
 

Quantum correlators in Friedmann spacetimes: The omnipresent de Sitter
spacetime and the invariant vacuum noise

Kinjalk Lochan,1,* Karthik Rajeev,2,† Amit Vikram,3,‡ and T. Padmanabhan2,§
1Department of Physical Sciences, IISER Mohali, Sector 81, Manauli 140306, India
2IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India

3Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India

(Received 13 June 2018; published 28 November 2018)

We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe. (i) We begin
by showing that it is possible to map the dynamics of a scalar field with a given mass, in a given Friedmann
background to another scalar field of a different mass in another Friedmann universe. In particular one can
map the dynamics of (1) a massless scalar field in a universe with power-law expansion to (2) a massive
scalar field in the de Sitter spacetime. This allows us to understand several features of either system in a
simple manner and clarifies several issues related to the massless limit. (ii) We relate the Euclidean Green’s
function for the de Sitter spacetime to the solution of a hypothetical electrostatic problem in D ¼ 5 and
obtain, in a very simple manner, a useful integral representation for Green’s function. This integral
representation is helpful in the study of several relevant limits and in recovering some key results which are
—though known earlier—not adequately appreciated. One of these results is the fact that, in any Friedmann
universe, sourced by a negative pressure fluid, the Wightman function for a massless scalar field is
divergent. This shows that the divergence of Wightman function for the massless field in the de Sitter
spacetime is just a special limiting case of this general phenomenon. (iii) We provide a generally covariant
procedure for defining the power spectrum of vacuum fluctuations in terms of the different Killing vectors
present in the spacetime. This allows one to study the interplay of the choice of vacuum state and the nature
of the power spectrum in different coordinate systems in the de Sitter universe in a unified manner. (iv) As a
specific application of this formalism, we discuss the power spectra of vacuum fluctuations in the static
(and Painlevé) vacuum states in the de Sitter spacetime and compare them with the corresponding power
spectrum in the Bunch-Davies vacuum. We demonstrate how these power spectra are related to each other
in a manner similar to the power spectra detected by the inertial and Rindler observers in flat spacetime.
This also gives rise to a notion of an invariant vacuum noise in the corresponding spacetimes which is
observer independent. (v) In addition, several conceptual and technical issues regarding quantum fields in
general cosmological spacetimes are clarified as a part of this study.
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I. INTRODUCTION AND SUMMARY

Quantum fields in Friedmann universes have been
investigated extensively in the past, leading to a fairly vast
amount of literature (see for instance, [1–7]). In addition to
enriching our theoretical understanding of quantum field
theory, such studies also seem to be relevant to identify the
seeds of structure formation as the quantum fluctuations in
the early universe [8–11]. This problem, as well as the
backreaction of quantum fluctuations, has been the subject
of numerous investigations (e.g., [12,13]). Moreover,
such investigations, especially in the context of a de Sitter

universe, have highlighted several theoretical issues which
are rather special to this context [14–23].
In this work, we revisit the study of a minimally coupled

scalar field ϕðxÞ of mass m (which could be zero or
nonzero) in a Friedmann universe with a power-law
expansion a2ðηÞ ∝ η−2q in terms of the conformal time
η, with q ¼ 1 representing the de Sitter universe. Though
this subject has a literature running to several hundreds of
papers (we provide a handful sample which a reader can
approach for a quick survey, viz., [11,14,24–39]), we find
that fresh insights and new results are still possible. We
summarize these below in order to guide the reader through
this rather lengthy paper.
We begin, in Sec. II A, with a brief description of a few

coordinate systems which are useful in the study of
Friedmann universes in general and de Sitter spacetime
in particular. The de Sitter universe has a time translational
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invariance which is not manifest in the standard Friedmann
coordinates (in which aðtÞ ∝ expHt) or in conformal
Friedmann coordinates (in which aðηÞ ∝ η−1). This explicit
time dependence of the metric prevents defining vacuum
states by choosing modes which evolve as exp ð−iωtÞ or
as exp ð−iωηÞ (except approximately or asymptotically).
On the other hand the same de Sitter spacetime can be
expressed in terms of Painlevé-type coordinates so that the
metric1 is actually stationary (i.e., gab is independent of the
cosmic or conformal time coordinate). In this coordinate
system one does have modes evolving as exp ð−iωtÞ at all
times, allowing one to define a vacuum state with respect to
the cosmic time t. A further transformation reduces the
metric from the stationary to the static form with a new
coordinate τ which is timelike in a region of spacetime. We
briefly describe these constructions and emphasize the fact
the static and Painlevé vacua are the same, and both can be
defined with respect to modes which evolve as exp ð−iωtÞ.
(While the static spherically symmetric coordinates for de
Sitter is well-known in the literature, the Painlevé coor-
dinates, which retain the cosmic, geodesic, time coordinate
t, have not attracted much attention.)
Another coordinate system for the de Sitter universe

which we describe is the one in which the geodesic distance
between two events lðx2; x1Þ—or a simple function of the
same, like Zðx2; x1Þ ¼ cosðHlÞ (when the two events are
spacelike)—itself is used as one of the coordinates. This
coordinate system turns out to be particularly useful to
discuss two-point functions Gðx2; x1Þ which are de Sitter
invariant. Such de Sitter invariant two-point functions
depend on the pair of coordinates only through lðx2; x1Þ.
Whenwe use the geodesic distance as one of the coordinates,
the differential equation obeyed by GðlÞ depends only on
one of the coordinates, and it is easy to find and analyze the
resulting “static” solutions. We use these properties to
simplify the technical issues throughout the paper.
We next turn our attention (in Sec. II B) to the study of

the power spectra of vacuum fluctuations in different
contexts. Since the power spectra are most useful when
defined in the Fourier space, we introduce a generally
covariant procedure for defining them using the Killing
vectors present in the universe. Each Killing vector
corresponds to a particular translation symmetry in the
spacetime. When this translation invariance is reflected in
the two-point function, there is a natural way of defining
the corresponding power spectra by using the integral
curves to the Killing vector field and the Killing parameter
associated with these curves (see [40] for an alternate
approach; the formal role of Killing vectors in the structure

of various correlation functions was explored, e.g., in [41]).
This procedure allows us to study the vacuum fluctuation
spectra in several different contexts and for different
vacuum states. In particular, we study the spectra in the
case of Bunch-Davies vacuum, as well as the Painlevé/
static vacuum, and discuss their physical interpretation.
We obtain, in Sec. III, an easily proved—but extremely

useful—result which allows us to relate the dynamics of a
system ½aðηÞ;ϕðxÞ; m� made of a scalar field ϕðxÞ of mass
m in a background universe with expansion factor aðηÞ to
another system ½bðηÞ;ψðxÞ;M� in terms of a well-defined
function. This mapping, in turn, allows us to relate the
dynamics of a massless scalar field in a power-law
Friedmann universe (with aðηÞ ∝ η−q) to a massive scalar
field in the de Sitter spacetime with a mass given by M2 ∝
ð2þ qÞð1 − qÞ ¼ ð9=4Þ − ν2 where ν≡ qþ ð1=2Þ. This
immediately tells you—without any extensive calculation—
that the mass turns tachyonic, and hence instabilities are
expected for jνj > ð3=2Þ. Further, the mapping allows us to
study the dynamics of (a) massive fields in de Sitter and
(b) massless fields in power-law Friedmann universes in a
unified manner and understand the special features of either
system by looking at the other one.
One key application of this approach is the following:

It is a well-known, ancient result in this subject that the
massless scalar field in the de Sitter spacetime exhibits
several peculiar features, e.g., divergent infrared behavior.
In the literature, these are usually thought of as a conse-
quence of such a system not having a de Sitter invariant
vacuum state [14,24–29,37,42,43]. There have been all
sorts of attempts to handle this divergence (e.g., [30–36,
44,45]). We will see that this is only part of the story. We
recover the well-known result [46] that the similar infrared
divergences exist for massless fields in any spacetime
sourced by matter with negative pressure; that is, whenever
the equation of state parameter w≡ ðp=ρÞ is negative (see
[46–50]). The de Sitter spacetime—and the pathologies of a
massless field in that spacetime—is just a particular case of
this general result when w ¼ −1. In all Friedmann uni-
verses with −1 < w < 0 the massless scalar field will
exhibit pathologies even though these spacetimes have
no special invariance properties like the de Sitter spacetime.
We describe these features in detail and from several
perspectives in this work.
Another application of these results is in the approach to

the massless field in de Sitter, viz., m ¼ 0, q ¼ 1, in two
different ways. We could have thought of m ¼ 0, q ¼ 1 as
arising from (i) the limit m → 0 with q ¼ 1 (massless limit
in de Sitter) or as (ii) the limit q → 1 with m ¼ 0 (de Sitter
limit of massless theory). Two-point functions, e.g., the
Wightman function, do not exist in this limit irrespective of
how we take it. However, if we treat the approaches in (i)
and (ii) as two different ways of regularizing the limit (with
the small parameters being m=H and (q − 1) respectively),
then the final results depend on the regularization scheme.

1Notation:We use the signature ð−;þ;þ;þÞ and natural units
with c ¼ 1, ℏ ¼ 1. Latin letters i, j etc. range over spacetime
indices and the Greek letters α, β etc. range over the spatial
indices. We will write x for xi, suppressing the index, when no
confusion is likely to arise.
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One approach leads to a secular growth term for regularized
hϕ2i, whereas the other does not. We explore several
features of this and related results using our mapping.
There are also several technical results which are new in

this work. For example, we show that (Sec. VA) the
Euclidean Green’s function for the de Sitter spacetime can
be obtained very easily by mapping the problem to one of
D ¼ 5 electrostatics. This leads to a simple integral
representation for the Green’s function (which, of course,
is algebraically equivalent to the Gauss hypergeometric
function) that is easy to analyze and understand. It also
clarifies the issues involved in the analytic continuation to
Lorentzian spacetime. We also provide a careful discussion
of the H → 0 limit of de Sitter (and similar limits for
power-law cosmologies) when the spacetime becomes flat.
Our results, e.g., mode functions, Green’s functions etc. are
expected to go over to the flat spacetime expressions in this
limits. However, this limit, as we show, is often technically
nontrivial. In some cases (e.g., in the case of the Feynman
propagator) this limit even leads to fresh insights about the
flat spacetime QFT (see e.g., Appendix A 11)! Several
other derivations in this work also contain new and useful
techniques.

II. CONCEPTUAL AND MATHEMATICAL
BACKGROUND

We begin by summarizing several conceptual and math-
ematical aspects in this section. Whereas some of these
results are well-known, others are not. Even with regard to
some of the better known results, our emphasis will be
different from the conventional one in several cases. (So it
will be useful for you to rapidly go through the subsections
below, even if you are familiar with the literature in the
subject!)Most of the discussion in this section can be directly
generalized to a Dþ 1 dimensional spacetime, but we will
confine ourselves to 3þ 1 dimensions for simplicity.

A. Coordinate systems

Let us start by listing the properties of several coordinate
systems used to describe a Friedmann universe in general
and a de Sitter spacetime in particular. All these coordinate
systems, except probably the geodesic coordinates (dis-
cussed in Sec. II A 4) have appeared in the literature before.
While the coordinate system used most frequently in the
literature is the Friedmann coordinates, in Sec. II A 1 we
will, however, make extensive use of all the four-coordinate
systems discussed below.

1. Friedmann coordinates

The coordinate system which makes the spatial sym-
metries of the Friedmann spacetime manifest is the
Friedmann coordinate system given by either of the two
forms of the line element:

ds2 ¼ −dt2 þ a2ðtÞjdxj2 ¼ a2ðηÞ½−dη2 þ jdxj2�: ð1Þ

The coordinate t has a direct physical meaning and
measures the time shown by geodesic, freely falling,
comoving clocks in this spacetime, and the spatial coor-
dinate xα makes the homogeneity and isotropy of the spatial
coordinates apparent. These coordinates also have the
interpretation that observers with x ¼ constant are geodesic
observers. We will call the ðt; xÞ system the cosmic
coordinates. The conformal time η is related to the cosmic
time t through dt ¼ aðηÞdη and is often convenient for
mathematical manipulations even though it does not have a
direct physical meaning, unlike the geodesic cosmic time t.
We will call the ðη; xÞ system the conformal Friedmann
coordinates or simply Friedmann coordinates.
For the most part of the paper, we will concentrate

on Friedmann universes with a power law expansion
with aðtÞ ∝ tp corresponding to aðηÞ ∝ η−q where q ¼
p=ðp − 1Þ. In the limit of p → ∞, corresponding to q → 1,
we get the de Sitter expansion. When we need to take this
limit, it is often convenient to shift the origin of the time
coordinate and use the expressions,

aðtÞ ¼
�
1þHt

p

�
p
¼

�
−
Hη

q

�
−q
;

η ¼ −
1

H
p

p − 1

�
1þHt

p

�
1−p

;

q ¼ p
p − 1

; ð2Þ

where H is a constant parameter introduced for dimen-
sional reasons and q and p are dimensionless indices.
These expressions have clear limits when p → ∞, q → 1

with aðtÞ ¼ expðHtÞ ¼ ð−HηÞ−1 which is the de Sitter
limit. They also make clear that the algebraic behavior of
these relations differ significantly when p > 1 (accelerat-
ing universes) compared to p < 1 (decelerating universes).
For example, η → þ∞ when t → þ∞ if p < 1. However
η → 0− when t → ∞ in the case of de Sitter expansion.
When the limiting form for aðtÞ is not explicitly

required, we will continue to use the simpler forms with
aðtÞ ∝ tp ∝ η−q with q ¼ p=ðp − 1Þ. These expansion
indices q and p are related to the (constant) equation of
state parameter w≡ P=ρ of an ideal fluid, which can act as
the source to the power-law expansion. We find that

p ¼ 2

3ð1þ wÞ ; q ¼ −
2

1þ 3w
: ð3Þ

The power-law expansion is also characterized by the
condition that they have constant acceleration/deceleration
parameters; that is, for a universe with power-law expan-
sion the quantity _H=H2 ≡ ϵ is a constant given by
ϵ ¼ −1=p. Such a parametrization is often used with a
small (approximately) constant ϵ to describe an approx-
imately de Sitter evolution of the universe.
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When described in terms of the cosmic time that the
power-law expansions with aðtÞ ∝ tp are clearly distin-
guished from the de Sitter expansion with aðtÞ ∝ expðHtÞ,
but when described in terms of the conformal time, aðηÞ ¼
η−q does not seem to distinguish the de Sitter expansion
with q ¼ 1 from any other power law. This appearance is,
of course, illusory, and the correct way to distinguish de
Sitter expansion from the power-law expansion is from the
extra symmetry which arises when a ∝ expðHtÞ ∝ η−1. In
spite of the apparent dependence of the metric on the time
coordinate (t or η), such a universe is in steady state and has
no intrinsic time dependence. Under a finite translation of
the cosmic time, t → tþ T, along with the rescaling of
spatial coordinates by xα → xα expð−HTÞ the metric
remains invariant. In terms of the conformal time η, this
symmetry manifests as a rescaling of all the coordinates:
i.e., the line interval remains invariant under η → μη,
xα → μxα. This selects out the power law aðηÞ ∝ η−q with
q ¼ 1, which corresponds to the de Sitter expansion, as
special. One can easily verify such an extra symmetry (viz.
time translation invariance in terms of cosmic time or the
rescaling invariance in terms of conformal time) does not
exist for any other power law.
We will often require, in our future discussion, the

expression for the geodesic distance lðx2; x1Þ between
two events in the de Sitter spacetime. For example, when
Hl < 1, this can be expressed in terms of a quantity
Zðx2; x1Þ as Hlðx2; x1Þ≡ cos−1Zðx2; x1Þ where

Zðx2; x1Þ ¼
1

2η1η2
ðη21 þ η22 − jx1 − x2j2Þ; ð4Þ

in Friedmann coordinates. (A more general, geometric
definition is given later on.)

2. Painlevé coordinates

It is sometimes convenient to introduce a set of coor-
dinates in which the expansion of the universe is made to
vanish in terms of the spatial coordinates [51]. This is done
by using the (proper) spatial coordinate r ¼ aðtÞx instead
of the original comoving coordinates x. We retain the time
coordinate to be the cosmic time t with the physical
meaning that this is the time registered by geodesic clocks.
The metric, for an arbitrary Friedmann universe, now
becomes

ds2 ¼ −ð1 −H2ðtÞr2Þdt2 − 2HðtÞrdtdrþ dr2 þ r2dΩ2;

ð5Þ

where dΩ2 is the metric on the unit 2-sphere. The constant
−t surfaces are now spatially flat, static Euclidean space
with no sign of any cosmic expansion. The observers
located at r ¼ constant are (in general) nongeodesic,
accelerated observers. This is in contrast with the situation

in the Friedmann coordinate system, in which x ¼ constant
represents geodesic curves. The time coordinate, however,
continues to represent the time registered by geodesic
clocks which now move along trajectories with rðtÞ ¼
r0aðtÞ, where r0 is a constant vector. The only exception to
these general comments is provided by the observer located
at the origin of the coordinate system r ¼ 0 who will be a
geodesic observer because the spatial origin r ¼ 0 maps to
x ¼ 0 in comoving coordinates which, of course, is a
geodesic. Thus the time coordinate t can also be interpreted
as the time shown by a clock located at the origin of the
Painlevé coordinate system (see Fig. 1). The spatial
homogeneity of the spacetime is not manifest in these
coordinates which is the price one has to pay to neutralize
the effects of cosmic expansion.
Everything we said so far is applicable to all Friedmann

spacetimes, and the metric in Eq. (5) depends on time
through the function HðtÞ. The de Sitter spacetime is again
special because HðtÞ in Eq. (5) now becomes a constant,
thereby making the metric stationary. The time translation
invariance under t → tþ T of the de Sitter universe is now
manifest in this stationary coordinate system which was not
the case in the Friedmann coordinate system.
Because the metric coefficients are independent of time,

the solutions to the wave equation ð□ −m2ÞϕðxÞ ¼ 0 can
now be expressed as the superposition of fundamental
modes of the form fωðrÞ expð�iωtÞ. While dealing with a

FIG. 1. Contours of curves corresponding to constant values of
Painlevé coordinates [defined in Eq. (5)] are plotted in the
comoving ðt; xÞ coordinates. The solid lines correspond to curves
of constant Painlevé time (which coincides with the comoving
time), and the dashed curves correspond to curves of constant
Painlevé radial coordinate which is related to the comoving
coordinate x as r ¼ aðtÞx.
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quantum field, this allows the definition of a vacuum state
using modes which are positive frequency with respect to
cosmic time. Note that this is not possible when we describe
the de Sitter spacetime in Friedmann coordinates because
of the time dependence of the metric, arising from aðtÞ ¼
exp ðHtÞ factor. We will make use of this property later on
in our discussions.

3. Spherical coordinates

Since homogeneity and isotropy of spatial cross sections
necessarily imply spherical symmetry, it is also possible to
describe any Friedmann spacetime in a spherically sym-
metric form. This can be done by introducing a new time
coordinate τ (in addition to the spatial coordinate r ¼ aðtÞx
which we have already introduced in the last section) with

τ≡ FðσÞ; σ ≡
�Z

r
xdxþ

Z
τ dt
aðtÞ _aðtÞ

�
;

r ¼ aðtÞx; ð6Þ

where FðσÞ is an arbitrary function of the variable σ. It is
easy to verify that this will lead to a metric given by

ds2 ¼ −eνdτ2 þ eλdr2 þ r2dΩ2;

eν ¼ a2 _a2

1 − r2H2

�
dF
dσ

�
−2
;

eλ ¼ 1

1 − r2H2
: ð7Þ

Since the spatial coordinates used in this metric are the same
as those used in the Painlevé coordinates (see Sec. II A 2)
all the comments related to spatial coordinates continue to
apply. In particular, r ¼ constant observers are nongeodesic
observers except for the special observer located at the origin,
r ¼ 0, who is a geodesic observer. The τ coordinate no longer
measures the geodesic clock time except for a clock located
at the origin.
In particular, in the case of de Sitter spacetime with

aðtÞ ∝ expðHtÞ, the choice FðσÞ ¼ −ð1=2HÞ ln σ reduces
the metric to the form,

ds2 ¼ −ð1 −H2r2Þdτ2 þ dr2

1 −H2r2
þ r2dΩ2: ð8Þ

The metric is now static (rather than stationary which was
the case in the Painlevé coordinates) and is invariant under
the time translation τ → τ þ constant. In this case, the
relation between τ and the geodesic time (used in
Friedmann and Painlevé coordinates) is given by

t ¼ τ þ 1

2H
logð1 −H2r2Þ; ð9Þ

see Fig. 2. Clearly translation in cosmic time t corresponds
to the translation in τ so that the symmetry is manifest.
Moreover, because the metric coefficients in Eq. (8) are

independent of time, the solutions to the wave equation
ð□ −m2ÞϕðxÞ ¼ 0 can again be expressed as the super-
position of fundamentalmodes of the form gωðrÞ expð�iωτÞ,
thereby allowing us to define a vacuum state using modes
which are positive frequency with respect to τ. (We will call
this state the cosmic vacuum or the static vacuum.) However,
from Eq. (9), it is clear that the positive frequency modewith
respect to τ, of the form e−iωτgωðrÞ, will translate to a positive
frequency solution e−iωtfωðrÞ with respect to the cosmic
time t with

fωðrÞ ¼ gωðrÞð1 −H2r2Þiω=2H; ð10Þ
under the coordinate transformation in Eq. (9). Therefore the
positive frequencymodes in the static, spherically symmetric
coordinate system actually correspond to those which are
positive frequency with respect to the cosmic time t and the
static vacuum can be reinterpreted as the one corresponds to
positive frequency modes with respect to the cosmic time t.
The only issue we need to be careful about is the fact that τ
itself retains its timelike character only for r < H−1 in this
coordinate system due to the existence of a horizon at
r ¼ H−1. Wewill have occasion to use these results later on.

FIG. 2. Contours of curves corresponding to constant values of
static coordinates [as defined in Eq. (8)] are plotted in the
comoving ðt; xÞ coordinates. The solid curves correspond to
curves of constant static coordinate time τ [as given in Eq. (9)],
and the dashed curves correspond to curves of constant radial
coordinate which is related to the comoving coordinate x as
r ¼ aðtÞx. The dark wavy line corresponds to the surface
Hrðt; xÞ ¼ 1, the static coordinate patch.
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The existence of Friedmann coordinates (discussed in
Sec. II A 1) as well as the static coordinates described by
the metric in Eq. (7) shows that geodesic observers can
actually be associated with two distinct coordinate systems.
Consider, e.g., a geodesic observer whose world line is
described by x ¼ constant in the Friedmann coordinates.
Because of spatial homogeneity of the spacetime, we can
always choose this world line to be x ¼ 0 by a suitable
choice of the origin. The clock carried by this geodesic
observer will show the flow of the cosmic time t. One can
now introduce a static spherically symmetric coordinate
system around this observer, again describing the world
line as r ¼ 0 in the static coordinate system (which, of
course, corresponds to x ¼ 0 in the Friedmann coordinate
system), maintaining the geodesic nature. We see from
Eq. (9) that at r ¼ 0 we have τ ¼ t; so proper time
measured by the geodesic clock carried by the observer
continues to track the cosmic time. In other words, a given
geodesic observer can place itself at the origin of the spatial
coordinate system either in the Friedmann coordinates or in
the spherically symmetric coordinate system and describe
the spacetime around it using either of the coordinate
patches. In particular, the geodesic observers in de Sitter
spacetime can use either the Friedmann coordinates with
the metric having the form in Eq. (1) or the static spheri-
cally symmetric coordinate system with the metric having
the form in Eq. (8). We will come back to this feature later
on in our analysis.
For future reference, we give the form of the geodesic

distance between two events in this spherical coordinate
system. As in the case of Eq. (4), the geodesic
distance lðx2; x1Þ can again be written as Hlðx2; x1Þ ¼
cos−1 Zðx2; x1Þ where

Zðx2; x1Þ ¼ H2ðr1 · r2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2r21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2r22

q
× cosh ½Hðτ2 − τ1Þ�; ð11Þ

in this coordinate system. (The dot product r1 · r2 is just a
notation for δαβrα1r

β
2 in terms of Cartesian components.) Note

that the geodesic distance depends on τ1, τ2 only through
ðτ2 − τ1Þ because of the time translational invariance.

4. Geodesic coordinates

Finally, we will describe a coordinate system which is
somewhat special to de Sitter spacetime [11,35,52,53].
As is well-known, the four-dimensional de Sitter manifold
can be thought of as a hyperboloid embedded in a five-
dimensional flat Minkowski spacetime2 with Cartesian
coordinates XA where A ¼ 0–4. Let lðx; x0Þ be the
geodesic distance between two events in the de Sitter

spacetime. Using the embedding properties it is straightfor-
ward to introduce a coordinate system in which the
geodesic distance l itself is one of the coordinates (see
Appendix A 1 for the derivation). For example, if the two
events are separated by a spacelike distance, then such a
coordinate system will describe the de Sitter spacetime in
terms of the line element,

ds2H ¼ −
sin2ðHlÞ

H2
dτ2 þ dl2 þ sin2ðHlÞ

H2
cosh2 τdΩ2

2:

ð12Þ
The explicit coordinate transformation from the conformal
Friedmann coordinates (η, r, θ, ϕ) to the geodesic coor-
dinates (τ, l, θ, ϕ) is given by

cosh τ ¼ −
2η0rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4η2η20 − ðη2 þ η20 − r2Þ2
p ;

cosðHlÞ ¼ η2 þ η20 − r2

2ηη0
; ð13Þ

where η0 is a constant.

FIG. 3. Contours of curves corresponding to constant values of
the geodesic coordinates [as defined in Eq. (12)] are plotted in the
comoving ðt; xÞ coordinates. The solid curves correspond to
curves of constant timelike coordinate τ, and the dashed curves
correspond to curves of constant spacelike coordinate l. The
coordinates ðτ; lÞ are related to the comoving coordinates through
conformal time η ¼ −e−Ht=H and Eq. (13). The shaded regions
are not covered by this coordinate system because: (i) the shaded
region corresponding to Z > 1 are timelike separated from the
origin O of the comoving coordinates and (ii) no points in the
shaded region marked Z < −1 can be connected to O by a
spacelike geodesic segment [see the discussion around Eq. (18)].

2In fact any Friedmann spacetime can be embedded in a five-
dimensional flat Minkowski spacetime, and de Sitter embedding
is just a special case of this general result.
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This coordinate system (see Fig. 3) has an interesting
limit when H → 0 and the spacetime becomes flat. We see
that it reduces to the form,

lim
H→0

ds2H ¼ −l2dτ2 þ dl2 þ l2 cosh2 τdΩ2
2; ð14Þ

which is indeed flat spacetime but expressed in what is
called the spherical Rindler coordinate system. The spheri-
cal Rindler coordinates are obtained from the standard
spherical polar coordinates of flat spacetime (t, r, θ, ϕ) by
the transformation r ¼ l cosh τ, t ¼ l sinh τ in the region
r2 > t2. Obviously l2 ¼ r2 − t2 is the square of the
geodesic distance from the origin to the event (t, r, θ,
ϕ). What we have in Eq. (12) is just a generalization of this
coordinate system but now based on the geodesic distance
in the de Sitter spacetime. For the sake of completeness we
mention that, when l corresponds to a timelike separation,
we get a slightly modified version of Eq. (12):

ds2 ¼ −dl2 þ sinh2ðHlÞ
H2

ðdτ2 þ sinh2ðτÞdΩ2
2Þ: ð15Þ

TheH → 0 limit of this, as expected, gives the correspond-
ing version of spherical Rindler in the timelike wedge:

ds2 ¼ −dl2 þ l2dτ2 þ l2 sinh2 τdΩ2
2: ð16Þ

The line element in Eq. (12) can be further simplified by
introducing the coordinate Z ¼ cosðHlÞ where lðx; x0Þ is

now the geodesic distance between the events ðη0; x0Þ and
ðη; xÞ with some fixed values for x0. The line element in
Eq. (12) now becomes

H2ds2H ¼ −ð1 − Z2Þdτ2 þ dZ2

ð1 − Z2Þ
þ ð1 − Z2Þcosh2τdΩ2

2: ð17Þ

From Eq. (4) we know that Z ¼ ð1=2Þð1=ηη0Þ
ðη2 þ η20 − jx − x0j2Þ. This equation, along with the first
equation in Eq. (13), gives the direct transformation from
the (η, r, θ, ϕ) coordinates to the coordinates (τ, Z, θ, ϕ).
The coordinate Z has a simple geometrical meaning

in terms of the embedding space. Let XA ¼ ðX0; X1;
X2; X3; X4Þ and XA

0 ¼ ð0; H−1; 0; 0; 0Þ be two Cartesian
5-vectors in the embedding space. We can then easily verify
that the de Sitter invariant, dimensionless Cartesian dot
product between these two vectors is just Z; i.e., Z ¼
−H2ηð5ÞABXAXB

0 . Therefore, the general definition for Z is
given by the 5D Lorentzian inner product, Zðx1; x2Þ≡
−H2ηð5ÞABXA

1X
B
2 , where XA

1;2 corresponds to the 5D
Cartesian coordinates of the point, say, P1 and P2 in the
dS4 hyperboloid embedded in the 5D Minkowski
space. When the points P1 and P2 can be connected by a
geodesic of length-squared l2, then Zðx1; x2Þ takes the
different forms:

Zðx1; x2Þ ¼
8<
:

cosðHlÞ; P1 and P2 are spacelike seperated

coshðHltÞ; P1 and P2 are timelike seperated

0; P1 and P2 are lightlike seperated

; ð18Þ

where we have defined l2t ¼ −l2 for the timelike separated
events. When Z < −1 (a special case of spacelike sepa-
rated), even though there exist many spacelike curves
connecting P1 and P2, there are no spacelike geodesics
connecting them [54]. This has the consequence that for
Z < −1, there is no analogue of Eq. (18). The expressions
in Eq. (18) can be used to obtain the geodesic coordinate
charts in different regions.
The importance of this coordinate system (which does

not seem to have been realized in the literature) arises from
the fact that it allows one to deal with de Sitter invariant
solutions to wave equations in a simple manner. For
example, consider any two-point function GdSðx; x0Þ for
a scalar field of mass m which satisfies the equation
ð□ −m2ÞGdS ¼ 0. If GdS is de Sitter invariant, it will
depend only on x and x0 only through lðx; x0Þ or,
equivalently, only on Zðx; x0Þ so that GdSðx; x0Þ ¼
GdS½Zðx; x0Þ�. In the equation ð□ −m2ÞGdS ¼ 0 we can
easily evaluate the□ operator in the coordinate system with
the metric in Eq. (17), retaining only the Z dependence.

