as well as to remind the reader that the
coefficients appearing in Eq. (9.4) are left understood.
Around each dual vertex there is a local graph Γv� . As

contractions of intertwiners and Clebsch–Gordan coeffi-
cients, they represent the weights of Eq. (6.9),

ð9:9Þ

For example the 3-valent case evaluates to a 6j-symbol (we
refer to [25] for a careful treatment of the normalizations of
these expressions)

32Contraction between two upper indices is done with the spin
j generalization of the SU(2) invariant tensor ϵmm0, i.e.,
ð−1Þmϵm;−m0 . See [25] for details.
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ð9:10Þ

In this way, the right-hand side of Eq. (9.8) represents
graphically the IRF model of Eq. (6.9). A maybe more
transparent notation is given in terms of Δ:

ð9:11Þ

where the edges l (black lines) carry a spin jl representing
their lengths, and the faces carry the intertwiners ιf
representing their shapes (recall that on the boundary
l ↔ l�, and f ↔ v�) as well as the IRF weights of
Eq. (6.10), e.g.,

ð9:12Þ

or

ð9:13Þ

The spins in the circles are the variables one needs to sum
over. Geometrically, they represent the distance of a vertex
of ∂Δ from some (fiducial) point in the bulk. They
constitute the quantum shift symmetry compensating field.

X. COSMOLOGICAL CONSTANT AND THE
TURAEV–VIRO MODEL

In the presence of a cosmological constant Λ, the first-
order action is

Sω ¼
1

lPl

Z
δabea ∧ Fb½ω� − Λ

3!
ϵabcea ∧ eb ∧ ec; ð10:1Þ

and the equations of motions are

Fa¼· Λ
2
ϵabceb ∧ ec; Dωea¼· 0; ð10:2Þ

that is constant curvature (rather than flatness) and torsion-
freeness, respectively.
It is immediate to see that while Lorentz symmetry is

untouched, transformations of the form of Eq. (2.11) are
not symmetries anymore.
At the level of the cellular complex, this happens because

in this case the vertex translations that shift symmetry
induces must take place in an homogeneously curved
space, rather than in flat space. In fact, if Λ ≠ 0, the nature
of shift symmetry is modified:

δλe ¼ Dωλ; δλω ¼ −Λadλe; ð10:3Þ

where both ω and e are here considered as suð2Þ valued.
A better way to deal with this is to notice that the total

internal symmetry group is now deformed from ISU(2) into

GΛ ≅
	
SLð2;CÞ if Λ < 0

SOð4Þ if Λ > 0
ð10:4Þ

Accordingly, one can set ω ¼ ωaJa and e ¼ eaPa, where
the translation generators Pa are now deformed to boost (or
‘Euclidean boost’) generators,

½Pa; Pb� ¼ ΛϵcabJc: ð10:5Þ

This allows us to phrase the theory in a formmore similar to
Eq. (2.1) [17]. Of course, in this setting one also sets X ¼
XaJa and λ ¼ λaPa.
The groups GΛ can also be assigned a (quasi-)Poisson-

Lie structure, which puts into evidence the two conjugate
parts of the symmetry group in analogy to Eq. (2.12). These
are of course rotations and (Euclidean) boosts. However,
since the boosts do not constitute a group, the treatment is
more involved and we restrain from detailing it here—see
e.g., [65–67].
One important aspect is that, from the perspective of the

symmetries of the theory, e and ω are now on much more
similar footing, and a successful discretization must take
this into account. The resulting (canonical) quantization,
which is also more subtle, leads to a (lattice) Hopf-algebra
gauge theory [68,69] which deforms the lattice gauge
theory construction that implicitly underlies our discussion
of spin-network states.
If Λ > 0, the resulting Hopf-algebra gauge theory is

essentially a Kitaev model [70] for the UqðSUð2ÞÞ Turaev-
Viro code [69,71–73], with33

33Recall that in our definition lPl ¼ 8πGNℏ. Here lc ¼
8π=

ffiffiffiffi
Λ
p

can be interpreted as the scale of the cosmological
horizon.
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q ¼ e
2πi
kþ2; k ¼ 8π

lPl

ffiffiffiffi
Λ
p ∈ Nþ: ð10:6Þ

From a gravitational perspective, the Turaev–Viro state
sum model is a deformation of the Ponzano-Regge model
of Eq. (4.8). In particular, the asymptotics of the q-
deformed 6j-symbol reproduces the Einstein-Hilbert-
Regge action of a positively curved tetrahedron in presence
of a cosmological constant [74,75]. This confirms the
above intuition and assigns to the j’s the interpretation
of geodesic lengths in a curved spacetime.34

