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We consider the Plebaniski class of nonlinear theories of vacuum electrodynamics, i.e., Lagrangian

theories that are Lorentz invariant and gauge invariant. Our main goal is to derive the transport law of the
polarization plane in such a theory, on an unspecified general-relativistic spacetime and with an unspecified

electromagnetic background field. To that end we start out from an approximate-plane-harmonic-wave
ansatz that takes the generation of higher harmonics into account. By this ansatz, the electromagnetic field
is written as an asymptotic series with respect to a parameter a, where the limit « — 0 corresponds to
sending the frequency to infinity. We demonstrate that by solving the generalized Maxwell equations to
zeroth and first order with respect to a one gets a unique transport law for the polarization plane along each
light ray. We exemplify the general results with the Born-Infeld theory.
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I. INTRODUCTION

In the standard Maxwell theory of vacuum electrody-
namics, the field strength tensor F,;, (which comprises the

vector fields £ and E) is related to the excitation tensor

(which comprises the vector fields D and H) by a linear
constitutive law. However, there are good reasons to
assume that this law has to be replaced by a nonlinear
relation for very strong electromagnetic fields. In the course
of history, several such nonlinear modifications of the
vacuum Maxwell theory have been suggested.

One of the best known examples is the theory of Born
and Infeld [1] from 1934. Its introduction was motivated by
the observation that in the standard Maxwell vacuum
theory the field energy in an arbitrarily small ball around
a point charge is infinite which leads to an infinite self-
force, and that this infinity might be overcome if one
modifies the constitutive law of the vacuum in a nonlinear
fashion. The Born-Infeld theory introduces a new hypo-
thetical constant of Nature, b, with the dimension of a
(magnetic) field strength. In the limit 5y — oo the theory
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approaches the standard Maxwell theory, i.e., the fact that
the latter is in good agreement with experiments can be
understood if one assumes that b, is very large. On the
basis of the Born-Infeld theory one would have to expect
measurable deviations from the vacuum Maxwell theory in
electromagnetic fields that are of a similar order of
magnitude as b,. Although not exactly in the main stream
of physics, the Born-Infeld theory was always taken
seriously by many scientists. In the late 1990s this theory
got an additional strong push when Tseytlin [2] realized
that it can be derived, as an effective theory, from some kind
of string theories.

Another very well known nonlinear modification of the
vacuum Maxwell theory is the Heisenberg-Euler theory [3]
from 1936. It is a classical field theory which comes about,
as an effective theory, if one-loop corrections from quantum
electrodynamics are taken into account. In contrast to the
Born-Infeld theory, it does not involve any new hypotheti-
cal constant of Nature, i.e., it numerically predicts how
strong an electromagnetic field has to be in order to produce
measurable deviations from the standard vacuum Maxwell
theory. Since a few years (magnetic) fields of this strength
can be produced in the laboratory.

The Born-Infeld theory and the Heisenberg-Euler theory
are Lorentz invariant, they are gauge invariant, and they
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derive from a Lagrangian. The entire class of theories that
share these properties was systematically studied by
Plebanski [4], with important early contributions by
Boillat [5]. We refer to it as to the Plebarski class of
electromagnetic theories. The Born-Infeld theory and the
Heisenberg-Euler theory are the best known examples in
this class, but there are many more. In particular, there are
theories of the Plebaiiski class that allow for regular black-
hole solutions if they are coupled to Einstein’s field
equations. The first two examples were found by Ayon-
Beato and Garcia [6,7].

It is a general feature of nonlinear theories that the
superposition principle is no longer satisfied. As a conse-
quence, the propagation of light is influenced by electro-
magnetic background fields. This effect is known as “light-
by-light scattering” and it has been observed in 1997, see
Burke et al. [8], in good agreement with the prediction by
the Heisenberg-Euler theory. Another effect predicted by
most theories of the Plebanski class, with the notable
exception of the Born-Infeld theory, is birefringence in
vacuo. This means that, according to these theories, a light
beam that enters into a region with a sufficiently strong
electromagnetic background field would split into two
beams, as in the case of a light beam entering into a
crystal according to ordinary optics, with the two different
beams corresponding to two different polarization states.
Such a birefringence in vacuo is predicted, in particular, by
the Heisenberg-Euler theory. Experimentalists are trying to
observe this effect since several years and there is the
general expectation that these attempts will be successful
soon, see in particular the most recent status report on the
so-called PVLAS experiment by Della Valle ef al. [9]. In
this experiment not only the birefringence in vacuo but
also the dichroism of the Heisenberg-Euler theory is tried
to be measured. The latter means the effect that there are
different absorption coefficients for the two different
polarization states which results in an apparent rotation
of the polarization plane. Finally, we mention that there
are also attempts to verify effects from nonlinear electro-
dynamics with astrophysical observations. A particularly
promising idea is to observe the birefringence in vacuo if
light passes through a very strong magnetic field, such as
in the neighborhood of a magnetar. A first observation that
might indicate such an effect was already made, see
Mignani et al. [10].

