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The multicenter solutions of four-dimensional N ¼ 2 supergravity contain a subset of scaling solutions
with vanishing total angular momentum. In a near limit those solutions are asymptotically locally
AdS2 × S2, but we show that a higher moment of angular momentum contributes a subtle twist, rotating the
S2 with time. This provides some potential hair distinguishing the asymptotics of these scaling solutions
from the near-horizon geometry of an extremal Bogomol'nyi-Prasad-Sommerfield black hole.
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I. INTRODUCTION

The multicentered black hole solutions of four-
dimensional N ¼ 2 supergravity [1–3] provide an inter-
esting setting to investigate the Bogomol'nyi-Prasad-
Sommerfield (BPS) spectrum of string theory compac-
tified on a Calabi-Yau manifold and the associated
physics problem of black hole entropy and microstates
[4–8]. Through string/M duality these solutions can be
lifted to five dimensions [9–12]. It is in this setting that
recently a subset of multicenter solutions, often called
“scaling solutions” [5,13–15], has been revisited and its
asymptotic AdS2 nature explored [16]; see also [17,18].
In this short article we point out that somewhat
surprisingly the asymptotic geometry typically has a
fibred structure, with an S2 rotating over AdS2.
Interestingly this rotation is not linked to the total
angular momentum (which for these scaling solutions
vanishes, similar to single center black holes) but to a
higher moment of the angular momentum. For lack of
deeper understanding we call this new feature the twist.
This twist provides some hair that distinguishes the
asymptotics of AdS2 multicenter solutions from the
near-horizon black hole AdS2 × S2 geometry. Since it
has been argued that precisely the scaling solutions
correspond to the exponential majority of black hole
microstates [19–21], a precise holographic interpretation
of the twist would be highly interesting. We leave this
last problem for future work. After reviewing some

technicalities of the multicenter solutions in Sec. II and
spelling out some details on both the far and near region of a
scaling solution in Sec. III we come to the point in Sec. IV
and derive the asymptotic AdS2 geometry (19) revealing
the subtle presence of the twist (17). We end with some
comments in Sec. V.

II. REMINDER OF N = 2 MULTICENTER
BLACK HOLES

The multicenter solutions of N ¼ 2 supergravity are
dyonic black holes interacting through electromagnetic and
scalar field induced forces in such a way that stable bound
states are formed. Although rather intricate, exact explicit
solutions are known; for a review see [5,22]. The theory has
n complex scalar fields tA and nþ 1 Uð1Þ gauge fields
ðA0; AAÞ. For a generic multicenter solution these fields and
the metric take the following form:

ds2 ¼ −
1

Σ
ðdtþ ωÞ2 þ Σdxidxi;

A0 ¼ −L
Σ2

ðdtþ ωÞ þ ω0

AA ¼ HAL −Q3=2yA

H0Σ2
ðdtþ ωÞ þAA

d ;

tA ¼ HA

H0
þ yA

Q
3
2

�
iΣ −

L
H0

�
: ð1Þ

The whole solution is determined in terms of 2nþ 2

harmonic functions H ¼ ðH0; HA;HA;H0Þ, which for N
dyonic charges Γa ¼ ðp0

a; pA
a ; qaA; q

a
0Þ at positions x⃗a in the

spatial R3 take the simple form

H ¼
X
a

Γa

ra
þ h: ð2Þ
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These harmonic functions enter the fields above through a
set of auxiliary functions. First they define the yA, obtained
by formal solution of the quadratic equations1

DABCyAyB ¼ −2HCH0 þDABCHAHB; ð3Þ

and then

Q3 ¼
�
1

3
DABCyAyByC

�
2

;

L ¼ H0ðH0Þ2 þ 1

3
DABCHAHBHC −HAHAH0;

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 − L2

ðH0Þ2

s
:

Furthermore there are the one-forms2

dAA
d ¼⋆dHA; dω0¼⋆dH0; dω¼⋆hdH;Hi: ð4Þ

At the technical level the bound state nature of these
solutions appears through a set of equations restricting the
(coordinate) distances rab between the centers,