Hence, the whole construction of the previous sections
can be directly generalized by replacing spin-network
evaluations with q-deformed ones. In particular, the graphi-
cal formulas of Eqs. (9.8) and (9.12) preserve their validity
once all relevant symbols are appropriately q-deformed.
Therefore, it should not come as a surprise that the

discussion of Sec. VIII on the spin 1=2 case also admits a q-
deformed generalization. The resulting 6-vertex and RSOS
models (as well as their dualities) are discussed in [62] (see
also [[55], Sec. 5.2]). We will not delve into the details of
these models and will simply emphasize that there the
cosmological constant shows up in the form of a nontrivial
anisotropy parameter Δ. Explicitly,

Δ ¼ 1

2
ðqþ q−1Þ ¼ cos

�
2π

kþ 2

�
: ð10:7Þ

XI. CANONICAL PICTURE

So far, we have worked in a (Euclidean) covariant
picture, which allowed us to deal with all boundaries in
the same way, regardless on whether they are spacelike or
timelike. It is, however, instructive to look at the canonical
picture too.
In this section, we will have to attribute a different

interpretation to some of the notation introduced above. We
will emphasize when this happens.
The geometrical setup is now that of a manifold of the

form M ¼ Σ × ½−ε; ε�, i.e., a collar neighborhood of a
spacelike surface Σ. For clarity, but committing an abuse of
language, we will refer to Σ as the ‘Cauchy surface’. The
infinitesimal timelike boundary surface, will be denoted
B ¼ C × ½−ε; ε�, where C ¼ ∂Σ stands for ‘corner’. For
definiteness, we shall restrict to the case whereM is a solid
cylinder, and hence Σ ≅ B2, C ≅ S1.
We discretize Σ via a cellular decomposition Δ2—the

subscript 2 emphasizes the two-dimensional nature of the
cellular complex, in contrast to the notation used in the rest

of the paper. Let Δ�2 be the Poincaré dual ofΔ, and denote it
by Γ ¼ Δ�2—in this, section Γ strictly refers to the dis-
cretization of the Cauchy surface Σ.

A. Closed Cauchy surface: ∂Σ=∅
Let us start from the case of a closed Cauchy surface

Σ, ∂Σ ¼ ∅.
If Λ ¼ 0, in order to quantize the theory à la

Schroedinger we can then proceed similarly to Sec. III:
we first smear A ¼ ω

←
on dual edges l� ∈ Γ to obtain a finite

set of parallel transport variables hl� , and then we build the
Hilbert space H0Γ of L2 functions of these variables35:
OnH0Γ, two sets of constraints act. These are the discrete

version of the Gauss (Lorentz) and flatness (shift) con-
straints of Eq. (2.15). The first can be imposed by group
averaging and reduces H0Γ to its gauge-invariant counter-
part HΓ

Ψ½hl� � ∈ HΓ ¼ L2ðSUð2Þ×L�==SUð2Þ×V� Þ: ð11:1Þ

HΓ is the Hilbert space of a SU(2) lattice gauge theory.
A basis is provided by the spin-network states ΨΓ

ðj;ιÞ.
The flatness constraint is in turn imposed by project-

ing on those states whose support is restricted to configu-
rations such that (see Eq. (3.5)36

Hf� ¼ 1: ð11:2Þ

In the gravitational parlance, the imposition of the
flatness constraint reduces HΓ to the ‘physical’ Hilbert
space PΓ.
Let us now compare with the language used in the Kitaev

model literature. There, the Gauss constraint is imposed by
the action of the A operator, which is interpreted as
annihiliating the electric flux out of a face f ∈ Δ2.
Similarly, the flatness constraint is imposed by the B
operator, which is in turn interpreted as annihilating the
magnetic flux through a dual face f� ∈ Δ�2. Finally, the
analogue of PΓ corresponds to the ground state (vacuum)
sector of the model.
In the rest of this section, I will stick to the gauge

theoretic electric-magnetic language, rather than the gravity
oriented triad-connection one.
The continuum limit of PΓ can be obtained either à la

loop quantum gravity via an inductive limit construction
[43,44,76], or à la spin-net via the introduction of equiv-
alence classes of graphs [77]—in contrast to finite groups
or quantum groups with a finite Rep category, for Lie

34If Λ < 0, and q ∈ ð0; 1Þ is real, the asymptotics of the 6j
symbol still reproduces the expected Einstein-Hilbert-Regge
action for a negatively curved tetrahedron. However, the resulting
Ponzano-Regge–like model is plagued by divergences. We shall
not consider this case any further, even if the following consid-
erations can be adapted to this case too.