We emphasize that experiments searching for birefrin-
gence in vacuo cannot be used as tests for the Born-Infeld
theory because in the latter there is no such effect. As an
alternative, the Born-Infeld theory may be tested with the
help of Michelson interferometry. Such an experiment was
discussed for the Heisenberg-Euler theory by Boer and van
Holten [11], Dobrich and Gies [12], Zavattini and Calloni
[13] and Grote [14], for the Heisenberg-Euler and the Born-
Infeld theories by Denisov, Krivchenkov and Kravtsov
[15], and in detail for a general theory of the Plebanski class

by Schellstede et al. [16]. Moreover, there are suggestions
to test the Born-Infeld theory with wave-guides, see Ferraro
[17], or with fluid motions in a magnetic background field,
see Dereli and Tucker [18]. As of now, none of these
experiments has been actually carried through.

In this paper we want to study, for a general theory of the
Plebanski class, the effect of a background field on the
transport law of the polarization plane along a light ray.
This will give us a new way of testing these theories, in
particular the Born-Infeld theory, experimentally. We
emphasize that this is to be distinguished from all the
experiments mentioned above. In particular, it is not to be
confused with the planned observation of dichroism by the
PVLAS experiment: The latter is an effect on the absorp-
tion of light, depending on the polarization state. Here we
want to investigate the direct effect of an electromagnetic
background field on the polarization plane.

To that end we start out from an approximate-plane-
harmonic-wave ansatz, taking the generation of higher
harmonics into account. By this ansatz the electromagnetic
field is written as an asymptotic series with respect to a
parameter . Sending « to zero corresponds to sending the
frequency to infinity. We will see that we have to consider
the generalized Maxwell equations to zeroth order and to
first order with respect to @ in order to determine the
transport law for the polarization plane. Earlier studies of
the high-frequency limit in nonlinear theories were
restricted to the derivation of the eikonal equation from
the zeroth order of the generalized Maxwell equations. It is
well known that, as a result, one finds that the light rays are
the null geodesics of two optical metrics; this was first
shown by Novello et al. [19] and later, in different
representations, by Obukhov and Rubilar [20] and by
Schellstede et al. [16]. To the best of our knowledge,
the transport law of the polarization plane was not yet
considered for an arbitrary theory of the Plebanski class.

We will not specify the nonlinear electromagnetic theory,
apart from the fact that we require it to be of the Plebanski
class. However, we mention that not all theories of this type
are to be considered as physically meaningful: Some of
them violate causality in the sense that the light cones of the
optical metrics are not inside the light cone of the spacetime
metric, see Schellstede et al. [21]. Also, not all of them give
rise to a well-posed initial-value problem, see Abalos
et al. [22].

The paper is organized as follows. In Sec. II we briefly
review the basic features of theories of the Plebanski class. In
Sec. III we introduce our approximate-plane-wave ansatz on
an arbitraty general-relativistic spacetime and for an arbi-
trary electromagnetic background field. In Sec. IV we
evaluate the generalized Maxwell equations to zeroth order
which gives us the eikonal equation and an algebraic
condition on the polarization plane. In Sec. V we consider
the generalized Maxwell equations to first order and discuss
the additional conditions they give us on the polarization
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plane. In Sec. VI we exemplify the results with the Born-
Infeld theory.

II. THE PLEBANSKI CLASS OF NONLINEAR
ELECTRODYNAMICAL THEORIES

We consider a general-relativistic spacetime, i.e., an
oriented 4-dimensional manifold with a metric tensor g,
of Lorentzian signature. The covariant derivative associated
with the Levi-Civita connection of the metric will be
denoted V,. Latin indices take values 0, 1, 2, 3 and are
lowered with g,, and raised with its inverse ¢”¢.

The Plebanski class [4] consists of all nonlinear elec-
trodynamical theories that derive from an action of the form

1

siad = x| (£0r.6)+ 2 ea, ) VGt
1)

Here M is a domain of the spacetime, d*x = dx® A dx' A
dx*> A dx®, j* is a given current density, A, is the
electromagnetic potential,

Fab = VaAb - vbAa (2)

is the electromagnetic field strength and L is the
Lagrangian for the electromagnetic field. It is assumed
that the latter depends only on the two invariants

1 1
F= EFa,,F“h and G = —ZFab*F“”. (3)

Here and in the following, * denotes the Hodge star
operator, i.e.,

1
*Fop = 5 eabchCd (4)

where €,,,.4 1S the totally antisymmetric Levi-Civita tensor
field (volume form) associated with the spacetime metric.