(This means that we are looking for static, “radially”
dependent solutions to the Klein-Gordon operator in this
coordinate system.) We will get

ðZ2 − 1Þ d
2GdS

dZ2
þ 4Z

dGdS

dZ
þ m2

H2
GdS ¼ 0; ð19Þ

when GdS depends only on Z. In terms of l the same
equation reduces to

�
d2

dl2
þ 3H cotðHlÞ d

dl
þm2

�
GdS ¼ 0: ð20Þ

As we shall see later, this approach leads to an interesting
way of determining de Sitter invariant two-point functions
and analyzing their properties.
Incidentally, in the limit of H → 0 de Sitter spacetime

reduces to flat Minkowski spacetime (but in the spherical
Rindler coordinates) and the equation for the two-point
function reduces to
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�
d2

dl2
þ 3

l
d
dl

þm2

�
GdS ¼ 0: ð21Þ

It can be easily verified that the acceptable solutions to this
equation, given in terms of K1ðmlÞ reproduces the correct
two-point functions of the flat spacetime Lorentz invariant
field theory.

B. Quantum correlators and power spectra

1. Quantum correlators

The quantum fluctuations of a field living in a curved
spacetime can be described by the correlation functions of
the field in any given state. Therefore, these correlators
provide a unique way to analyze the background spacetime
and the symmetries it comes with [38,52,55–57].
The simplest correlator, which is relevant for the free

field theories, is the two-point correlation function in a
suitably defined vacuum state j0i called the Wightman
function. For a scalar field, this is defined by

Gðx; yÞ≡ h0jϕðxÞϕðyÞj0i: ð22Þ
Many other two-point functions like, e.g., the Feynman
propagator iGFðx; yÞ≡ h0jTfϕðxÞϕðyÞgj0i or the commu-
tator function Gcðx; yÞ≡ h0j½ϕðxÞ;ϕðyÞ�j0i etc. can be
expressed in terms of the Wightman function in a fairly
straightforward manner. Hence we shall concentrate on the
Wightman function as a key measure of quantum fluctua-
tions in a curved spacetime.
From the definition in Eq. (22) it is clear that Gðx; yÞ

transforms as a biscalar in x and y when the coordinate
system is changed, if we keep the vacuum state the same.
Obviously the two-point function depends on the choice of
the vacuum state j0i and—as is well-known—this choice is
far from unique (or even physically well-defined) in an
arbitrary curved spacetime. Very often, the choice of the
coordinate system could itself suggest a natural vacuum state
adapted to that particular coordinate system. For example,
when the flat spacetime is described in the inertial coor-
dinates, it is natural to usemode functions which are positive
frequency solutions with respect to the inertial time and use it
to define the inertial vacuum j0; Ini. This will, in turn, define
the Wightman function for the inertial vacuum state as
GIn ¼ h0; InjϕðxÞϕðyÞj0; Ini. This function GInðx; yÞ can,
of course, be expressed in any other coordinate system
including, say, the Rindler coordinate system, but when
we use the Rindler coordinate system one may find
it natural or convenient to choose mode functions which
are positive frequency with respect to the Rindler time
coordinate, thereby defining another vacuum state, viz.,
the Rindler vacuum j0;Rini. The corresponding Rindler-
Wightman function GRinðx; yÞ≡ h0;RinjϕðxÞϕðyÞj0;Rini
is, of course, quite different from GInðx; yÞ, and they are not
related by a coordinate transformation because the vacuum
states are different. We will have occasion to use similar

constructs for different vacuum states in Friedmann space-
times later on.

2. Power spectra from Killing vectors

Given the fact that Gðx; yÞ describes the fluctuations of a
quantum field, it is natural to inquire about the power
spectrum of these fluctuations. Power spectra, convention-
ally, are represented in a, suitably defined, Fourier space
and are useful when some natural coordinate choice
induces some symmetries onGðx; yÞ. Since the symmetries
of the spacetime are described by Killing vector fields, it is
possible to provide a natural, covariant, definition of power
spectrum associated with any Killing vector field along the
following lines:
Let ξaðxÞ be a Killing vector field which exists in some

region of the spacetime, and let CðλÞ be an integral curve of
this Killing vector field satisfying the equation dxa=dλ ¼
ξaðxÞ where the Killing parameter λ is assumed to run over
the entire real line. We will assume that a congruence of
such integral curves, corresponding to a given ξa, exists in
some region of spacetime. We can now introduce λ itself as
one of the coordinates in this region, and we will denote the
rest of the (“transverse”) coordinates by xa⊥. Consider now
the Wightman function between two events x1 and x2,
located on a given integral curve, with x1 ¼ ðλ1; xa⊥Þ and
x2 ¼ ðλ2; xa⊥Þ. (Since the events are on the integral curve,
their coordinates will only differ in the λ coordinate value,
and they will have the same transverse coordinates xa⊥.)
Clearly, because the Killing vector generates a translational
symmetry along the λ coordinate, and if we choose a
vacuum state that respects this symmetry, the Wightman
function will only depend on λ≡ λ1 − λ2 with the structure
Gðx; yÞ ¼ Gðλ; xa⊥Þ. One can now define a power spectrum
from the Fourier transform of the two-point function with
respect to the Killing parameter, λ, which is one of the
coordinates in this coordinate system. That is we define

Pþðω; xa⊥Þ≡
Z

∞

−∞

dλ
2π

expðiωλÞGðx; y; λÞ

¼
Z

∞

−∞

dλ
2π

expðiωλÞGðλ; xa⊥Þ: ð23Þ

This is the primitive definition of power spectrum; usually
we will multiply it with some measure based on physical
considerations to give suitable dimensions but this is just
kinematics.
As an aside, we will mention an important subtlety as

regards this definition, postponing its detailed discussion
to a later section. Note that we could also have defined
the power spectrum with expð−iωλÞ instead of with
expðþiωλÞ, thereby obtaining

P−ðω;xa⊥Þ≡
Z

∞

−∞

dλ
2π

expð−iωλÞGðx;yÞ

¼
Z

∞

−∞

dλ
2π

expð−iωλÞGðλ;xa⊥Þ:¼Pð−ωÞ: ð24Þ
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If the two-point-function has support only for positive or
negative frequencies, then one of these two definitions
will be more natural than the other. However, in general,
GðλÞ will be a complex function, and its Fourier transform
with respect to λ will have support for both positive and
negative ω. Then, the interpretation of the power spectrum
will depend on whether we use PþðωÞ or P−ðωÞ. As an
elementary, but important, example, consider the situation
when, one of them, say, P−ðωÞ ¼ ωnðωÞ ¼ ω½eβω − 1�−1
is Planckian. Then PþðωÞ ¼ P−ð−ωÞ ¼ ω½1þ nðωÞ�.
This difference between nðωÞ and 1þ nðωÞ corresponds
to the existence of spontaneous emission in the inter-
actions. We need to keep this aspect in mind while
interpreting the power spectra. As we shall see, this issue
is relevant only when we define Fourier transforms with
respect to timelike Killing trajectories; in the spacelike
case, the Wightman function usually depends on the
spacelike separation in a symmetric fashion and this issue
does not arise.
If the spacetime has more than one Killing vector field,

then it is possible to introduce a Fourier transform with
respect to each one of them and define the corresponding
power spectrum. A simple example is provided in the case
of the Friedmann spacetime, in which the spatial homo-
geneity provides three Killing vector fields corresponding
to spatial translations. This symmetry is manifest when
we use the conformal Friedmann coordinates in which
the two-point function will have a structure Gðx1; x2Þ ¼
Gðη1; η2; jx2 − x1jÞ ¼ Gðη1; η2; jxjÞ where x≡ x1 − x2.
The corresponding power spectrum arises most naturally
in terms of the Fourier transform with respect to x after
setting η1 ¼ η2 ¼ η. That is,

Pðk; ηÞ ¼
Z

d3x
ð2πÞ3 e

ik·xGðη; η; xÞ: ð25Þ

This power spectrum will depend on the magnitude of
k (due to rotational invariance) and on the conformal
time η. However, note that since Gðη; η; xÞ ¼ h0jϕðη; x1Þ
ϕðη; x2Þj0i it will crucially depend on the choice of the
vacuum state j0i.
For a generic Friedmann spacetime, this is the only

natural definition of the power spectrum, but other inter-
esting possibilities for defining the power spectrum exist in
the context of de Sitter spacetime which has an intrinsic
time translational invariance. Both in the static coordinate
system as well as in the Painlevé coordinate system, the
metric in Eq. (5) (with HðtÞ ¼ constant) and Eq. (8)
exhibits translational symmetry with respect to cosmic
time t and the static time τ corresponding to the Killing
vector field with components ξa ¼ ð1; 0Þ in these coor-
dinates. One can now repeat the analysis leading to Eq. (23)

using this Killing vector field.3 The adapted coordinate
system is then just the Painlevé or static coordinates and the
Killing parameter λ will coincide with t or τ. If we choose a
vacuum state which respects the time translational sym-
metry, then the correspondingWightman function will have
the structure Gðt2 − t1; r2; r1Þ in the Painlevé coordinates
and similarly have the form Gðτ2 − τ1; r2; r1Þ in the static
spherically symmetric coordinates. This will happen, e.g.,
if the vacuum state is defined using mode functions which
are positive frequency with respect to t which, as we noted
earlier, is the same as the mode functions being positive
frequency with respect to τ. Writing τ ¼ τ2 − τ1 and taking
r1 ¼ r2 ¼ r, we again have a natural power spectrum
defined through the equation,

Pðω; rÞ ¼
Z

∞

−∞

dτ
2π

eiωτGðτ; rÞ: ð26Þ

The situation, which will be discussed in the later
sections, will correspond to one in which the chosen
vacuum state respects the geometrical symmetry of the
underlying spacetime. In the case of de Sitter spacetime and
flat spacetime (which arises in the limit H → 0 of the de
Sitter spacetime), the relevant geometrical symmetry is de
Sitter invariance and the Lorentz invariance respectively.
When the vacuum state respects these symmetries, the
Wightman function Gðx1; x2Þ will depend on the coordi-
nates only through the geodesic distance lðx1; x2Þ; that is,
Gðx1; x2Þ ¼ G½lðx1; x2Þ�. The Killing symmetries of the
spacetime now manifest in terms of the dependence of
lðx1; x2Þ on the coordinates. In particular, if the two events
are situated along the integral curve of a Killing trajectory
with x1 ¼ xðλ1Þ, x2 ¼ xðλ2Þ then l will have the structure
lðx1; x2Þ ¼ lðλ; x⊥Þ where λ≡ λ1 − λ2. The Fourier trans-
form with respect to λ, which determines the power
spectrum, now depends essentially on the dependence of
l on λ.
Let us illustrate these abstract ideas in terms of two

concrete examples. Consider first the inertial vacuum state
in flat spacetime which respects Lorentz invariance so that
the relevant two-point function depends on the geodesic
distance lðx1; x2Þ between the two events [apart from an
imaginary ðt − t0Þ logl, which renders the Wightman
function complex, leading to the commutator structure of
the field, something we will come back to later]. In the

3The Killing vector with components ξa ¼ δa0 in Painlevé
coordinates will correspond to a vector with components
ξaFriedmann ¼ ð1;−HxÞ in the Friedmann coordinates. Similarly,
the Killing vector with components ξa ¼ δa0 in static coordinates
will correspond to a vector with components ξaFriedmann ¼
ð∂τt; ∂τxÞ ¼ ð1;−Hx=ð1 −H2e2Htx2ÞÞ in the Friedmann coor-
dinates.
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standard inertial coordinate system the existence of a
Killing vector corresponding to translations in Minkowski
coordinates implies that l will have the form lðT;XÞ
where T ≡ T2 − T1 and X ≡ X2 − X1. The power spec-
trum corresponding to translations in Minkowski time
coordinate can now be defined as

PðΩ; 0Þ ¼
Z

∞

−∞

dT
2π

eiΩTG½lðT; 0Þ�: ð27Þ

On the other hand, we also have a Killing vector in flat
spacetime corresponding to the Lorentz boosts4 which is
timelike, e.g., in the right and left Rindler wedges,
jXj > jTj. In the Rindler coordinate system, the Lorentz
boost symmetry manifests itself as translational symmetry
in Rindler time coordinate. The geodesic distance,
expressed in terms of Rindler coordinate in the right wedge
will have the form l ¼ lðτ; x2; x1Þ where τ≡ τ2 − τ1 is the
Rindler time difference between the events with spatial
Rindler coordinates x2 and x1. We can now define the
power spectrum by taking x2 ¼ x1 ¼ x and Fourier trans-
forming G with respect to τ. This will give5

Pðω; xÞ ¼
Z

∞

−∞

dτ
2π

eiωτG½lðτ; xÞ�: ð28Þ

We stress that the vacuum state has not been changed
when we go from Eq. (27) to Eq. (28), and we have only
transformed the Wightman function, treating it as a biscalar
on the coordinates. One could have also computed a
different Wightman function corresponding to, say, the
Rindler vacuum state and evaluated its power spectrum
with respect to Rindler time coordinate which, of course,
would have led to a different result. More importantly this
Wightman function constructed from the Rindler vacuum
will not be a function of lðx2; x1Þ alone.
We will see later that the situation is conceptually

similar—but algebraically more complicated—in the case
of de Sitter spacetime. The existence of spatial or temporal
Fourier transforms allows us to define three natural power
spectra in the context of de Sitter spacetime. We shall
briefly mention them here, postponing their detailed
discussion to later sections:

(a) To begin with, one can choose the Friedmann coor-
dinates and define a vacuum state by some physical
criterion and compute the Wightman function. In the
literature, one often uses a quantum state called Bunch-
Davies vacuum j0;BDi for this exercise, which respects
the de Sitter invariance. Therefore, the Wightman
function GBDðη; xÞ≡ h0;BDjϕðη; x2Þϕðη; x1Þj0;BDi
actually depends only on the geodesic distance between
the two events for the massive scalar field. (There are
some subtleties in the case of the massless field which
wewill discuss later on.)Wecan then evaluate thePðk; ηÞ
as the spatial Fourier transform of GBDðη; xÞ≡
h0;BDjϕðη; x2Þϕðη; x1Þj0;BDi. (This definition is used
extensively in the study of inflationary perturbations.)

(b) One can instead decide to use the static co-ordinates and
a vacuum state j0; ssi defined through positive fre-
quency modes with respect to τ, leading to the Wight-
man function Gssðτ; rÞ≡ h0; ssjϕðτ2; rÞϕðτ1; rÞj0; ssi.
(This vacuum state j0; ssi—in contrast to j0;BDi—is
not de Sitter invariant, and hence we cannot expressGss
as a function of the geodesic distance alone.) We can,
however, use the definition in Eq. (26) to define the
corresponding power spectrum. In particular, an
observer at the spatial origin will define the power
spectrum to be Pðω; 0Þ by Fourier transforming
Gssðτ; 0Þ with respect to τ.

(c) The two choices mentioned above are rather natural.
It is also possible to define yet another power spectrum.
Notice that an observer at the origin of the static
coordinate system is a geodesic observer. It is therefore
possible to take the Wightman function GBD defined
using the Bunch-Davies vacuum, transform it as a
biscalar to the static coordinate system and evaluate the
power spectrum by Fourier transforming with respect to
τ with, say, at r1 ¼ r2 ¼ 0. In other words, one can
define two different power spectra for the Bunch-Davies
vacuum by Fourier transforming either with respect to
the spatial coordinates or with respect to the static time
coordinate at the spatial origin.

In general, we do not expect the power spectra defined
by these three procedures (a), (b) and (c) to have any simple
relation with each other. However, we will find that it is
actually possible to relate them to each other and provide a
physical interpretation for the power spectrum. This will be
one of tasks we will address in the later sections.
It is worth emphasizing the role played by de Sitter

invariance (or its absence) in these constructions.
Whenever we can choose a de Sitter invariant vacuum
state the Wightman function will only depend on the de
Sitter geodesic distance. If we express such a Wightman
function in the Friedmann coordinates, spatial homo-
geneity and isotropy imply that it will have the form G ¼
G½lðη1; η2; jxjÞ� where x≡ x1 − x2. One can now define a
power spectrum by Fourier transforming this expression
with respect to x and setting η1 ¼ η2 ¼ η. This is what is
usually done in the literature, especially in the context of

4This vector corresponds to the translational symmetry in
Rindler time and has components ξaboost ¼ δa0 in the Rindler frame
which leads to the components ξaboost ¼ Nðx1; x0; 0; 0Þ in the
inertial frame.

5The Pðω; xÞ will be a Planckian with a suitably red-shifted
Rindler temperature. These Fourier transforms with respect to a
time coordinate occur in the response of Unruh-DeWitt detec-
tors because these detectors—though thought of as “particle”
detectors—actually respond to the quantum fluctuations by their
very construction. We prefer to keep the discussion more
general, allowing power spectra to be defined either by spatial
Fourier transform or by temporal Fourier transform, depending
on the context.
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inflationary models and corresponds to item (a) in the
previous paragraph.
As we mentioned it is indeed possible to define another

power spectrum for the same de Sitter invariant vacuum
state. When we use the Painlevé or spherically symmetric
coordinate systems, the line interval is invariant under
corresponding time translations. This implies that when the
same Wightman function is expressed in, say, spherically
symmetric coordinate system, it will have the structure
G ¼ G½lðτ; x1; x2Þ�, where τ ¼ τ2 − τ1. [This is clear from
the functional form of Z in Eq. (11).] We can Fourier
transform this expression with respect to τ and define
another power spectrum. In doing this, we are retaining the
same de Sitter invariant vacuum state and are merely
transforming the Wightman function as a biscalar in the
coordinates. (This is analogous to expressing the inertial
vacuum of flat spacetime in two different coordinate
systems and computing two different power spectra).
This corresponds to item (c) in the earlier discussion.
Finally, one can also compute the Wightman function in

a vacuum state adapted to the spherically symmetric
coordinate system, viz the static vacuum defined through
positive frequency modes with respect to τ. (This is
analogous to the Rindler vacuum.) This Wightman func-
tion, however, will not be a function of l alone (since the
static vacuum is not de Sitter invariant) but will depend
only on τ≡ τ2 − τ1 because of the static nature of the
metric. Using this feature, we can define yet another power
spectrum by Fourier transforming this Wightman function
with respect to τ. This power spectrum will, of course, be
quite different from the previous ones. We shall discuss
these features in detail in later sections.

III. SAME ACTIONS LEAD TO SAME PHYSICS:
THE DE SITTER SPACETIME HIDING IN

POWER-LAW EXPANSION

We will begin our discussion by proving an equivalence
between different Friedmann models, as far as the dynam-
ics of a massive scalar field is concerned. It turns out that
the dynamics of a scalar field ϕ with mass m, living in a
Friedmann universe with expansion factor aðηÞ, is identical
to the dynamics of another scalar field ψ with a mass M,
living in another Friedmann universe with an expansion
factor bðηÞ. This equivalence, in particular, allows the
mapping of the dynamics of (1) a massless scalar field
in a Friedmann universe with a power-law expansion to that
of (2) a massive scalar field in a de Sitter universe. We will
first prove the equivalence, which is relatively straightfor-
ward, and then describe its consequences.
The action for a scalar field ϕ with mass m in a

Friedmann universe, described by the expansion factor
aðηÞ in conformal Friedmann coordinates, is given by

A ¼ 1

2

Z
dηd3xa2½ _ϕ2 − j∇ϕj2 −m2a2ϕ2�; ð29Þ

where an overdot indicates the time derivative with respect
to η. Let us introduce a function F ðηÞ and make a field
redefinition from ϕðxÞ to ψðxÞ≡ ϕðxÞ=F ðηÞ. The action in
Eq. (29) can now be rewritten in terms of the new field ψ .
Expanding out _ϕ2, we will get terms involving _ψ2, ψ2 and a
cross term containing ψ _ψ . By doing an integration by parts
and ignoring the boundary term in the action, the cross term
involving ψ _ψ can be expressed as a term containing ψ2.
This allows us, after some algebraic simplifications (see
Appendix A 2) to express the action in the form,

A ¼ 1

2

Z
dηd3xb2½ _ψ2 − j∇ψ j2 −M2b2ψ2�; ð30Þ

where M2 is a constant, b2 ¼ a2F 2 and F is chosen to
satisfy the differential equation,

F̈
F

þ 2 _a
a

_F
F

þ a2m2 ¼ a2F 2M2: ð31Þ

This action in Eq. (30) represents a scalar field ψ of massM
in a universe with expansion factor bðηÞ ¼ aðηÞF ðηÞ with
F ðηÞ determined as a solution to Eq. (31). Given a scalar
field with massm in an Friedmann universe with expansion
factor aðηÞ, we can solve Eq. (31), determineF ðηÞ and thus
transform from the system ½aðηÞ;ϕðxÞ; m� to the system
½bðηÞ;ψðxÞ;M�.6 Clearly the physics of both these fields
will be identical; this fact is useful in several conceptual and
mathematical contexts.
Our specific interest will be in the context of a massless

scalar field (m ¼ 0) in a Friedmann universe with a power-
law expansion with aðηÞ ¼ η−q. In this case, Eq. (31) has
the solution F ¼ η−k with k ¼ 1 − q (in suitable dimen-
sionless units). The mass of the rescaled scalar field is given
by M2 ¼ ð2þ qÞð1 − qÞ. What is interesting for our
purpose is that the new expansion factor is given by

b ¼ aF ¼ η−ðkþqÞ ¼ η−1; ð32Þ

which is just the de Sitter spacetime in conformal
Friedmann co-ordinates. In other words, a massless scalar
field in a Friedmann universe with power-law expansion
aðηÞ ¼ η−q has the same physics as a massive scalar field
with mass parameter M2 ¼ ð2þ qÞð1 − qÞ in a de Sitter
spacetime.
As an aside, we mention that these ideas can be extended

to include a nonminimal, curvature coupling term of the

6This duality can also be trivially extended to interacting
theories as well. An interaction term of the kind λðnÞϕn in the
Lagrangian of ½aðηÞ;ϕðxÞ; m� set is mapped to λ̃ðnÞψn in
½bðηÞ;ψðxÞ;M�, with λ̃ðnÞ ¼ λðnÞF n−4. Such a duality allows us
to handle interacting theories in cosmological backgrounds
through a new approach. In this paper though, we will be
concerned with free fields only.
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kind −ξRϕ2 in the action. We can again provide a mapping
between the set of quantities ½aðηÞ;ϕðxÞ; m; ξ� and ½bðηÞ;
ψðxÞ;M; ξ�, through a straightforward generalization of
Eq. (31) (see Appendix A 2 for details). A massless field in
the power-law universe will then get mapped to a field with
mass M, where

M2 ¼ ð1 − 6ξÞð2þ qÞð1 − qÞ
in the de Sitter spacetime. From this relation, we see
immediately that, in the case of the conformally invariant
coupling ξ ¼ 1=6, we get a massless theory in the de Sitter
spacetime as well, which is to be expected. However, the
range of stability of the theory now depends on the value of
6ξ as well. We hope to pursue this and related issues in a
subsequent work. In this paper, we will continue to deal
with minimally coupled scalar fields, i.e., with ξ ¼ 0.
Returning to the minimal coupling, we note that the

expression for the effective massM2 ¼ ð2þ qÞð1 − qÞ can
be written more symmetrically and usefully by introducing
a parameter,

ν≡ qþ 1

2
¼ 3

2

ðw − 1Þ
1þ 3w

; ð33Þ

in place of q so that the effective mass becomes

M2 ¼ ð2þ qÞð1− qÞ ¼
�
3

2
þ ν

��
3

2
− ν

�
¼ 18wðwþ 1Þ

ð1þ 3wÞ2 :

ð34Þ
Clearly, this function remains positive only for −3=2 <

ν < 3=2, and the mass will turn tachyonic for ν outside this
range. Such a theory will be pathological. We can therefore
conclude, without any detailed analysis, that the massless
scalar field theory in a power-law universe will exist only if
−3=2 < ν < 3=2. In terms of the equation of state param-
eter this corresponds to the condition w > 0 (when we
exclude the phantom regime with w < −1 [58]). In other
words we expect a massless scalar field to exhibit a
pathology in any power-law universe with a source having
negative pressure, including, of course, the de Sitter
universe which is just a special case. We will see later
by explicit analysis that the theory does not exist for w < 0.
It is, of course, possible to verify this result in terms of

the field equations satisfied by the respective scalar fields in
the two spacetimes. In the conformal Friedmann coordi-
nates, we can choose the fundamental solution to the scalar
field equation to have the form fkðηÞ expðik · xÞ with the
general solution obtained by superposing these solutions
for different k. The dynamics is contained in the mode
functions fkðηÞ. In the case of a power-law universe, these
mode functions fkðηÞ satisfy the equation,

η2
d2fk
dη2

− 2qη
dfk
dη

þ k2η2fk ¼ 0; ð35Þ

where q ¼ p=ðp − 1Þ where aðηÞ ∝ η−q ∝ tp. (In the de
Sitter limit, corresponding to p → ∞ we take q ¼ 1.) It
then follows that the differential equation satisfied by the
rescaled function hk ≡ η1−qfk (corresponding to a field
redefinition) is given by

η2
d2hk
dη2

− 2η
dhk
dη

þ ðk2η2 − q2 − qþ 2Þhk ¼ 0: ð36Þ

Comparing Eq. (36) with the differential equation corre-
sponding to the mode function of a scalar field of mass
(squared) M2 in de Sitter, namely,

η2
d2hk
dη2

− 2η
dhk
dη

þ ðk2η2 þM2Þhk ¼ 0; ð37Þ

we identify thatM2=H2 ¼ ðqþ 2Þð1 − qÞ. This reproduces
the previous result obtained in terms of the action principle
with the correct dimensional constants.
This equivalence is extremely useful and allows us to

discuss the physics of two separate situations at one go.
These two situations corresponds to (i) massive scalar field
in a de Sitter universe and (ii) massless scalar field in a
universe with power-law expansion. It is also possible to
make use of the existence of a hidden de Sitter expansion to
address some other interesting issues. For example, it is not
easy to define a natural vacuum state for a massless scalar
field living in a power-law universe, but if we map it to a
massive scalar field in a de Sitter universe, we can make
use of the de Sitter invariant vacuum states available for
massive fields in de Sitter.
This equivalence also provides a mapping between quan-

tum correlators and, in particular, the Wightman functions.
From the scaling ϕ ¼ Fψ with F ¼ ηq−1, we immediately
see that theWightman functionGϕ for ϕ can be expressed in
the formGϕðx2; x1Þ ¼ ðη2η1Þq−1Gψ ðx2; x1Þ, but if we define
the vacuum state for the ϕ field using the hidden de Sitter
invariance, then Gψ will have the form Gψ ½lðx2; x1Þ� where
lðx2; x1Þ is the geodesic distance in the de Sitter spacetime.
So we have the result,

Gϕðx2; x1Þ ¼ ðη2η1Þq−1Gψ ½lðx2; x1Þ�; ð38Þ

connecting the Wightman function of a massless scalar field
in a power-lawuniverse to that of amassive scalar field in a de
Sitter universe in a preferred vacuum state.We shallmake use
of this equivalence extensively in our analysis. Most of the
time we will concentrate on massive fields in de Sitter
spacetime, but these results can be translated for massless
fields in power-law universes if we choose the de Sitter
invariant vacuum for these fields.
Finally, we mention that Eq. (31) is applicable even for a

general Friedmann universe in which aðηÞ is not a power
law. In fact, the entire analysis can be generalized for scalar
fields in arbitrary curved spacetimes along the following
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lines. One can show that (see Appendix A 2) the dynamics
of a scalar field ϕ with mass m in a spacetime with metric
gab is the same as the dynamics of another scalar field
ψ ¼ eΛϕ with mass M in a spacetime with metric qab ¼
e−2Λgab where ΛðxÞ is the solution to the differential
equation □Λþ ð∂ΛÞ2 þm2e2Λ ¼ M2. (The derivative
operations are carried out with qab in this equation.) We
hope to analyze the more general cases in a future work.

IV. MODE FUNCTIONS AND THEIR
LIMITING FORMS

We will now start discussing several aspects of quantum
field theory of a massive scalar field in a Friedmann
universe, concentrating on two cases mentioned above:
(1) Case A corresponds to a massive scalar field in a de
Sitter universe with the massless field treated as a limiting
case. (2) Case B corresponds to a massless scalar field in a
Friedmann universe with power-law expansion. The results
obtained in Sec. III tell us that these two cases can be
mapped to each other by a suitable redefinition of the field.
Taking advantage of this fact, we will discuss the results,
most of the time, for case A and merely quote the special
features for case B. In particular, themassless scalar field in
a de Sitter universe is supposed to exhibit several peculiar
features, all of which are usually attributed in the literature
to the fact that there are no de Sitter invariant vacuum states
for such a field. As we will see, this is not the real cause of
trouble and the peculiar features which occur for a massless
field in de Sitter also occurs in the context of power-law
Friedmann spacetimes.
As we saw in Sec. II A, it is possible to choose several

physically relevant coordinate systems to describe the
Friedmann universe in general and the de Sitter universe
in particular. The natural solutions to the wave equations
can be chosen to preserve the symmetries exhibited by
these coordinate systems. Further the choice of solutions
also have implications for the choice of the vacuum state.
We will review the solutions in two coordinate systems:
(i) conformal Friedmann coordinates (see Sec. II A 1) for
both de Sitter and power-law cosmologies and (ii) static,
spherically symmetric coordinates (see Sec. II A 3) for the
de Sitter case.

A. Conformal Friedmann co-ordinates
and the Bunch-Davies vacuum

We are interested in a massive scalar field ϕ obeying
the Klein-Gordon equation in a de Sitter spacetime
(adSðtÞ ¼ eHt; t ∈ R) and a massless scalar field in a
power-law expanding spacetime (apðtÞ ¼ ð1þHt=pÞp)
where t is the cosmic time coordinate and aðtÞ is the
expansion factor. With this choice of a power-law metric,
limp→∞apðtÞ ¼ adSðtÞ, and we obtain the de Sitter space-
time as a limiting case. The conformal time coordinate is
defined by dη ¼ dt=aðtÞ, with the integration constant

chosen so that in the de Sitter and power-law cases, we
have

ηdS ¼ −H−1e−Ht; ηp ¼ −
p

Hðp − 1Þ a
−p−1

p
p ðtÞ: ð39Þ

With this choice η has the same range in both cases: η ∈
ð−∞; 0Þ with η → −∞ corresponding to t → −∞ and
η → 0 to t → ∞, for p > 1. We will now discuss the form
of the mode functions.