35Although the notation is the same as in Sec. (III), there HΓ
did not have strictly speaking the interpretation of a Hilbert space.

36Strictly speaking this procedure is not a ‘projection’, due to
the measure zero character of the flat configurations. See [43,44]
for details.
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groups the spin-net construction is much less natural
[45,61,78].
If Λ > 0, the classical phase space analogue of HΓ is a

deformation of the symplectic quotient T�SUð2Þ×L�==
SUð2Þ×V� of the form SOð4Þ×L�==SUð2Þ×V� (see [67] for
details). Its quantization and reduction to the flat sector,
however, ismost easily expressed in a spin-net picture for the
finite Rep category C ¼ RepðUqSUð2ÞÞ, q root of unity—
e.g., [77,79,80].

B. Corners: ∂Σ=C ≠ ∅
So far, the role of the corner C ¼ ∂Σ has been neglected.

The first question one needs to answer regards the follow-
ing discrete ambiguity: how does C cut through the edges
of Δ2 and the dual edges of Δ�2? In other words, which one
among ∂Δ2 and ∂Δ�2 is a discretization of C? Since Δ2 and
Δ�2 naturally carry either electric or magnetic excitations
respectively, the above question is indeed one of physics.
(See also [81]).
For Kitaev’s models, magnetic boundary conditions have

been studied in detail, e.g., [82,83]. Consistently with the
rest of the paper, we will here rather focus on electric type
boundary conditions. The following is a representation of
the Cauchy surface Σ ≅ Δ2 (in dark blue), of its bounding
corner ∂Σ ¼ C ≅ ∂Δ2 (in black), as well as of the dual
discretization Γ ¼ Δ�2 (in light blue):

The electric boundary conditions we want to impose
consist of fixed spins along the (black) boundary edges.
To identify the edge modes, we first observe that an

‘open’ dual edge ends at each edge of C. Gauge invariance
cannot be imposed at those open ends without trivialiazing
the information they carry and thus hindering the possibil-
ity of gluing a region back to its complement. This fact
implies that in presence of corners C ≠ ∅, boundary
magnetic indices fml�C

g have to be added to the count of
d.o.f. Their Hilbert space is

Hgauge
∂Σ ¼ ⨂

l∈∂Δ2

Vjl : ð11:3Þ

A natural expectation is that these are the (Lorentz) gauge
symmetry compensating fields.

To confirm this expectation, one can match them with the
construction of the Sec. VI A, which gave a covariant
treatment of the fields at the timelike boundary B. At this
purpose, we represent here a portion of the timelike
boundary B of M (in black) and its dual (in red):

From this picture it is clear that the canonical edge modes
live precisely at the B-boundary dual edges (in red) exactly
as it was found in Sec. VI A. Their dynamic is dictated by
the details of the (electric) boundary conditions at B, i.e., by
the spins and intertwiners associated to the black (or red)
edges lying in B. Gravitationally, this is akin to a coupling
of the edge modes to the induced boundary metric on B,
which our boundary conditions demand to be fixed.
Notice also that a row of square B-boundary faces—as in

—provides through its dual spin-network ΓB a transfer
matrix

FBðj; ιÞ∶ Hgauge
∂Σ → Hgauge

∂Σ ; ð11:4Þ

representing a 1-step timelike evolution of the gauge edge
modes. For the spin 1=2 boundary conditions of Sec. VIII,
this is precisely the XXX spin-chain transfer matrix37 FðλÞ
of Eq. (8.8).
Tracing back the manipulations of Sec. VI B, it is easy to

see that according to the dual view where the boundary
d.o.f. are the lengths (spins Jv) of the edges in Δ2 reaching
the corner C ⊂ B at the vertices of the discretization of B.
Summing over these boundary d.o.f. implements the

37In this case, Hgauge
∂Σ is precisely the HL of Eq. (8.8).
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flatness of the connection around dual faces in the
discretization of B. This statement is not associated to a
single ‘time slice’ Σ, but rather to properties of its time
evolution.