By (2) the homogeneous Maxwell equation is automati-
cally satisfied,

E'adevaCd == 0 (5)
Requiring that the variational derivative of the action (1)
with respect to the potential A. vanishes, for all compact
domains M and all variations that keep A, fixed on the

boundary of M, leads to the inhomogeneous Maxwell
equation,

VH =—— )", (6)

where

o
OF 4,

H® = = —2LpF 4 LG*F (7)

is the electromagnetic excitation. For the sake of brevity,
we write

oL oL
EF - B_F ’ ‘CG - 8—G (8)
and
L O*L L
£FF:Wv £GG:W’ Fczm' )

It is the constitutive law (7) that distinguishes different
theories, while the Maxwell equations (5) and (6) are
always the same.

Each particular theory of the Plebanski class is charac-
terized by a particular Lagrangian and, thereby, by a
particular constitutive law. Let us mention the two most
important examples: For the Born-Infeld theory [1], the
Lagrangian reads

F G?
E:b%—b%1/1+ﬁ—? (10)
0 0

where b, is a hypothetical constant of Nature with the
dimension of a magnetic field strength. For by — oo the
Born-Infeld theory reproduces the standard Maxwell vac-
uum theory. For the Heisenberg-Euler theory [3],

1F F? G?
L=FE—-—-——=+A—=+T7— 11
( 5t (E3+ E3>+ ) an

where Ey = m*c*/e and A = hc/(90rne?). Here m is the
electron mass, e is the electron charge, % is the reduced
Planck constant and the ellipses in (11) stand for terms of
third and higher order in F and G.

III. APPROXIMATE-PLANE-HARMONIC-WAVE
ANSATZ

An approximate-plane-harmonic wave is a one-param-
eter family F%, of field strength tensors, depending on a real
parameter a, of the form

F2 = Fo+aF) +Y afF%) (12)
K=2
where
1 iS/a (11
Fi =Re{eiS/afy (13)
and
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K -
FU =S " Re{e®5/ef S0} for K >2. (14)
K=0

Here F ., is a given electromagnetic background field that is

independent of a, S is a real-valued function and f EIJK) isa
complex-valued antisymmetric tensor field for each pair of
integers K, K that occurs. We assume that, on the spacetime

. . ) 11

region considered, the tensor fields VS and f (C d) have no
zeros. The series is to be understood as an asymptotic
series, not as a convergent series.

The function S is called the eikonal function. On a

sufficiently small neighborhood, the field F 511,,) is approx-

imately a plane harmonic wave: The surfaces S = constant
are the wave-fronts and the gradient of S divided by alpha
defines the wave four-covector. Correspondingly, the fre-
quency measured by an observer with four-velocity U is
o = UV ,S/a. The limit a - 0 corresponds to sending
the frequency to infinity. The idea is to feed the ansatz (12)
into Maxwell’s equations, to solve these equations itera-
tively order by order in @ and, in this way, to asymptotically
approach a one-parameter family of exact solutions.

Our ansatz (12) is a generalization of the standard
approximate-plane-harmonic-wave ansatz. The latter goes
back to Ralph Luneburg and is detailed, for wave propa-
gation in linear and isotropic media, e.g., in the textbook by
Kline and Kay [23]. Our ansatz is more general in two
respects: First, we take a nonzero background field into
account. In a linear theory, it suffices to consider the case
with zero background field because, by the superposition
principle, the propagation of the approximate-plane-
harmonic wave is independent of a background field. In
a nonlinear theory, however, the propagation is influenced
by a background field. Second, the higher-order fields, F, (%)
for K > 2, come not only with the same frequency as

the first-order field F (the terms with K = 1) but also
with integer multlples of this frequency (the terms with
K # 1). This reflects the generation of higher harmonics
which is well-known from optics in nonlinear media. It
should not come as a surprise that it has to be taken into
account also in the nonlinear vacuum theories of the
Plebanski class. Higher harmonics play no role if one
considers Maxwell’s equations only to the lowest order
(i.e., @®). This is the reason why it was not necessary to take
them into account in [24] where the eikonal equation was
derived for Maxwell’s equations with a local but otherwise
arbitrary constitutive law. In the present paper, however, we
want to derive the transport law for the polarization plane
which requires considering Maxwell’s equations also to the
next order (i.e., a'). We will see that these equations cannot
in general be solved if we set all terms fﬁldm) with K # 1
equal to zero.