1. Massive scalar field in de Sitter

In any Friedmann universe, described in conformal
Friedmann coordinates, we can take the mode functions
to be

ukðη; xÞ ¼ fkðηÞ
�

1

ð2πÞ32 expðik · xÞ
�
; ð40Þ

so that all the dynamics is contained in fkðηÞ which
satisfies the equation,

η2
d2fk
dη2

− 2η
dfk
dη

þ ðk2η2 þm2Þfk ¼ 0: ð41Þ

There are two independent solutions to this equation which

can be taken to be proportional to ð−ηÞ3=2Hð1Þ
ν ð−kηÞ and

ð−ηÞ3=2Hð2Þ
ν ð−kηÞ where

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m2

H2

r
: ð42Þ

Any particular linear combination as the choice for fkðηÞ ¼
ð−ηÞ3=2½AHð1Þ

ν þ BHð2Þ
ν � will lead to a corresponding def-

inition of “vacuum” state for the quantum field theory.
Conventionally, one sets B ¼ 0 and chooses fk to be

proportional to ð−ηÞ3=2Hð1Þ
ν (we will comment on the

reasons for this choice later on). In quantum field theory
the commutation rules for the field uniquely fixes the
overall normalization of the solution, except for a constant
phase. This leads to the following expression for the mode
function:

fkðηÞ ¼
ffiffiffi
π

p
H

2
eiθe

iνπ
2 ð−ηÞ32Hð1Þ

ν ð−kηÞ; ð43Þ

where θ is a constant phase. These mode functions define a
vacuum state called the Bunch-Davies vacuum.
Conventionally one sets θ ¼ 0 which is acceptable for

most purposes, but the solution with θ ¼ 0will not have the
correct limit when H → 0. In this limit we expect the
positive frequency mode functions to become proportional
to expð−iωktþ ik · xÞ with ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. To ensure

this, it is necessary to make a specific, nonzero, choice for
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θ. This analysis is algebraically nontrivial so we shall just
mention the key points, delegating the details to
Appendix A 3. (We include this discussion since we have
not seen this aspect addressed explicitly in the previous
literature.)
Let us study the behavior of the mode function in

Eq. (43) asH → 0. In this limit, the parameter ν approaches
infinity along the positive imaginary axis with ν≈
im=H ≡ iμ. The conformal time is also affected by this
limit, and we must consider both an OðH−1Þ (the dominant
term) andOðH0Þ part to arrive at any conclusions about the
dependence of the modes on the cosmological time t.
We can rewrite the relevant limiting form of fkðηÞ, now
expressed as a function of t, as

fkðtÞ ≈
ffiffiffi
π

p
H

2
eiθe−

μπ
2

�
1 −Ht
H

�3
2

Hð1Þ
iμ ðμzÞ; ð44Þ

where z≡ ðk=mÞð1 −HtÞ, a positive real number that is
kept finite asH → 0. We are therefore essentially interested

in the asymptotic form of Hð1Þ
iμ ðμzÞ for fixed z [the OðHÞ

correction to z is small, allowing such a treatment] as
μ → ∞. It turns out that such asymptotic forms for large
order of the Hankel function are not easy to find;
fortunately, we located a previous work [59] which has
the relevant result. The leading behavior is given by

Hð1Þ
iμ ðμzÞ ≃

�
2

πμ

�1
2

e
πμ
2 e−

iπ
4 ð1þ z2Þ−1

4eiμξðzÞ ðμ → ∞Þ;

ð45Þ

where

ξðzÞ ¼ ð1þ z2Þ12 þ ln

�
z

1þ ð1þ z2Þ12
�
: ð46Þ

The rest of the analysis is relatively straightforward and one
can show that our mode function has the following limiting
form when H → 0:

fkðtÞ → eiθ½e−iπ
4
þ i

Hðωkþm lnð k
ωkþmÞÞ� e

−iωktffiffiffiffiffiffiffiffi
2ωk

p ðH → 0Þ: ð47Þ

So fkðtÞ does go over to positive frequency Minkowski
mode expð−iωktÞ when H → 0 which is (partial) justifi-
cation for the choice of modes in de Sitter, but to get it right
we need to choose the phase θ to be

θ ¼ π

4
−

1

H

�
ωk þm ln

�
k

ωk þm

��
: ð48Þ

Wewill, however, continue to work with the mode function
in Eq. (43) with θ ¼ 0 (as is usually done in the literature)
when the phase is irrelevant.

We mentioned earlier that de Sitter spacetime has a
hidden time translational invariance under the transforma-
tion t → tþ τ, η → ηe−Hτ and x → xe−Hτ. In Fourier
space, it is appropriate to supplement these with the
rescaling (k → keHτ). It is clear from the form of fk in
Eq. (43) that the mode uk ¼ fk expðik · xÞ has the func-
tional form, ukðη; xÞ ¼ k−

3
2Uðk · x; kηÞ. The combinations

k · x and kη are invariant under our rescaling. The modes
then transform as

ukðη; xÞ → ukeHτðηe−Hτ; xe−HτÞ ¼ e−
3
2
Hτukðη; xÞ: ð49Þ

So the modes themselves are not invariant under this
transformation. However, quantities such as the two-point
functions, given by expressions involving integrals over
d3kukðxÞu�kðx0Þ are invariant under this transformation
because d3k → e3Hτd3k. Thus the two-point functions
inherit the hidden time translational invariance of the de
Sitter spacetime, as they should.

2. Massless scalar field in power-law universe

We saw earlier that the dynamics of a massless scalar
field in a power-law universe (with a ∝ tp ∝ η−q with
q ¼ p=ðp − 1Þ) can be translated to that of a massive field
in de Sitter with a field redefinition by a factor F ∝ η−k

where k ¼ 1 − q. This is indeed what happens when we
solve the equation,

η2
d2fk
dη2

− 2qη
dfk
dη

þ k2η2fk ¼ 0; ð50Þ

for the mode function. The properly normalized positive
frequency solution can now be taken as

ukðη; xÞ ¼
ffiffiffi
π

p
2

�
H
q

�
q
e
iνπ
2 ð−ηÞνHð1Þ

ν ð−kηÞ eik·x

ð2πÞ32 ; ð51Þ

with ν being the parameter introduced earlier in Eq. (33)
which gets related to the exponent of expansion like many
other variables of the theory (see Fig. 4):

ν¼ 1

2
þq¼ 1

2
þ p
p−1

¼ 3

2
− ð1−qÞ¼ 3

2
−k¼ 3

2

w−1

1þ3w
:

ð52Þ

The factor ην ¼ η3=2η−k is the product of the factor η3=2

which occurs in the de Sitter mode functions [see Eq. (43)]
and the scaling factor F ∝ η−k involved in the field
redefinition. If we equate the ν in Eq. (52) (relevant for
a massless field in power-law universe) with the ν in
Eq. (42) (relevant for a massive field in de Sitter universe),
we can define an effective mass M. A simple calculation
shows that M2 ¼ H2ðqþ 2Þð1 − qÞ, which is the same
result we obtained earlier using the scaling arguments
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[see the discussion around Eqs. (32) and (37)]. In fact,
defining β≡ ðH=qÞq and introducing the notation q ¼
minð1;Re ν − 1

2
Þ, which translates to q ¼ p=ðp − 1Þ for the

power-law case with q ¼ 1 for the de Sitter, the mode
functions for both the power law and the exponential
expansion can be written in the same form:

ukðη; xÞ ¼
ffiffiffi
π

p
β

2
e
iπν
2 ð−ηÞqþ1

2Hð1Þ
ν ð−kηÞ: ð53Þ

Based on our analysis in Sec. III we expect the theory to
exhibit pathologies when jνj > 3=2 when the effective
mass turns pathological. As we shall see later, this
pathology occurs at the level of two-point functions and
the mode functions remain well-defined.
Finally, let us briefly review the choice of positive

frequency modes, which in turn decides the vacuum state.
To justify the choice of the modes in Eq. (51) as the
appropriate positive frequency modes one can proceed in
two different ways. First, from the results of Sec. III and the
functional form of Eq. (51) we know that these modes arise
from the rescaling of positive frequency modes in the case

of de Sitter, which justifies the choice. Second, we can
again take the limit of flat spacetime aðtÞ → 1 of the
expansion factor and verify that the modes in Eq. (51) have
the correct limiting form. This is fairly straightforward if
we think of the flat spacetime limit as arising due to p → 0.
In this limit, q → 0 and ν → 1=2. In this case we have a
known form for the Hankel function:

Hð1Þ
1
2

ð−kηÞ ¼ −i
ffiffiffi
2

π

r
e−ikηffiffiffiffiffiffiffiffi
−kη

p ; ð54Þ

along with the result η → t. A simple calculation (see
Appendix A 3) now shows that

ukðt; xÞ →
1

ð2πÞ32 ffiffiffiffiffi
2k

p eik·x−ikt; ð55Þ

thereby again justifying the choice of positive frequency
modes.7

3. Massless scalar field in de Sitter

As far as mode functions are concerned, the massless
limit of the massive scalar field exhibits no pathologies.
This limit corresponds to ν ¼ 3=2 and arises when we take
m → 0 in the de Sitter case or if we take p → ∞, q → 1 in
the power-law expansion. Both mode functions take an
identical form in these limits, giving

ukðη; xÞ ¼
ffiffiffi
π

p
H

2
e
3πi
4 ð−ηÞ32Hð1Þ

3
2

ð−kηÞ eik·x

ð2πÞ32

¼ Hffiffiffi
2

p ð2πÞ32 e
3πi
4

�
kη − i

k
3
2

�
eik·x−ikη: ð56Þ

The second relation follows from the fact that the Hankel
function of order 3=2 can expressed in terms of elementary
functions:

Hð1Þ
3
2

ð−kηÞ ¼
ffiffiffi
2

π

r
ð−kηÞ−3

2ðkη − iÞe−ikη: ð57Þ

We will use this form extensively later on.
In our discussions so far, we have used the Bunch-

Davies vacuum. While this is a vacuum state preferred in
the literature when one uses the conformal Friedmann
coordinates, there are certain subtleties regarding this
choice which needs to be emphasized. To begin with, the
Bunch-Davies modes are not pure positive frequency

FIG. 4. Plots for (i) pðwÞ ¼ 2=ð3þ 3wÞ, (ii) qðwÞ ¼
−2=ð1þ 3wÞ and (iii) νðwÞ ¼ 3ðw − 1Þ=2ð1þ 3wÞ. The param-
eters q and p are defined through the expansion factor as
aðtÞ ¼ ð1þHt=pÞp ¼ ð−Hη=qÞ−q, where η is the conformal
time, t is the comoving time and ν is just qþ ð1=2Þ. We have
taken w ∈ ½−1; 1�, which corresponds to the physical range of the
equation of states. The values of p, ν and q for three special cases
of the parameter w, viz., (i) w ¼ 0, the dust; (ii) w ¼ 1=3, the
radiation; and (iii) w ¼ −1, the de Sitter that are of main interest
in cosmology are also marked. The region −3=2 < ν < 3=2,
where the field theory correlators are finite, which is the region
outside the shaded part, maps to the range 0 < w < ∞ when we
exclude the unphysical (“phantom”) range of w < −1. So the
field theory correlators are well-defined only if the equation of
state parameter is positive semidefinite.

7This procedure corresponds to taking the p → 0 limit in
Eq. (2) keeping H constant. One can also obtain the flat
spacetime limit from power-law Friedmann universe in different
manner, by taking theH → 0 limit in Eq. (2), keeping p constant.
This case, though it leads to the same conclusion, is slightly more
subtle and is discussed in Appendix A 3.

QUANTUM CORRELATORS IN FRIEDMANN SPACETIMES: … PHYS. REV. D 98, 105015 (2018)

105015-15



modes with respect to the conformal time η in (1þ 3)
dimension.8 They do not have the dependence expð−iωηÞ
even in the asymptotic past when η → −∞; in this limit,
the mode functions behave like ½1=aðηÞ� expð−ikηÞ for the
massless modes. The extra factor ½1=aðηÞ� prevents the
pure sinusoidal behavior even in the asymptotic past.
The usual trick to circumvent this difficulty is to

introduce a field redefinition and work with the field
vðxÞ≡ aðηÞϕðxÞ where ϕðxÞ is the original scalar field.
This new field—closely related to what is called
Mukhanov-Sasaki variable in inflationary literature
[9,10,60]—does have the dependence expð−ikηÞ in the
asymptotic past. One then quantizes the field vðxÞ and
adopts the resulting Hilbert space structure for the original
scalar field ϕðxÞ as well.
More importantly, the Bunch-Davies modes are com-

plicated functions of the cosmic time t containing an,
understandable, exponential redshift factor. In the mass-
less case, e.g., the positive frequency Bunch-Davies
modes in Eq. (56), expressed in terms of the cosmic time,
has the form,

fkðtÞ ¼
1ffiffiffiffiffi
2k

p exp

�
−
ik
H
ð1 − e−HtÞ

��
iH
k

þ e−Ht

�
: ð58Þ

On the other hand, the de Sitter spacetime does have an
implicit translational invariance with respect to the cosmic
time. So it makes sense to inquire about the positive and
negative frequency components of fkðtÞ with respect to
the cosmic time. These modes, fkðtÞ, are indeed a
superposition of positive and negative frequency waves
with respect to the cosmic time t. Writing

fkðtÞ ¼
Z

∞

0

dγ
2π

ðαγe−iγt þ βγeiγtÞ; ð59Þ

one can determine by inverse Fourier transform the
coefficients αγ and βγ . A straightforward calculation
(see, for e.g., [61]) now gives the result

jαγj2 ¼
H2

2k3γ
βeβγ

eβγ − 1

�
1þ γ2

H2

�
;

jβγj2 ¼
H2

2k3γ
β

eβγ − 1

�
1þ γ2

H2

�
;

β−1 ¼ H
2π

: ð60Þ

We see that there is a thermal factor with temperature
H=2π modified by a kinematic factor (1þ γ2=H2). While

the Planck spectrum is modified by this factor, the ratio of
the coefficients,

jβγj2
jαγj2

¼ expð−βγÞ; ð61Þ

remains as the standard Boltzmann factor. (Since αγ
and βγ are not Bogoliubov coefficients, the condition
jαj2 − jβj2 ¼ 1 needs not hold.) We will see similar factors
arising later on in the context of power spectra of the
vacuum noise.

B. Static coordinates and the cosmic vacuum

The most natural way to define a vacuum state is in terms
of mode functions which are positive frequency with respect
to a time coordinate. The metric in Friedmann coordinates
exhibit a time dependence, thereby preventing solutions to
the wave equations which evolve as expð−iωtÞ, say. For a
general Friedmann universe, and even for a universe with a
power-law expansion, there is no way around this situation.
The geometry is time dependent andwe have to livewith that
fact. The vacuum state has to defined by some other criterion
(like the ones we talked about in the last section) because of
this intrinsic time dependence.
The situation, however, is different in the case of de Sitter

expansion. The de Sitter universe is inherently time trans-
lation invariant and the apparent time dependence in aðtÞ ¼
expHt ¼ η−1 is spurious. So, in this case, wemust be able to
choose mode functions which are indeed positive frequency
with respect to the cosmic time and evolve as expð−iωtÞ.
This choice, in turn, will define an appropriate vacuum state
which may be called cosmic vacuum as it is defined with
respect to the cosmic time.Aswe saw in Secs. II A 2 and II A
3, the static nature of the metric is manifest in Painlevé
and spherical coordinates. The cosmic vacuum, defined by
modes which evolve as expð−iωtÞ in the Painlevé coordi-
nates, is the same as the static vacuum defined by modes
which evolve as expð−iωτÞ in the spherical coordinates
because these positive frequency solutionsmap to eachother;
see Eq. (10). Given the rather natural way in which such a
vacuum state arises, it is important to look at the mode
functions in the static and Painlevé coordinates.
Let us begin with the de Sitter spacetime described by the

static line element in Eq. (8). We take the mode functions to
be of the form,

vωðxÞ ¼ e−iωτΦωlmðrÞYlmðθ;ϕÞ; ð62Þ
separating out the time dependence and angular depend-
ences. The resulting radial equation has two independent
solutions which are given by

Φð1Þ
ωlmðrÞ ¼ rlð1 −H2r2Þ−iω2H

2F1

�
3

4
þ l
2
−

iω
2H

−
ν

2
;
3

4
þ l
2

−
iω
2H

þ ν

2
;
3

2
þ l;H2r2

�
; ð63Þ

8The corresponding modes do evolve as expð−iωηÞ in (1þ 1)
dimension due to conformal invariance, but we will not be
concerned with (1þ 1) dimensional case in this paper.
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and

Φð2Þ
ωlmðrÞ ¼ r−l−1ð1 −H2r2Þ−iω2H

2F1

�
1

4
þ l
2
−

iω
2H

−
ν

2
;
1

4
þ l
2

−
iω
2H

þ ν

2
;
1

2
− l;H2r2

�
; ð64Þ

where 2F1ða; b; c; zÞ is the Gauss hypergeometric function.
The regularity of the solution at Hr ¼ 0 requires us to
choose the first solution in Eq. (63) and discard the second
[62]. So the regular solution is

vωlmðr; θ;ϕÞ ¼ Nωe−iωτYlmðθ;ϕÞΦð1Þ
ωlmðrÞ: ð65Þ

The normalization constant Nω has to be fixed in terms of
the standard Klein-Gordon inner product. This is straight-
forward though somewhat algebraically involved. One can
show that (see Appendix A 4) the correct normalization
leads to

jNωj2 ¼
H2

πω

�
1þ ω2

H2

�
: ð66Þ

Finally note that the mode functions in static coordinates
are related in a simple manner to the mode functions in
Painlevé coordinates, through Eq. (10). So the mode
function obtained above continues to be useful in the
Painlevé coordinates as well. We stress that quantum field
theory built from these modes correspond to a vacuum state
which has positive frequency modes with respect to cosmic
time t, a fact which does not seem to have been properly
appreciated in the literature.
The modes vω, which are positive frequency with respect

to the static time coordinate τ [with time dependence
expð−iωτÞ], define the static vacuum, while the modes
fk in Eqs. (43) and (56) define the Bunch-Davies vacuum
for massive and massless fields respectively. There exists a
nontrivial Bogoliubov transformation between these modes
and the Bunch- Davies vacuum will contain static frame
“particles”. (This is similar to inertial vacuum containing
Rindler “particles”). These Bogoliubov coefficients can be
computed using the standard Klein-Gordon scalar product.
Such a calculation is drastically simplified by choosing the
spacelike hypersurface (on which the scalar product is
computed) to be close to the horizon r ¼ H−1 where only
the s-mode makes significant contribution. Rewriting the
Bunch-Davies modes in the static coordinate system, one
can compute the Bogoliubov coefficients in a relatively
straightforward manner (see e.g., [61]) and show that

kjβωkj2 ¼
β

ðeβω − 1Þ ; β ¼ 2π

H
: ð67Þ

This shows that the Bunch-Davies vacuum appears to be
thermally populated by the static frame particles with

temperature H=2π. This thermal factor will come up later
on when we study the power spectrum of vacuum noise.

V. THE WIGHTMAN FUNCTION

The quantum field theory of a free field in any
spacetime is contained in the Wightman function. It
would therefore be logical to work entirely in terms of
this function which satisfies the wave equation.
Unfortunately, not all solutions of the wave equation
ð□ −m2ÞG ¼ 0 qualify as legitimate Wightman functions
because a generic solution will not have the structure
Gðx2; x1Þ ¼ h0jϕðx2Þϕðx1Þj0i for a field operator ϕðxÞ
(satisfying the same equation ð□ −m2Þϕ ¼ 0) for any
normalizable state j0i in a Hilbert space. To circumvent
this difficulty, one should either (a) impose specific
boundary conditions on the solutions to ð□ −m2ÞG ¼ 0
(usually called the Hadamard condition) to construct a
legitimate Wightman function or (b) construct the funda-
mental solutions to the equation ð□ −m2Þϕ ¼ 0, define a
suitable vacuum state in terms of, say, the positive
frequency solutions to this equation (or by some other
criteria) and construct the Wightman function from its
definition Gðx2; x1Þ ¼ h0jϕðx2Þϕðx1Þj0i.
The approach (a) is particularly useful to construct the

Euclidean Green’s function which satisfies the equation
ð□ −m2ÞG ¼ δ with a delta function source (which, on
analytic continuation, gives the Feynman Green’s function,
rather than the Wightman function, but one can construct
the latter from the former). There is an elegant way of
implementing this program using an analogy with electro-
statics in D ¼ 5 Euclidean space, leading to a simple
integral representation for the Euclidean Green’s function.
We will first describe this procedure in Sec. VA and then
obtain the same result, by a brute force method, based on
approach (b), in Sec. V B.

A. Euclidean de Sitter Green’s function
from D= 5 electrostatics

Consider a 5-D Euclidean flat spacetime, with the line
element (in standard polar coordinates) being ds2 ¼
dr2 þ r2dΩ2

4, where dΩ2
4 is the metric on a unit 4-sphere.

The electrostatic potential ϕ produced by a charge distri-
bution ρðxÞ in this space satisfies the five-dimensional
Poisson equation: −∇2

5ϕ ¼ ρ where, ∇2
5 is the Laplacian

in 5D Euclidean space. The solution to this equation is
given by

ϕðxÞ ¼
Z
R5

dV 0ρðx0ÞG5ðx;x0Þ;

G5ðx;x0Þ ¼ 1

8π2
1

jx − x0j3 ; ð68Þ

where, G5ðx;x0Þ is the Green’s function corresponding
to a delta function source in 5-D Euclidean space.
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The expanded form of the Poisson equation, on the other
hand, appears as

−
1

r4
∂rðr4∂rϕÞ −

1

r2
∇2

Sϕ ¼ ρ; ð69Þ

where we have used the polar coordinates and ∇2
S is the

Laplacian on a unit 4-sphere. Our aim is to connect this
electrostatic Poisson equation to the equation satisfied by
the Euclidean Green’s function for a massive scalar field on
a 4-sphere S4ðRÞ of an arbitrary radius R. This is possible
because the 5-D Laplacian in Eq. (69) has two parts: (i) one
involving radial derivatives and (ii) one involving “polar”
derivatives. If we are interested in the Laplacian of a field
ϕðr;Ω4Þ evaluated at the surface of a 4-sphere of radius R,
we would get

∇2
5ϕjS4ðRÞ ¼

1

R4
∂rðr4∂rϕÞjR þ 1

R2
∇2

SϕðR;Ω4Þ: ð70Þ

We can reduce the first term in Eq. (70) to the mass term
appearing in the Green’s function equation provided

1

R4
∂rðr4∂rϕÞjR ¼ −m2ϕðR;Ω4Þ: ð71Þ

If we look for the separable solution for the field, satisfying
this condition, we obtain

ϕðr;Ω4Þ ¼ r−3=2−νfðΩ4Þ; ð72Þ

where ν≡�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2R2

p
and fðΩ4Þ is an arbitrary

function of the angular coordinates and C is a dimensionful
constant. We want this potential to satisfy

−R−2∇2
SϕðR;Ω4Þ þm2ϕðR;Ω4Þ ¼ R−4δSðΩ4;Ω0

4Þ; ð73Þ
at the radius R of the sphere, where ∇2

S is the Laplacian
operator on a unit 4-sphere, but this is just the defining
equation for the Green’s function GS for a massive scalar
field on S4ðRÞ!
At any other general point ðr;Ω4Þ the Green’s function

equation yields

r−4
�
r
R

�
1=2−ν

½m2R2fðΩ4Þ þ∇2
SfðΩ4Þ� ¼ ρðxÞ: ð74Þ

The separability condition of the field forces the charge
density to adopt a form

ρðxÞ ¼ kr−4
�
r
R

�
1=2−ν

δSðΩ4;Ω0
4Þ; ð75Þ

for some constant k. Moreover, we want that the ρðRÞ ¼
δSðΩ4;Ω0

4Þ=R4. This equation fixes the constant k to unity,
yielding the form for the charge density,

ρðxÞ ¼ r−4
�
r
R

�
1=2−ν

δSðΩ4;Ω0
4Þ; ð76Þ

to be the source for the potential ϕðr;Ω4Þ given in Eq. (72).
Therefore the explicit expression for GSðΩ4;Ω0

4Þ ¼
ϕðR;Ω4Þ can be obtained immediately from Eq. (68),
leading to

GSðΩ4;Ω0
4Þ ¼ ϕðR;Ω4Þ ¼

1

8π2

Z
∞

0

�
r0

R

�
1=2−ν

×
r04dr0

ðR2 − 2Rr0 cos θ þ r02Þ3=2r04 ; ð77Þ

¼ 1

8π2R2

Z
∞

0

ds
s1=2−ν

ðs2 − 2s cos θ þ 1Þ3=2 ;

ð78Þ

where θ is the angle subtended at the origin by the arc
joining ðR;Ω4Þ and ðR;Ω0

4Þ and s ¼ r0=R. This is indeed
the Euclidean Green’s function (which on analytic con-
tinuation will normally lead to the Feynman Green’s
function) in the de Sitter space with R ¼ 1=H. {In order
to smoothly go over to the form of Green’s function of the
de Sitter going to appear in the paper later on, we choose
ν≡þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2R2

p
. We could have chosen any signature

for ν, as the Green’s function [or the potential ϕðR;Ω4Þ]
turns out to be symmetric in ν.} The integral in Eq. (78), as
we shall see later in Sec. VI B, can be expressed in terms of
the Gauss hypergeometric function. We shall now obtain
the same result by somewhat less elegantmethods using the
mode functions.

B. Massive de Sitter and massless power law

From the definition Gðx2; x1Þ ¼ h0jϕðx2Þϕðx1Þj0i of the
Wightman function, it is obvious that it can be expressed as
a mode sum in the vacuum state associated with the modes.
So the Wightman function for the Bunch-Davies vacuum is
given by

Gðη; x; η0; x0Þ ¼ h0;BDjϕ̂ðη; xÞϕ̂ðη0; x0Þj0;BDi; ð79Þ

¼ πβ2

4ð2πÞ3 ðηη
0Þqþ1

2

Z
R3

d3kHð1Þ
ν ð−kηÞHð2Þ

ν

× ð−kη0Þeik·ðx−x0Þ; ð80Þ

where β ¼ ðH=qÞq and we have rewritten Hð1Þ�
ν in terms of

Hð2Þ
ν . Evaluating the angular part of the k-integral gives,

with ρ ¼ jx − x0j:

Gðη; η0; ρÞ ¼ β2

8πρ
ðηη0Þqþ1

2

Z
∞

0

kdkHð1Þ
ν ð−kηÞHð2Þ

ν

× ð−kη0Þ sinðkρÞ: ð81Þ

Our aim is to reduce this expression to a simple integral
representation so that we can ascertain its properties and, in
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particular, decide when this integral exists. This requires
rather involved algebraic manipulations with special care to
handle the subtleties involved in the convergence of various
expressions. We will outline the steps here delegating the
details to Appendix A 5.
The first step is to use a standard integral representation

for Hankel functions (see 10.9.10, 10.9.11 of [63]) and
write the integrand in Eq. (81) as a double integral. Such a
procedure is usually used to obtain an integral representa-
tion for the products like KνðizÞKνðiz0Þ in literature (see
e.g., 13.71 of [64]). Unfortunately we cannot use this
approach directly because the integral representation for
Hankel functions have restrictions on the phase of the
integrand which are difficult to incorporate. Nevertheless it
is possible to manipulate the expressions carefully and
arrive at the following representation for the Wightman
function:

Gðη; η0;ZÞ ¼ β2

16π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

−∞
du

e−νu

ðcosh u − ZÞ32 ;

ð82Þ

¼ β2

8π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

0

du
cosh νu

ðcosh u − ZÞ32 ; ð83Þ

where

Z ¼ η2 þ η02 − ρ2

2ηη0
¼ 1þ ðη − η0Þ2 − ρ2

2ηη0
ð84Þ

is related to the geodesic distance lðx; x0Þ by Hlðx; x0Þ≡
cos−1 Zðx; x0Þ; see Eq. (4). It is also implicitly understood
that (η − η0) is to be treated as the limit of (η − η0 − iϵ) when
ϵ → 0þ to obtain theWightman function, while the Feynman
Green’s function is obtained by treating ðη − η0Þ2 as the limit
of ðη − η0Þ2 − iϵ.
Another useful integral representation, involving poly-

nomials in the integration variable, can be obtained by
substituting s ¼ eu in Eq. (82), leading to

Gðη; η0;ZÞ ¼ β2

8π2
ðηη0Þq−1

Z
∞

0

ds
sð12−νÞ

ðs2 − 2Zsþ 1Þ32 : ð85Þ

On analytic continuation, in the de Sitter limit of q ¼ 1, this
expression reduces to Eq. (78), obtained earlier from the
D ¼ 5 electrodynamics. We immediately see that, when
the integral exists, Gðx; x0Þ has the structure Gðx; x0Þ ¼
ðηη0Þq−1GdS½lðx; x0Þ�. This is precisely what we concluded
in Sec. III from the fact that massless fields in power-law
universes can be mapped to massive field in a de Sitter
universe by a field redefinition, which accounts for the
ðηη0Þq−1 factor; see Eq. (38).
It is instructive to verify that this expression has the

correct flat spacetime limit when H → 0. This can be done

directly from Eq. (85) along the following lines: Changing
the variable to u ¼ H−1ðs − 1Þ, setting q ¼ 1 and taking
the H → 0 limit, we get

Gðη;η0;ZÞ≈ β2

8π2

Z
∞

−H−1
Hdu

ðHuþ1Þ−imH
ððHuþ1Þ2−2ZðHuþ1Þþ1Þ32 ;