C. Interfaces and gluings

To conclude our analysis, let us comment on the situation
where C is an interface at which two regions get glued to
each other.
Consider a Cauchy surface Σ, which can be closed

∂Σ ¼ 0, and a line C ≅ S1 dividing it into two regions.
In this setting, rather than a boundary, C is an interface
between two subsystems, Σ ¼ ΣA ∪C ΣB. To each sub-
region ΣA;B we can apply the construction above.
Beside the gauge symmetry at the end of the dual

edges piercing C, also the flatness (zero-magnetic
flux) constraint is broken for those dual faces of Δ�2
cut by C into two dual ‘half-faces’. This is because, as a
consequence of the uncertainty principle, the fact of
fixing the electric flux through the (black) boundary
edges of ∂Δ2, automatically prevents us to have control
over the magnetic fluxes through the dual half-faces of
Δ�2 bounded by these same edges. Here, the one in
question is the canonical flatness associated to faces
lying on Σ, rather than on B as above.
At C, both gauge and shift invariance are restored when

sewing back ΣA and ΣB into Σ. In particular, gauge
invariance is restored by summing over the edge modes
fml�C
g, while shift invariance is restored by summing over

all possible boundary conditions jlC .
Had we chosen magnetic, rather than electric, boundary

conditions, we would have found a dual setup: spins jl�C
would have been interpreted as the boundary d.o.f. com-
pensating for a broken shift symmetry for the faces lying on
Σ and cut by C ¼ ∂Δ�2,38 while the gauge group elements39

Gv� would have been interpreted as the fixing of the
boundary conditions.
This interface picture is particularly pertinent when

computing entanglement entropies between subregions of
Σ. In this context, the role of the edge modes and its relation
to the boundary conditions has been already largely empha-
sized e.g., in [47,81,84–86]. Where comparison is mean-
ingful, these treatments agree with ours in the edge mode
identification.

XII. A COMMENT ON DISCRETENESS

In order to quantize the theory, we introduced a dis-
crezation Δ of M. But what are the role and status of this
discretization? In particular, to what extent is the model we
are putting forward a model of discrete quantum gravity?
In absence of boundaries, Δ is just an inconsequential

regulator: as long as it is fine enough to capture all the
topological features of M, the quantum amplitude is a
number independent from the specific choice of discreti-
zation. Therefore, as far as the quantum gravitational
amplitude associated to at closed manifold is concerned,
the quantization illustrated in the previous secitons is
equivalent to a continuum quantization. This is best seen
in the presence of a positive cosmological constant, where
the Ponzano-Regge model of Eq. (4.8) is “deformed” into
the UqðSUð2ÞÞ Turaev–Viro model (see Sec. X), which is
in turn equivalent to a Reshetikhin–Turaev model which
quantizes a G-Chern–Simons theory at level k.40 However,
subtleties arise in the presence of boundaries.
At spacelike boundaries represented by the Cauchy

surfaces Σ of the previous section, the quantum gravita-
tional amplitude works as a projector on the space of
physical (flat) states. This space cannot be fully captured by
a single discretization, and to go beyond a discrete
truncation of the phase space, new descriptions become
necessary [61,77,79].
Timelike boundaries B are yet different, and they arise as

the development in time of the corner C ¼ ∂Σ. Here is
where the (GHY) boundary conditions are genuinely
imposed in our calculation, and thus constitute the main
focus of this article. It is at this boundaries that the
discretization Δ manifests itself most prominently, and—
in the present framework—inescapably. This is essentially
due to the presence of a fundamental length scale, more
precisely of a length gap, in the quantum theory.
Indeed, to have a fixed the metric on the timelike

boundary, one must ideally assign a set of lengths to
infinitesimally close points (the choice of points, and hence
of the discretization, is hence a proxy for a choice of
coordinates on the boundary—cf. the discussion in the
Introduction). However, the fundamentally quantum
mechanical gap in the spectrum of the length operator,
Eq. (4.7), prevents one from taking the infinitesimal limit.
In this respect, there is something intrinsic in the discrete-
ness of these boundaries, at least for GHY boundary
conditions, that can only be circumvented in a limit where
the (dimensionful) gap unit, i.e., the Planck length lPl ¼
8πGNℏ goes to zero. This can only happen effectively in
presence of a second scale, e.g., the total size of the
boundary, which has hence to be taken to infinity. For this
reason, we suggested in [48] that this limit appropriately
taken might correspond to an asymptotic boundary, thus

38From the condensed matter perspective this is a new effective
symmetry of the vacuum sector. It is at the origin of the
topological nature of the gapped vacuum phase.