For our purpose we need the series (12) up to
second order,

a iS/a £(11
F2, = Foq+ aRe{e’/2 )}
+ azRe{ng) + eis/"’fg.2 -+ ez’S/"‘f } +... (15)

which includes frequency doubling (K = 2) and the gen-
eration of a nonoscillatory mode, known from nonlinear
media as optical rectification (K = 0). The homogeneous
Maxwell equation (5) is automatically satisfied for all « if
we assume that (15) derives from a potential,

F, = V,A% — V,A¢. (16)

It is easy to see that such a potential (up to an arbitrary
gradient term) must be of the form

+€15/(1 (1 )}
)t eiSlag?V) 4 2is/agP o (17)

A% = Ay + a®Re{a)’
+ a3Re{a

Then (16) holds to zeroth order in o with

ch = VCAd - VdA(,, (18)
to first order with
A = i(v.salt = v, 84, (19)
and to second order with
2 =v.al” - v, (20)
fgll) = Vcag n_ Vdail1 D + i(VcSaffl) - VdSagzl)), (21)

2 = 2i(V.8al = V,547). (22)
Here we have used our assumption that the gradient
of S has no zeros which implies that S # O almost every-
where and that, accordingly, the functions 1, sin(S(x)/a),
cos((S(x)/a)), sin(2S(x)/a)), and cos(2S(x)/a) are lin-
early independent.

Feeding the approximate-plane-harmonic wave (12)
into the constitutive law (7) gives, after a rather long but
straightforward calculation, an excitation of the form

HY, = H,, + aRe{eS/n(})}

+ &?Re{hY 4 ¢iS/ap2V) o pi2S/apCDy o (23)

The zeroth order term in (23) is just the excitation of the
background field,

Hy, = =2LpF o + LG*F o, (24)

the first-order amplitude is
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an _ 1 e | 1
hah = fcd s (25) hth) _ E}(abcdff;) + 5 cdeff fef , (28)
and the second-order amplitudes are with
ny) = aﬂf 1 SV I T . (26)  Har = Loea ! = 2L (3]~ 015]) ~ALrr FapFe!
| +2L 6 (Fap F4-*F oy F°) = L6 F oy F - (29)
(21) cd
= 2
hab 2 ab fgf ’ ( 7) and
|
: 1 * ” C 1 C C e * e
W = 1 (=2LppFap + Lrg*Fap) (979" = ¢*g7) + 3 (884 = 8360) (=2LppF* + Lpg*F))

1 1 X
3 (=2LpGFap + L6 Fap) e — Zgade(—zﬁFGFef + Ls6*F)

1 1
5 (=2LrrGFap + Lrce* Fap) FEF + 3 (=2Lp66Fap + Lo F

We see that the first- order constitutive law (25) is of the
same form as the constitutive law of a linear medium, but
now with a constitutive tensor y,,°? that depends on the
invariants F' and G of the background field. Quite generally,
such a constitutive tensor can be decomposed into principal
part, skewon part, and axion part (see Hehl and Obukhov
[25]). In (29), the first term is the axion part, the rest is the
principal part, and the skewon part is zero. It is known [25]
that the skewon part is always vanishing if the theory
derives from a variational principle.

At the second order, we get for each of the three

amplitudes hfbK) a linear law with the same constitutive
tensor y,, as for the first order, but for K = 0 and K = 2
additional quadratic terms with a second-order constitutive
tensor y,,°“/ which looks rather complicated.

We will now evaluate the Maxwell equations. The
homogeneous Maxwell equation is satisfied if we express

the amplitudes f' Egi{) in terms of the potential according to
(19), (20), (21), and (22). Feeding the excitation (23) into
the inhomogeneous Maxwell equation requires at zeroth
order

4
_7Jb = VeH, (31)
0= vasni, (32)
and at first order
0= V“ + V“Shab , (33)
0= V“Shf,f : (34)

Here we have assumed that the current j, is independent of
a, i.e., that only the background field may have a source

1 X
+ 5 (=2LpprFap + Lrrc*F ) FEFY

ap) " FErFeS (30)

[
whereas our approximate-plane-harmonic wave is source-
free. Moreover, we have again used our assumption that
the gradient of S has no zeros which implies that the
functions 1, sin(S(x)/a), cos((S(x)/a)), sin(2S(x)/a)),
and cos(2S(x)/a) are linearly independent.
At zeroth order we get one equation, (32), that has to be
satisfied. With (19) and (25) this equation reads
0 = V“Sy,,**V.Sal " (35)
We will evaluate this equation in the next section. We will
see that it gives us the eikonal equation for S and an

(11)

algebraic condition on a,; ’ which is known as the zeroth

(11)

order polarization condition. Note that a;  is not gauge-

invariant: As can be read from (19), the field strength £, (v

is unchanged if a multiple of VS is added to a( D We will

see that the zeroth order polarization condition is actually a

condition on the (gauge-invariant) plane spanned by ai,m

and V ,S. We refer to this plane as to the polarization plane.