ð86Þ

¼ 1

8π2

Z
∞

−∞
du

e−imu

ðu2 − σ2Þ3=2 þOðHÞ; ð87Þ

¼ im
4π2σ

K1ð−imσÞ þOðHÞ; ð88Þ

where σ2 ≡ −l2 ≡ Δt2 − Δx2 with appropriate iϵ prescrip-
tions to define the integral leading to Wightman and
Feynman Green’s functions in flat spacetime. The last
result, e.g., follows from a standard integral representation
of K1 leading to Feynman Green’s functions. (Incidentally,
the penultimate line gives a simple integral representation
for Feynman/Wightman functions which does not seem to
be well-known. This is also derived from the more standard
expression in Appendix A 11.)
The integral representation in Eq. (85) is particularly

useful to study the convergence properties of the integral,
and we shall turn to this issue in a moment. However, first
we will relate these results to more conventional expres-
sions used in the literature. It is possible to use the integral
representations of associated Legendre function Pμ

λðzÞ (see
e.g., 8.713(3) of [65]) to write the Wightman function as

Gðη; η0;ZÞ ¼ β2ðηη0Þq−1
8π2

1

ðZ2 − 1Þ12 Γ
�
3

2
þ ν

�

× Γ
�
3

2
− ν

�
P−1
ν−1

2

ð−ZÞ: ð89Þ

This result is only applicable (in the sense of yielding finite
expressions) for jνj < 3=2. We will also assume that this
relation can be analytically continued to values of Z such
that ReZ ≥ 1, with the iϵ term ensuring that the integrand
has no pole on the path of integration.
Alternatively, we can also obtain an expression for the

Wightman function, in terms of the Gaussian hypergeo-
metric function 2F1ða; b; c; zÞ, using the relation between
associated Legendre and hypergeometric functions (see
e.g., 8.702 of [65]) to get

Gðη; η0;ZÞ ¼ β2ðηη0Þq−1
8π2

Γð3
2
þ νÞΓð3

2
− νÞ

1 − Z

× 2F1

�
1

2
− ν;

1

2
þ ν; 2;

1þ Z
2

�
: ð90Þ
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This can be further transformed using the identity,

2F1ða; b; c; zÞ ¼ ð1 − zÞc−a−b2F1ðc − a; c − b; c; zÞ (see
9.131(1) of [65]) to arrive at

Gðη; η0;ZÞ ¼ β2ðηη0Þq−1
16π2

Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�

× 2F1

�
3

2
þ ν;

3

2
− ν; 2;

1þ Z
2

�
; ð91Þ

so that the Z-dependence is completely contained within a
hypergeometric function.
We have seen earlier in Sec. III that the theory will

exhibit pathologies for jνj > 3=2. It is straight forward to
see that such a pathology arises in the context of the
Wightman function and show that the Wightman function
does not exist if jνj > 3=2. This is because, while the mode
functions are well-defined, the integral over d3k required to
define the Wightman function does not exist if jνj > 3=2.
From Eq. (82), we see that the integral diverges for both
ν ≤ −3=2 and for ν ≥ 3=2; that is, it exists only for
−3=2 < ν < 3=2. The divergence in both ranges outside
this band is due to the infrared behavior of the mode
functions, i.e., the behavior of the Hankel functions near
k ¼ 0. We can see this from their limiting forms for z → 0
as given in (see e.g., 10.7.7 of [63])

Hð1Þ
ν ðzÞ ≃ −Hð2Þ

ν ðzÞ ≃ −
i
π
ΓðνÞ

�
z
2

�
−ν
: ð92Þ

We also have (see 10.4.6 of [63]) the relation Hð1Þ
−ν ðzÞ ¼

eνπiHð1Þ
ν ðzÞ, Hð2Þ

−ν ðzÞ ¼ e−νπiHð2Þ
ν ðzÞ. Thus, we have, for

real ν,

Hð1Þ
ν ðzÞ;Hð2Þ

ν ðzÞ → z−jνj for z → 0: ð93Þ
For our case, z ¼ kη, and an integral of the product of
Hankel functions over d3k ∼ k2dk goes as k2−2jνjdk near
k ¼ 0, which is divergent for jνj ≥ 3

2
. This leads to a rather

interesting situation: the Wightman function exists in
Fourier (k) space but not in the real (x) space because
the integral over d3k diverges. As we shall see later, this
allows the power spectra to exist even though the
Wightman function does not.
The fact that Wightman function does not exist whenever

ν lies outside the band −3=2 < ν < 3=2 translates, in the
context of power-law expansion with aðtÞ ∝ tp, to the
condition that p < 2=3 for the Wightman function to exist.
From Eq. (3) we see that this requires w > 0 (with w ¼ 0,
corresponding to pressureless dust, being the limiting case)
for the Wightman function and hence the QFT to exist.
Clearly, the de Sitter spacetime, corresponding to the
limiting case of w ¼ −1 with logarithmic divergence, is
also pathological in this context, which is a well-known
result in the literature. The reason for this result, however, is
usually thought to be the breakdown of de Sitter invariance

for the vacuum state of a massless field. While such states
exist for massive fields in de Sitter, it is well-known that no
de Sitter invariant vacuum state exists in the massless limit,
but as we see (also see [46–50]), the massless scalar field
has a diverging Wightman function—and hence, strictly
speaking, the quantum field theory does not exist—not
only for w ¼ −1 but also for all negative values of w; that
is, for all w < 0 with w ¼ −1 being just a special case. For
values of negative w other than −1, the spacetime does not
possess any special symmetries or any analogue of de Sitter
invariance. Hence it does not make sense to attribute the
divergence of Wightman function for −1 < w < 0 to any
specific lack of symmetry or invariance. Since w ¼ −1 is
just a limiting value of this band, it seems more logical to
think of the divergence of Wightman function in the case of
a de Sitter as just a special case of the general feature which
arises whenever the source for the Friedmann universe has
negative pressure.

C. Massless de Sitter as a limiting case

The massless scalar field in de Sitter, obtained either as
m → 0 limit of a massive field in de Sitter or as the q → 1
limit of a massless field in a power-law universe with
a ∝ η−q, will correspond to the ν ¼ ð1=2Þ þ q ¼ 3=2 limit
which is at the edge of the pathology band. From Eq. (85),
say, it is obvious that the Wightman function diverges in
this case as well. We will consider this limit as arising from
m → 0 limit of a massive field in de Sitter and determine
the nature of the divergence in the Wightman function.
To do this, we start with the Wightman function for a

massive scalar field in de Sitter background, written in
terms of the hypergeometric function, as

GðZÞ ¼ H2

16π2
ΓðcÞΓð3 − cÞ2F1

�
c; 3 − c; 2;

1þ Z
2

�
; ð94Þ

where cð3 − cÞ ¼ m2=H2 ≡ 3ϵ and consider its limiting
for small ϵ, by obtaining an expansion ofGðZÞ in powers of
m2 or, equivalently, ϵ. It is possible to do this in two
separate ways both which, of course, lead to the same
conclusion. The first approach is to use the series repre-
sentation for the hypergeometric function given by

2F1ðA;B;C; xÞ ¼
X∞
n¼0

ðAÞnðBÞn
ðCÞn

xn

n!
; ð95Þ

where ðyÞn ≡ Γðyþ nÞ=ΓðyÞ. This is defined inside the unit
disc jxj < 1 in a straightforward manner, and outside this
domain, the function is defined by an analytic continuation.
It is then possible to show (see Appendix A 6) that the
Wightman function has the series expansion:

GðZÞ ¼ 3H4

8m2π2
−

H2

8π2

�
−1

1 − Z
þ log fð1 − ZÞλg

�
þOðϵ2Þ;

ð96Þ
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where λ ¼ e2=2. The second, alternative, approach is to
rewrite the integral representation in Eq. (85) in the form of
a series expansion:

GðZÞ ¼ H2

8π2

Z
∞

0

ds
ðs2 − 2Zsþ 1Þ−3=2

s1−ϵ

∝
Z

∞

0

ds
ðs2 þ 1Þ−3=2

s1−
ϵ
2

�
1 −

2Zs
s2 þ 1

�
−3=2

;

¼
Z

∞

0

ðs2 þ 1Þ−3=2
s1−

ϵ
2

X∞
n¼0

� ð−1ÞnxðsÞnΓð−1=2Þ
Γðnþ 1ÞΓð−1=2 − nÞ

�
ds;

ð97Þ
where xðsÞ ¼ 2Zs=s2 þ 1. It is now easy to show that the
divergence arises from the n ¼ 0, which behaves as 1=ϵ near
ϵ ≈ 0, while the rest of the terms can be summed up. This
leads to the final result which is the same as in Eq. (96).
In the case of a power-law universe we get a similar

result with m replaced by the effective mass meff , and we
perform the series expansion in ϵeff ¼ m2

eff=ð3H2Þ. Here, in
the expression for the Wightman function, in addition to the
combination of the gamma functions and the hypergeo-
metric function, there is a term of the form,

ðH2ηη0Þ−ϵeff ≈ 1 − ϵeff logðH2ηη0Þ þOðϵ2effÞ; ð98Þ
as is clear, e.g., fromEq. (90). Hence, theWightman function
ends up with the following expansion in powers of m2

eff :

GðZ;η;η0Þ ¼ 3H4

8m2
effπ

2
−
H2

8π2

�
−1
1−Z

þ log½ð1−ZÞðH2ηη0Þλ�
�

þOðϵ2Þ: ð99Þ
There are several features which are noteworthy about
the results inEqs. (96) and (99)whichwe shall nowcomment
about.
One would have thought that the massless scalar field in

de Sitter can be approached through two possible limits:
It can be thought of as the m → 0 limit of the massive field
in de Sitter (which we have called case A). We can also think
of it as the limit of a massless field in a power-law universe
with aðηÞ ∝ η−q in the limit of q → 1 (which we have called
case B). Onewould have naively expected these two limits to
lead to the same Wightman function, which would indeed
have been the case if only the Wightman function, for a
massless scalar field in de Sitter, was well-defined.
Unfortunately the Wightman function diverges in this limit
irrespective of whether the limit is taken in case A or in case
B. To give any meaning to such a divergent quantity we need
to introduce some kind of regularization procedure, and it is
not guaranteed that the result will be independent of the
regularization scheme which we choose.9

When we think of massless scalar field in de Sitter as the
m → 0 limit of a massive field, we arrive at the expression
in Eq. (96). The entire divergence is contained in the first
term and it is independent of coordinates. In other words,
the derivative,

dGdSðZÞ
dZ

¼ 3β2

8π2
ðηη0Þq−1

Z
∞

0

ds
s3=2−ν

ðs2 − 2sZ þ 1Þ5=2 ; ð100Þ

¼ m2

64π2
Γ
�
3

2
þ ν

�
Γ
�
3

2
− ν

�

× 2F1

�
5

2
þ ν;

5

2
− ν; 3;

1þ Z
2

�
; ð101Þ

is well-defined, finite and is de Sitter invariant in the sense
that it depends only on Z.
All other derivatives with respect to coordinates can be

obtained by multiplying this expression by the derivatives
of Z with respect to the coordinates. The fact that the
derivative expression remains finite when m → 0, ν → 3=2
can be directly verified. If we put ν ¼ 3=2 − ϵ, where ϵ is a
small positive quantity, then we can easily show that (see
Appendix A 6)

dGðη; η0;ZÞ
dZ

¼ 3β2

8π2
ðηη0Þq−1

Z
∞

0

ds
sϵ

ðs2 − 2sZ þ 1Þ5=2 ;

ð102Þ

¼ 3β2

8π2
ðηη0Þq−1

�
−

Z − 2

3ðZ − 1Þ2
�
þOðϵÞ: ð103Þ

Note that the integrals evaluated above are convergent
only for Z < 1 and the ϵ series of G for other ranges of
Z can be obtained by analytical continuation. The term in
the square bracket in Eq. (103) is just the derivative of
−ð1 − ZÞ−1 þ logð1 − ZÞ, which appears in Eq. (99).
So integrating Eq. (103) will reproduce the de Sitter
invariant GðZÞ in the case of q ¼ 1, with an undetermined
integration constant.
These features suggest that it may be natural to define the

Wightman function of a massless scalar by this procedure,
of working with dG=dZ and integrating the expression.
Given the fact that the result in Eq. (96) contains a
logarithmic term ðH2=8π2Þ lnð1 − ZÞ and a divergent con-
stant 3H4=8m2π2, it follows that neither term is well-
defined.10 We can (i) add and subtract a function
ðH2=8π2Þ lnFðx; x0Þ to this expression, where Fðx:x0Þ is
an arbitrary function of the coordinates, (ii) modify the
logarithmic dependence to the form ln½Fðx; x0Þð1 − ZÞ�,

9Of course, the divergence of the Wightman function in this
limit is an infrared divergence; it is illegal to “subtract out” any
infrared divergence in a field theory—a point which should be
kept in mind in these discussions.

10The divergent term plays an important role in the calculation
of the vacuum expectation value of the stress energy tensor using
the point-splitting method. In the presence of a nonminimal
curvature coupling, there is also an ambiguity in the massless
minimally coupled limit (see e.g., [29]) of this expectation value.
Appendix A 7 briefly discusses this issue.
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and (iii) change the form of the divergent term by including
a factor (1þ lnF). This means that the coordinate depend-
ence of the Wightman function can be modified at will
because it is formally infinite.
In general, there is no physical motivation at all to

introduce such a function Fðx; x0Þ into the divergent
expression, but this is precisely what happens when we
treat the massless scalar field in de Sitter as arising from the
limit q → 1 of a power law. We see from Eq. (99) that it
contains an extra coordinate-dependent factor,

H2

8π2
lnðηη0Þ → H3

8π2
ðtþ t0Þ; ð104Þ

which indicates a secular growth proportional to the cosmic
time t. If we think of the expectation value of ϕ2ðxÞ as
arising from the coincidence limit of the Wightman
function, then this term will contribute a secular growth:

h0;BDjϕ2ðxÞj0;BDisecular ¼
H3

4π2
t; ð105Þ

which is a well-known ancient result in this subject [15,66–
68]. Our analysis shows that the secular growth does not
arise when we treat the Wightman function as the m → 0
limit of the massive de Sitter unless one adds by hand a
function Fðx; x0Þ to reproduce the result in Eq. (99). This
difference between the two approaches needs to be empha-
sized even though the discussion has all the well-known
arbitrariness which creeps in when one tries to make sense
of expressions which are infrared divergent.
From a physical point of view one can argue equally well

for both the approaches. The approach based on m → 0
limit in de Sitter has the virtue of preserving manifest de
Sitter invariance all throughout with all the coordinate
dependence of the theory contained in Z. In fact, if we had
worked with the expression for dG=dZ obtained from
Eq. (85), then we would have obtained the result in Eq. (85)
and everything would have been de Sitter invariant. This
makes sense, e.g., if one believes that a scalar field ϕ is not
directly observable and only its derivatives have physical
meaning. In that case, one simply discards the divergent
term as well as any secular growth term.
On the other hand, one could equally well argue that our

realistic universe was/is never in an exact de Sitter phase.
From this point of view, a power-law expansion a ∝ tp with
a finite but large p represents a more realistic situation. The
de Sitter limit is then best understood as the limit q → 1 of a
power-law universe. If we take this route, the secular
growth term is a physical feature.
In this approach, however, there is no question of de

Sitter invariance of the vacuum state or its breaking because
we are never considering the exact de Sitter invariance. In
the literature, the secular growth term is often attributed to
the breaking of the de Sitter invariance, which does not

seem to be a tenable interpretation from either point of
view. We believe there is scope for more investigation in
this regard especially if scalar fields are unobservable and
only spatial derivatives of scalar fields make physical sense.

VI. WIGHTMAN FUNCTION AND ITS
GEODESIC FOURIER TRANSFORM

A. Differential equation for GðZÞ
The two-point function satisfies the Klein-Gordon equa-

tion ð□ −m2ÞG ¼ 0 on both its arguments. We will now
consider the case in which G depends on the coordinates
only through the geodesic distance lðx; x0Þ or, equivalently,
through Zðx; x0Þ, e.g., Z ¼ cosHl for spacelike separa-
tions. This can happen, e.g., for a massive field in de Sitter
if we choose a vacuum state which respects the de Sitter
invariance. [In fact the expression in Eq. (91), e.g., has this
property]. So we should be able to obtain the Wightman
function by (a) looking for the solutions to the differential
equation ð□ −m2ÞG ¼ 0 which depend only on Z and
(b) imposing proper boundary conditions.
The task in (a) is simplified drastically if we use the

geodesic coordinates introduced in Sec. II A 4. In fact,
when we look for solutions to ð□ −m2ÞG ¼ 0 in this
coordinate system we are actually looking for static (no τ-
dependence), spherically symmetric (no θ, ϕ) dependence)
solutions. It is straightforward to show that the equation
then reduces to the form in Eq. (19) reproduced here for
convenience:

ðZ2 − 1Þ d
2G
dZ2

þ 4Z
dG
dZ

þ μ2G ¼ 0; ð106Þ

where μ ¼ m=H. For some of our future applications, and
taking the H → 0 limit, it is convenient to rewrite this
equation in terms of the variable Lðx; x0Þ related to Zðx; x0Þ
by Z ¼ 1þ ð1=2ÞL2H2 {recall that L2 ¼ ð1=H2ηη0Þ½ðη −
η0Þ2 − Δx2gwhich goes over to the Minkowski line interval
Aðx; x0Þ≡ L2

Mðx; x0Þ ¼ Δt2 − Δx2 between the two events
when H → 0). In terms of L2 the differential equation
becomes

ð4L2 þH2L4Þ d2G
dðL2Þ2 þ ð8þ 4H2L2Þ dG

dðL2Þ þm2G ¼ 0:

ð107Þ
As a warmup for the analysis in the de Sitter spacetime

let us first consider this equation and its solution in the limit
of H → 0, i.e., in standard flat spacetime quantum field
theory. In the limit of H → 0 the Eq. (107) reduces to

4L2
d2G

dðL2Þ2 þ 8
dG

dðL2Þ þm2G ¼ 0; ð108Þ

which is indeed the correct equation for the Minkowski
Green’s functions GMðx; x0Þ when it is a function of only A

LOCHAN, RAJEEV, VIKRAM, and PADMANABHAN PHYS. REV. D 98, 105015 (2018)

105015-22



i.e., GMðx; x0Þ ¼ GMðAÞ, a fact that be directly verified
using the geodesic coordinates [see Eq. (14)] in the flat
spacetime. The general solution (we do not assume m2 > 0
in this analysis) is given by

GðL2Þ ¼ gþ
K1ði

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffiffiffiffi

m2L2
p þ g−

K1ð−i
ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffiffiffiffi

m2L2
p : ð109Þ

The correct solution can be chosen by considering the
asymptotic behavior and demanding that the correlations
must vanish large spacelike intervals. From the asymptotic
behavior of the modified Bessel function KνðzÞ from (see
10.25.3 of [63]),

KνðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z; jzj → ∞; j argðzÞj < 3π

2
;

ð110Þ
it follows that K1ðizÞ diverges as Imz → ∞. [We take

ffiffiffi
z

p
to

denote the square root of z in the upper half plane
(argð ffiffiffi

z
p Þ ∈ ½0; πÞ).] This means that while the solution

K1ð−i
ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þ approaches zero for large spacelike (for

m2 > 0) or timelike (for m2 < 0) separations (i.e., as
m2L2 → −∞) the K1ði

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þ diverges and must be

discarded. This allows us to pick up the correct solution
except for an arbitrary constant.
Similar difficulties related to spurious solutions—but

much less obvious—arise in the case of de Sitter spacetime
in which GðZÞ satisfies Eq. (106). Let us now get back to
this equation and discuss its solutions. The two linearly
independent solutions of Eq. (106) can be expressed in
terms of associated Legendre functions or hypergeometric
functions. Explicitly, the most general solution to Eq. (106)
can be written as

GmðZÞ ¼ Aþ 2F1

�
c; 3 − c; 2;

1þ Z
2

�

þ A− 2F1

�
c; 3 − c; 2;

1 − Z
2

�
; ð111Þ

where Aþ and A− are constants and cð3 − cÞ ¼ m2=H2. If
we set A− ¼ 0 and choose Aþ appropriately we reproduce
the standard Wightman function, given by Eq. (94), which
has the Hadamard form. Equivalently, by demanding thatG
should have the Hadamard form we could have determined
the constants A� and thereby determined the Wightman
function.
It is of interest to ask what happens to the m → 0 limit in

this approach because we know that the correct Wightman
function diverges in that case, but the two terms in Eq. (111)
can go to finitevalues in this limit.We find that,whenm → 0,
the expression in Eq. (111) reduces to the form:

G0ðZÞ ¼ Aþ B

�
2Z

1 − Z2
þ log

�
1þ Z
1 − Z

��
≡ Aþ BWðZÞ:

ð112Þ

The function WðZÞ is obtained by a particular choice of
constants in Eq. (111) followed by using the m → 0 limit of
the expression:

WðZÞ ¼ lim
m→0

�
1

2
ΓðcÞΓð3 − cÞ

�
2F1

�
c; 3 − c; 2;

1þ Z
2

�

− 2F1

�
c; 3 − c; 2;

1 − Z
2

���
: ð113Þ

It appears that we have succeeded in obtaining a de Sitter
invariant (i.e., the result depends only on Z), finite,
Wightman function for a massless scalar field in de Sitter
contrary towhat we found earlier. This is, of course, not true.
The expression in Eq. (112) is finite, de Sitter invariant and
satisfies the Klein-Gordon equation, but it is not aWightman
function. This is because it cannot be expressed as a mode
sum which is a necessary requirement for a Wightman
function. The best one can do for G0ðZÞ is to express it as
an in-out matrix element of a time-ordered product of the
form (following [38,55]):

iGout=in
F ðx; x0Þ ¼ h0;þ∞jTϕ̂ðxÞϕ̂ðx0Þj0;−∞i; ð114Þ

where j0;−∞i ¼ j0;BDi is the Bunch-Davies vacuum at
early times, and j0;þ∞i is the vacuum at late times, defined
via instantaneous Hamiltonian diagonalization in the
Friedmann coordinates. This expression is valid for massive
as well as massless fields and is a hybrid (Feynman Green’s
functionlike) object. In terms ofmode functions, this reduces
to the integral [55]:

iGout=in
F ðx; x0Þ ¼ 1

4π

ðηη0Þ32
ρ

Z
∞

0

dk k sinðkρÞJνð−kηþÞ

× Hð2Þ
ν ð−kη−Þ; ð115Þ

where ηþ ¼ maxðη; η0Þ; η− ¼ minðη; η0Þ due to the time
ordering. For definiteness, we take η > η0, so that the above
expression is then a positive in-out “Wightman” function.
The integral can be evaluated to give [55]

Gout=inðx; x0Þ ¼ 1

4π2
ðZ2 − 1Þ−1

2Q1
ν−1

2

ðZÞ; ð116Þ

where Qκ
λðzÞ is the associated Legendre function of the

second kind. In the massless limit, ν ¼ 3
2
and the associated

Legendre function becomes

Q1
1ðzÞ ¼ i

�
zffiffiffiffiffiffiffiffiffiffiffiffi

z2 − 1
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p

2
log

�
1 − z
1þ z

��
; ð117Þ

leading to the two-point function [38]:

Gout=inðx; x0Þ ∝
�

Z
1 − Z2

þ 1

2
log

�
1þ Z
1 − Z

��
: ð118Þ

We see that this is proportional to WðZÞ in Eq. (112).
So the result we found in Eq. (112) is a transition element
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(an in-out function) rather than an expectation value {the
constant A in Eq. (112) is immaterial because, in the
massless limit, the equation □G ¼ 0 has G ¼ constant as
one of the solutions [38]}.
The algebraic reason for this expression Gout=inðx; x0Þ to

be finite, while the correct Wightman function diverges for
m ¼ 0 is the following. The function Gout=inðx; x0Þ is given
by the integral in Eq. (115) involving a product of Bessel
and Hankel functions, while the one for the Wightman
function is given by Eq. (A77) involving a product of two
Hankel functions. (This is because one in-vacuum is
changed to an out-vacuum.) The Bessel function can be
written in terms of the Hankel functions as follows:

Jνð−kη�Þ ¼
1

2
ðHð1Þ

ν ð−kη�Þ þ Hð2Þ
ν ð−kη�ÞÞ: ð119Þ

For the massless case, we have ν ¼ 3
2
and

Hð1=2Þ
3
2

ð−kηþÞ ¼
ffiffiffi
2

π

r
e∓ikηþð∓ iþ kηþÞ

ð−kηþÞ32
; ð120Þ

and we get a term,

−
H2

2π2ρ

Z
∞

0

dk
eikρ − e−ikρ

2i
eikðηþþη−Þ

×

�
ηþη− þ iðηþ þ η−Þ

k
−

1

k2

�
: ð121Þ

This is the same as the expression due to Hð1Þ
ν , with the

formal replacement ηþ → −ηþ, which results in Z → −Z,
with an overall negative sign. So the divergent contribu-
tions in these two individual terms (which are η indepen-
dent) cancel out leading to a finite expression. The in/out
Wightman function is then

Gout=in¼ H2

8π2

�
1

Z−1
−

1

−Z−1
þ logð1−ZÞ− logð1þZÞ

�
;

ð122Þ

¼ −
H2

8π2

�
2Z

Z2 − 1
þ log

�
1 − Z
1þ Z

��
; ð123Þ

which is the expression found earlier.

B. Aside: Analytic continuation of the Euclidean
Green’s function

In Sec. VAwe obtained an expression for the Euclidean
Green’s function by mapping the problem to that of D ¼ 5
electrostatics. In this section we revisit the derivation of the
Euclidean Green’s function, now as an explicit solution to
the differential equation (in the spirit of Sec. VI A) and
highlight some aspects of its analytic continuation.

We begin with the metric in the geodesic coordinates [see
Eq. (12)], analytically continued into the Euclidean sector
by introducing Euclidean time τE, with τ ¼ −iτE:

ds2 ¼ sin2ðHlÞ
H2

dτ2E þ dl2 þ sin2ðHlÞ
H2

cos2τEdΩ2
2:

ð124Þ

This also corresponds to using the Euclidean time coor-
dinate for the 5D embedding Minkowski spacetime,
wherein the de Sitter manifold becomes a sphere of radius
1=H. The geodesic distance l is then restricted to lie
between 0 and π=H. The flat spacetime limit H → 0 of
Eq. (124) correctly leads to the Euclidean version of the
spherical Rindler metric, given by

lim
H→0

ds2 ¼ l2dτ2E þ dl2 þ l2cos2τEdΩ2
2: ð125Þ

Introducing Z ¼ cosðHlÞ ∈ ½−1; 1� (corresponding to the
range l ¼ π=H to l ¼ 0), the line element in Eq. (124)
becomes

ds2 ¼ ð1 − Z2Þdτ2E þ 1

1 − Z2
dZ2 þ ð1 − Z2Þcos2τEdΩ2

2:

ð126Þ

The Green’s functions for a massive scalar field obeying
the (Euclidean) Klein-Gordon equation satisfies the differ-
ential equation:

−
�

1ffiffiffi
g

p ∂μð
ffiffiffi
g

p
gμν∂νÞ −m2

�
x

Gðx; x0Þ ¼ δð4Þðx − x0Þffiffiffiffiffiffiffiffiffiffi
gðx0Þp :

ð127Þ

Out of all possible solutions to this equation, we would like
to pick one which has the correct ultraviolet behavior. To
decide this behavior, we first obtain a constraint on the
ultraviolet behavior of the Green’s function using this
equation.
Consider a region R∶ x0 ∈ R. Integrating the Eq. (127)

with respect to x over the region R, and using the
divergence theorem gives

−
Z
∂R

d3x
ffiffiffi
g

p
nμð∂xÞμGðx; x0Þ þm2

Z
R
d4x

ffiffiffi
g

p
Gðx; x0Þ ¼ 1;

ð128Þ

where nμ are the unit normals to the boundary ∂R of R. In
the limit of R shrinking to x0, ifGðx; x0Þ ¼ GðlÞ, where l is
the geodesic distance between x and x0 (which is unique for
points that approach each other) we can choose ∂R as a
surface of all points at a constant value of l around x0. The
4D solid angle is given by Ω4 ¼ 2π2, and d3x

ffiffiffi
g

p ∼ Ω4l3;

LOCHAN, RAJEEV, VIKRAM, and PADMANABHAN PHYS. REV. D 98, 105015 (2018)

105015-24



d4x
ffiffiffi
g

p ∼ ð1=4ÞΩ4l4, which is negligible in comparison to
the boundary term. We then require that, for l → 0,

d
dl

GðlÞ ∼ −
1

Ω4l3
: ð129Þ

This can be integrated to give (keeping only the leading
divergence):

GðlÞ ∼ constþ 1

2Ω4l2
¼ constþ 1

4π2l2
; ð130Þ

which is the requirement that the leading order divergence
of a rotation-invariant Green’s function behaves like a
massless flat spacetime Green’s function. We can, there-
fore, look at rotation-invariant solutions of the homo-
geneous version of Eq. (127) in the region excluding a
neighborhood of x ¼ x0 and impose the above ultraviolet
behavior on the solution near this point.
Taking advantage of the rotation invariance in the

Euclidean de Sitter spacetime, we choose x0 such that Z0 ¼
1 corresponding to l0 ¼ 0. Then, l also serves as the
geodesic distance between the two points. We seek a
Green’s function that is rotation invariant (i.e., depends
only on l or equivalently, Z) so thatGðx; x0Þ ¼ GðZÞ. Then
the equation satisfied by GðZÞ will be that satisfied by the
hypergeometric function in the variables ð1þ ZÞ=2 except
for an extra Dirac delta on the right hand side. The most
general solution to this equation is given by

GðZÞ ¼ A2F1

�
3

2
− ν;

3

2
þ ν; 2;

ð1þ ZÞ
2

�

þ B2F1

�
3

2
− ν;

3

2
þ ν; 2;

ð1 − ZÞ
2

�
; ð131Þ

where A, B are two constants. We will now demand that the
solution (i) should be smooth except at Z ¼ 1 and
(ii) should reduce to the massless, Euclidean Green’s
function in flat spacetime in the l → 0 limit. Condition
(i) implies that B ¼ 0. Condition (ii) will give us the correct
normalization A. Using the known limits (see 15.3.12 of
[69]), we see that as l2 → 0,

A2F1

�
3

2
−ν;

3

2
þν;2;

ð1þZÞ
2

�
≈

A
Γð3

2
−νÞΓð3

2
þνÞ

�
4

H2l2

�
:

ð132Þ

Comparing this with the UV behavior of the Euclidean flat
Green’s function, we get

A ¼ Γð3
2
− νÞΓð3

2
þ νÞH2

16π2
: ð133Þ

Therefore, the Euclidean Green’s function for dS4 is
given by

GðZÞ ¼ Γð3
2
− νÞΓð3

2
þ νÞH2

16π2 2F1

�
3

2
− ν;

3

2
þ ν; 2;

ð1þZÞ
2

�
;

ðfor jZj< 1Þ: ð134Þ

One could have also found this by directly integrating
Eq. (78).
To find the Lorentzian version we have to analytically

continue GðZÞ to the domain −∞ < Z < ∞. Recall that
(the principle branch of) 2F1 has a branch cut from Z ¼ 1

to Z ¼ ∞. Therefore, the analytical continuation of GðZÞ
with different choices of the orientation of this branch
cut will give us different Lorentzian Green’s functions.
The fact that the order of operators appearing in the
correlator matters in the Lorentzian theory manifests itself
as the multivaluedness of GðZÞ that results from the
presence of the branch cut. The branch-cut difference
hence is a measure of the commutator Green’s function.
Let us briefly recall how this leads to the different Green’s
functions.
From the definition of Z, it is easy to see that, for a

fixed jΔxj, the GðZðη; η0;ΔxÞÞ has branch cuts starting
from Δη ¼ �jΔxj to Δη ¼ �∞ in the complex Δη plane.
The transformation Δη → −Δη will not be accompanied
by any change in the operator ordering inside vacuum
expectation value hi for the positive(negative) Wightman
function. On the other hand, under the transformation
Δη → −Δη, the operator ordering flips for (anti)Feynman
Green’s function. This implies that the branch, for the
analytic continuation of GðZÞ that corresponds to the
positive(negative) Wightman function, should be such
that we can rotate from Δη → e�iπΔη without touching a
branch cut. Although that for the (anti)Feynman Green’s
function should be such that as we rotate from Δη →
e�iπΔη we pass through a branch cut at most once.
Therefore, the Feynman Green’s function corresponds to
choosing the branch cut of the hypergeometric function
to lie just below the real axis. On the other hand, the
Wightman Green’s function is obtained by orienting the
branch cut along the ray of slope tan½εsignðΔηÞ� that starts
from Z ¼ 1 to Z ¼ eiεsignðΔηÞ∞. This clearly is equivalent
to the standard iε prescription.