39Recall the discussion of Sec. VI A where we showed
that the sum over magnetic indices can be replaced
by integrals over group elements. This is the most
appropriate choice here, because C ¼ ∂Δ�2 intersects the
boundary at dual edges and dual vertices of the dual
discretization of B.

40Recall that in our notation G ≅ T�SUð2Þ; for the relation
between k, q and the cosmological constant see Sec. X.
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leading to the possibility of a contact with the AdS/CFT or
BMS/CFT framework [48,87].

XIII. SUMMARY AND OUTLOOK

In this paper, we have analyzed the nature of the
quantum edge modes for three-dimensional quantum grav-
ity as a Ponzano-Regge–Turaev-Viro topological field
theory with metric boundary conditions. From a guage-
theoretical perspective this corresponds to the study of the
edge modes in a topological sector of a non-Abelian gauge
theory with electric boundary conditions.
Paying attention to the smearing of the triad (electric

field) and connection (magnetic potential) along dual
cellular decompositions, and to the conjugate nature of
Lorentz (gauge) and shift symmetries (an effective sym-
metry), we have unveiled a pair of dual formulations of the
edge mode theory.
The first formulation is in terms of a vertex-type

statistical model whose configuration variables are some
magnetic indices labeling a basis in an irreducible repre-
sentation of the gauge group. We showed how to translate
these configuration variables into honest group elements
representing the (Lorentz) gauge frame at the boundary, in a
Wess-Zumino-Witten–like fashion. As we observed in the
last section, the magnetic-index edge modes match inde-
pendent constructions performed in the study of interfaces
in relation to the computation of the entanglement entropy
for gauge theories.
The second formulation is in terms of face-type statistical

model whose configuration variables are irreducible rep-
resentations (spins) attached to the vertices of the discre-
tization. These edge modes are the compensating fields for
the broken shift symmetry. We argued that the gravitational
interpretation is in term of the quantum (discrete) analogue
of Carlip’s ‘would-be normal diffeomorphisms’, which he
showed to reproduce the Liouville field at the boundary
of AdS3.
For the simplest example of metric (electric) boundary

conditions, these two models gives rise to the celebrated
duality between a six vertex (or XXZ spin-chain) and
RSOS face models.
Furthermore, we discussed in some simple examples

how the topology of the bulk reflects on the edge theory.
We also pointed out, in an Appendix, how our construction
seems strictly related to other proposed spinorial edge
theories.
Finally, we see two main—but intertwined—directions

in which our investigation can be further pushed. On
the one hand, it seems necessary to understand the
symmetries of our edge theories. The role of such sym-
metries has been emphasized on quite general grounds in a
number of discussions performed in the continuum, e.g.,
[1,3,4,7,88]. On the other hand, to fully match these
continuum treatment, it is of paramount importance to

better understand how to take a continuum limit in our
setup. This topic leads us to one last detour.
In all our discussion, the boundary spins are kept fixed

by construction, since they encode the sought metric
(electric) boundary condition. A consequence of this fact
is that shift symmetry in the tangential direction is
explicitly broken in this setup. Following the arguments
reviewed in Sec. V, it is possible to argue that restoration of
this symmetry should be related to an invariance under
changes in the boundary discretization (diffeomorphism
symmetry). Although amplitudes with this properties exist,
e.g., [89,90], they are essentially spin-variable rewritings of
pure connection boundary conditions. Obtaining a similar
result for metric boundary conditions is more subtle, and
we expect it to involve some tuning to a second-order
phases transition of the boundary theory (see also the
conclusion section of [48]).
Of course, the mapping onto statistical models per-

formed above can be of great advantage in addressing
the previous two questions, at least in the simple cases
related to thoroughly studied integrable models—e.g., it is
known that the effective continuum description of an XXZ
spin chain is done in terms of Wess-Zumino-Witten model,
whose symmetries are well understood; nonetheless, a
more careful and detailed analysis is needed to confirm
any (too) naive expectation—but also suggests that the
nature of the continuum limit might be influenced by the
chosen graph connectivity. We leave all further investiga-
tions of these matters to future work.
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APPENDIX A: FIXED-TRIAD BOUNDARY
CONDITIONS