At first order we get two equations, (33) and (34), that
have to be satisfied. With (19), (20), (21), (25), (27), and
(28) these equations read

0= V“(){adeVCSaE;l)) + V“S;(ab“lvca((i”)

+iV9Sy ¢4V SaV (36)

0 = VS,V Sal” — w4/ VsV Sa Val!V. (37)

We will evaluate these two equations, as far as necessary for
our purpose, in Sec. V below. They will give us a differ-
ential e for a''") which is k

quation for a, ’ which is known as the first-order

. 21
transport equation and algebraic conditions on af, ! and
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afz) which are the first-order polarization conditions.

These equations are not in general satisfied if a{(izz) =0,

i.e., frequency doubling has to be taken into account if
Maxwell’s equations are to be solved to first order.

If one wants to go beyond the first order, one can do this
step by step. At the Kth level one gets transport equations
for the amplitudes aElKK)

amplitudes a<d(K+ D).

and polarization conditions on the

IV. EVALUATION OF THE ZEROTH-ORDER
FIELD EQUATION

In Sec. IVA we will derive the eikonal equation from
the zeroth-order field equation (35), in Sec. IV B we will
determine the Hamiltonian for the rays and in Sec. IV C
we will evaluate the zeroth-order polarization condition.
The main results of Secs. IVA and IV B are not new. In
particular, it is known that for any theory of the Plebanski
class the rays are the null geodesics of two optical metrics.
This was first demonstrated by Novello ef al. [19]. The
same result was rederived, using a different representation,
by Obukhov and Rubilar [20] who also showed that the
optical metrics have Lorentzian signature if they are non-
degenerate. Still another form of the optical metrics was
derived by Schellstede er al. [16]. However, we have to
rederive these known results here because in doing so we
will also establish a number of new relations that will be
needed later. We will use the same representation as in [16].

A. Derivation of the eikonal equation

In the following we write

Pa=V,S, u,=Fu V'S, v,=*F,V’S (38)
which implies
p.ut = p,v* =0. (39)

Then the zeroth-order field equation (35) can be
rewritten as

Mbdafill) =0 (40)
where

My = g P pe = =2LppapS}, +2Leppp?
— AL ppupu + 2L pe (upv? + vyu?) — Logu,vd.
(41)
Note that M, is self-adjoint with respect to the spacetime

metric, i.e., M, = M,,. This is a consequence of the above-
mentioned fact that the skewon part of the constitutive tensor

vanishes. Also note that the axion part gives no contribution
to (41) which is a general result [25,26].
From (41) we read that p, is in the kernel of M ¢, so (40)

is satisfied by ai,“) =wp,; with any scalar factor .

However, by (19) such a potential gives a trivial first-order

field strength. As we require f 211) # 0, we need a solution

ai,m of (40) that is linearly independent of p,, i.e., the

kernel of M ,* has to be at least two-dimensional. This is the
case if and only if the adjugate A,” of M, (also known as
the classical adjoint) vanishes, cf. Itin [27]. A straightfor-
ward (though tedious) calculation shows that the adjugate is
given by

Ayt ==8Lp(M(pep®)? +Npp-ugu’ + Plugu®)?) pyp°
(42)

where

1
M - E%: + ZEF['FGG - E‘CF‘CGGF - PGZ, (43)

1
N:2£F£FF+§£F’CGG_PF’ (44)

P = LrrLse — Lig- (45)
Here we have used the well-known [4] identities

*F o FP¢ = -G8, F, F*¢ —*F,*Fb¢ = F&) (46)

which imply

u. v =-Gp.p°, u.u’ — v = Fp.p°. (47)
By (42), the zeroth-order field equation (40) admits a

(11)

solution a,; * giving a nontrivial field strength if and only if

0=Lr(M(p.p°)*+ Np.puqu’ + P(uqu®)?). (48)

This is the eikonal equation. It is a first-order partial
differential equation for the function S. Each solution to
this equation determines a family of light rays, in the same
way as in Hamiltonian mechanics each solution to the
Hamilton-Jacobi equation determines a family of trajecto-
ries, see the next subsection. If viewed as an algebraic
condition on the covector p,, (48) is known as the
dispersion relation, as the characteristic equation or as
the Fresnel equation.

