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Generalizing Deser’s work on pure SUð2Þ gauge theory, we consider scalar, spinor, and vector matter
fields transforming under arbitrary representations of a non-Abelian, compact, semisimple internal Lie
group, which is a global symmetry of their actions. These matter fields are coupled to Abelian gauge fields
through the process of iterative Noether coupling. This procedure is shown to yield precisely the same
locally gauge invariant theory (with the non-Abelian group as the gauge group) as obtained by the usual
minimal coupling prescription originating from the gauge principle. Prospects of this nongeometrical
formulation, towards a better understanding of physical aspects of gauge theories, are briefly discussed.
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I. INTRODUCTION

To formulate theories of fundamental interactions invari-
ant under a local, non-Abelian gauge invariance, the
standard practice is to appeal to the gauge principle ([1–3]),
which is inspired in turn by the principle of general
covariance underlying Einstein’s general relativity.
According to this principle, physical quantities must be
gauge invariant, i.e., invariant under local gauge trans-
formations. Implementation of the principle leads one to
the minimal coupling prescription, under which any partial
derivative of a field transforming nontrivially under the
action of the gauge group, must be augmented by a
connection term. This term compensates for the difference
in gauge transformation property of the field at two
different (neighboring) points. In general relativity, this
prescription is understood in the following way [4]: naïve
parallel transport on a curved surface (which is embedded
in a higher dimensional flat space) of a tangent vector
from its initial location, does not yield a vector which
is tangent to the surface at the new location. We need to
make a projection, of the naïvely parallel-transported
vector, to the tangent space at the new location. This is
effected by the connection term added on to the partial
derivative of the vector. In gauge theory, the connection
term is specified uniquely by the gauge transformation
properties of the fields. Once the augmented (or “covar-
iant”) derivatives are constructed and curvatures or field
strengths of the gauge field are obtained through the Ricci
identity, gauge-invariant actions for all fields can be written

down. The gauge principle is, thus, a very geometrical
principle.
Starting from the mid-1940’s however, many physicists

have sought more physical alternatives to this geometrical
principle ([5–17]). Physicists have also questioned whether
the gauge principle is truly a physical principle, since all
dynamical variables in the theory must of necessity be
gauge invariant. It is thus not clear precisely what new
physical information is obtained from the gauge principle,
apart from a statement of redundancy of some of the field
degrees of freedom used to construct the theory [18].
Further, while the standard formulation has yielded a

plethora of physical results all consistent with the exper-
imental data [19], certain very special physical aspects of
non-Abelian gauge interactions, like the antiscreening
property and asymptotic freedom, can only be understood
after detailed calculation of the renormalization-group beta
function. We aim to understand the more complicated
physics of the non-Abelian gauge theory as a result of
simpler constituent dynamics based essentially on Abelian
gauge invariance and non-Abelian global symmetries. This
is the aim of a program initiated with the present paper.
The alternative approach that we are most motivated by

has been proposed by Deser [11] (some more field theoretic
works based on [11] are [20–24]). The starting point in
Deser’s work is a Lagrangian with three copies of a free
Abelian gauge field, with the Lagrangian also possessing a
global SUð2Þ invariance. The global symmetry gives rise to
a Noether current for each species of the Abelian gauge
field. These currents are then coupled to the Abelian gauge
fields to generate an additional term in the Lagrangian,
which again is invariant under the global symmetry. From
this new Lagrangian, one again constructs Noether currents
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and iterates this process until such currents cease to be
generated. At the point of termination, one ends up with a
Lagrangian with a full SUð2Þ local gauge invariance.
In this paper, we show that the procedure discussed

above can be generalized to include arbitrary matter fields:
starting with a globally Uð1Þ invariant action for charged
scalar, spinor, and vector fields, and then proceeding with
the iterative Noether coupling, yields the same locallyUð1Þ
gauge invariant matter action as obtained from the minimal
coupling prescription pertaining to local Uð1Þ gauge
invariance. This procedure is then generalized to matter
actions with a global SUðNÞ symmetry, with arbitrary
representations of the matter fields under SUðNÞ, yielding
at the end a locally SUðNÞ gauge invariant theory for the
corresponding matter field. The number of iterations is
always the same as the number of spacetime derivatives
needed to describe the globally symmetric theory. The
procedure thus amply illustrates that the minimal coupling
prescription need not be invoked ab initio to construct non-
Abelian gauge-invariant matter field actions; iterative
Noether coupling achieves the same result.
Various field theoretic actions have been derived in