In the BF formulation of three-dimensional gravity,
fixed-triad boundary conditions require the following
boundary term:
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Se½ω; e� ¼
1

lPl

Z
e ∧ F þ 1

lPl

I
E ∧ A; ðA1aÞ

δSe½ω; e� ≐
1

lPl

I
δE ∧ A: ðA1bÞ

This boundary term equals the integral of the trace of the
extrinsic curvature as in Eq. (1.4), provided the appropriate
gauge is chosen (i.e., such that ∂μna ¼ 0, where na ¼ eaμnμ,
and μ is the tangent space unit vector orthogonal to the
boundary) [5,43,91].
Clearly, the action Se fails to be Lorentz or shift

invariant, and moreover its gauge variations fail to be
proportional to a constraint,

δXSe ¼
1

lPl

I
XdE; ðA2aÞ

δλSe ¼
1

lPl

I
λðdA − FÞ: ðA2bÞ

This makes even a formal quantization in the triad
polarization quite awkward.
Let us focus on the Lorentz gauge symmetry. In our

discrete covariant treatment of Sec. VI, it was never broken.
This was because the boundary conditions were imposed
by coupling to a spin-network functional, which was gauge
invariant by construction. From this construction we were
also able to read off the boundary action of Eq. (6.8), i.e.,

SΓ½Gv� jj; η� ¼
X
l�
2jl ln½ηtðl�ÞjG−1

tðl�ÞGsðl�Þjηsðl�Þi

¼
X
l�
2jl ln½ηtðl�Þjhl� jηsðl�Þi; ðA3Þ

where in the last equation we have emphasized that the Gv�

just encode a (globally) flat connection,

hl� ¼ G−1
tðl�ÞGsðl�Þ: ðA4Þ

We want to take a formal continuum limit of this
expression, one in which the holonomies are small,

hl� ≈ 1þ Aa
μdðl�Þμτa; ðA5Þ

τa ¼ − i
2
σa. For this we need to recall that the holonomies

hl� are computed along dual edges of the triangulation,
transverse to the direct edges of which the spins j and
spinors η are the lenghts and directions. Hence, labeling
μ ¼ 1, 2 directions along the boundary locally adapted to lμ

and ðl�Þμ, we see, somewhat sloppily, that SΓ is rather the
discretization of an action of the form

SΓ∼
I

2j1½η1j∂1 þ A1jη1i þ 2j2hη2j∂2 þ A2jη2i

∼
I

2½jηtjd ∧ jηsi þ 1

lPl
Ea ∧ Aa; ðA6Þ

where, because of the dualization in the cellular decom-
position, (this equation has no sum over repeated indices)

lPljμhημjσajημi ¼ ϵμνEa
νdxν; ðA7Þ

(in this formula, we used the matching condition jηsi ¼
jηt�, see [47]).
In the continuum, a more sensible version of this action

can be obtained by breaking the symmetry between source
and target spinors through the introduction of the following
boundary action,

I
λ† ∧ ðdþ AÞη; ðA8Þ

where η ∈ C2 and λ ∈ Ω1ð∂M;C2Þ, i.e.,

λ ¼ λμdxμ ; λμ ∈ C2: ðA9Þ

This action is complex, therefore one has to take e.g., minus
its imaginary part. Now, the equation of motion for the
connection, spurring from both the bulk and boundary
contributions to the action, couples the bulk to the
boundary d.o.f. by requiring

Ea
μ ≐ lPlRehλμjσajηi: ðA10Þ

Keeping the above combination of spinors fixed, through
this equation of motion the boundary action above plays
precisely the role of the l−1

Pl E ∧ A term discussed at the
beginning of this section, while preserving Lorentz-gauge
invariance.
In any case, we see that loosely speaking the spin-

network action manages to be Lorentz-gauge invariant by
modifying the boundary term of Eq. (A1a) through the
introduction of spinor fields that have to be identified with
the “square root” of E (thus, in a sense, the quartic root of
the metric). Once the spinors are introduced, a natural
Lorentz-covariant boundary differential can be used.
The action above was firstly introduced in a Plebanski

formulation of four-dimensional gravity in [92] (see also
[93,94]). In three dimensions, the same author put forward
another proposal for a spinorial edge-mode theory [95].
There, a single spinorial field appears in the action,
accompanied by a ‘background’ one-form qa intrinsic to
the boundary ∂M (essentially a fiducial value for E).
The boundary action of [95] can be obtained from that of