From now on we require Ly # 0 because otherwise the
eikonal equation is an identity, so there is no well-defined
notion of rays. If in addition M # 0, (48) factorizes
according to

(Fepppe) (G pap.) =0 (49)
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where

gg:c — ghc + UindFCd
= (14 0 F)g + 0 P, (50)

and

N N2 P
= 44— 51
2M AM?* M (51)

Ot
b and gb¢ are known as the optical metrics. Note that 6. is
always real because N> — 4M P can be rewritten as the sum
of two squares,

N2 - 4MP == (EFEGG - N)2 + 4(£FLFG - PG)2 (52)
The determinant of g5 is
det(75) = (1 + 62 F — 62.G*)* det(g?).  (53)

As (g°?) is of Lorentzian signature, the right-hand side of
(53) is either zero or negative. This demonstrates that the
optical metrics are either degenerate or Lorentzian (i.e.,
of signature (—+ ++) or (———+)), as was already
observed by Obukhov and Rubilar [20]. If the determinant
is nonzero, the covariant components of the optical
metrics are

+ _ Yed = 0. F.*F
od T4 o F— z)’iG2
_ (I +0.F)gea - o F.Fy
1 + O'iF - GiGz

@)

(54)

Indeed, with the help of the identities (46) it is easy to
check that (50) and (54) imply (7")£.g5> = &5,

If M =0, the eikonal equation factorizes as well, but
we will not consider this case because it shows some
pathologies, see [21]. We restrict for the rest of the paper
to background fields for which L #0, M #0 and
(1 + 64 F — 62.G?) # 0 so that we have two optical metrics
of Lorentzian signature. Then the eikonal equation is of the
form (49), i.e., it requires p, = VS to be a null covector of
at least one of the two optical metrics. This is true if and
only if

Pap” +oru u’ =0 (55)

holds with at least one of the two signs where o is given
by (51). We refer to the two equations (55) with p, = VS
as to the two partial eikonal equations.

We end this section with two useful results.

Proposition IV.1. Let ¢ be one of the two solutions,
6 =0, or 6 =o_, to (51). Then the following conditions
are mutually equivalent:
(a) N>=4MP, ie., the two optical metrics coincide,
o=
(b) LrLgg =N and LrLr; = PG.
(¢) DM = L2, DN = 2L%6 and DP = L%6>.
(d) 2D£1:F = E]:U(l + FU), D‘C’GG = 2£F6 and
DLypc=LpGo.
In (c) and (d), D = 1 + Fo — G*¢>.
Proof. (a) < (b) is obvious from (52). We now assume
that one, and thus also the other, of these conditions is true.
Then we find from (a) that

N =2Mo, P = Mo* (56)
and from inserting (b) into (43) that

M:czp-Pc;Z-¥ (57)
(56) and (57) demonstrate that then (c) is true. Conversely,
(c) obviously implies (a), so we have proven that (a), (b),
and (c) are mutually equivalent. Finally, we observe that (a)
and (c) together with (44) imply (d) and that (d), if inserted
into (43), (44), and (45), implies (a), so all four conditions
are indeed mutually equivalent. O
Proposition IV.2. Assume that p, = VS is a solution
to the eikonal equation p,p“ + ou,u® = 0 with ¢ = ¢, or
6 = o_. Then the eigenvalues of the matrix (M,¢) are 1, =
A, =0 and

A3 = 2Lpou,u, (58)
/14 = (4‘CF6_4'CFF+4‘CFGGG_['GG(1 +F0))I/lalxta (59)

Proof. By assumption, zero is a double-eigenvalue of
the matrix (41). Then the remaining two eigenvalues 15 and
A4 can be determined in the following way. The formulas
for the trace of a matrix and for the trace of the square of a
matrix in terms of its eigenvalues yield

My =25 + As, (60)
Mbdeh :/1%4’/1421 (61)

Upon calculating the traces with the help of (39), solving
(60) and (61) for the eigenvalues results in the given
expressions for A3 and 4. O

B. Hamiltonian for rays and transport vector fields
We say that S is a solution to the eikonal equation of
multiplicity two if p, = VS satisfies the Eq. (55) with
both signs, and we say that it is a solution of multiplicity
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one if (55) holds with one sign but not with the other.
The multiplicity may change from point to point.