X
b;b≠a

hΓa;Γbi
rab

¼ hh;Γai: ð5Þ

The constants h ¼ ðh0; hA; hA; h0Þ appearing in the har-
monic functions set the asymptotic values of the scalar
fields3 and as such correspond to the choice of vacuum.
When these constants are nonzero the multicenter solutions
are easily seen to be asymptotically flat. When one
approaches one of the centers, x⃗ → x⃗a, the geometry
becomes (for a generic charge Γa) AdS2 × S2, which
one recognizes as the near-horizon geometry of an extremal
Reisner-Nordstrom black hole, with the scalars taking
constant “attractor” values [24]. Finally it is important to
point out that the solutions are stationary with a total
angular momentum given by [1]

J⃗ ¼ 1

2

X
a<b

hΓa;Γbix̂ab: ð6Þ

Note that of course the special case of a single center
reproduces a standard extremal BPS black hole [24] with-
out angular momentum.

III. A FAR AND NEAR LIMIT
FOR SCALING SOLUTIONS

We should point out that although the 3N (coordinate)
positions of the dyonic black hole centers are constrained
by the N − 1 Eqs. (5), 2N − 2 ¼ 3N − ðN − 1Þ − 3c.o.m.
remain free, leading to an interesting space of solutions (see
[6,25] for some first explorations of these spaces). For a
generic set of charges Γa there is both a minimal and
maximal distance between the centers, but in some special
cases this is not so. In particular the relative coordinate
positions of the centers can be made arbitrarily small when
the charges Γa are such that there exists a set of positive
numbers sab ¼ sba, among which each triple satisfies the
triangle inequalities and

X
b;b≠a

hΓa;Γbi
sab

¼ 0: ð7Þ

Indeed, it directly follows that then rab ¼ ξsab solves the
constraint Eqs. (5) in the limit ξ → 0. The above scaling
conditions have not, as far as we are aware, been studied/
solved in general (for N > 3), but one can find example
solutions for any number of centers.4 Clearly if a set of
charges Γa satisfies the scaling conditions then so does an
arbitrary overall rescaling of these charges, and one can
also freely rescale their positions, hence the name.
The supergravity solution degenerates in an interesting

way when the coordinate positions of the centers approach
each other [5,15]; in particular the physical distance
between the centers does not vanish. To understand more
clearly what happens it is useful to consider this limit in a
slightly different but equivalent way. As on a technical level
one is essentially comparing inverse distances to the
constants h in the harmonic functions we can study it
from that perspective. Let us introduce a parameter λ by
redefining h ¼ λh̃, and consider sending λ → 0 while
keeping h̃ and x⃗a fixed. This procedure produces two
different supergravity solutions, depending on how we treat
the coordinates ðt; xiÞ in this limit. We refer to these two
solutions as the far and near limits, respectively.

A. The far limit

Here we rescale the coordinates via ðt; xiÞ ¼ λ−1ðt̃; x̃iÞ
and keep the tilded versions fixed in the λ → 0 limit. As
now the original coordinates xi ≫ xia one sees that the new

1Here the constant symmetric three tensor DABC and the
symplectic inner product hE1; E2i ¼ −E0

1E
2
0 þ EA

1E
2
A − E1

AE
A
2 þ

E1
0E

0
2 are those associated to the particular four-dimensional

N ¼ 2 supergravity under consideration. In the case of Calabi-
Yau compactifications these two objects are naturally determined
by the internal geometry. The precise value of the constantsDABC
plays however no role in the current paper and all of our discussion
hence also applies to situationswith no known embedding in string
theory, as e.g., some magic N ¼ 2 theories [23].

2The Hodge star is that of flat R3.
3More precisely it is the h being determined by tA∞, in such a

way that hh;PaΓai ¼ 0 [1].

4Take e.g., N ordered points x⃗k ∈ R3, k ∈ ZN . Defining lk ¼jx⃗kþ1 − x⃗kj one can choose hΓa;Γbi ¼ ðb − aÞla when ja − bj ¼
1 and 0 otherwise. In this case sab ¼ jx⃗a − x⃗bj shows that hΓa;Γbi
satisfy the scaling conditions.
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coordinates x̃i parametrize the region far away from the
charged centers. Additionally, if we define the rescaled
positions x̃ia they go to 0 and so the limit also describes the
centers approaching each other. Although the supergravity
solution has a rather intricate form involving a number of
auxiliary functions a closer look reveals that much of this
structure is homogeneous under the above rescaling. If after
taking the limit one drops the tildes one finds that the
solution has essentially remained intact, the only difference
being the replacement