Refs. [20,21,23,24] by iterative Noether coupling (also
referred to as self-interaction). But, to our knowledge, this
procedure has not been applied before to derive Uð1Þ and
SUðNÞ gauge-invariant actions for matter fields of vari-
ous spins.
The motivation for our work is as follows. On the one

hand, there is a non-Abelian gauge theory. On the other
hand, there is a theory constructed by starting with Abelian
gauge fields and a global non-Abelian symmetry, and then
iteratively coupling the Noether current of that symmetry
with the Abelian gauge fields. When the iteration stops, one
needs to do an identification of fields between the two
theories to complete the equivalence. In this way, any non-
Abelian gauge theory (with matter fields in our paper) has
been shown here to be classically equivalent to a theory
without any explicit non-Abelian gauge invariance (redun-
dancy), but having instead a non-Abelian physical (global)
symmetry, and including all types of realistic matter. This
way of interpreting Deser’s original program leads to the
remarkable possibility that one can deal with the dynamics
of non-Abelian gauge theories avoiding the mathematical
complexity inherent in such theories.
The paper is organized as follows. In Sec. II, we obtain

the Uð1Þ gauge-invariant Lagrangians involving matter
fields with spin 0, spin 1=2, and spin 1. In Sec. III, we
obtain the pure gauge Lagrangian for the SUðNÞ gauge
group, extending Deser’s SUð2Þ gauge group calculation.
Section IV contains our main results leading to the
generalization of the iterative Noether coupling procedure
to the case of matter fields of spin 0, 1=2, and 1, trans-
forming under arbitrary representations of SUðNÞ as the
global symmetry group, and demonstrating that the result-
ant action is identical to the one obtained from “gauging”

the appropriate matter actions through the minimal cou-
pling prescription. In Sec. V, we present our conclusions
and outlook.

II. U(1) GAUGE INVARIANCE
FOR A MATTER FIELD

A. Scalar field

We start with the Lagrangian of a free complex scalar
field and a free Abelian gauge field

L0 ¼ ð∂μϕÞ�ð∂μϕÞ − 1

4
FμνFμν; ð1Þ

which is invariant under a global Uð1Þ transformation
ϕ → ϕeieω [in addition to the invariance under a Uð1Þ
gauge transformation of Aμ]. For an infinitesimal trans-
formation, δϕ ¼ ieωϕ and δϕ� ¼ −ieωϕ�. To construct
the Noether current j1μ (where the superscript 1 stands for
the first iteration), we use

∂L0

∂ð∂μϕÞ
δϕþ ∂L0

∂ð∂μϕ
�Þ δϕ

� ¼ ωj1μ; ð2Þ

which gives

j1μ ¼ ieðϕ∂μϕ� − ϕ�∂μϕÞ: ð3Þ

We add to the Lagrangian the new term

L1 ¼ j1μAμ: ð4Þ

Then from L1, we get a further contribution to the Noether
current, making the replacements L0 → L1 and j1μ → j2μ

in (2),

j2μ ¼ 2e2ϕ�ϕAμ: ð5Þ

So we further add

L2 ¼
1

2
j2μAμ ð6Þ

to the Lagrangian. Then L2 ¼ e2ϕ�ϕAμAμ, and we see that
the factor of 1

2
in (6) is needed to ensure that

δ

δAμ

Z
d4xL2 ¼ j2μ: ð7Þ

As L2 does not contain any derivative of ϕ, no further
contribution to the Noether current is generated, and the
iteration stops here. Thus, the final Lagrangian is

L ¼ L0 þ L1 þ L2: ð8Þ
It can be easily checked that this final Lagrangian

equals (1) with ∂μ replaced by
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Dμ ¼ ∂μ þ ieAμ ð9Þ

in the scalar part. Thus, iterative Noether coupling has
converted the Lagrangian in (1), which had only a global
Uð1Þ invariance in the matter part, to the Lagrangian in (8),
in which the matter part has a Uð1Þ gauge invariance.
We also note that L0, L1, and L2 split up the Lagrangian

with a full Uð1Þ invariance into the propagator, the vertex
of order e, and the vertex of order e2, respectively. This will
happen in the other cases also.