C. Geodesic Fourier transform of
the Wightman function

Two other functions which we will make use of are
(i) the Fourier transform GðQÞ of GðZÞ with respect to Z in
terms of a conjugate variable Q (which may be called
geodesic momentum as it essentially arises as a Fourier
transform conjugate of the geodesic distance) as well as
(ii) the Fourier transform ḠðKÞ of GðZÞ with respect to L2
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in terms of a conjugate variable K. Since Z ¼ 1þH2L2=2,
these two are related in a simple manner:

GðQÞ ¼ H2e−iQ

2
Ḡ
�
H2Q
2

�
: ð135Þ

While one can write down the differential equations
satisfied by these functions, by Fourier transforming
Eq. (106), their solutions will again suffer from the kind
of ambiguities we saw earlier. (In fact the situation is worse
because the Fourier transforms have to be defined carefully
in the complex plane.) A simpler route to obtaining these
results is by Fourier transforming an integral representation
for GðZÞ, say the one in Eq. (82), reproduced below for
convenience:

Gðη; η0;ZÞ ¼ β2

16π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

−∞
du

e−νu

ðcosh u − ZÞ32 ;

ð136Þ

with respect to Z. In fact this approach has the advantage
that, formally, we can now treat Z and η,η0 as independent
variables so that we need not assume the entire coordinate
dependence of G is through Z. We are, therefore, interested
in the Fourier transform of G with respect to Z, and to be
precise with resepect to Zϵ defined as

Zϵ ¼ 1þ ðη − η0 − iϵÞ2 − Δx2

2ηη0
¼ Z −

ϵ2

2ηη0
− iϵ

η − η0

ηη0
;

ð137Þ

in the limit of ϵ → 0þ. The Fourier transform with respect
to this complex variable can be evaluated from an integral
transform defined as

G̃þðη; η0;QÞ ¼
Z

∞−iϵðη;η0Þ

−∞−iϵðη;η0Þ
dZϵe−iQZϵGþðη; η0;ZϵÞ: ð138Þ

The integral transform yields (see Appendix A 8 for details)

Gþðη; η0;QÞ ¼ −
H2

4
ffiffiffiffiffiffi
2π

p e
iπ
2
ð1
2
−νÞQ1

2Hð2Þ
3
2

ðQÞsηθð−sηQÞ;

ð139Þ

with sη ¼ sgnðη − η0Þ. A similar transform can be defined
for the power-law case as well which yields the above result
with an additional factor of ðηη0Þq−1. For the de Sitter case,
this is of interest as it is η independent and depends onQ as
well as sgnðη − η0Þ.
It is relatively straightforward to obtain the flat spacetime

limit of the Fourier transform of the Wightman function by

taking the H → 0 limit and obtain the geodesic Fourier
transform of the Minkowski Wightman function (see
Appendix A 8 for details). We find that

ḠðKÞ ¼ 1

2πi
e
im2

4K θð−KÞ: ð140Þ

As a check of the calculation we can obtain the Minkowski
Wightman function in real space by Fourier transforming
this expression. One can indeed show that the Fourier
transform gives (see Appendix A 8):

GðL2Þ ¼ i
4π2

ffiffiffiffiffiffi
m2

L2

r
K1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2L2

p 


¼ i
4π2

ffiffiffiffiffiffi
m2

L2

r
K1

	
−i

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p 

; ð141Þ

which is theWightman function for a massive scalar field in
Minkowski spacetime. In the massless limit, using the
property KνðzÞ ∼ ð1=2ÞΓðνÞðz=2Þ−ν as z → 0, we recover
the familiar result for the massless Wightman function, i.e.,

GðL2Þjm¼0 ¼ −
1

4π2L2
: ð142Þ

We will make use of these results later on to evaluate the
power spectra in flat spacetime.

VII. POWER SPECTRA OF THE VACUUM NOISE:
FROM MODE FUNCTIONS

We shall next address the task of characterizing the
quantum fluctuations in de Sitter spacetimes in terms of
suitably defined power spectra. In the literature this issue is
often discussed in the context of inflationary cosmology
and the usual definition for power spectra is based on
spatial Fourier transform in conformal Friedmann coordi-
nates. In the language of Killing vector fields introduced in
Sec. II B 2 this corresponds to using the Killing vectors
which represents spatial translational symmetry. The vac-
uum state is usually taken to be the Bunch-Davies vacuum
which can be thought of as de Sitter invariant in a limiting
sense. This leads to the result,

Pðk; ηÞ ¼ H2

2ð2πÞ3k3 ð1þ k2η2Þ: ð143Þ

In the terminology of the standard literature, we will like to
point out that what we define as the power spectrum will be
the power spectrum amplitude in the Killing space (along
which the Fourier transforms will be naturally defined).
The standard power spectrum P̃ðkÞ will be obtained from
our results through

P̃ðkÞ ¼ ΩqkqPðkÞ; ð144Þ
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where Ωq is the solid angle of the space of Killing vectors
(q− in number) with respect to which the Fourier trans-
forms have been carried out to obtain PðkÞ, which for the
Bunch-Davies vacuum,

P̃ðkÞ ¼ Ω3k3
H2

2ð2πÞ3k3 ð1þ k2η2Þ ¼ H2

4π2
ð1þ k2η2Þ;

ð145Þ

which expectedly gives the scale invariant power spectrum
in the super-Hubble limit kη → 0 [9,10,60].
It is also possible to define the power spectrum of

fluctuations, for the same Bunch-Davies vacuum, by using
the Killing vector corresponding to translational invariance
in cosmic time t or equivalently, the static time τ. This will
lead to the following result (which we will soon derive),
when we use e−iωτ for the definition of the Fourier
transform, as in Eq. (24):

P−ðω; 0Þ ¼
H2

4π2ω

�
1þ ω2

H2

�
e−πω=H

2 sinhðπω=HÞ

¼ H2

4π2ω

�
1þ ω2

H2

�
nðωÞ; ð146Þ

where nðωÞ≡ ½eβω − 1�−1 with β−1 ¼ H=2π is the
Planckian number density at de Sitter temperature H=2π.
On the other hand, if we use eþiωτ for the definition of the
Fourier transform as in Eq. (23), we will get

Pþðω; 0Þ ¼
H2

4π2ω

�
1þ ω2

H2

�
eπω=H

2 sinhðπω=HÞ

¼ H2

4π2ω

�
1þ ω2

H2

�
½1þ nðωÞ�: ð147Þ

In other words, we have

P̃�ðωÞ ¼ Ω1ωPðω; 0Þ ¼
H2

4π2

�
1þ ω2

H2

�
e�πω=H

2 sinhðπω=HÞ ;

ð148Þ

according to the two conventions, leading to either nðωÞ or
1þ nðωÞ. This is the subtlety we mentioned while dis-
cussing the definitions in Eqs. (23) and (24). Either of the
definitions can be used but with the following under-
standing: The switch in the sign of ω changes absorption
to emission during physical processes and brings in the
spontaneous emission term which leads to the 1 in the
(1þ n). (We remind the reader again that the two con-
ventions do not lead to different results if the Killing
vector is spacelike.)
There is also a third possibility for the choice of an

observer in de Sitter spacetime. One can define a vacuum
state adapted to the static coordinates, introduce the

corresponding two-point function, and work out the result-
ing power spectrum as seen by, say, an observer at the
origin using the Killing vector field corresponding to
translational invariance in τ. This leads to the result which
is very close to the previous one and is given by

P�ðω; 0Þ ¼ � H2

4π2ω

�
1þ ω2

H2

�
θð�ωÞ; ð149Þ

P̃�ðωÞ ¼ Ω1jωjP�ðω; 0Þ ¼
H2

4π2

�
1þ ω2

H2

�
θð�ωÞ: ð150Þ

The difference between the two Fourier transforms are
clear in this context. For one choice, with (e−iωτ), the
power spectrum vanishes for positive frequencies, while
for the other choice, with eþiωτ, it survives. So in a sense,
the second convention picks up the quantum correlations
of the vacuum for positive frequencies which the other
convention does not. This might favor the second con-
vention, But it is the first choice of definition, which uses
Eq. (24), which agrees with the response of an Unruh-
deWitt detector [70,71]. Since we do not want an inertial
detector to spontaneously get excited in inertial vacuum,
one can argue that the inertial vacuum should not have
power in positive frequencies. So with this convention,
the Unruh-deWitt detector (UDD) response rate RðωÞ≡
P−ðωÞ ¼ Pþð−ωÞ, which in turn ensures that an inertial
detector in the inertial vacuum does not spontaneously get
excited. From this point of view, the first choice captures
the operational part of the quantum correlation. In sum-
mary, both conventions provide us with some information
about the nature of field fluctuations, and there is a simple
physical interpretation (involving spontaneous and induced
emissions in a thermal state) which connects Eq. (147)
with Eq. (150).

A. Bunch-Davies vacuum

The simplest case, worked out several times in the
literature, corresponds to the power spectrum in Bunch-
Davies vacuum evaluated in the conformal Friedmann
coordinates by taking a spatial Fourier transform of the
equal time Wightman function:

PðkÞ≡
Z

d3x
ð2πÞ3 e

ik·xh0;BDjϕðxÞϕðx0Þj0;BDi ¼ jfkðηÞj2
ð2πÞ3 ;

ð151Þ
where fkðηÞ are the mode functions in Eq. (43). This works
for even a massive field in de Sitter or a massless field in
power-law universe. We will be concerned with the case of
massless field in de Sitter for which, using the simple mode
functions in Eq. (56), the power spectrum is obtained as

PðkÞ ¼ H2

2ð2πÞ3k3 ð1þ k2η2Þ: ð152Þ
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For the scales kη ≪ 1, the power spectrum becomes scale
invariant and its amplitude,

P̃ðkÞ ¼ 4πk3PðkÞ ¼ H2

4π2
ð1þ k2η2Þ; ð153Þ

approaches H2=4π2 as argued above, a result which can
be obtained in many other ways as well [as mentioned
earlier, one can also compute the power spectrum of the
Bunch-Davies vacuum by using a Fourier transform with
respect to static time coordinate as well; this will lead to
the expression in Eq. (147), as we will see soon].
In spite of the fact that the result in Eq. (152) is beaten

to death in the literature one particular aspect of it seems
not to have been emphasized. To bring this out, let us
rewrite Eq. (152) introducing the cosmic time with η ¼
−ð1=HÞ exp ð−HtÞ obtaining

PðkÞ ¼ 1

ð2πÞ3
�
1

2k
e−2Ht þ H2

2k3

�

¼ PflatðkÞe−2Ht þ H2

2ð2πÞ3k3 ; ð154Þ

where PflatðkÞ≡ 1=ð2ð2πÞ3kÞ is the power spectrum of flat
spacetime vacuum noise—as can be seen by taking theH →
0 limit in Eq. (154) or directly by Fourier transforming the
flat spacetime, equal time Wightman function,Gflat ∝ 1=jxj2
with respect to x—and the second term ðH2=2ð2πÞ3k3Þ an
irreducible vacuum noise in de Sitter spacetime. We see from
Eq. (154) that the exponential expansion reduces the flat
spacetime vacuum noise, and eventually, the de Sitter noise
wins out. In other words there is a minimum vacuum noise,
4πk3PðkÞmin ¼ ðH2=4π2Þ, in the de Sitter spacetime. We
will come back to this discussion in the next section.
The result in Eq. (152) tells us that, for a massless field in

de Sitter spacetime, the Fourier transform of the Wightman
function exists even though the Wightman function itself
does not. This is, of course, obvious from the fact that
power spectrum goes as k−3 near k ¼ 0 so that its Fourier
transform, which gives the correlator in real space, does not
exist. We know that the Wightman function in real space
has the structure in Eq. (96) for small enough, nonzero
mass. We should, therefore, be able to compute the Fourier
transform of Eq. (96) and obtain the same power spectrum
as in Eq. (152). We will now describe how this calculation
proceeds since it illustrates some features related to the
divergence in the massless case.
We will write the m → 0 limit of the Wightman function

in de Sitter spacetime (corresponding to ν → ð3=2Þ− and
q → 1), as follows:

Gðη; η0;ΔxÞ ¼ 3H4

8π2m2
−

1

4π2L2
−

H2

8π2
logðL2H2cÞ; ð155Þ

whereL2 ¼ ðH2ηη0Þ−1½ðη − η0Þ2 − ρ2� (which reduces to the
Minkowski interval as H → 0) and c is an undetermined

constant. We have added this constant because of the
ambiguity in separating the divergent and finite terms in
G, mentioned earlier. Setting η ¼ η0 gives, with L2 ¼
−ðρ2=H2η2Þ,

Gðη; η; ρÞ ¼ 3H4

8π2m2
þ H2η2

4π2ρ2
−

H2

8π2
log

�
c
ρ2

η2

�
: ð156Þ

To obtain the power spectrumwe have to Fourier transform it
with respect to spatial coordinates. Performing the angular
integrals and noting that G is invariant under ρ → −ρ, we
can reduce the expression to the form:

Pðk; ηÞ ¼ 2π

ikð2πÞ3
Z

∞

−∞
xdx eikxGðη; η; xÞ

¼ H2

ð2πÞ4ik
Z

∞

−∞
dx eikx

�
η2

x
− x log jxj þ const

�
;

ð157Þ

where “const.” includes all terms that are independent of x.
Their contribution is only to the k ¼ 0 part of the power
spectrum, and we will ignore them with the understanding
that we are only interested in Pðk; ηÞ for k > 0. To proceed
further we shall use two results:

Z
∞

−∞
dx

1

x
eikx ¼ iπ

jkj
k
;Z

∞

−∞
dxeikx log jxj ¼ −

π

jkj − 2πγδðkÞ; ð158Þ

where γ is the Euler-Mascheroni constant. These hold in a
distributional sense, and we differentiate the latter equation,
with respect to k, to obtain the Fourier transform of our
interest,Z

∞

−∞
eikxx log jxj ¼ −i

d
dk

Z
∞

−∞
dxeikx log jxj

¼ −i
π

k2
þ 2πiγδ0ðkÞ: ð159Þ

Using these in Eq. (157) and noting that for k > 0, the delta
functions and derivatives of delta functions (including the
contribution from the Fourier transforms of constants) are
irrelevant, we get

Pðk; ηÞ ¼ H2

2ð2πÞ3πik
�
iπη2 þ iπ

k2

�
¼ H2

2ð2πÞ3k3 ð1þ k2η2Þ;

ð160Þ

which agrees with the previous result.
Incidentally the same approach can also be used to

determine the power spectrum in the case of a massless
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field in a power-law universe with q ≈ 1. In this case the
series expansion of Wightman function to the lowest orders
in q − 1 looks like

Gðη; η0; ρÞ ¼ H2

8π2ðq − 1Þ −
1

4π2L2
−

H2

8π2
logðηη0L2H2cÞ;

ð161Þ

¼ H2

8π2ðq − 1Þ −
1

4π2L2
−

H2

8π2
logðηη0Þ

−
H2

8π2
logðL2H2cÞ: ð162Þ

As far as the Fourier transform of the Wightman function
with respect to ρ is concerned, the additional term involving
logðηη0Þ merely contributes like a constant, i.e., only to the
k ¼ 0 case via a delta function and get back the same result
for k > 0 to the lowest order.

B. Cosmic (static) vacuum

As we mentioned earlier, an observer at r ¼ 0 in the
static coordinates is a geodesic observer and has the same
conceptual status as an observer at x ¼ 0 in the conformal
Friedmann coordinates. In the latter, the conventional
choice for the vacuum state is the Bunch-Davies vacuum.
Since the spatial homogeneity is manifest in the Friedmann
coordinates, the power spectrum is defined by Fourier
transform with respect to the spatial coordinates in this
system. In the static coordinate system, on the other hand,
there is no spatial homogeneity, but we now have manifest
invariance with respect to time translations. Therefore the
Wightman function in the static vacuum h0; ssjϕðr; τ1Þ
ϕðr; τ2Þj0; ssi, while not de Sitter invariant, can only
depend on the time difference τ ¼ τ1 − τ2. So for a
geodesic observer at the origin, we can define the power
spectrum of quantum fluctuations using the Fourier trans-
form with respect to the time difference,

P�ðωÞ≡
Z

∞

−∞
dτ
2π

e�iωτh0;ssjϕð0;τ1Þϕð0;τ2Þj0;ssi: ð163Þ

Using the mode functions obtained in Sec. IV B, we find
that the power spectrum for Painlevé observers is given by

P�ðωÞ ¼�jϕωð0Þj2jY00j2θð�ωÞ

¼�jNωj2jY00j2
����2F1

�
−
iω0

2H
;
3

2
−
iω0

2H
;
3

2
;0

�����2
× θð�ωÞ: ð164Þ

Using Eq. (66), we obtain

P�ðωÞ ¼ �θð�ωÞ H2

4π2ω

�
1þ ω2

H2

�
; ð165Þ

since 2F1ða; b; c; 0Þ ¼ 1. The result shows that for small
ω=H ¼ k=H ≪ 1, the power spectrum becomes indepen-
dent of ω, i.e., again becomes scale invariant and resembles
the form in Eq. (152). Since the Painlevé and static
observers are related through trivial Bogoliubov coeffi-
cients, the same power spectrum expression remains true
for the static observers [72].
To summarize, we see that computation has been done

for two different vacuum states. Yet, the form of power
spectrum remains the same to the leading order and even
the correction is similar in structure. The r ¼ 0 observer is a
geodesic observer and can be identified with a comoving
Friedmann observer at x ¼ 0. Such a geodesic observer can
now perform two different physical operations, viz., either
analyzing spatial correlations in the Bunch-Davies vacuum
state or analyzing the temporal correlations in a totally
different static vacuum state, yet the low-frequency limits
of these two operations are exactly the same. Given the fact
that for massless fields there is no natural de Sitter invariant
vacuum, it is rather striking that these observers, different in
all regards, share a common infrared feature.

VIII. POWER SPECTRA OF THE VACUUMNOISE:
AN ALTERNATIVE APPROACH

We will next consider an alternative route to the power
spectra mention in Sec. II B 2. We have seen that, in
general, the power spectrum is defined as a Fourier trans-
form of the Wightman function with respect to the Killing
parameter through Eq. (23). When the Wightman function
depends on the coordinates only through the geodesic
distance (which will be the case for spacelike separations),
we can introduce its Fourier transform with respect to Z (or
with respect to L2) and express GðZÞ in terms of GðQÞ (or
ḠðKÞ), The power spectrum in Eq. (23) then becomes

Pðω; xa⊥Þ ¼
Z

∞

−∞

dλ
2π

expðiωλÞG½Zðλ; xa⊥Þ�

¼
Z

∞

−∞

dQ
2π

GðQÞfðω; Q; xa⊥Þ; ð166Þ

where we have defined the function,

fðω; Q; xa⊥Þ≡
Z

∞

−∞
dλ exp½iωλþ iQZðλ; xa⊥Þ�: ð167Þ

A similar result can be obtained if we work with the Fourier
transform ḠðKÞ of GðL2Þ with respect to L2. We see that
Eq. (166) nicely separates the quantum dynamics in a
specific vacuum [completely contained in GðQÞ] from the
geometrical symmetries of the spacetime [contained in
fðω; Q; xa⊥Þ]. For a given GðQÞ, changing the relevant
Killing vector will change fðω; Q; xa⊥Þ and thus give
different power spectra.
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However, one should notice that such a clean break up
of geometry and quantum dynamics depends strongly on
the Wightman function being a function of the geodesic
distance. This remains true for spacelike separated events
(which we can put on a constant time surface). However, in
general theWightman function depends apart from Z on the
temporal coordinates of the events as well (through an −iϵ
prescription). Therefore, whenever, we have a timelike
killing vector in the spacetime and we choose a coordinate
system where the parameter λ is the parameter along the
timelike direction the Eq. (166) gets modified to

Pðω; xa⊥Þ ¼
Z

∞

−∞

dλ
2π

expðiωλÞG½λ; Zðλ; xa⊥Þ�;

¼
Z

∞

−∞

dQ
2π

Z
∞

0

dλ
2π

× ½GðQ; λÞeiQZðλÞþiωλ þ GðQ;−λÞeiQZð−λÞ−iωλ�:
ð168Þ

Thus, the clean breakup as was the case for the spacelike
vector goes away and the power spectrum along a timelike
Killing vectors has to be obtained through a careful
evaluation of the Fourier transform of the Wightman
function. We shall now see how this works out in flat
spacetime as well as in de Sitter spacetime.

A. Warmup: inertial vacuum in flat spacetime

As a warmup, we will use the above technique to
construct the power spectrum of inertial vacuum evaluated
using two different Killing vector fields. The first Killing
vector corresponds to (i) translations in the Minkowski time
coordinate t and the second Killing vector corresponds to
(ii) invariance under Lorentz boosts, which maps into
invariance under translations of the Rindler time coordinate
τ. In both cases we will use the Fourier transform of the
Green’s function in the inertial vacuum given by

G̃ðKÞ ¼
Z

dL2
ϵGðL2

ϵÞe−ikL2
ϵ ; ð169Þ

leading to

G̃ðKÞ ¼
�

st
2πi

�
θð−stKÞ; ð170Þ

with st ¼ sgnðt − t0Þ. The second result is obtained for the
massless case we are interested in, where the Wightman
function gets the form GðL2

ϵÞ ¼ −1=4π2L2
ϵ .

Let us start with the first case which is almost trivial. The
invariant geodesic distance is just L2

ϵ ¼ t2ϵ ≡ ðt2 − t1 − iϵÞ2
so that we now need to compute the integral:

P�ðωÞ ¼
Z

∞

−∞

dt
2π

Z
∞

−∞
dKG̃ðKÞeiðKt2ϵ�ωtÞ; ð171Þ

¼
Z

∞

−∞

dt
2π

Z
∞

−∞
dK

�
st
2πi

�
θð−stKÞeiðKt2ϵþωtÞ: ð172Þ

Integrating the above expression yields the expression (for
details, see Appendix A 9):

Pinertial
� ðωÞ ¼ � ω

4π2
θð�ωÞ ¼ jωj

4π2
θð�ωÞ; ð173Þ

which is the standard result.
Let us now turn to the case of determining the power

spectrum in the inertial vacuum with respect to the boost
Killing vector. To find L2 in this case, we introduce the
(spherical) Rindler coordinates ðτ; ξ; θ;φÞ, in terms of
Minkowski spherical polar coordinates ðt; r; θ;φÞ (with
the same angular co-ordinates θ, φ) by

t ¼ a−1eaξ sinhðaτÞ; r ¼ a−1eaξ coshðaτÞ: ð174Þ

The geodesic distance L2 between two points along the
Killing trajectory, ðξ; θ;φÞ ¼ const. (which actually gives
the integral curve for the boost Killing vector) is then
given by

L2 ¼ 2e2aξ

a2
ðcoshðaΔτÞ − 1Þ≡ ĀðcoshðaΔτÞ − 1Þ: ð175Þ

For convenience, we choose ξ ¼ 0 (Ā ¼ 2
a2) so that the

proper time along the trajectory of such an observer is
given by τ. It is simpler to work with a Fourier transform
of G with respect to L2 in this case. The power spectrum
(for details, see Appendix A 9) expression is evaluated to
obtain

PRindler
� ðωÞ ¼ ω

4π2

�
e�πω

a

e
πω
a − e

−πω
a

�
: ð176Þ

At this stage we came back again to the contrast of the
conventions of Fourier transform. With the convention
e−iωt one obtains the Rindler power spectrum to be

PRindler
− ðωÞ ¼ ω

4π2

�
1

e
2πω
a − 1

�
¼ ω

4π2
ðnωÞ; ð177Þ

which is the Rindler power spectrum and nω is the well-
known thermal spectrum for the Rindler observer. So as
promised, this convention agrees with the power spectrum
defined through the response of the UDD. On the other
hand, with the Fourier transform convention using eiωt, we
end up with

PRindlerþ ðωÞ ¼ ω

4π2

�
e
2πω
a

e
2πω
a − 1

�
¼ ω

4π2
ð1þ nωÞ: ð178Þ

This result has a straight forward interpretation in terms of
detector response. The upward transition rate of the detector
corresponds to absorption of quanta and is proportional to
nðωÞ. This is correctly captured by Eq. (177) which uses the
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Fourier transform convention corresponding to the response
of UDD. When we use the opposite convention, we are
flipping the sign of ω, which physically corresponds to a
downward transition. Such an emission process, as is well-
known, has a spontaneous rate, given by the ω=4π2 term in
Eq. (178), as well as an induced emission term ðω=4π2Þnω
(proportional to the number of ambient quanta). This is
precisely what we get in Eq. (178).
If we do not want to think in terms of UDD response

then, we could interpret Eq. (178) as follows. This
definition takes account of the inertial vacuum correlation
(and the corresponding power spectrum) and then supple-
ments it with the thermal power spectrum due to ambient
quanta. [It is easy to verify that in the limit of vanishing
acceleration a → 0, we recover the inertial power spectrum
Eq. (173) since nω → −θð−ωÞ in this limit.] That is, the
power spectrum of the vacuum fluctuations, evaluated by
Fourier transform along the boost Killing vector trajectory
has a supplementary thermal character over and above the
inertial power spectrum.
In the above analysis we took ξ ¼ 0 for simplicity. At

nonzero ξ it makes better sense to evaluate the Fourier
transform with respect to the proper time at the location,
viz. τp ≡ τ expaξ. This merely redshifts the frequency and
thus the temperature to T ¼ ða=2πÞ expð−aξÞ.

B. Power Spectra in Friedmann universes

We know that the Wightman function Eq. (136) for any
Friedmann cosmology is a function of Zϵ, η, η0 alone. So we
can compute the power spectrum along the same manner as
in the case of flat spacetime power spectrum using the
spatial Killing vectors. However, since the Wightman
function is potentially divergent in many scenarios, as
we discussed previously, it will not be advisable to compute
the Wightman explicitly first and then do the Fourier
transform as we could do in flat spacetime. We will first
demonstrate the evaluation of power spectrum, through the
spatial Killing vectors in a generic Friedmann cosmology,
then we will carry out the exercise for a special power law,
i.e., the de Sitter spacetime. Using the three spatial Killing
vectors, we can define the power spectrum as

Pðk; ηÞ ¼ β2

16π2
ffiffiffi
2

p ðηη0Þq−1
Z

d3ρ
ð2πÞ3

×
Z

∞

−∞
du

e−νu

ðcosh u − ZÞ32 e
ik·ρ; ð179Þ

where ρ ¼ x − x0. Since we have spatial Killing vectors we
will evaluate the Fourier transform at an equal η surface in
conformal coordinates,

Z ¼ 1þ ðΔηÞ2 − ρ2

2ηη0

����
η¼η0

¼ 1 −
ρ2

2η2
; ð180Þ

which leads to the expression,

Pðk; ηÞ ¼ β2

16π2
ffiffiffi
2

p ðηÞ2q−2
Z

d3ρ
ð2πÞ3

×
Z

∞

−∞
du

e−νu

ðcosh u − 1þ ρ2

2η2
Þ32
eik·ρ: ð181Þ

Using the identity

1

b
3
2

¼ 1

Γ½3
2
�
Z

∞

0

ds s
1
2e−sb; ð182Þ

for positive b, we can write

Pðk; ηÞ ¼ β2

16π2
ffiffiffi
2

p ðηÞ2q−2
Z

d3ρ
ð2πÞ3

1

Γ½3
2
�
Z

∞

0

ds s
1
2

×
Z

∞

−∞
due−νue

½−sðcosh u−1þ ρ2

2η2
Þ�
eik·ρ: ð183Þ

Performing the spatial integrals, we can write the expres-
sion as

Pðk; ηÞ ¼ β2

16π2
ffiffiffi
2

p ðηÞ2q−2 ð2πηÞ
3
2

Γ½3
2
�
Z

∞

−∞
due−νu

×
Z

∞

0

ds s
1
2e−2ssinh

2ðu
2
Þe−

k2η2

2s : ð184Þ

Again, using eu=2 ¼ z, one can carry out the u− integration
casting the expression into

Pðk; ηÞ ¼ 2
β2

16π2
ffiffiffi
2

p ðηÞ2q−2 ð2πηÞ
3
2

Γ½3
2
�
Z

∞

0

ds
s
ese−

k2η2

2s K−νðsÞ;

ð185Þ
with KνðsÞ being the Bessel function of order ν. Finally the
leftover s− integration can be done to obtain

Pðk; ηÞ ¼ 2
β2

16π2
ffiffiffi
2

p ðηÞ2qþ1
ð2πÞ32
Γ½3

2
�
π2

2

1

sin2πν

× ðJνðkηÞ2 þ J−νðkηÞ2 − 2 cos πνJνðkηÞJ−νðkηÞÞ;

¼ 2
β2

16π2
ffiffiffi
2

p ðηÞ2qþ1
ð2πÞ32
Γ½3

2
�
π2

2
jHð2Þ

ν ðkηÞj2; ð186Þ

recovering the power spectrum [10] which clearly relates
the power spectrum of a massless field in Friedmann
universe to that of a massive scalar field in the de Sitter
spacetime.
Incidentally, we can also straight away calculate the power

spectrum of scalar field through the q → 1 limit, yielding

PdSðk; ηÞ ¼ 2
H2

16π2
ffiffiffi
2

p ðηÞ3 ð2πÞ
3
2

Γ½3
2
�
π2

2
jHð2Þ

ν ðkηÞj2; ð187Þ
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which in the massless limit becomes

PdSðk; ηÞ ¼ H2

2ð2πÞ3k3 ð1þ k2η2Þ: ð188Þ

For completenesswewill just showan explicit calculation for
the de Sitter massless case, where we use different Killing
directions (spacelike and timelike), as done in the flat
spacetime, which builds trust in the mechanism developed
in this work.