Each of the two partial eikonal equations has the form of
the Hamilton-Jacobi equation, H(x,VS) =0, with the
Hamiltonian

1.
H.(x.p) = 5951“ (xX)ppPe- (62)

The solutions to Hamilton’s equations

OH 4 (x,p) OH 4 (x,p)
= —_—_ H =
6pa > Pll 8}6“ ’ (X’P) 0 (63)

)‘Ca
are known as the bicharacteristic curves or as the rays.
They are the null geodesics of the optical metric. Every
solution S to the eikonal equation is associated with a
congruence of rays whose tangent vector field is given by

. 8Hj:(xv P)

K% (x) = = ()VeS(x).  (64)

oy |p—vs)
1.e.,
Kb = pb — 6. Fu.. (65)

This vector field is known as the transport vector field
associated with the solution S of the eikonal equation. For
solutions of multiplicity two, we have two transport vector
fields Kﬁ and K%. However, they are always proportional
to each other so that the rays (as unparametrized curves) are
uniquely determined. We will prove this in the next section.
Note that the nondegeneracy of the optical metric implies
that the transport vector field cannot have zeros if we
assume that p, = V,S has no zeros (as required for an
eikonal function of an approximately plane wave), i.e, that
“rays cannot stand still.”

The following proposition establishes a property of the
transport vector field that will be crucial for the next
section.

Proposition IV.3. Assume that p, = VS satisfies the
eikonal equation p,p®+ ou,u® =0 where ¢ =0, or
c=o0_.Let 3 = g* + 6F“F", and K* = §*p,,. Then

peva=0,  §uvy=0, (66)
Fuoug = g%y = uu(l + oF —6*G?). (67)

As a consequence, the transport vector field satisfies
Kp, =K%, = K%, = 0. (68)

Proof. This can be verified in a straightforward manner
with the help of the identities (46). ]

C. Polarization condition

If we fix a solution p, = VS to the eikonal equation
pap* +ou,u* =0 with 6 =0, or 6 =o_, the zeroth-
order field equation (40) gives an algebraic restriction on
aém. This is the zeroth-order polarization condition. In this
section we investigate to what extent the polarization

(1)

condition fixes the allowed values for a, ' and, thereby,

for the lowest-order field-strength amplitude fg;).

Thereby we have to distinguish solutions of multiplicity
two from solutions of multiplicity one. Clearly, if the two
optical metrics coincide, 6, = o_, every solution is of
multiplicity two. In a background field with 6, #06_, a
solution is of multiplicity two if and only if u,u® = 0.
In this case p, is a principal null covector, i.e., a covector
with p,p® = 0 for which u, and v, are multiples of p,. In
the following proposition we determine the general form of
the matrix M, for this special case. For more details on
principal null solutions to the eikonal equation we refer to
Abalos et al. [22] where also pictures of the cones of the
optical metrics can be found.

Proposition IV.4. Assume that p, =V, S satisfies
pap® =0 and u,u® = 0. Then p, is a solution of multi-
plicity two to the eikonal equation. The covectors u, and v,
are multiples of p,,

Ue = Fcapa = HUPD¢s Ve = *Fcapa =UPe¢> (69)

where the coefficients p and v satisfy

F F?
2 __ _ I GZ,
H 2+\/ 1 +
F [F?
1/2 = §+ T+ Gz, UV = —-G. (70)

The transport vector fields are proportional to p?,
Ki = é:ipa’ (71)
where
& =1-o0u% (72)
The matrix M,? reduces to
M = (2Lp = 4Lppu* + ALpguv — Logt?) ppp®. (73)
Proof. If p,p*=0 and u,u* =0, (55) is trivially
satisfied with both signs, i.e., the covector p, is lightlike
with respect to both optical metrics. Moreover, we read from
(66) and (67) that with respect to either of the two optical
metrics the covectors u, and v, are orthogonal to p, and

lightlike. As two lightlike vectors are orthogonal with
respect to a Lorentzian metric if and only if they are linearly
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dependent, this proves that (69) has to hold with some
coefficients u and v. Then (70) follows from (46). Inserting
(69) into (65) and (41), respectively, yields (71) and (73). U]

Recall that the eikonal equation requires the kernel of
M,? to be at least two-dimensional. Proposition (IV.4)
implies that the kernel is even three-dimensional if
u,u* = 0. We will now consider the case u,u® # 0.