B. Spinor field

L0 ¼ iψ̄γμ∂μψ −
1

4
FμνFμν ð10Þ

is invariant under a globalUð1Þ rotation δψ ¼ ieωψ , which
gives the Noether current

j1μ ¼ −eψ̄γμψ : ð11Þ

We add L1 as in (4) to L0. Since L0 has only a single
spacetime derivative of the field, j1μ has no field derivative
and so, unlike in the previous case, L1 gives no further
Noether current. Our final Lagrangian is therefore
L ¼ L0 þ L1. This equals (10) with ∂μ replaced by Dμ,
as given by (9), in the spinor part.

C. Vector field

L0 ¼ −
1

2
ð∂μWν − ∂νWμÞ�ð∂μWν − ∂νWμÞ − 1

4
FμνFμν

ð12Þ

is invariant under δWμ ¼ ieωWμ and δW�
μ ¼ −ieωW�

μ.
This gives

j1μ ¼ ieðWν�ð∂μWν − ∂νWμÞ −Wνð∂μW�
ν − ∂νW�

μÞÞ:
ð13Þ

Then (4) gives

j2μ ¼ −e2ð2AμWν�Wν − AνðW�
μWν þW�

νWμÞÞ: ð14Þ

Again (6) and (8) lead us to (12) with ∂μ replaced by Dμ in
the part involving the vector field Wμ [25].

III. SU(N) GAUGE INVARIANCE
FOR A PURE GAUGE FIELD

The calculation of this section extends Deser’s [11]
calculation, which was done for the SUð2Þ group, to the
case of the SUðNÞ group. This is also intended to set the
stage for the inclusion of matter fields. We start with

L0 ¼ −
1

4
ð∂μAa

ν − ∂νAa
μÞð∂μAaν − ∂νAaμÞ; ð15Þ

where each Aa
μ (a running from 1 to N2 − 1) is an Abelian

gauge field. This Lagrangian has a Uð1Þ gauge invariance
Aa
μ → Aa

μ þ ∂μω
a for each species of Aa

μ. It is also invariant
under the global SUðNÞ transformation

δAa
μ ¼ gfabcAb

μα
c: ð16Þ

To see this, note that (up to a constant factor) L0 in (15)
equals Tr½ð∂μAν − ∂νAμÞð∂μAν − ∂νAμÞ�, where the matrix
Aμ ¼ Aa

μTa. [We use the result that Tr½TaTb� is proportional
to δab, Ta being the generators of SUðNÞ]. So L0 is
invariant under Aμ → UAμU†, where U is a constant
SUðNÞ matrix. Equation (16) is the infinitesimal version
of this transformation.
The Noether current in the first iteration satisfies the

relation

∂L0

∂ð∂μAa
νÞ
δAa

ν ¼ j1cμωc: ð17Þ

This gives us

j1cμ ¼ −gfabcð∂μAaν − ∂νAaμÞAb
ν : ð18Þ

We set up the next term in the Lagrangian as L1 ¼ 1
2
j1cμAc

μ.
Now (up to a constant factor), L1 equals Tr½ð∂μAν−
∂νAμÞAμAν�. (This can be shown from the results that
Tr½Ta½Tb; Tc�� is proportional to fabc and that fabc is
completely antisymmetric.) So L1 also is invariant under
Aμ → UAμU†. Therefore, we iterate the process once more
to obtain

j2eμ ¼ g2fabcfadeAbμAcνAd
ν : ð19Þ

Then we add

L2 ¼
1

4
j2eμAe

μ ð20Þ

so that we satisfy

δ

δAa
μ

Z
d4xL2 ¼ j2aμ: ð21Þ

L2 is also a global SUðNÞ invariant, as it equals (up to a
constant factor) Tr½½Aμ; Aν�½Aμ; Aν��. But as L2 does not
involve derivatives, the iteration stops, and the final
Lagrangian L ¼ L0 þ L1 þ L2 is the familiar SUðNÞ
gauge invariant Lagrangian