1. Bunch-Davies vacuum in de Sitter spacetime

We first start with the spatial Killing vectors, as before.
Though this time (being a spatial Fourier transform), we
decompose the power spectrum into totally geometric and
state dependent pieces as we argued previously. For this
purpose, we just need to use Eq. (166) with appropriate
GðQÞ and f. However, we have to be careful about one
subtlety that the Bunch-Davies vacuum is a natural vacuum
for comoving observers, for whom the time direction is not
a Killing direction, but the spatial directions are. Thus, we
need to convert the integral transforms on a spacelike
surface rather than a timelike one. On such a surface the
Fourier transform GðQÞ of the Wightman function is given
by (see A 8)

GðQÞ ¼ −
β2

4
ffiffiffiffiffiffi
2π

p e−
iπ
2 ðθð−QÞQ1

2Hð2Þ
3
2

ðQÞÞ; ð189Þ

where we have set sη ¼ 1.11 Similar to the Minkowski
spacetime, in the de Sitter spacetime also, we have two
natural choices (although corresponding to two different
sets of observers) which are (a) the integral curves of the
Killing vectors related to spatial translation for comoving
observers and (b) the integral curve of the Killing vector
related to translation along the static time coordinate τ. We
will consider both these possibilities.
The situation in (a) is best handled in the conformal

Friedmann coordinates, in which the power spectrum is
given by a spatial Fourier transform of the Wightman
function with respect to the comoving separation between
two points at the same time η ¼ η0. Since Z in these
coordinates is given by Z ¼ 1 − ðρ2=2η2Þ, the function f
reduces to the triple Gaussian integral,

f ¼ eiQ
�Z

R3

d3ρ
ð2πÞ3 e

−iQ
2
ρ2

η2eik·ρ
�

¼ ð−ηÞ3
�
2π

iQ

�3
2

eiQe
i
2Qk

2η2 :

ð190Þ

On using Eqs. (189) and (190) in Eq. (166) the power
spectrum reduces to (with the notation ξ ¼ −Q),

Pðk;ηÞ¼ πH2

4πð2πÞ3ið−ηÞ
3e−

3πi
4

Z
∞

0

dξ

ξ
3
2

ξ
1
2Hð2Þ

3
2

ð−ξÞe−iξe− i
2ξk

2η2 :

ð191Þ

Using the explicit from of H3
2
and writing ξ ¼ 1

u2 the integral
becomes

Pðk; ηÞ ¼ −
H2ffiffiffiffiffiffi

2π
p ð2πÞ3 ð−ηÞ

3e−
3πi
4

Z
∞

0

duð1þ iu2Þe−i
2
k2η2u2 :

ð192Þ

This is straight forward to evaluate using

Z
∞

0

duð1þ iu2Þe−
i

2ð2πÞ3k
2η2u2 ¼ i

ffiffiffi
π

2

r
1þ k2η2

ðik2η2Þ32 : ð193Þ

Using the fact that η < 0 to simplify the denominator and
substituting this in the expression for the power spectrum,
we recover the familiar result:

Pðk; ηÞ ¼ H2

2ð2πÞ3k3 ð1þ k2η2Þ: ð194Þ

We will now repeat this analysis for case (b), using the
integral curves of the Killing vector corresponding to time
translation symmetry in the static coordinates. Using the
spatial homogeneity of de Sitter manifold we can always
choose the two points on the Killing trajectory to have the
coordinates (τ1, R ¼ 0) and (τ2, R ¼ 0). Breaking the GðQÞ
into two regions of positive temporal separation and
negative temporal separations respectively, the expression
for the power spectrum (see Appendix A 10) is obtained as

P�ðωÞ ¼
H2

4π2ω

�
1þ ω2

H2

�
eπ

�ω
H

2 sinh ðπ ω
HÞ

; ð195Þ

again leading to

PþðωÞ ¼
H2

4π2ω

�
1þ ω2

H2

�
eπ

ω
H

2 sinh ðπ ω
HÞ

¼ H2

4π2ω

�
1þ ω2

H2

�
ð1þ nωÞ; ð196Þ

P−ðωÞ¼
H2

4π2ω

�
1þω2

H2

�
e−π

ω
H

2sinhðπ ω
HÞ

¼ H2

4π2ω

�
1þω2

H2

�
nω;

ð197Þ

11Or equivalently, sη ¼ −1 as well for that matter. In fact one
should choose jη − η0j ¼ ϵ and gradually take ϵ → 0 rather than
directly putting sη ¼ 0. Of course, for spacelike separated events,
the Wightman function does not vanish, so neither should its
Fourier transform.
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where

nω ¼ 1

eβω − 1
; β−1 ¼ H

2π
: ð198Þ

In addition to the power spectrum PstaticðωÞwe found earlier
in the static vacuum state we have a supplement through nω,
the number density of thermal quanta with temperature
H=2π. We will now discuss the implications of this result.

C. Comments on the vacuum noise

The quantum fluctuations in thevacuum state is described,
for a free field, in terms of theWightman function which can
be thought of as a correlation function in real space.
Whenever a suitable Fourier transform can be defined we
can associate a power spectrumwith this correlation function
which quantifies the amount of quantum vacuum noise. We
have described in Sec. II B 2 (and elaborated in Sec. VIII)
how this can be achieved in termsofKillingvector fields. The
resulting power spectrum [see Eq. (23)] depends on the
conjugate variable, introduced in the Fourier transform with
respect to the Killing parameter of the integral curves
of the Killing vector fields. The definition in Eq. (23) is
generally covariant but, of course, depends on (i) the choice
of the vacuum state and (ii) the choice of the Killing
vector field.
In the context of flat spacetime, the natural choice for the

vacuum state is the inertial vacuum. Two natural choices for
the Killing vector fields correspond to (a) translation along
the inertial time direction and (b) the Lorentz boost. We
found in Sec. VIII A that the cases (a) and (b) lead to the
power spectrum of the form in Eqs. (173) and (177). For
positive frequencies the power spectrum with respect to
time translation vanishes, whereas the power spectrum
defined using boost Killing vector leads to well-known
thermal fluctuations in the Rindler frame, in one of the
conventions. Further, in yet another convention of a power
spectrum for a timelike Killing vector, there is a nonzero
power spectrum of the vacuum for the inertial observer,
which adds to the thermal fluctuation in the case of Rindler
observer. Clearly, whatever may be the convention of
evaluation of power spectrum, the minimum value of the
vacuum noise for positive frequencies, as measured by
these power spectra, is zero, corresponding to the case (a).
In Sec. VIII B, we performed exactly the same analysis

with different choices for the vacua and Killing vector
fields in the de Sitter spacetime. The results obtained earlier
are summarized below for three different situations:

P ¼

8>>>><
>>>>:

H2

2ð2πÞ3k3 ð1þ k2η2Þ ðBD; homogeneityÞ
H2

4π2ω

	
1þ ω2

H2



ðstatic; time translationÞ

H2

4π2ω

	
1þ ω2

H2



ð1þ nωÞ ðBD; time translationÞ:

ð199Þ

As indicated, the first result used Bunch-Davies vacuum
and Killing vectors corresponding to spatial homogeneity
of the de Sitter manifold. The second uses static vacuum
with the Killing vector corresponding to translations in
static time coordinate; the last one is obtained when we use
Bunch-Davies vacuum and the Killing vector correspond-
ing to translations in static time coordinate.
The first result is well-known in literature in the context

of inflationary perturbations. It leads to the scale invariant
power spectrum 4πk3PðkÞ ≈ ðH2=4π2Þ in the infrared limit
of k → 0. We will comment briefly on the second and third
results. Note that in obtaining the second and third results
we are using the same Killing vector field to define the
power spectrum but two different vacua. The factor
(1þ ω2=H2) in both arises due to purely kinematic reasons
in both results and has been noticed—and discussed—in a
couple of earlier works [61,71] in connection with detector
response in de Sitter, as well as static observer power
spectrum [72]. The third result then shows that the power
spectrum of the Bunch-Davies vacuum is enhanced with
respect to the power spectrum PstaticðωÞ of the static
vacuum by the factor 1þ nω. This has a natural interpre-
tation of the enhancement of the spontaneous process by an
induced process proportional to the presence of thermal
quanta nω. This interpretation makes sense because it is
well-known that the static and Bunch-Davies vacua are
indeed related by a thermal Bogoliubov coefficient.
What is really interesting about the three results is that in

the de Sitter spacetime, unlike in flat spacetime, there is a
residual vacuum noise which persists in the infrared limit.
All the expressions in Eq. (199) diverge in the infrared limit
because of the phase space volume element k−3, ω−1 etc,
but if we multiply PðkÞ by these relevant phase space
factors to evaluate the amplitude of the power spectrum and
obtain, e.g., k3PðkÞ, ωPðωÞ in the three cases (up to solid
angle factors), we get a vacuum noise having a value of
H2=4π for the first two cases while it has a diverging
character for the third case (Bunch-Davies vacuum and the
static observer) due to the nω factor. In all the cases, there
exists a minimum vacuum noise. Its value is H2=4π in the
for first two cases, while in the third case the minimum
value is ∼1.26H2=4π and occurs for ωmin ∼ 0.37H. (If we
adopt the second convention for the power spectrum, the
infrared limit of the vacuum noise diverges in the third case
but for negative frequencies where the power spectrum
survives has support. However, unlike the first convention,
this has a vanishing ultraviolet character. Thus, in any case
there is a minimum of vacuum noise at the infrared end of
the spectrum, which is determined by the curvature H2 of
the de Sitter spacetime.)
This fact suggests an interesting conjecture for de Sitter

vacuum fluctuations which we will now describe: Let
Gðx1; x2Þ be a Wightman function in any suitably defined
vacuum state in de Sitter. Let CðλÞ be an integral curve of a
Killing vector field ξaðxÞ in the spacetime with λ being the
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Killing parameter which varies along the full real line.
Then, the power spectrum expressed in terms of a variable
Ω conjugate to the Killing parameter λ can be defined as the
Fourier transform in Eq. (23). The infrared limit of this
expression, multiplied by a phase space measure MðΩÞ,
will then seem to have a minimum value. It appears that

PIR ¼ PðΩÞMðΩÞ

¼ MðΩÞ
Z

∞

−∞

dλ
2π

G½xðλ1 ¼ λÞ; xðλ2 ¼ 0Þ�eiΩλ ≥ H2

4π2
:

ð200Þ

We have explicitly verified this result in the three cases
above, but for a general proof one needs to sharpen the idea
of the measureMðΩÞ. We hope to address this question in
a future publication.

IX. CONCLUSIONS

The study of quantum fields in Friedmann universe is a
mature subject with decades of literature. We have revisited
several issues in this subject and have been able to obtain
some fresh insights. We provide a summary of the results in
this paper below:

(i) Quantum dynamics of a field in one Friedmann
universe is same as that of another field in another
Friedmann universe: We have shown that there is a
dynamical equivalence between massive scalar field
(say ϕ,m) on a cosmological Friedmann background
(with scale factor, say, a) with another scalar field
ðψ ; m0Þ in another Friedmann universe (with scale
factor b). In particular, a massless scalar field in any
power-law cosmology can be mapped to a massive
field in a de Sitter spacetime where the mass of the
field in the de Sitter spacetime is determined by the
power-law coefficient q of the original scale factor.
This result is of importance because it links all the
features of the massless fields in any power-law
cosmology to a massive field in de Sitter, which is
well-studied and fairly well-understood. This opens
up a new line of attack on QFT in different phases of
the Universe (e.g., radiation era, matter era etc.)
when the expansion factor can be approximated as a
power law. We plan to take up these aspects in an
upcoming work. Another important lesson learnt in
this result is the “omnipresent” de Sitter character of
the geometry even in any power-law cosmology,
which amassless field always “feels” and responds to.

(ii) Massless field in de Sitter: It is an age-old result in
this subject that there is no de Sitter invariant
vacuum for a massless scalar field. This reflects
in the divergence of the two-point function for
massless fields. One can show that such a vacuum
state and a well-defined correlation function do exist
for massive fields which become pathological in the

massless limit. There are multiple reasons suggested
in the literature for the occurrence of this divergence
but all of which seems to linked to breakdown of a
symmetry.

The present study shows that this pathology may
have an origin which is quite different from the lack
of de Sitter invariance for massless vacuum.We have
shown that such (and more severe) divergences
for massless scalar fields occur in other power-
law cosmologies as well whenever the equation of
state parameter w is negative. Power-law Friedmann
universes corresponding to −1 < w < 0 have no
special symmetries but still exhibit results similar to
those we find when w ¼ −1 corresponding to the de
Sitter. So if we think of w ¼ −1 as a limiting case in
this band then the pathology has no special relation-
ship to de Sitter invariance or its breakdown. It
exhibits a special case of a more general pathology
which arises whenever the pressure of the source
becomes negative.

That is, we show that the nonexistence of the QFT
(indicated by divergent two-point functions) is in-
timately coupled with the character of the source
supporting the geometry. Whenever, the Friedmann
geometry is sourced by a negative pressure fluid
(w < 0) the massless field suffers a divergence. This
result, therefore becomes a quantum response of the
matter field to the negative pressure source and—as
a special case—to the acceleration of the universe.
Further the existence of a well-defined Hilbert space
for a massless scalar field is incompatible with the
acceleration of universe which requires w < −1=3.
This incompatibility must leave observational im-
prints in cosmology over the era of accelerated
expansions (even today). In fact we show that the
pressureless dust limit (ω → 0−) has similar diver-
gent character as the exponential expansion as a
limit. This result also opens up an independent line
of research, which we hope to undertake in a
subsequent paper.

(iii) Power spectrum throughKilling directions :Since the
Power spectrum is one of the well-accepted and
observationally useful characterizations of a fluctuat-
ing quantum field, it is important to have a geometric
understanding of its definition. We explain how
Killing vectors provide a natural way of characteriz-
ing the quantum fluctuations of fields and their
correlations. We develop the machinery to obtain
the power spectrum in the de Sitter universe through
its Killing vectors and extend the results to any other
(including power law) cosmology. We show the
equivalence of using any Killing direction in the flat
as well as the de Sitter spacetime. This provides us a
geometric definition of the power spectrum and
allows us to explore interesting cosmological contexts
using this tool.
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(iv) Persistent vacuum noise: We have shown that the
cosmological spacetimes—in particular, the de Sitter
spacetime—host a minimum vacuum noise (vacuum
power spectrum) which is related to its curvature.
This persistent noise is revealed when we probe the
quantum correlators at points separated by infinite
Killing affine parameter (that is to say, large wave-
length limit in the power spectrum). The de Sitter
spacetime always has a ∼H2 vacuum noise which
reflects itself also in the standard scale invariant
power spectrum. We see that this is a lower bound
and it is possible to enhance this noise by adopting
trajectories for which the chosen state does not
remain the natural vacuum. Through inertial/Rindler
observer correspondence in Minkowski spacetime
and comoving/static observer correspondence in the
de Sitter spacetime, we show how the persistent
vacuum noise gets enhanced by stimulated emission
in two different contexts.

The main results of this research, outlined above, open
up new approaches for investigations which are rich in
terms of possibilities, some of which we hope to explore in
future studies.
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APPENDIX: SUPPLEMENTARY
MATERIAL—MATHEMATICAL DETAILS

1. Derivation of Eq. (17) and related results

We know that for spacelike separations, the parameter
Z ¼ cos ðHlÞ is related to the conformal coordinate
separation (from a base point ðη0;x0Þ) like

cos ðHlÞ ¼ η2 þ η20 − ðΔxÞ2
2ηη0

: ðA1Þ

Since the separation is spacelike, then we can trade
ðΔxÞ2 ≡ r2 for l as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20 − 2ηη0 cos ðHlÞ

q
;

dr ¼ ðη − η0 cos ðHlÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20 − 2ηη0 cos ðHlÞ

p dη

−
Hηη0 sin ðHlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ η20 − 2ηη0 cos ðHlÞ
p dl: ðA2Þ

Thus, substituting the expressions Eq. (A2) in the de Sitter
line element in conformal coordinates we get

ds2 ¼ −
1

H2η2
ðdη2 − dr2 − r2dΩ2Þ;

¼ −
dη2

H2η2
η20sin

2ðHlÞ
ðη2 þ η20 − 2ηη0 cos ðHlÞÞ

þ η20sin
2ðHlÞdl2

ðη2 þ η20 − 2ηη0 cos ðHlÞÞ

−
2η0 sin ðHlÞðη − η0 cos ðHlÞÞdηdl

ðη2 þ η20 − 2ηη0 cos ðHlÞÞ

þ ðη2 þ η20 − 2ηη0 cos ðHlÞÞ
H2η2

dΩ2: ðA3Þ

The η, l sector of the line element can further be
diagonalized by going to a new time coordinate τ≡
τðη;lÞ, such that the function τ satisfies the following
condition:

∂ητg01 þ ∂lτg11 ¼ 0; ðA4Þ
with gμν marking the inverse metric for Eq. (A3). Further,
the integrability condition will force us to choose

∂ητ ¼ −kðτ;lÞg11;
∂lτ ¼ kðτ;lÞg01; ðA5Þ

with a function kðτ;lÞ satisfying the condition (for
integrability),

∂lðkðτ;lÞg11Þ þ ∂ηðkðτ;lÞg01Þ ¼ 0: ðA6Þ
Thus, we obtain

kðη;lÞ ¼ η0
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20 − 2ηη0 cos ðHlÞp ; ðA7Þ

giving

τ ¼ cosh−1
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20 − 2ηη0 cos ðHlÞ

p
η sinHl

�
; ðA8Þ

which leads us to the line element,

ds2H ¼ −
sin2ðHlÞ

H2
dτ2 þ dl2 þ sin2ðHlÞ

H2
cosh2τdΩ2

2;

ðA9Þ
relating the conformal Friedmann coordinates (η, r, θ, ϕ)
to the geodesic coordinates (τ, l, θ, ϕ) as

cosh τ ¼ −
2η0rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4η2η20 − ðη2 þ η20 − r2Þ2
p ;

cosðHlÞ ¼ η2 þ η20 − r2

2ηη0
; ðA10Þ

as given in Eq. (13).
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2. Derivation of results in Sec. III

We start with a massless scalar field ϕ in a Friedmann
universe characterized by a scale factor a, which is
minimally coupled to gravity,

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−∂iϕ∂iϕ −m2ϕ2�: ðA11Þ

Since in the conformal coordinates
ffiffiffiffiffiffi−gp ¼ aðηÞ4, we can

write the action Eq. (A11) as

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

a2
ð _ϕ2 − ð∂μϕÞ2Þ −m2ϕ2

�
; ðA12Þ

¼ 1

2

Z
d4x½a2ð _ϕ2 − ð∂μϕÞ2Þ −m2a4ϕ2�; ðA13Þ

where overdot (_) denotes the derivative with regard to the
conformal time coordinate η. Let us define another scalar
field ψ through ϕ ¼ F ðηÞψ , with some arbitrary function
F ðηÞ. Therefore,

_ϕ ¼ _ψF þ ψ _F ; ðA14Þ
a2 _ϕ2 ¼ a2 _ψ2F 2 þ a2ψ2 _F 2 þ 2a2ψ _ψF _F ; ðA15Þ

¼ a2 _ψ2F 2 þ a2ψ2 _F 2 þ d
dη

½a2ψ2F _F �

− ψ2
d
dη

½a2F _F �: ðA16Þ

Therefore, we can write Eq. (A13) as

A ¼ 1

2

Z
d4x

�
a2 _ψ2F 2 þ a2ψ2 _F 2 þ d

dη
½a2ψ2F _F �

−ψ2
d
dη

½a2F _F � − ða2F 2∂μψÞ2 −m2a4F 2ψ2

�
:

ðA17Þ
Now, the divergence term can be thrown at the boundary to
vanish under the variation of the action, thus the effective
part of the action which will contribute to the equation of
motion will be

A ¼ 1

2

Z
d4x

�
a2 _ψ2F 2 þ a2ψ2 _F 2 − ψ2

d
dη

½a2F _F �

− ða2F 2∂μψÞ2 − a4F 2m2ψ2

�
; ðA18Þ

¼ 1

2

Z
d4x

�
a2F 2ð _ψ2 − ð∂μψÞ2Þ

− a4F 4

�
m2

F 2
þ 1

a4F 4

d
dη

½a2F _F � −
_F 2

a2F 4

�
ψ2

�
:

ðA19Þ

Therefore, we see that if we define a new parameter bðηÞ ¼
aðηÞF ðηÞ the action becomes that of a scalar field in a
Friedmann universe with scale factor b,

A ¼ 1

2

Z
d4x½b2ð _ψ2 − ð∂μψÞ2Þ − b4m2

effψ
2�; ðA20Þ

with an effective mass,

m2
eff ¼

�
m2

F 2
þ 1

a4F 4

d
dη

½a2F _F � −
_F 2

a2F 4

�
: ðA21Þ

The above expression relates mass of a scalar field in one
Friedmann universe to the mass of another scalar field in
yet another Friedmann universe. However, for a given mass
of the system in one universe, we need to find which F to
use in order to land into a new cosmology and then
calculate the new mass in the new universe from this
function F and the old “a”. In other words, for a given “a”
we need to find F which is a consistent solution of
Eq. (A21). We should note that the LHS of Eq. (A21) is
η independent parameter in a theory, thus it restricts the
choice of F .
For example, if we start with a massless scalar field

m ¼ 0 in a power-law cosmology aðηÞ ¼ η−q and let
F ¼ η−k (up to constant rescalings respectively) for a
consistent solution of Eq. (A21), we get

a2F 2m2
eff ¼ 2qkη−2 þ kðkþ 1Þη−2; ðA22Þ

m2
eff ≡M2 ¼ η−2ðqþkÞþ2 ¼ 2qkþ kðkþ 1Þ: ðA23Þ

Clearly, for η independent M we should have k ¼ 1 − q.
Thus, the mass of the field turns out to be

M2 ¼ 2 − q − q2 ¼ ð2þ qÞð1 − qÞ: ðA24Þ

a. Nonminimal coupling

The above results generalize to case in which the action
also has a term involving curvature coupling, i.e., for the
action of the form:

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½−∂iϕ∂iϕ −m2ϕ2 − ξRϕ2�; ðA25Þ

When we carry out the algebra, we see that the additional,
curvature coupling term transforms toffiffiffiffiffiffi
−g

p
ξRϕ2

¼ 6ξaäϕ2 → 6ξbb̈ψ2

− 6ξb4
�
2b _bF _F
b4F

−
2b2ð _F Þ2
b4F 2

þ b2F̈
b4F

�
ψ2;

¼
ffiffiffiffiffiffi
−g̃

p
ξR̃ψ2 − 6ξb4

�
2b _bF _F
b4F

−
2b2ð _F Þ2
b4F 2

þ b2F̈
b4F

�
ψ2;

ðA26Þ
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where g̃, R̃ are calculated in the Friedmann universe with
scale factor b. Therefore, the full action transforms to

A ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
½−∂iψ∂iψ −m2

effψ
2 − ξR̃ψ2�; ðA27Þ

with

m2
eff ¼

m2

F 2
þ 1 − 6ξ

a4F 4
½2a _aF _F þ a2FF̈ �: ðA28Þ

We can proceed exactly as before and map (i) the massless
theory with curvature coupling in a power-law Friedmann
universe ro (ii) a massive theory with the same curvature
coupling parameter in the de Sitter spacetime. In this case
(with m ¼ 0) we will find that

m2
eff ≡M2 ¼ ð1 − 6ξÞð2 − q − q2Þ

¼ ð1 − 6ξÞð2þ qÞð1 − qÞ: ðA29Þ
We hope to explore the nonminimal coupling in detail in a
future publication.

b. General conformal transformation in 4D

This structure of effective mass can easily be general-
ized to any two spacetimes related with conformal
transformation,

gab → g̃abðxÞ ¼ Ω2ðxÞgabðxÞ; ðA30Þ

ϕðxÞ → ψðxÞ ¼ Ω−1ðxÞϕðxÞ; ðA31Þ

where in the equation of motion,

−
1ffiffiffiffiffiffi−gp ∂a½

ffiffiffiffiffiffi
−g

p
gab∂bϕ� þm2ϕ ¼ 0; ðA32Þ

becomes

−
1ffiffiffiffiffiffi
−g̃

p ∂a

h ffiffiffiffiffiffi
−g̃

p
g̃ab∂bψ

i

þ
�
m2Ω−2 þ 2

ð∂ΩÞ2
Ω2

− Ω−1□Ω
�
ψ ¼ 0: ðA33Þ

For a choice Ω ¼ e−Λ we identify the new mass
parameter as

M2 ¼ □Λþ ð∂ΛÞ2 þm2e2Λ: ðA34Þ

3. Derivation of the H → 0 limit of mode functions

a. de Sitter mode functions

We consider the de Sitter metric ds2 ¼ dt2 − e2Htdx2,
and define the conformal time coordinate η ¼ −e−Ht=H.
The (early time) positive frequency plane-wave modes for a
scalar field of mass m in de Sitter spacetime are given by

Hankel functions Hð1Þ
ν ðzÞ in the conformal time η:

ukðη;xÞ ¼ fkðηÞ
eik·x

ð2πÞ32 ; ðA35Þ

where k ¼ ffiffiffiffiffiffiffiffiffiffi
k · k

p
and, with ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=4 −m2=H2

p
,

fkðηÞ ¼
ffiffiffi
π

p
H

2
e
iνπ
2 ð−ηÞ32Hð1Þ

ν ð−kηÞ: ðA36Þ

Now, we will analyze the behavior of the above positive
frequency mode function as H → 0, which corresponds to
the limit of Minkowski spacetime in the metric.
The parameter ν approaches infinity along the posi-

tive imaginary axis as H → 0. In this limit, we have
ν ≈ im=H. For notational convenience, we will introduce
μ ¼ m=H > 0 for a massive field, so that ν ≈ iμ. The
conformal time is also affected by this limit; we must
consider both an OðH−1Þ (the dominant term) and OðH0Þ
part to arrive at any conclusions about the dependence of
the modes on the cosmological time t:

η ≈ −
1

H
þ t ¼ −

1

H
ð1 −HtÞ: ðA37Þ

The limiting form of fkðηÞ, now expressed as a function
of t, is therefore

fkðtÞ ≈
ffiffiffi
π

p
H

2
e−

μπ
2

�
1 −Ht
H

�3
2

Hð1Þ
iμ

�
k
H
ð1 −HtÞ

�
: ðA38Þ

Next, we define z ¼ k
m ð1 −HtÞ, a positive real number

that remains finite asH → 0. The Hankel function can now
be expressed as

Hð1Þ
iμ

�
k
H
ð1 −HtÞ

�
¼ Hð1Þ

iμ ðμzÞ: ðA39Þ

We are therefore essentially interested in the asymptotic
form of Hð1Þ

iμ ðμzÞ for fixed z (the OðHÞ correction to z is
small, allowing such a treatment) as μ → ∞.
From [59], we use the leading term in inverse powers of

μ of the asymptotic series for a Hankel function of this
form:

Hð1Þ
iμ ðμzÞ ∼

�
2

πμ

�1
2

e
πμ
2 e−

iπ
4 ð1þ z2Þ−1

4eiμξðzÞ; μ → ∞;

ðA40Þ

where

ξðzÞ ¼ ð1þ z2Þ12 þ ln

�
z

1þ ð1þ z2Þ12
�
: ðA41Þ
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Plugging this into Eq. (A38),

fkðtÞ ∼
e−

πμ
2

2

ffiffiffiffi
π

H

r
ð1 −HtÞ32Hð1Þ

iμ ðμzÞ; ðA42Þ

∼
e−i

π
4ffiffiffiffiffiffiffi

2m
p ð1þ z2Þ−1

4eiμξðzÞ: ðA43Þ

In arriving at the second line, we have canceled out factors
of H occurring outside μ, which results in a leading order
term in the factor multiplying the exponential in ξðzÞ that
is OðH0Þ and therefore finite and nonvanishing in the
H → 0 limit.
Now, in Minkowski spacetime, the frequency of a plane

wave mode with wave-vector k for a massive scalar field is
given by ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. We will find it useful to express

ð1þ z2Þ12 in terms of ωk, up to OðHÞ which gives us

ð1þ z2Þ12 ≈ ωk

m
−

k2

mωk
Ht: ðA44Þ

This substitution gives the familiar normalization factor
in fkðtÞ for Minkowski space:

fkðtÞ ∼
e−i

π
4ffiffiffiffiffiffiffiffi

2ωk
p eiμξðzÞ: ðA45Þ

Now, we must consider the behavior of ξðzÞ. Writing
μ ¼ m=H, we see that the nonvanishing contributions to
the phase are from theOðH0Þ andOðH1Þ terms in ξðzÞ. By
using lnð1þ xÞ ≈ x for small jxj, we find the OðHÞ term,

OðHÞ term in ξðzÞ∶
�
−

k2

mωk
− 1þ k2

ωkðmþ ωkÞ
�

×Ht ¼ −
ωk

m
Ht: ðA46Þ

The OðH0Þ term may be found by setting z ¼ k=m in ξðzÞ,
giving

ξ

�
k
m

�
¼ ωk

m
þ ln

�
k

ωk þm

�
: ðA47Þ

TheH → 0 limit of fkðtÞ therefore turns out to be the time-
dependent part of the normalized plane wave positive
frequency mode functions in Minkowski spacetime:

fkðtÞ ∼ ½e−iπ
4
þ i

Hðωkþm lnð k
ωkþmÞÞ� e

−iωktffiffiffiffiffiffiffiffi
2ωk

p ; H → 0; ðA48Þ

where the expression in square brackets is an irrelevant
(though divergent) phase factor, which can be accounted
for in the normalizing constant for the original de Sitter
mode functions ukðη;xÞ.

b. Power-law mode functions

The plane wave modes in the power-law case aðtÞ ¼
ð1þ ðHt=pÞÞp with conformal time,

η ¼ −
1

H
p

p − 1
a−

p−1
p ðtÞ ¼ −

1

H
p

p − 1

�
1þHt

p

�
1−p

;

ðA49Þ
are given by

ukðη;xÞ ¼
ffiffiffi
π

p
2

�ðp − 1ÞH
p

� p
p−1
e
iνπ
2 ð−ηÞνHð1Þ

ν ð−kηÞ e
ik·x

ð2πÞ32 ;

ðA50Þ
with ν ¼ ðp=ðp − 1ÞÞ þ ð1=2Þ.
There are two “independent” ways of taking the limit of

Minkowski spacetime, i.e., apðtÞ → 1, by varying p andH:
p → 0 and H → 0.
First, we will consider the p → 0 limit. In this limit,

p=ðp − 1Þ → 0 and ν → ð1=2Þ.
The factor ðp=ðp − 1ÞÞp=ðp−1Þ has a nontrivial limiting

form. Writing p ¼ 0þ ϵ for small, positive ϵ, this factor is
approximately �

p − 1

p

� p
p−1 ¼

�
1 −

1

ϵ

� ϵ
ϵ−1 ðA51Þ

≈ ϵϵ ðA52Þ
¼ eϵ log ϵ → 1: ðA53Þ

We also haveH
p

p−1 → 1. The conformal time η reduces to
t in this limit as expected (without any additive constants,
unlike the H → 0 case).
For the Hankel function, as the limiting value of ν is 1=2,

we use the well-known expression in terms of elementary
functions for Hankel functions of order half (10.6.2
of [63]):

Hð1Þ
1
2

ðzÞ ¼ −i
ffiffiffiffiffi
2

πz

r
eiz: ðA54Þ

We therefore have

Hð1Þ
1
2

ð−kηÞ ¼ −i
ffiffiffi
2

π

r
e−ikηffiffiffiffiffiffiffiffi
−kη

p : ðA55Þ

With η → t, and canceling out factors of
ffiffiffiffiffiffi−ηp

and
multiplying other constant factors, we get the positive
frequency Minkowski plane wave modes:

ukðt;xÞ →
1

ð2πÞ32 ffiffiffiffiffi
2k

p eik·x−ikt: ðA56Þ

Now, we will also look at the H → 0 limit. In this limit,
the conformal time goes as

η → t −
1

H
p

p − 1
; ðA57Þ

with the second (constant) term being dominant (and
divergent) in this limit.
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The order ν of the Hankel function remains unaffected,
but its argument now approaches infinity. We must there-
fore use the asymptotic form (10.2.5 of [63]):

Hð1Þ
ν ðzÞ ∼

ffiffiffiffiffi
2

πz

r
e
iπν
2 e−

iπ
4eiz: ðA58Þ

This gives (retaining only relevant terms in the asymptotic
form, which will turn out to be the leading constant term in
the prefactor, and when substituted in the mode function
gives a finite H-independent factor; expanding η up to
OðH0Þ in the exponents then gives a nonvanishing t
dependence in the limit),

Hð1Þ
ν ð−kηÞ →

ffiffiffi
2

π

r �
Hðp − 1Þ

kp

�1
2

e
iπν
2 e−

iπ
4ei

k
H

p−1
p e−ikt: ðA59Þ

The only nonvanishing contribution from the ð−ηÞν
factor is due to the leading constant term. Putting all this
together, we get

ukðt;xÞ →
e
iπν
2 e−

iπ
4ei

k
H

p−1
p

ð2πÞ32 ffiffiffiffiffi
2k

p eik·x−ikt; ðA60Þ

which, up to a constant phase (including a divergent part)
that can be accounted for by redefining the normalizing
factor for the modes, are the positive frequency Minkowski
plane wave modes.