H ¼
X
a

Γa

ra
þ h → H ¼

P
aΓa

r
þ h: ð8Þ

So the far limiting procedure reproduces the single center
solution of total charge Γt ¼

P
aΓa; in particular at large r

the constant in the harmonic function dominates and the
solution is asymptotically flat. Physically what happens is
that the original centers develop a stronger and stronger
gravitational warping deep in the center, which for an
observer far away becomes indistinguishable from a single
extremal black hole carrying the total charge while nothing
much happens to the asymptotics of the original solution.
Note that for this procedure to make sense as a continuous
limit one needs to keep track of the constraint Eqs. (5),
which reduce to the scaling conditions

X
b;b≠a

hΓa;Γbi
rab

¼ 0: ð9Þ

Note that an interesting physical consequence of these
conditions is that the angular momentum of the solution
vanishes,

X
b

hΓa;Γbi
rab

¼ 0 ⇒ 0 ¼
X
a;b

hΓa;Γbi
rab

x⃗a

¼
X
a<b

hΓa;Γbi
rab

ðx⃗a − x⃗bÞ ¼ 2J⃗: ð10Þ

This is of course in agreement with the fact that also the
total angular momentum of the corresponding single center
black hole is 0.
All this might suggest that when the centers of a

multicenter solution approach each other a single centered
black hole is obtained. Although this is true for the far
region we see in the next subsection this not at all the case
in a near region.

B. The near limit

In this case we do not rescale the coordinates at all, rather
keeping t; xi fixed as λ → 0. This limit is immediate to
perform as it leaves the full solution intact, simply putting h
to 0. Apart from imposing the scaling conditions (9), it
simply amounts to replacing the harmonic functions as

H ¼
X
a

Γa

ra
þ h → H ¼

X
a

Γa

ra
: ð11Þ

Contrary to the far limit, in the near limit the solution
retains its multicentered nature as it does not differ from
the original near any of the centers, i.e., when r → ra. The
large r behavior has however drastically changed as there

H ¼
P

aΓa

r
þOðr−2Þ: ð12Þ

This suggests that the near limit at large distances is no
longer asymptotically flat but should behave as the near
horizon of a single center black hole of total charge
Γt ¼

P
aΓa, which is AdS2 × S2. It seems that a simple

picture emerges where the far distance behavior of the near
limit matches perfectly with the near behavior of the far
limit, both coinciding with the near horizon geometry of a
single extremal black hole. Although this is roughly correct
there is a small, but we believe important, twist to this
intuitive picture, which is themain point of this paper. As we
see the large r behavior of the near limit does not exactly
reproduce the near-horizon geometry but rather some hair
remains through a spinning of the 2-sphere. Technically this
originates from carefully keeping track of theOðr−2Þ term in
the harmonic functions as we explain in some more detail in
the next section.

IV. FAR ASYMPTOTICS OF THE NEAR LIMIT

To go beyond the naive analysis of the large distance
behavior of the near limit of scaling solutions made at the
end of the previous section we need to keep track of a
subleading term in the harmonic functions,

H ¼ Γ
r
þ Δix̂i

r2
þOðr−3Þ: ð13Þ

Here we introduced the electromagnetic dipole

Δi ¼
X
a

Γaxia: ð14Þ

Let us stress that the unexpected twist we uncover does not
originate in subleading terms in an asymptotic expansion of
the metric. Rather, as we see, for certain terms the naive
leading part vanishes, promoting a subleading part to the
dominant contribution.
For the rest of this section we focus on the metric as

nothing unexpected happens in the gauge fields or scalar
expansions, as can be checked by the reader. The main
nontriviality of the metric (1) is encoded in the warp factor
Σ. It is readily calculated by inserting (13) in the auxiliary
functions that its leading behavior at large distance is

Σ ¼ S
4πr2

þOðr−3Þ; ð15Þ
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where SðΓtÞ [3,26] is a constant that has the physical
interpretation of entropy (or horizon area).
The key point is now the contribution of ω (4) to (1). As

was pointed out in [1] it generically behaves at large
distances as r−1, with the coefficient directly proportional
to (and responsible for) the total angular momentum of the
solution. But since for scaling solutions the total angular
momentum necessarily vanishes [see (10)] the term at order
r−2 becomes the leading contribution. An explicit calcu-
lation reveals