L ¼ −
1

4
Fa
μνFaμν; Fa

μν ¼ ∂μAa
ν − ∂νAa

μ − gfabcAb
μAc

ν:

ð22Þ
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It can also be written as L ¼ − 1
4
Tr½ð∂μAν − ∂νAμ þ

ig½Aμ; Aν�Þ2�. The terms of order g and order g2 are,
respectively, L1 and L2 deduced above.

IV. SU(N) GAUGE INVARIANCE
FOR MATTER FIELDS

A. Scalar field

We start with the action

L0 ¼ ð∂μϕiÞ�ð∂μϕiÞ −
1

4
ð∂μAa

ν − ∂νAa
μÞ2; ð23Þ

where the summation over i is from 1 to the dimension of
any representation of SUðNÞ under which we want the
complex scalar field to transform. This is invariant under
the global SUðNÞ transformations

ϕi → exp ðigαaTa
ijϕjÞ: ð24Þ

Using δϕi ¼ igαaTa
ijϕj and δϕi� ¼ −igαaT̄a

ijϕ
�
j (where the

bar over T denotes complex conjugation), we obtain the
Noether current

j1aμ ¼ igðTa
ijð∂μϕ�

i Þϕj − T̄a
ijð∂μϕiÞϕ�

jÞ: ð25Þ

We define the next term in the Lagrangian as L1 ¼ j1aμAa
μ.

In terms of the matrix Aμ and the column vector Φ con-
structed out of ϕi, L1¼ igðð∂μΦ†ÞAμΦ−Φ†Aμð∂μΦÞÞ,
which is invariant under the global SUðNÞ transformations
Φ → UΦ and Aμ → UAμU†. Therefore, we generate the
next contribution to the Noether current

j2bμ ¼ g2ðT̄a
ijT

b
ikϕ

�
jϕk þ Ta

ijT̄
b
ikϕjϕ

�
kÞAaμ: ð26Þ

This current is of the form j2bμ ¼ SabAaμ, where Sab ¼ Sba.
Therefore, (21) is satisfied when we set the next term in the
Lagrangian as

L2 ¼
1

2
j2bμAb

μ: ð27Þ

This, like L0 and L1, is global SUðNÞ invariant as it equals
g2Φ†AμAμΦ. But the iteration stops, and it can be checked
that in the final Lagrangian, the matter part of the starting
Lagrangian (23) has been modified into ðDμϕÞ�i ðDμϕÞi,
where

ðDμÞij ¼ δij∂μ þ igAa
μðTaÞij; ð28Þ

so that we have arrived at a SUðNÞ gauge invariance.
Writing in the matrix form ðDμΦÞ†ðDμΦÞ, where
Dμ ¼ ∂μ þ igAμ, we find that the terms of order g and
order g2 are, respectively, L1 and L2 deduced above.
An important point is that the pure gauge part of L0

in (23) also generates a Noether current due to invariance

under (16). But since the corrections L1 and L2 to the
matter field Lagrangian do not involve derivatives of Aa

μ,
the iterative Noether coupling from the pure gauge part
proceeds simultaneously with (as the same parameters αa

are involved), but independently of, the iterative Noether
coupling from the matter part. So together with SUðNÞ
gauge invariance in the matter part, we end up with (22) as
in Sec. III. This will happen for the spinor and the vector
fields also.
For completeness, we note that the calculations of this

section are easily modified when the matter field transforms
under the adjoint representation of SUðNÞ. As this repre-
sentation is real, we start with N2 − 1 species of a real
scalar field ϕa. The global SUðNÞ invariant Lagrangian is

L0 ¼
1

2
ð∂μϕ

aÞð∂μϕaÞ − 1

4
ð∂μAa

ν − ∂νAa
μÞ2: ð29Þ

The generators have the elements ðTbÞac ¼ ifabc, and so
the scalar field transforms as δϕa ¼ gfabcϕbαc. The cur-
rents from L0 and L1 ¼ j1aμAa

μ are

j1cμ ¼ gfabcð∂μϕaÞϕb; ð30Þ

j2eμ ¼ g2fabcfadeϕbAcμϕd: ð31Þ

Then adding L2 ¼ 1
2
j2eμAe

μ gives the SUðNÞ gauge invari-
ant Lagrangian which contains the covariant derivative
ðDμÞac ¼ δac∂μ þ igAb

μðTbÞac in the matter part.