Eq. (A8) by demanding
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jλμi≡ qaμσajηi: ðA11Þ

Trading λμ for qaμ is not a change of variables, because the
phases of λμ and η are interlocked. Nonetheless, with this
extra hypothesis, qa can be recovered from this identifi-
cation as a function of η and λ, E ¼ 4kηk2q.
It would be therefore interesting to continue this analysis

of spinorial action principles in the continuum to find those
that correspond to specific spin-network functionals of
particular interest, possibly along the lines of [96]. Another
avenue of investigation should clarify the fate of shift and
diffeomorphism symmetries in these continuous actions
(e.g., diffeomorphisms are covered in [95]).

APPENDIX B: HAAR INTERWINER’S
DUAL IN THE FACE MODEL

The simplest way to tackle the translation of the Haar
inetertwiner to the face model representation, is to start all
over again with the following rewriting of the solid torus
amplitude (refer to the figure for details):

hZST2
jΨT2

ðj;ιÞi¼
�Y
l�∉R�

Z
dhl�

��Y
l�∈R�

Z
dhtl�dh

b
l�dk

t
l�dk

b
l�

�

×δðKtÞ
Y
l�∈R�

δðHt
l�H

b
l� Þ

Y
l�∈R�

δðHt
l� ÞδðHb

l� Þ

×
Y
f�

f�∩R�¼∅

δðHf� Þ

Ψðj;ιÞ½hl�∉R� ;hl�∈R� ¼htl�h
b
l� � ðB1Þ

This rewriting follows the idea that the solid torus has been
cut open in a solid cylinder, i.e.,

Thus (i) the holonomies crossing the ring have been split
in two parts, assoicated to the top and bottom basis of the
cylinder (this split automatically implements the presence
of a nontrivial longitudinal holonomy)

hl�∈R� ¼ htl�h
b
l� ; ðB2Þ

also (ii) new holonomy variables kt;bl� have been introduced
which are dual the triangulation of the top and bottom bases

of the solid cylinder (the labeling by l� is conventional);
(iii) finally, we see that a handful of new delta functions
have introduced, their meaning is the following.
δðKtÞ represent the flatness of the (new) top dual face,

Kt ¼
Y �

l�∈R�kl� ; ðB3Þ

and says that one of the two cycles of the torus is
contractible (the analogue delta function for the bottom
face would be redundant).
δðHt

l�H
b
l�Þ are the gluing conditions, where for the n-th

dual edge l� ∈ R� one has schematically

Ht
n ¼ ðhtnþ1Þ−1ktnhtnH0t ðB4Þ

with H0t representing the remaining holonomy around the
top portion of the face cut in two by R—similarly forHb

n. A
twist can be implemented at this level, via a shifted delta
δðHt

nHb
nþNγ
Þ. for simplicity will not purse this possibil-

ity here.
Finally, the delta functions on the second to last line

simply represent the local flatness on the boundary of the
cylinder.
From the above expressions, one sees that all “h”

holonomies appear three times as before—see Sec. IV. For
what concerns the “k” holonomies, on the other hand, one
sees that the kt also appear three times—once in δðKtÞ, once
in δðHt

l� Þ, and once in the gluing condition δðHt
l�H

b
l� Þ—

while the kbl� appear only twice—there is not Kb.
Expanding

δðKtÞ ¼
X
Jc

dJcχ
JcðKtÞ ðB5Þ

where the label ‘c’ stands for ‘core’, and momentarily
forgetting about the kb variables, we are mathematically in
the same situation we used to be in Sec. IV. In fact, the solid
cylinder is nothing but a sphere, and from this viewpoint Jc
is the distance of the vertex at the center of the top face from
the center of the sphere. From the viewpoint of the solid
cylinder, however, Jc represents the length of the core of the
solid torus, which is summed over (with the weight above)
because its conjugate variable, the holonomy around the
opposite cycle, must be trivial.
Explicitly integrating out the kbl� , which appear only

twice each, essentially implements the gluing. This leaves
us only with variables appearing three times, which allows
us to apply the mathematical procedure of Sec. IV which
led to a face model. The difference is now that faces across
the gluing interact with a spin Jc. The physical interpre-
tation of this interaction from the face model perspective
has still to be elucidated.
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