4. Derivation of Eq. (66)

We have already obtained the regular mode function to
be of the form,

vωlmðr; θ;ϕÞ ¼ Nð1Þ
ωlme

−iωtYlmðθ;ϕÞrlð1 −H2r2Þ−iω2H

×

�
2F1

�
3

4
þ l
2
−

iω
2H

−
ν

2
;
3

4
þ l
2
−

iω
2H

þ ν

2
;

3

2
þ l;H2r2

��
: ðA61Þ

In the zero-angular momentum case l ¼ 0 the mode
function (s-wave) for a massless field becomes

vωðr;θ;ϕÞ¼Nωe−iωτΦωðrÞY00ðθ;ϕÞ

¼Nωe−iωtY00ðθ;ϕÞ
�
ð1−H2r2Þ−iω2H

2F1

×

�
−
iω
2H

;
3

2
−
iω
2H

;
3

2
;H2r2

��
: ðA62Þ

In order to fix the normalization constant Nω, we
normalize the mode function at the (achronal) hypersur-
face: future null horizon Hr ¼ 1 where the mode function
assumes a form,

vωðr; θ;ϕÞjHr¼1 ¼ Nω½Aωe−iωu þ Bωe−iωv�; ðA63Þ
where u ¼ τ − r� and v ¼ τ þ r� and

r� ¼
1

2H
log

�
1þHr
1 −Hr

�
: ðA64Þ

The constants Aω and Bω are related as Bω ¼ A�
ω and

Aω ¼ Γ½3
2
�Γ½iωH �

Γ½ iω
2H�Γ½

3þiω
H

2
�
2−

iω
H : ðA65Þ

The inner product of the mode function with itself gives

ðvω; vω0 Þ ¼ −4πi
Z

dur2vω∂
↔

uv�ω0 jHr¼1: ðA66Þ

For such mode functions as in Eq. (A63), the self
normalization yields

−i
Z

∞

−∞
duðvω∂

↔

uv�ω0 Þ ¼ 4πωH−2jNωAωj2δðω − ω0Þ

þ 4iπωH−2NωAωN�
ω0Bω0δðωÞ

− 4iπω0H−2NωBωN�
ω0Aω0δðω0Þ;

ðA67Þ
which in the case

lim
ω→0

ωNωAω → 0;

fixes the normalization to be

jNωj2 ¼ ½4πωH−2jAωj2�−1; ðA68Þ
which using Eq. (A65) gives

jNωj2 ¼
H2

πω

�
1þ ω2

H2

�
: ðA69Þ

5. Derivation of results in Sec. V B

We consider a massive scalar field ϕ obeying the Klein-
Gordon equation in de Sitter spacetime (adSðtÞ ¼ eHt;
t ∈ R) and a massless scalar field in a power-law expanding
spacetime {apðtÞ ¼ ð1þHt=pÞp; t; p ∈ ½1;∞Þ}, where t
is the cosmic time coordinate and aðtÞ is the corresponding
function in the general Friedmann metric ds2 ¼
dt2 − a2ðtÞdx2, with x ∈ R3. We note that with this choice
of a power-law metric, limp→∞apðtÞ ¼ adSðtÞ, and we
obtain the de Sitter spacetime as a limiting case.
We define the conformal time by η ¼ R

dt=aðtÞ, with the
integration constant chosen so that ηdS ¼ −e−Ht=H for the
de Sitter case and

ηp ¼ −
1

H
p

p − 1
a
−p−1

p
p ðtÞ

for the power-law case. Both have the same range: η ∈
ð−∞; 0Þ with η → −∞ corresponding to t → −∞ and
η → 0 to t → ∞, for p > 1.The positive (unit-)norm modes
(in the Klein-Gordon norm sense) corresponding to the
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Bunch-Davies vacuum j0;BDi are given by

udSk ðη;xÞ ¼
ffiffiffi
π

p
H

2
e
iνπ
2 ð−ηÞ32Hð1Þ

ν ð−kηÞ e
ik·x

ð2πÞ32 ; ðA70Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 −m2=H2

p
for the de Sitter case and

upkðη;xÞ ¼
ffiffiffi
π

p
2

�ðp − 1ÞH
p

� p
p−1
e
iνπ
2 ð−ηÞνHð1Þ

ν ð−kηÞ e
ik·x

ð2πÞ32 ;

ðA71Þ

with ν ¼ 1=2þ p=p − 1 for the massless power-law case,

where Hð1Þ
ν ðzÞ are Hankel functions of the first kind [with

the Hankel functions of the second kind Hð2Þ
ν ðzÞ appearing

analogously in the negative norm modes, which are given
by the complex conjugates of these in these cases (for both
real and imaginary ν)].
Introducing the notation q ¼ minð1;Reν − 1=2Þ i.e.,

q ¼
(
1; for de Sitter
p

p−1 ; for power law;
ðA72Þ

and β ¼ ðH=qÞq, we see that both types of mode functions
can be written using the same expression:

ukðη;xÞ ¼
ffiffiffi
π

p
β

2
e
iπν
2 ð−ηÞqþ1

2Hð1Þ
ν ð−kηÞ: ðA73Þ

The positive Wightman function12 in the Bunch-Davies
vacuum is given by

Gþðη;x; η0;x0Þ ¼ h0;BDjϕ̂ðη;xÞϕ̂ðη0;x0Þj0;BDi; ðA74Þ

¼
Z
R3

d3k ukðη;xÞu�kðη0;x0Þ; ðA75Þ

¼ πβ2

4ð2πÞ3 ðηη
0Þqþ1

2

Z
R3

d3kHð1Þ
ν ð−kηÞ

× Hð2Þ
ν ð−kη0Þeik·ðx−x0Þ: ðA76Þ

Evaluating the angular part of the k-integral gives, with
Δx ¼ jx − x0j,

Gþðη; η0;ΔxÞ ¼ β2

8πΔx
ðηη0Þqþ1

2

Z
∞

0

kdkHð1Þ
ν ð−kηÞ

× Hð2Þ
ν ð−kη0Þ sinðkΔxÞ: ðA77Þ

Further, we detail the evaluation of the integral using the
following integral representations of the Hankel functions
(10.9.10, 10.9.11 of [63]):

Hð1Þ
ν ðzÞ ¼ e−

iπν
2

πi

Z
∞

−∞
eiz cosh t−νtdt; Im z > 0;

Hð2Þ
ν ðz0Þ ¼ −

e
iπν
2

πi

Z
∞

−∞
e−iz

0 cosh t−νtdt; Im z0 < 0: ðA78Þ

The product is then

Hð1Þ
ν ðzÞHð2Þ

ν ðz0Þ ¼ 1

π2

Z
∞

−∞
dt
Z

∞

−∞
dueiz cosh t−iz

0 coshue−νðtþuÞ:

ðA79Þ
Now, we will essentially follow the procedure (used in
13.71 of [64]) to derive the integral representation for the
product of Modified Hankel functions KνðizÞKνðiz0Þ.
Introducing real variables T, U such that t ¼ T þ U, u ¼
T − U and transforming the integrals, we get

Hð1Þ
ν ðzÞHð2Þ

ν ðz0Þ ¼ 2

π2

Z
∞

−∞
dT

Z
∞

−∞
dUeizcoshðTþUÞ−iz0 coshðT−UÞ

×e−2νT: ðA80Þ
We can manipulate the z-dependent part in the exponential
to get

z coshðT þ UÞ − z0 coshðT −UÞ

¼ 1

2
ðzeT − z0e−TÞeU þ 1

2

�
z2 þ z02 − 2zz0 coshð2TÞ

ðzeT − z0e−TÞeU
�
:

ðA81Þ

Introducing v¼ðzeT−z0e−TÞeU, ξ¼z2þz02−2zz0coshð2TÞ
and defining τ ¼ 2T, we get the integral,

Hð1Þ
ν ðzÞHð2Þ

ν ðz0Þ ¼ 1

π2

Z
∞

−∞
dτ

Z
∞

−∞
dUe−ντe

i
2
ðvþξ

vÞ: ðA82Þ

Due to the dependence of the sign and range of v on τ, we
cannot quite reduce this to a single integral over v
(modified Hankel functions [64]). We will therefore not
(yet) integrate over τ.
We may still attempt to evaluate the Wightman function

by substituting this in Eq. (A77) [introducing an arbitrarily
small negative imaginary part to (η − η0), i.e., ðη − η0Þ →
ðη − η0 − iϵÞ, ϵ > 0 that we will consider implicit for now]
leading to

Gþðη; η0;ΔxÞ ¼ β2

8π3Δx
ðηη0Þqþ1

2

Z
∞

−∞
dτ

Z
∞

−∞
dU

×
Z

∞

0

kdk e−ik
2ðcosh τ−η2þη02

2ηη0 Þηη0v

× sinðkΔxÞeiv
2e−ντ: ðA83Þ

12We define the “positive” Wightman function as Gþðx; yÞ ¼
Gðx; yÞ and the “negative” Wightman function as G−ðx; yÞ ¼
Gðy; xÞ.
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With z ¼ −kη, z0 ¼ −kη0, we may also write v ¼
ðk=HÞð−HηþHη0ÞeU ¼ Hð−ηþ η0ÞeŪ, where Ū ¼ U þ
logðk=HÞ. Transforming the dUdk double integral to Ū is
straightforward (with a unit Jacobian) and gives

Gþðη; η0;ΔxÞ ¼ β2

8π3Δx
ðηη0Þqþ1

2

Z
∞

−∞
dτ

Z
∞

−∞
dŪ

×
Z

∞

0

kdk e−ik
2ðcosh τ−η2þη02

2ηη0 Þηη0v

× sinðkΔxÞeiv
2e−ντ; ðA84Þ

with the difference being that of the three integration
variables, v is now only a function of Ū. Integrating over
k, identifying ðη2 þ η02=2 − ηη0 cosh τÞ≡ f,

Gþðη; η0;ΔxÞ ¼ β2

8π3Δx
ðηη0Þqþ1

2

Z
∞

−∞
dτ

Z
∞

−∞
dŪ

× e−ντe
iv
2

ffiffiffi
π

p
v

3
2Δx

4ð−ifÞ32 e
−ivΔx2

4f : ðA85Þ

Now, let us consider the inner integral (with only the
v-dependent factors), at a particular value of τ ¼ 2T.
We make a transformation of the integration variable to
v from U (dŪ ¼ dv=v), the former being a monotonic
function of the latter. As Ū ranges from (−∞ to ∞), v
ranges from (0 to∞) if ð−ηeT þ η0e−TÞ > 0, and (−∞ to 0)
if ð−ηeT þ η0e−TÞ > 0 [we neglect the ðzeT − z0e−TÞ ¼ 0
case as it by itself has a vanishing contribution to the
integral over t, being just the value of the integrand at one
point]. For the former case, we have

Z
∞

0

dv v
1
2e

iv
2e−i

Δx2
4f v ¼ 4

ffiffiffi
π

p

ði Δx2f − 2iÞ32
: ðA86Þ

For the latter case, with v going from 0 to −∞, we make the
transformation v → w ¼ −v, and convert it to the above
form to obtain the final integral:Z

−∞

0

dv v
1
2e

iv
2e−i

Δx2
4f v ¼ −i

Z
∞

0

dww
1
2e−

iw
2 ei

Δx2
4f w

¼ 4
ffiffiffi
π

p

ði Δx2f − 2iÞ32
: ðA87Þ

Irrespective of the value of τ, the inner integral evaluates to
the same expression. Substituting this expression leaves us
with an integral over τ. Further expanding f and defining

Z ¼ η2þη02−Δx2
2ηη0 , we have a simple integral representation of

the Wightman function:

Gþðη; η0;ZÞ ¼ β2

16π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

−∞
dτ

e−ντ

ðcosh τ − ZÞ32 :

ðA88Þ

An integral representation involving polynomials in the
integration variable can be obtained by substituting s ¼ eτ

in the integrand:

Gþðη; η0;ZÞ ¼ β2

16π2
ðηη0Þq−1

Z
∞

0

ds
sð12−νÞ

ðs2 − 2Zsþ 1Þ32 :

ðA89Þ
We can separate out the τ > 0 and τ < 0 parts of the
integral in Eq. (A88) and write them together as a single
integral over τ > 0:

Gþðη; η0;ZÞ ¼ β2

8π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

0

dτ
cosh ντ

ðcosh τ − ZÞ32 :

ðA90Þ

6. Derivation of results in Sec. V C

a. Derivation of Eq. (96)

The Wightman function for a massive scalar field in de
Sitter background can be written in terms of the hyper-
geometric function.

GþðZÞ ¼ H2

16π2
ΓðcÞΓð3 − cÞ2F1

�
c; 3 − c; 2;

1þ Z
2

�
;

ðA91Þ

where cð3 − cÞ ¼ m2=H2 ≡ 3ϵ. In this Appendix, we try
to find out expansion of GþðZÞ in powers of m2 or
equivalently ϵ.
We will first derive Eq. (96) using the series expansion of

the hypergeometric function, for case (i) [m → 0 limit of
the massive field analysis]. Inside the unit disc jxj < 1, the
hypergeometric function has the following series repre-
sentation:

ΓðAÞΓðBÞ2F1ðA;B;C;xÞ¼
1

ΓðCÞ
X∞
n¼0

ΓðAþnÞΓðBþnÞ
ΓðCþnÞ

xn

n!
;

ðA92Þ
Outside this domain, the function is defined by an analytic
continuation. The relevant values of parameters A, B and C
for Eq. (A92) is given by

A¼ c; B¼ 3−c; C¼ 2; and x¼ð1þZÞ
2

: ðA93Þ

The solution of the defining quadratic equation for c may
be written as c ¼ 3 − ϵþOðϵ2Þ. Therefore, to linear order
in ϵ, we have the following results:

1

ΓðCÞ
ΓðAþ nÞΓðBþ nÞ

ΓðCþ nÞ ¼ ðnþ 1Þ
2

þOðϵÞ; n > 0

ðA94Þ

QUANTUM CORRELATORS IN FRIEDMANN SPACETIMES: … PHYS. REV. D 98, 105015 (2018)

105015-41



1

ΓðCÞ
ΓðAÞΓðBÞ
ΓðCÞ ¼ 2

ϵ
þ 3þOðϵÞ; ðA95Þ

Using Eq. (A94) and Eq. (95) in Eq. (A92), we obtain the
following expression for the hypergeometric series around
Z ¼ −1, to the linear order in ϵ:

ΓðcÞΓð3 − cÞ2F1

�
c; 3 − c; 2;

1þ Z
2

�

¼ 2

ϵ
þ 3þ

X∞
n¼1

�ðnþ 2Þ
2

xn
�
þOðϵÞ: ðA96Þ

Inside the disk jxj < 1, the above series converges to

ΓðcÞΓð3 − cÞ2F1

�
c; 3 − c; 2;

1þ Z
2

�

¼ 2

�
1

ϵ
þ 1

1 − Z
− logð1 − ZÞ − 2þ logð2Þ

�
þOðϵÞ:

ðA97Þ
The above expression can be analytically continued to
define the ϵ expansion outside the disk jxj < 1. A similar
analysis shows

ΓðcÞΓð3 − cÞ2F1

�
c; 3 − c; 2;

1 − Z
2

�

¼ 2

�
1

ϵ
þ 1

1þ Z
− logð1þ ZÞ − 2þ logð2Þ

�
þOðϵÞ:

ðA98Þ
Using these in Eq. (94), we find that

GþðZÞ ¼ 3H4

8m2π2
−

H2

8π2

�
−1

1 − Z
þ log fð1 − ZÞλg

�
þOðϵ2Þ;

ðA99Þ
where λ ¼ e2=2. For case (ii) [q → 1 limit of the aðηÞ ∼ η−q

power-law cosmology], one can consider a series expan-
sion in ϵeff ¼ m2

eff=ð3H2Þ. Here, in the expression for
Wightman function, in addition to the combination of
gamma functions and the hypergeometric function, there
is a term of the form ðηη0Þ−ϵeff ≈ 1 − ϵeff logðηη0Þ þOðϵ2effÞ.
Hence, the Wightman function has the following expansion
in powers of m2

eff :

GþðZ; η; η0Þ ¼ 3H4

8m2
effπ

2
−

H2

8π2

×

�
−1

1 − Z
þ log½ð1 − ZÞH2ðηη0Þλ�

�
þOðϵ2Þ: ðA100Þ

Now, we will use the integral representation Eq. (85) to
arrive at the same result. We will illustrate the analysis for

case (i) [m → 0 limit of the massive field analysis] first. The
Wightman function for case (i) has the following integral
representation:

GþðZÞ ¼ H2

8π2

Z
∞

0

ðs2 − 2Zsþ 1Þ−3=2
s1−ϵ

ds; ðA101Þ

∝
Z

∞

0

ðs2 þ 1Þ−3=2
s1−ϵ

�
1 −

2Zs
s2 þ 1

�
−3=2

ds; ðA102Þ

¼
Z

∞

0

ðs2 þ 1Þ−3=2
s1−ϵ

X∞
n¼0

� ð−1ÞnxnΓð−1=2Þ
Γðnþ 1ÞΓð−1=2 − nÞ

�
ds;

ðA103Þ

where x ¼ ð2ZsÞ=ðs2 þ 1Þ. Let us consider each term in
the integral:

In ≡ ð−1ÞnΓð−1=2Þ
Γðnþ 1ÞΓð−1=2 − nÞ

Z
∞

0

ðs2 þ 1Þ−3=2
s1−ϵ

xðsÞnds;

ðA104Þ

¼ ð−1Þnþ123nþ1Γð1
2
ðn − ϵþ 3ÞÞΓðnþϵ

2
Þ

Γð−n − 1
2
ÞΓð2nþ 2Þ Zn: ðA105Þ

Let us consider the n ¼ 0 term:

I0 ¼
Γð3−ϵ

2
ÞΓðϵ

2
Þffiffiffi

π
p ; ðA106Þ

¼ 1

ϵ
þ 1

2
ð−γ − ψ0ð3=2ÞÞ þOðϵÞ: ðA107Þ

The n > 0 terms can be written, after simplifying the
gamma function expressions, as

In ¼
�
1

n
þ 1

�
Zn þOðϵÞ: ðA108Þ

Therefore, the whole expression can be written as

X∞
n¼0

In ¼
1

ϵ
þ 1

1 − Z
− log ½ð1 − ZÞλ� þOðϵÞ; ðA109Þ

where λ ¼ e2=2. After putting the right proportionality
constant we see that GþðZÞ reduces to the expression given
in Eq. (96). Again, for case (ii) [q → 1 limit of the aðηÞ ∼
η−q power-law cosmology], we can proceed exactly as in
case (i), but the additional factor ðηη0Þ−ϵeff gives an extra
logðηη0Þ term for the Wightman functions, hence repro-
ducing Eq. (99).
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b. Derivation of Eq. (103)

We begin by putting ν ¼ 3=2 − ϵ in Eq. (100), where ϵ is
a small positive quantity. The integrand in Eq. (100) can
then be expanded as a Taylor series in ϵ to give

dGðη; η0;ZÞ
dZ

¼ 3β2

8π2
ðηη0Þq−1

�Z
∞

0

ds
1

ðs2 − 2sZ þ 1Þ5=2

þ ϵ

Z
∞

0

ds
logðsÞ

ðs2 − 2sZ þ 1Þ5=2
�
þOðϵ2Þ:

ðA110Þ

For jZj < 1 the integrals in Eq. (A110) are convergent
and can be evaluated explicitly to get the following OðϵÞ
expression for dG=dZ.

dGðη; η0;ZÞ
dZ

¼ 3β2

8π2
ðηη0Þq−1

�
−

Z − 2

3ðZ − 1Þ2
�
þOðϵÞ

ðA111Þ
The ϵ series of dG=dZ for jZj ≥ 1 can be obtained by
analytical continuation of this equation to get Eq. (103).

7. Brief comment on the stress-energy tensor
of the massless, minimally coupled field

In the de Sitter spacetime, the Ricci scalar is a constant,
namely R ¼ 12H2. Thus, in the nonminimally coupled
case, the additional term ξRϕ2 in the Lagrangian density
can be treated as a modification of the mass term,
corresponding to a scalar field with an effective mass m̄
with m̄2 ¼ m2 þ ξR. Therefore, the Wightman function for
a massive scalar field in de Sitter spacetime, with non-
minimal coupling to the curvature, can be written in
essentially the same form as Eq. (91):

Gðx; x0Þ ¼ H2

16π2
Γ
�
3

2
− ν̄

�
Γ
�
3

2
þ ν̄

�

× 2F1

�
3

2
− ν̄;

3

2
þ ν̄; 2;

ð1þ ZÞ
2

�
; ðA112Þ

where we now have

ν̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
m̄2

H2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
−
12ðm2 þ ξRÞ

R2

r
: ðA113Þ

Let us consider the m̄ → 0 limit of this expression.
Expanding Eq. (A112) in powers of m̄ gives a straightfor-
ward modification of Eq. (96),

GðZÞ ¼ 3H4

8m̄2π2
−

H2

8π2

�
−1

1 − Z
þ log fð1 − ZÞλg

�

þO
�
m̄2

H2

�
: ðA114Þ

The constant term diverges in the m̄ → 0 limit just as in the
case of the minimally coupled field. The derivative dG=dZ
is again independent of m̄2 and has no divergence. It has a
well-defined massless, minimally coupled, limit, and any
quantity constructed only out of the first or higher deriv-
atives of GðZÞ also has an unambiguous limit.
There is, however, no well-defined limit for products of

the form m2GðZÞ and ξRGðZÞ. when we approach the
origin of the ðm2; ξÞ plane. These expressions will take
different limiting values depending on which path we
choose to approach the point (0,0) in ðm2; ξÞ plane.
However, the sum ðm2 þ ξRÞGðZÞ ¼ m̄2GðZÞ has the
unambiguous limiting value of 3H4=ð8π2Þ.
To see this explicitly, consider a path Py in the ðm2; ξÞ

plane that has the following limiting form as we approach
the origin,

ξ ≈ y
m2

R
: ðA115Þ

Then, the ðm2; ξÞ → ð0; 0Þ limits of m2GðZÞ and ξRGðZÞ
along such a path are

lim
ðm2;ξÞ→ð0;0Þ;Py

m2GðZÞ ¼ 3H4

8ð1þ yÞπ2 ¼
R2

384ðyþ 1Þπ2 ;

ðA116Þ

lim
ðm2;ξÞ→ð0;0Þ;Py

ξRGðZÞ ¼ 3H4y
8Rð1þ yÞπ2 ¼

yR2

384ðyþ 1Þπ2 ;

ðA117Þ

which are y dependent and therefore not well-defined.
As the Einstein tensor is Gab ¼ Rab − ð1=2ÞRgab ¼

−ð1=4ÞRgab in de Sitter spacetime, from Eq. (96), it is
easy to obtain the following limit for the linear combination
ðAξGab þ Bm2gabÞ, where A and B are arbitrary constants:

lim
m→0;Py

ðAξGab þ Bm2gabÞGðZÞ ¼
� ð4B − AyÞ
1536π2ðyþ 1Þ

�
R2gab;

ðA118Þ

We note that this limiting value is again, in general, path
dependent (except for a special case of A ¼ −4B). As we
discuss below, such a linear combination with A ¼ 1, B ¼
−1=2 arises in the expression for the vacuum expectation
value of the stress-energy tensor, thereby leading to an
ambiguity in the limit ðm2; ξÞ → ð0; 0Þ, which has been
noted in the literature (see [29]).
While obtaining the vacuum expectation value of

the stress-energy tensor from Gð1Þðx; x0Þ ¼ Gðx; x0Þ þ
Gðx0; xÞ ¼ 2GðZÞ using the point-splitting method (see
e.g., [73]), we will have terms in m2 and ξ that cannot be
combined to depend only on m̄2, and we may expect a
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path-dependent limit for the stress-energy tensor when we
approach ðm2; ξÞ → ð0; 0Þ. In particular, from Eq. (3.2) of
[73], we find that the terms that do not involve derivatives
of GðZÞ are given by

lim
x→x0

�
ξGab −

m2

2
gab

�
½GðZÞ −Grefðx; x0Þ�; ðA119Þ

whereGref is a “reference Green’s function” that is used for
renormalization in the point-splitting approach. Comparing
this with Eq. (A118), we see that A ¼ 1, B ¼ −1=2, and
therefore the ðm2; ξÞ → ð0; 0Þ limit of this term is path
dependent.
The explicit expression for the vacuum expectation value

of the renormalized stress-energy tensor hTabiren is given
by (as in [74]),

hTabiren ¼ −
gab
64π2

fm2½m2 þ ðξ − 1=6ÞR�½ψð3=2 − ν̄Þ
þ ψð3=2þ ν̄Þ þ logðR=2m2Þ� −m2ðξ − 1=6ÞR
−m2R=18 − ðξ − 1=6Þ2R2=2þ R2=2160g;

ðA120Þ

where the expectation value is taken in the Euclidean
vacuum. The path dependence of the ðm2; ξÞ → ð0; 0Þ limit
of this expression stems from the following term:

gab
64π2

m2ðm2 þ ðξ − 1=6ÞRÞψð3=2 − ν̄Þ

¼ gab
R2

1536ð1þ yÞπ2 þOðm2=H2Þ: ðA121Þ

In [29] the authors note that the ambiguity can be traced
back to the contribution of the L ¼ 0 mode to hTabi. This
contribution is given by

−R2

1536

ðyþ 2Þ
ðyþ 1Þ þOðm2; ξÞ: ðA122Þ

Setting A ¼ 1 and B ¼ −1=2 in Eq. (A118), we see that the
leading order contribution to Eq. (A119) matches exactly
with that in Eq. (A122). Therefore, we can conclude that
the path dependence of the ðm2; ξÞ → ð0; 0Þ limit of
hTabiren can be attributed to those terms in Tab which
depend explicitly on G and not from those terms involving
the derivatives of G.