B. Spinor field

L0 ¼ iψ̄ iγ
μ∂μψ i −

1

4
ð∂μAa

ν − ∂νAa
μÞ2 ð32Þ

is invariant under the global SUðNÞ rotation dψ i ¼
igαaTa

ijψ j, giving j1aμ¼−gψ̄ iγ
μTa

ijψ j and L¼L0þj1aμAa
μ.

This modifies thematter part inL0 with ∂μ replaced byDμ as
in (28).

C. Vector field

L0 ¼ −
1

2
ð∂μWiν − ∂νWiμÞ�ð∂μWν

i − ∂νWμ
i Þ

−
1

4
ð∂μAa

ν − ∂νAa
μÞ2 ð33Þ

is invariant under δWμ
i ¼ igαaTa

ijW
μ
j and δWμ�

i ¼
−igαaTa

ijW
μ�
j . This gives the current

j1aμ ¼ igðT̄a
ijW

�
jνð∂μWν

i − ∂νWμ
i Þ

− Ta
ijWjνð∂μWν�

i − ∂νWμ�
i ÞÞ: ð34Þ

Then setting L1 ¼ j1aμAa
μ gives
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j2bμ ¼ −g2ðT̄a
ijT

b
ikW

ν�
j Wkν þ Ta

ijT̄
b
ikW

ν
jW

�
kνÞAaμ

þ g2ðT̄a
ijT

b
ikW

μ�
j Wkν þ Ta

ijT̄
b
ikW

μ
jW

�
kνÞAaν: ð35Þ

This current is of the form j2bμ ¼ SabAaμ þ S0abμνAaν,
where Sab ¼ Sba and S0abμν ¼ S0baνμ. This ensures that
(21) is satisfied when we set L2 ¼ 1

2
j2bμAb

μ. Again one can
check that L0 þ L1 þ L2 has the covariant derivative (28)
in the matter part of the Lagrangian.

V. CONCLUSIONS AND OUTLOOK

Our paper is more than an explicit completion of the
Deser program for non-Abelian gauge theories to include
matter field sources. We have an alternative motivation for
this apparent completion, as follows. The foregoing sec-
tions establish that non-Abelian gauge invariance of very
general classes of field theories is a dynamical consequence
of the iterative Noether coupling procedure, where one has
put in only the non-Abelian global symmetries and Abelian
gauge invariance. If one is able to derive all dynamical
results—classical and quantum—of non-Abelian gauge
theories based on these invariances alone, one may not
need to consider the full non-Abelian gauge invariance with
all its complications. In that case, the property of asymp-
totic freedom (attributed to non-Abelian gauge field self-
interactions) may be traced to a somewhat different

physical origin. It can then become clearer why it is only
the self-interactions of non-Abelian gauge fields that
possess this property, in contrast to the entire gamut of
fundamental interactions, which are not asymptotically
free. Also, within such a formulation, infrared strong-
coupling phenomena like the phase transition to a quark-
gluon plasma, quark confinement, and low energy hadron
physics in general, might become easier to handle. One can
even hope for a scenario in which Abelian gauge fields are
used on a lattice for extracting nonperturbative dynamical
information like hadron masses and decay widths.
Another motivation for this program arises from the fact

that Abelian gauge theories have already been formulated in
terms of gauge- invariant fields, within the so-called “gauge-
free” approach [26], using the unique and natural projection
operator given in the Uð1Þ gauge field action itself. Our
current underpinning in this paper of non-Abelian gauge
theories on Abelian gauge fields, may afford us a way to do
this for non-Abelian gauge fields as well.
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