ω ¼ Ki

r2
ϵijkx̂jdx̂k þOðr−3Þ; ð16Þ

where

K⃗ ¼ hΓ; Δ⃗i
2

¼ 1

2

X
a<b

hΓa;Γbix⃗ab: ð17Þ

Note that we can always choose coordinates such that K⃗ is
oriented along the z-axis, such that in spherical coordinates
the expression for ω then becomes

ω ¼ −
K
r2
sin2θdϕþOðr−3Þ: ð18Þ

If the metric were asymptotically flat, where both the
timelike and spatial warp factor would go to a constant, this
Oðr−2Þ behavior of ω would remain some subleading
angular momentum multipole effect. But the asymptotics
have changed by putting h ¼ 0. The timelike warp factor
now blows up like r2 enhancing the contribution from ω
while at the same time the spatial warp factor falls off like
r−2 tempering the growth of the spatial sphere, in exactly
such a way that both contributions become of the same
order. Writing this out produces the far near metric,

ds2¼−
4πr2

S
dt2þ S

4πr2
dr2þ S

4π
ðdθ2þ sin2θðdϕþAÞ2Þ;

ð19Þ

here we recognize an S2 fibered over AdS2, with a flat
connection

A ¼ 16π2K
S2

dt: ð20Þ
So interestingly enough the far near metric is not exactly
the near far metric but has the extra twist that the 2-sphere is
rotating as time in AdS2 flows, with the rate of rotation set
by the intriguing quantity (17), which for lack of better
current understanding we might just as well refer to as the
twist vector.5 Note that the twist can apparently be removed
by a coordinate transformation ϕ̃ ¼ ϕþ 4πK

S2 t.

V. COMMENTS

Scaling multicenter solutions provide an interesting
source of highly nontrivial asymptotic AdS2 geometries.
Recently the authors of [16] argued why they could provide
important new insights and directions to two-dimensional
holography and they explored some of the first physical
properties and consequences. In this note we showed that
these solutions might be even richer than naively expected,
in that they retain a subtle extra twist (or hair) that is not
present in the empty AdS2 background obtained from the
near-horizon geometry of an extremal black hole. We end
with a number of small comments.

(i) First, a small note of caution. Although it definitely
appears as if the twist provides a leading contribution
to the asymptotic metric it might be naive to simply
treat on equal footing the dtdϕ and dϕ2 components.
Directly related is the question of whether the
asymptotic coordinate transformation ϕ̃¼ϕþ 4πK

S2 t,
that could remove the twist, is indeed large and
physically relevant or not. What exactly the correct
asymptotic boundary conditions are, and the corre-
sponding asymptotic symmetries, is a subtle issue that
needs further careful analysis. This would require a
precise two-dimensional bulk theory containing all
the relevant fields,which as far aswe are aware has not
been previously formulated. A simple sphere reduc-
tion keeping the connection A as a two-dimensional
gauge field seems to have problems with consistency
and so a larger frameworkmight be needed. In a lift to
five-dimensional terms of the order rdtdϕ are gen-
erated [16], but it is unclear if this has any implications
for our discussion in four dimensions.

(ii) If we are more optimistic this result has potentially
interesting physical consequences. It has been as-
sumed that it is exactly the scaling solutions that are
key in understanding black hole entropy [19,21]. On
the microscopic side because they seem to be asso-
ciated with an exponential number of “pure-Higgs”
states and on the gravity side because they closely
resemble the black hole. The scaling solutions satisfy
the condition [27] that the angularmomentumof black
holemicrostates should vanish and it is interesting that
the twist uncovered here provides a new observable
that can differentiate, even asymptotically, between
different AdS2 scaling solutions. The natural arena to
try and understand the twist better and a provide a
potential connection to microstates is of course holog-
raphy. For the moment we have nothing to add to the
interesting discussion and list of references in [16], but
we hope to investigate this further in the future.

(iii) We should point out that also in the AdS3 × S2 limit
of multicenter solutions a spinning sphere made its
appearance [28]. We see however no direct relation
with the twist here, as the spin there has a direct
interpretation as angular momentum, or R-charge in
the dual field theory.

5We refrain from calling K⃗ spin as it should be clearly
distinguished from the angular momentum J⃗ that vanishes.
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