8. Derivation of results in Sec. VI C

We begin with an integral representation of the positive
Wightman function Eq. (136), reproduced here:

Gþðη; η0;ZϵÞ ¼
β2

16π2
ffiffiffi
2

p ðηη0Þq−1
Z

∞

−∞
dτ

e−ντ

ðcosh τ − ZϵÞ32
:

ðA123Þ
Formally, we may treat Z and η,η0 as independent

variables. We are now interested in the Fourier transform
of Gþ with respect to Z, which we will define by

G̃þðη; η0;QÞ ¼
Z

∞−iϵðη;η0Þ

−∞−iϵðη;η0Þ
dZϵ e−iQZϵGþðη; η0;ZϵÞ:

ðA124Þ

To evaluate this for the positive Wightman function, it is
useful to recall that

Zϵ ¼ 1þ ðη − η0 − iϵÞ2 − Δx2

2ηη0
;

where ϵ > 0 is an arbitrarily small positive quantity.
The variable Zϵ then has an arbitrarily small imaginary

part, given by ϵðη; η0Þ ¼ −2ϵðη − η0Þ=ηη0. Thus, we obtain

G̃þðη;η0;QÞ¼ eQϵðη;η0Þ
Z

∞

−∞
dZe−iQZGþðη;η0;Z− iϵðη;η0ÞÞ:

ðA125Þ

Then, we use the following Fourier transform relations in
(exponential transforms, elementary functions, entries 3
and 4) [75]:Z

∞

−∞
ða − ixÞ−λe−ixydx ¼ 2π

ΓðλÞ y
λ−1e−ayθðyÞ;

Re a > 0;Re λ > 0; ðA126ÞZ
∞

−∞
ðaþ ixÞ−λe−ixydx ¼ −

2π

ΓðλÞ ð−yÞ
λ−1eayθð−yÞ;

Re a > 0;Re λ > 0; ðA127Þ

where θðxÞ is the Heaviside unit-step function. Defining
b ¼ ia and multiplying by a factor of ð−iÞλ in the former
and b ¼ −ia and multiplying by iλ in the latter and
changing y → −y gives more immediately applicable
forms, both with Reλ > 0:

Z
∞

−∞
ðbþ xÞ−λeixydx ¼

8<
:

2π
ΓðλÞ ð−iÞλð−yÞλ−1eayθð−yÞ; Imb > 0;

2π
ΓðλÞ i

λyλ−1e−ayθðyÞ; Imb < 0:
ðA128Þ
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Now, with λ ¼ 3
2
, b ¼ ðcosh tþ iϵsηÞ, x ¼ −Z and y ¼ Q,

we get the Fourier transform of the positive Wightman
function:

G̃þðη; η0;QÞ ¼ −
β2

4π
ffiffiffiffiffiffi
2π

p ðηη0Þq−1eiπ
4 ð−QÞ12sηθð−QsηÞ

×
Z

∞

−∞
dte−iQ cosh t−νt: ðA129Þ

This is antisymmetric under an exchange of the two points,
as sη is antisymmetric and Z (and thereforeQ) is symmetric
under this exchange. Recognizing the integral as a repre-

sentation for the Hankel function Hð2Þ
ν ðQÞ (10.9.11 of [63]),

we have

G̃þðη;η0;QÞ¼−
β2

4
ffiffiffiffiffiffi
2π

p ðηη0Þq−1eiπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞsηθð−QsηÞ:

ðA130Þ

For the negative Wightman functionG−ðx; x0Þ ¼ Gþðx0; xÞ,
we have sη → −sη, and therefore,

G̃−ðη; η0;QÞ ¼ β2

4
ffiffiffiffiffiffi
2π

p ðηη0Þq−1eiπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞsηθðQsηÞ:

ðA131Þ

We can also write the Fourier transform of the commutator
Green’s function, Gcðx; x0Þ ¼ Gþðx; x0Þ −G−ðx; x0Þ:

G̃cðη; η0;QÞ ¼ −2sη
β2

4
ffiffiffiffiffiffi
2π

p ðηη0Þq−1eiπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞ:

ðA132Þ

Unlike in Z-space, these Fourier transforms have closed
form expressions in terms of well-understood functions,
instead of being divergent, even for the power-law case
(ν > 3

2
) and the massless de Sitter case (ν ¼ 3

2
). Restricting

our interest to the case of de Sitter spacetime, q ¼ 1, the
Wightman and commutator Green’s functions’ Fourier
transforms are

G̃�
dSðQÞ ¼∓ H2

4
ffiffiffiffiffiffi
2π

p e
iπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞsηθð∓ QsηÞ; ðA133Þ

G̃c
dSðQÞ ¼ −2sη

H2

4
ffiffiffiffiffiffi
2π

p e
iπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞ: ðA134Þ

For the Feynman Green’s function, we have G̃FðQÞ ¼
−iG̃þðQÞθðsηÞ − iG̃−ðQÞθð−sηÞ, which gives

G̃F;dSðQÞ ¼ i
H2

4
ffiffiffiffiffiffi
2π

p e
iπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞθð−QÞ: ðA135Þ

We can see that the Feynman Green’s function is com-
pletely η independent and depends only onQ. The de Sitter
invariant two-point functions must satisfy the differential
equation:

ðZ2 − 1Þ d
2GdS

dZ2
þ 4Z

dGdS

dZ
þ m2

H2
GdS ¼ 0: ðA136Þ

The formal Fourier transform of this equation with respect
to Z, with Fourier variable Q as above, reads

Q2
d2G̃dS

dQ2
þ
�
Q2 þ m2

H2
− 2

�
G̃dS ¼ 0: ðA137Þ

We see that the Fourier transform of the commutator
Green’s function satisfies this equation, but those of the
Wightman functions do not.13

The quantity Z is not a well-behaved measure of distance
in the limit H → 0. To consider this limit of the Fourier
transforms, we work instead with the Fourier transform

with respect to L2 ¼ ðη−η0Þ2−Δx2
H2ηη0 , which we will denote by

Ḡðη; η0;KÞ ¼
Z

∞

−∞
dðL2ÞGðη; η0;L2Þe−iKL2

: ðA138Þ

This is related in a simple manner to G̃ðη; η0;QÞ:

G̃ðη; η0;QÞ ¼ H2e−iQ

2
Ḡ

�
η; η0;

H2Q
2

�
: ðA139Þ

Substituting this in Eq. (A137) gives, with Q ¼ 2K
H2,

H2

2
K2

d2

dK2
ðe−2iK

H2 ḠÞ þH2

2

�
m2

H2
þ 4K2

H4
− 2

�
e−

2iK
H2 Ḡ ¼ 0:

ðA140Þ

On simplifying, we get

H2K2
d2Ḡ
dK2

− 4iK2
dḠ
dK

þ ðm2 − 2H2ÞḠ ¼ 0; ðA141Þ

which is essentially the Fourier transform of the equation
satisfied by the de Sitter two-point functions,

13It is anyway not reasonable for the Wightman function to
assume dependence on Q alone when the Fourier transforms
also depend on η, η0 (via sη). The G values are still de Sitter
invariant, but there is a dependence on “causality” beyond the
variable Z alone.

QUANTUM CORRELATORS IN FRIEDMANN SPACETIMES: … PHYS. REV. D 98, 105015 (2018)

105015-45



ð4L2 þH2L4Þ d2G
dðL2Þ2 þ ð8þ 4H2L2Þ dG

dðL2Þ þm2G ¼ 0:

ðA142Þ

The Minkowski limit is now trivial; H → 0 gives for the
latter

4L2
d2G

dðL2Þ2 þ 8
dG

dðL2Þ þm2G ¼ 0; ðA143Þ

with the general solution (we do not assume m2 > 0 to
allow for the de Sitter case which is equivalent to a scalar
field in a massless power-law background),

GðL2Þ ¼ gþ
K1ði

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffiffiffiffi

m2L2
p þ g−

K1ð−i
ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffiffiffiffi

m2L2
p ; ðA144Þ

and for the former,

−4iK2
dḠ
dK

þm2Ḡ ¼ 0; ðA145Þ

which has the general solution

Ḡ ¼ g0e
im2

4K ; ðA146Þ

where gþ, g−, g0 are integration constants.
Whereas Eq. (A143) is a second-order differential

equation in derivatives with respect to L2, its Fourier
transform Eq. (A145) is first order in derivatives with
respect to K, admitting only one solution rather than two
linearly independent solutions as in the former case. This is
because the Fourier transform only exists for one of the two
independent solutions written above (therefore invalidating
dropping boundary terms when transforming the equation
for the other solution).
To see this, we consider the asymptotic behavior of the

modified Bessel function KνðzÞ from 10.25.3 of [63]:

KνðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z; jzj → ∞; j argðzÞj < 3π

2
:

ðA147Þ

This shows that K1ðizÞ diverges as Imz → ∞. We take
ffiffiffi
z

p
to denote the square root of z in the upper half plane
{argð ffiffiffi

z
p Þ ∈ ½0; πÞ}. This means that while the solution

K1ð−i
ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þ remains convergent (and in fact approaches

zero) as m2L2 → −∞, i.e., for large (spacelike or timelike,
depending on the sign of m2) separations, K1ði

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þ

diverges, and therefore its Fourier transform does not exist
(moreover, a two-point correlation function that diverges
for large separations is unphysical).

To see the effect of the boundary terms, we explicitly
transform Eq. (A143) to Eq. (A145) assuming the existence
of the Fourier transform, by multiplying it by e−iKL

2

and
integrating over all real values of L2:Z

∞

−∞
dðL2Þ

�
4L2

d2G
dðL2Þ2 þ 8

dG
dðL2Þ þm2G

�
e−iKL2 ¼ 0:

ðA148Þ
Integrating by parts to shift the derivatives to the

exponential factor, we get�
4L2

dGðL2Þ
dðL2Þ e−iKL2 þ 4GðL2Þð1þ iKL2Þe−iKL2

�
L2¼∞

L2¼−∞

þ
Z

∞

−∞
dðL2ÞGðL2Þ

�
−4iK2

d
dK

þm2

�
e−iKL

2 ¼ 0:

ðA149Þ
If the boundary term vanishes, we may consider the integral
alone, yielding Eq. (A145). This corresponds to the

solution GðL2Þ ¼ g−
K1ð−i

ffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffi

m2L2
p , but if the solution

diverges near L2 →∓ ∞ (depending on the sign of m2),

as it does for GðL2Þ ¼ gþ
K1ði

ffiffiffiffiffiffiffiffi
m2L2

p
Þffiffiffiffiffiffiffiffi

m2L2
p , the boundary terms do

not vanish, and therefore Eq. (A145) does not follow for
this solution.

9. Derivation of results in Sec. VIII A

We consider a massless scalar field in Minkoski
spacetime. The Wightman function for such a field is
expressed as

GþðL2
ϵÞ ¼ −

1

4π2L2
ϵ
; ðA150Þ

where L2
ϵ ¼ ðt − t0 − iϵÞ2 − r2. The Fourier transform with

regard to L2
ϵ is obtained as

G̃þðKÞ ¼
Z

∞−iϵðt;t0Þ

−∞−iϵðt;t0Þ
dL2

ϵe−iKL2
ϵGþðL2

ϵÞ

¼ −
1

4π2

�Z
∞

−∞
dL2

e−iKL2

L2 − iϵðt; t0Þ
�
e−2Kϵðt;t0Þ;

ðA151Þ
with ϵðt; t0Þ≡ 2ϵðt − t0Þ. In the above expression, we have
converted L2

ϵ into a real L2 − ϵ2 and imaginary −iϵðt; t0Þ
part with L2 ¼ ðt − t0Þ2 − r2 [and have neglected theOðϵ2Þ
term]. The massless Wightman function is given as

Gðx; x0Þ≡Gðt; t0;x;x0Þ ¼ −
1

4π2
1

ðt − t0 − iϵÞ2 − r2

¼ −
1

4π2
1

L2 − 2iϵðt − t0Þ ; ðA152Þ
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whereas if we flip the time coordinates we will be getting

Gðt0; t;x;x0Þ ¼ −
1

4π2
1

ðt0 − t − iϵÞ2 − r2

¼ −
1

4π2
1

L2 − 2iϵðt0 − tÞ : ðA153Þ

Combining Eqs. (A152) and (A153) we will readily obtain

Gðx; x0Þ ¼ −
1

4π2L2 − 2iϵðt − t0Þ≡GþðL2
ϵÞ: ðA154Þ

Taking this integral in the complex plane we see that if
ðt − t0Þ > 0 and K > 0, we can close the contour with the
lower semicircle avoiding any poles, and the integral
vanishes as a consequence. However, for K < 0 we need
to close the contour with the upper semicircle which invokes
a simple pole at z ¼ iϵðt; t0Þ, whereas for ðt − t0Þ < 0 the
pole lies in the upper half-plane and the residue survives for
K > 0. Thus, from the residue theorem we get as a result,

G̃þðKÞ ¼ sgnðt − t0Þ
4π2i

θð−sgnðt − t0ÞKÞ: ðA155Þ

With a given Wightman function we obtain the power
spectrum (amplitude) as outlined before in Sec. VIII. The
power spectrumper unit logarithmic integralwill be obtained
from the power spectrum amplitude through

P̃k ¼ Ωqkq
Z

dqðx − yÞ
ð2πÞq e−i

P
q
j
kjðxj−yjÞGðxμ; yμÞ; ðA156Þ

where q is the number of the symmetric axes and Ωq is the
total solid angle of a q dimensional Killing space.

a. Inertial power spectrum

First we evaluate the power spectrum through the time-
like Killing direction of the Minkowski spacetime. We will
evaluate the power spectrum PþðωÞ with the realization
that the power spectrum corresponding to other convention
(Fourier transform with respect to e−iωt) is trivially
obtained as PþðωÞ ¼ P−ð−ωÞ. With the G̃þðKÞ obtained
in previous Appendix, we can obtain the power spectrum as

PinertialðωÞ ¼
Z

∞

−∞

dt
2π

�Z
∞

−∞
dKst

θð−stKÞ
4π2i

eiðKL2
ϵþωtÞ

�
;

ðA157Þ

¼ lim
r→0

1

2r

�Z
∞

−∞

dt
8π3

�
1

t− iϵ− r
−

1

t− iϵþ r

�
eiωt

�
;

ðA158Þ

¼
Z

∞

−∞

dt
8π3

1

ðt − iϵÞ2 e
iωt; ðA159Þ

with a redefinition t ¼ t − t0 and st ¼ sgnðt − t0Þ. Again, as
before, the integral is carried into the complex plane, and

the contour in the upper plane (i.e., ω > 0) only is able to
survive, leading to the expression of the Power spectrum,

PinertialðωÞ ¼ 2π
ωe−ωϵ

8π3
θðωÞjϵ¼0þ ¼ ω

4π2
θðωÞ: ðA160Þ

b. Through spatial Killing directions

We again write the Green’s function as

Gðt; t0;x;x0Þ ¼ −
1

4π2
1

ðt − t0 − iϵÞ2 − r2
: ðA161Þ

For a spacelike separation, we can go to a frame putting
t ¼ t0 (which we will end up doing ultimately in the power
spectrum calculation) at the end of the calculation. The
power spectrum will then be defined as

PinertialðkÞ ¼
Z

d3r
ð2πÞ3

�Z
∞

−∞
dKst

θð−stKÞ
4π2i

eiðKL2
ϵþk·rÞ

�
t¼t0

;

ðA162Þ

¼ 4π

ð2πÞ5
Z

dr
k
r sin kr

1

Z − 2iϵðt − t0Þ − ϵ2

����
t¼t0

:

ðA163Þ

In this integral k is the magnitude of the vector k and is
positive semidefinite. This integral can be evaluated to
yield

PinertialðkÞ ¼
4π

ð2πÞ5
Z

dr
k
r sin kr

1

Z − 2iϵðt − t0Þ − ϵ2

����
t¼t0

;

¼ 4π

ð2πÞ3
Z

∞

0

dr
k
r sin kr

1

4π2ðr2 þ ϵ2Þ ;

¼ 2π

ð2πÞ3
Z

∞

−∞

dr
k
r exp ikr

1

4iπ2ðr2 þ ϵ2Þ
¼ 1

2kð2πÞ3 : ðA164Þ

The standard logarithmic interval power spectrum will be
obtained by again multiplying Ω3k3 ¼ 4πk3,

P̃inertialðkÞ ¼
k2

4π2
¼ ω2

4π2
; ðA165Þ

where k or ω is positive semidefinite. The same result could
have been obtained by setting st ¼ 1 in Eq. (A155).14

c. Rindler coordinates, Minkowski spacetime

We will now try to evaluate the power spectrum of the
Minkowski vacuum for a Rindler observer in Minkowski

14Or equivalently, st ¼ −1 as well for that matter, just like we
argued for the spacelike surface case in de Sitter.
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spacetime. We introduce the Rindler coordinates ðτ; ξ; θ;φÞ
in terms of Minkowski spherical polar coordinates
ðt; r; θ;φÞ (with the same angular coordinates θ;φ):

t ¼ a−1eaξ sinhðaτÞ; ðA166Þ

r ¼ a−1eaξ coshðaτÞ: ðA167Þ

The geodesic distance L2 between two points along the
trajectory of a Rindler observer, ðξ; θ;φÞ ¼ const, is then
given by

L2 ¼ 2e2aξ

a2
ðcoshðaΔτÞ − 1Þ ¼ ĀðcoshðaΔτÞ − 1Þ;

ðA168Þ

where Δτ ¼ τ − τ0. The power spectrum of the inertial
vacuum as seen by the Rindler observer is

PRindlerðωÞ ¼
Z

∞

−∞

dΔτ
2π

GþðL2ÞeiωΔτ: ðA169Þ

As before, we write the power spectrum in terms of the
Fourier transform G̃þðKÞ with respect to L2 as follows:

PRindlerðωÞ ¼
eaξ

2π

Z
∞

−∞
dK G̃þðKÞ

Z
∞

−∞
d
Δτ
2π

eiKL
2þiωΔτ;

ðA170Þ

¼ eaξ

2π

Z
∞

−∞
dK G̃þðKÞe−iKĀ

×
Z

∞

−∞
d
Δτ
2π

eiKĀ coshðaΔτÞþiωΔτ: ðA171Þ

Using the known form of the Fourier transform of the
Green’s function,

G̃þðKÞ ¼ st
e
im2

4K

4π2i
θð−stKÞ; ðA172Þ

and setting m ¼ 0 for a massless field gives15

PRindlerðωÞ ¼
1

4π2i

Z
∞

−∞
dΔτ

eiωΔτ

iĀðcosh aΔτ − 1Þ ; ðA173Þ

¼ −
1

16π2

Z
∞

−∞
dΔτ

eiωΔτ

Āsinh2ðaΔτ
2
Þ : ðA174Þ

Thus we obtain

PRindlerðωÞ ¼
ω

4π2

�
e
2πω
a

e
2πω
a − 1

�
¼ ω

4π2
ð1þ nωÞ; ðA175Þ

reproducing Eq. (177). This invokes contribution from the
usual Rindler thermal spectrum (with temperature
T ¼ a=2πeaξkB), over the Minkowski inertial power spec-
trum. Thus changing the observer supplements the back-
ground inertial power spectrum.

10. Derivation of results in Sec. VIII B

In this Appendix as well, we will derive the power
spectrum with respect to eþiωτ. The result for the other
convention e−iωτ can again be obtained trivially from here.
As we discussed previously, in the static coordinate
system, the de Sitter metric has a timelike Killing vector
and, therefore, the natural Fourier transform to define the
power spectrum is Δτ, where ðτ; RÞ is the static coordinate
system:

Pstatic=BD ¼
Z

∞

−∞

dΔτ
2π

eiωΔτGþðZϵÞ; ðA176Þ

where we are evaluating the iϵ corrected geodesic
distance Zϵ for spatially coincident points at R ¼ 0, for
which

η ¼ −
1

H
e−Hτ; ðA177Þ

Z ¼ 1þ ðΔηÞ2
2ηη0

¼ coshHΔτ; ðA178Þ

Zϵ ¼ coshHðΔτ − iϵÞ; ðA179Þ

whereas using Eq. (136) we get

GþðZϵÞ ¼
H2

16π2
ffiffiffi
2

p
Z

∞

−∞
du

e−νu

ðcosh u − coshHðΔτ − iϵÞÞ32 ;

ðA180Þ

¼ H2

16π2
ffiffiffi
2

p

×
Z

∞

−∞
du

e−νu

ð2 sinh ðuþHΔτ
2

− iϵ
2
Þ sinh ðu−HΔτ

2
þ iϵ

2
ÞÞ32 :

ðA181Þ

Therefore,
15Again, the separation Δτ is supposed to hide iϵ in it for

convergence.
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Pstatic=BDðωÞ ¼
Z

∞

−∞

dΔτ
2π

eiωΔτ
H2

16π2
ffiffiffi
2

p

×
Z

∞

−∞
du

e−νu

ðcosh u − coshHðΔτ − iϵÞÞ32 ;

ðA182Þ

¼ H2

16π2
ffiffiffi
2

p
Z

∞

−∞

dΔτ
2π

Z
∞

−∞

×du
e−νu

ð2 sinh ðuþHΔτ
2

− iϵ
2
Þ sinh ðu−HΔτ

2
þ iϵ

2
ÞÞ32 :

ðA183Þ

Now, we can go to another set of variables defined as
T� ¼ ðu�HΔτÞ=2 to convert Eq. (A183) into

Pstatic=BDðωÞ ¼
H2

16π2
ffiffiffi
2

p 1

2π

2

H

Z
∞

−∞

Z
∞

−∞
dTþdT−

×
e−νðTþþT−Þeiω

HðTþ−T−Þ

½23
2ðsinh ðTþ − iϵ

2
ÞÞ32ðsinh ðT− þ iϵ

2
ÞÞ32� ;

¼ H2

16π2
ffiffiffi
2

p 1

2π

1ffiffiffi
2

p
H

����
Z

∞

−∞
dT

e−νTe
iω
HT

ðsinh ðT − iϵ
2
ÞÞ32

����2:
ðA184Þ

Thus, we have to carry out the integration in Eq. (A184) to
obtain the power spectrum. For that we employ an identity,

1

ðsinh ðT − iϵ
2
ÞÞ32 ¼

e
3iπ
4

Γð3
2
Þ
Z

∞

0

dss
1
2e−isðsinh ðT−iϵ

2
ÞÞ; ðA185Þ

which yields

Z
∞

−∞
dT

e−νTe
iω
HT

ðsinh ðT − iϵ
2
ÞÞ32 ; ¼

e
3iπ
4

Γð3
2
Þ
Z

∞

0

dss
1
2

Z
∞

−∞
dTe−νT

× e
iω
HTe−isðsinh ðT−iϵ

2
ÞÞ; ðA186Þ

¼2e
3iπ
4

Γð3
2
Þðe

iπ
2
−iϵ

2Þν−iω
H

Z
∞

0

dss
1
2Kν−iω

H
ðsÞ;

ðA187Þ

¼
ffiffiffi
2

p
e
3iπ
4

Γð3
2
Þ ðeiπ

2
−iϵ

2Þν−iω
HΓ

�
3

4
−
ν

2
þ iω
2H

�

× Γ
�
3

4
þ ν

2
−

iω
2H

�
; ðA188Þ

where KαðzÞ is the Bessel function of order α. Therefore, the
power spectrum is obtained (in the limit of vanishing ϵ) as

Pstatic=BDðωÞ¼
H2

4π2
e
πω
H
1

2

����Γ
�
3

4
−
ν

2
þ iω
2H

�
Γ
�
3

4
þ ν

2
−
iω
2H

�����2:
ðA189Þ

In the limit of massless scalar field (ν → 3=2), we get the
power spectrum to be

Pstatic=BDðωÞ ¼
H2

4π2ω

�
1þ ω2

H2

�
eπ

ω
H

2 sinh ðπ ω
HÞ

; ðA190Þ

¼ H2

4π2ω

�
1þ ω2

H2

�
e
2πω
H

e
2πω
H − 1

; ðA191Þ

which again shows that the Bunch-Davies vacuum appears
as thermally populated, and the vacuum noise is supple-
mented by a thermal factor times the vacuum noise of the de
Sitter (evaluated in the static vacuum):

Pstatic=BDðωÞ¼
H2

4π2ω

�
1þω2

H2

�
ð1þnωÞ¼Pstaticð1þnωÞ:

ðA192Þ

In terms of the amplitude, we get

P̃static=BDðωÞ¼
H2

4π2

�
1þω2

H2

�
ð1þnωÞ¼ P̃dSðωÞð1þnωÞ;

ðA193Þ

where P̃dS ¼ H2=4π2ð1þ ω2=H2Þ.

11. Derivation of Eq. (88)

Finally, we verify that the Wightman function in Eq. (85)
reduces to the right H → 0 limit, i.e., the Minkowski
Wightman function. The Fourier transformed Wightman
function is

G̃þ
dSðQÞ ¼ −

H2

4
ffiffiffiffiffiffi
2π

p e
iπ
2
ð1
2
−νÞQ1

2Hð2Þ
ν ðQÞsηθð−QsηÞ: ðA194Þ

This gives

Ḡþ
dSðKÞ ¼ −

1

2H
ffiffiffi
π

p e
iπ
2
ð1
2
−νÞe

2iK
H2K

1
2Hð2Þ

ν

�
2K
H2

�
sηθð−KsηÞ:

ðA195Þ
To take the H → 0 limit, we note that ν → im=H, and for
jReνj < 1=2, we have the following integral representation
for the Hankel function (from 10.9.11 of [63]):

Hð2Þ
ν

�
2K
H

�
∼ Hð2Þ

im
H

�
2K
H

�
¼ −

e−
πm
2H

iπ

Z
∞

−∞
dte−i

2K
H2 cosh te−i

m
Ht:

ðA196Þ
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Using a variable transformation et ¼ z we can convert the
above integral into a Bessel function,

Hð2Þ
im
H

�
2K
H

�
¼ −

e−
πm
2H

iπ

Z
∞

0

dz z−
im
H−1e−i

K
H2ðz−1

zÞ;

¼ −2
e−

πm
2H

iπ
Kim

H

�
2K
H2

�
¼ −2 e−

πm
2H

iπ Kim
H

�
m
H

2K
mH

�
:

ðA197Þ

Using the asymptotic order parameter expansionm=H → ∞
of the Bessel function [59], we get

Hð2Þ
ν

�
2K
H

�
¼ −

e−
iπ
4e−

πm
2He−

2iK
H2

i
ffiffiffi
π

p
K

1
2

He
im2

4K : ðA198Þ

The Fourier transform of the Wightman function in the
Minkowski limit therefore reduces to

ḠþðKÞ ¼ st
2πi

e
im2

4K θð−KstÞ; ðA199Þ

where st ¼ sgnðt − t0Þ. We obtain the Wightman function
from

GþðL2Þ ¼ 1

2π

Z
∞

−∞
dKḠþðKÞeiKL2

; ðA200Þ

¼ −
1

4π2i

Z
∞

0

dKe−
istm2

4K e−istKL
2

: ðA201Þ

We have replaced K → −stK and used s2t ¼ 1 in the
intermediate steps. The integral {from 3.324(1) of [65]}
evaluates to

GþðL2Þ ¼ i
4π2

ffiffiffiffiffiffi
m2

L2

r
K1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2L2

p
Þ; ðA202Þ

¼ i
4π2

ffiffiffiffiffiffi
m2

L2

r
K1ð−i

ffiffiffiffiffiffiffiffiffiffiffi
m2L2

p
Þ; ðA203Þ

where, in the second line, we have used the upper-half-plane
convention for the square root in the argument of KνðzÞ,
giving us the solution we have previously shown to be
vanishingly small at large spacelike distances. This is the
Wightman function for a massive scalar field in Minkowski
spacetime.We alsoverify it has the rightmassless limit, using
10.30.2 of [63], KνðzÞ ∼ 1

2
ΓðνÞðz

2
Þ−ν, z → 0, giving the

familiar result for the massless Wightman function,

GþðL2Þjm¼0 ¼ −
1

4π2L2
: ðA204Þ

The integral representation in the penultimate line of
Eq. (88) can be obtained directly from more standard

expression for Feynman propagator either in Lorentzian or
in the Euclidean sector. We briefly outline this derivation. If
we use the signature ðþ;−;−;−Þ, the standard expression
for the Feynman propagator is given by

GFðxÞ ¼
Z

dDp
ð2πÞD

ie−ipx

p2 −m2 þ iϵ
: ðA205Þ

Using the Schwinger trick of writing the denominator H ≡
p2 −m2 þ iϵ as an integral over λ of expðiλHÞ and
performing the momentum integrals, we obtain the integral
representation,

GF ¼ i
Z

∞

0

dλ
ð2πÞD

�
π

iλ

�D
2

exp
�
−iλðm2 − iϵÞ − ix2

4λ

�
:

ðA206Þ

This is a well-known expression; what seems to be not so
well-known is its Fourier transform with respect to m
treated purely as a parameter. Straightforward calculation
(after assuming a small imaginary part in λ → λ − iδ)
shows that

Z
∞

−∞
GFðxÞeimσdm ¼ i

ð2πÞD
�
π

i

�D
2

Z
∞

0

dλ

λD=2

�
π

iðλ − iδÞ
�
1=2

× exp
iðσ2 − x2Þ
4ðλ − iδÞ : ðA207Þ

Performing the integral, without worrying too much about
convergence issues, we get the result,

Z
∞

−∞
GFeimσdm ¼ 1

2

ΓðkÞ
ðπÞk

1

ðσ2 − x2 þ iϵÞk ;

k≡ 1

2
ðD − 1Þ: ðA208Þ

The same calculation can also be performed with the
Euclidean propagator which has better convergence proper-
ties. Here we start with the expression,

GFðxÞ ¼
Z

dDp
ð2πÞD

e−ipx

ðp2 þm2Þ ¼
Z

∞

0

�
1

4πλ

�
D=2

× exp

�
−m2λ −

x2

4λ

�
dλ: ðA209Þ

The Fourier transform now leads to

Z
∞

−∞
GFeimσdm ¼ 1

2

ΓðkÞ
πk

1

ðσ2 þ x2Þk ; k≡ 1

2
ðD − 1Þ:

ðA210Þ

Combining the two results, we have in the Euclidean and
Lorentzian sector, with the result
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Z
∞

−∞
GFeimσdm ¼

8<
:

1
2

ΓðkÞ
πk

1
ðσ2þx2Þk ðEuclideanÞ;

1
2

ΓðkÞ
πk

1
ðσ2−x2þiϵÞk ðLorentzianÞ;

ðA211Þ

where k ¼ ð1=2ÞðD − 1Þ. Fourier inversion now leads to the representation used in the penultimate line of Eq. (88) with
D ¼ 4. This representation has some interesting implications for particle production in external backgrounds, which will be
explored in a different publication.
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