Proposition IV.5. Assume that p, = VS is a solution
to one of the two eikonal equations, p,p® + ocu,u® =0
where ¢ stands for ¢, or for o_. Let §** = g% + cF*“FP,
be the corresponding optical metric and K¢ = 5 p, be the
corresponding transport vector field. If u,u® # 0, the three
covectors p,, u, and v, are linearly independent. They
span the orthocomplement of p, with respect to §*’. The
kernel of the matrix M,“ consists of all covectors

Cléll) = auy + ﬂ’l)b + YPp (74)

where y is arbitrary and a and f satisfy
1 2 a 0
(o we) ()=o) o
lel m22 ﬁ 0

2Lrc )
_'CGG

where
1 2 1 0 —4L
G ) =26(g 1) = (o
mzl m22 O 1 ZLFG
1 G
x< ’ ) (76)
Go 1+ Fo

The kernel is three-dimensional if and only if p, = V,Sisa
solution of multiplicity two. The kernel is then spanned by
DPa» Ug, and vy, 1.e., it coincides with the orthocomplement
of p, with respect to the optical metric.

Proof. Our assumption that u,u® # 0 implies, by (66)
and (67) together with §*p,p, = 0, that p,, u,, and v,
are linearly independent and that they span the §*-
orthocomplement of p,. After normalizing u, and v,
with the help of (67) we may complement these three
covectors to a Newman-Penrose tetrad by choosing a
covector w, with

gabwawb =0,

F*w,v, = 0. (77)

gabwapb =1,

Jwauy =0,

From (41) we calculate with the help of (47)
Mywy=2Lpouuwy,+2Lp(1+6F9F wep,)py. (78)
Mbdpd =0, (79)

Mpuy = uu*(2Lpo — 4L pp + 2L Go)uy,
+ uau“(ZEFG - ﬁGGGG>Ub, (80)

Mded = uau“(2ﬁpc(1 + FG) - 4‘CGGG6)ub
+ uau“(Zﬁpa - EGG(I + FG) + 2LFGG6)’Uh.
(81)

The first two equations (78) and (79) demonstrate that M, ?
leaves the two-space spanned by w, and p, invariant and
that it has a one-dimensional kernel on this two-space. The
last statement follows from the fact that w, is not in the
kernel: It is mapped onto a covector M,“w, that is nonzero
if 0 = 0 (because then it is a nonzero multiple of p;) and
also if ¢ # 0 (because then it has a nonzero component in
the direction of w;). The other two equations (80) and (81)
demonstrate that the two-space spanned by u, and v is left
invariant as well. On this two-space the matrix M,¢ must
have a one-dimensional or two-dimensional kernel because
the eikonal equation requires that the kernel of the full
matrix M, is at least two-dimensional. By (80) and (81), a
covector au,, + fv, is in the kernel if and only if (75) holds
with (76). The determinant of the matrix (76) vanishes as a
consequence of the eikonal equation. Clearly, a (2 x 2)-
matrix has a two-dimensional kernel if and only if it is the
zero matrix. The matrix (76) is the zero matrix if and only if
the symmetric matrix

1 <m11 m12> (1+F6 —G0'>
uu'D \m," my? -Go 1
2L 1+Fo —Go —4L 2L
_ F0< )+< FF FG) (82)
D —GG 1 2‘CFG _‘CGG

is the zero matrix, where D = 1 + Fo — G*6>. By com-
parison with part (d) of Proposition IV.1 we see that this is
the case if and only if the two optical metrics coincide.
As we assume that u,u” # 0 this is true if and only if
p. = V,S is a solution of multiplicity two. O

With these results at hand it is now easy to evaluate the
polarization condition. We do this first for solutions of
multiplicity two.

Proposition IV.6. Let p, =V,S be a solution of
multiplicity two to the eikonal equation, i.e., p,p®+
ouu*=0 and p,p*+o_u,u®=0. Then the two
transport vector fields K¢ = p* — 6, F*u;, and K¢ = p® —
o_Fuy,, are linearly dependent. The polarization condition
Mbdafill) =0 is equivalent to Kial(i”) = 0 (which holds
with one sign if and only if it holds with the other sign), i.e., it

(1)

restricts a, ' to a three-dimensional subspace which con-

tains p,.
Proof. 1If u,u® = 0, this follows from Proposition IV.4.
If u,u® # 0 it follows from Proposition IV.5. U

We now prove the analogous statement for solutions of
multiplicity one.

Proposition IV.7. Let p,=V,S be a solution of
multiplicity one to the eikonal equation, i.e., p,p®+
ou,u® =0 with 6 =0, or ¢ =o_ but not with both.
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Then the polarization condition M bdafim =0 is true if

(11)

and only if @, ’ = au, + v, + yp, where a and f satisfy

(75) with (76). This condition restricts agll) to a two-
dimensional subspace that contains p,,.
Proof. This is an immediate consequence of
Proposition IV.5. ]
We summarize the results of this section in the following

way. For every solution p, = VS to the eikonal equation

the polarization condition requires that ag,m satisfies

Kb ag,l " = 0 where K? is the corresponding transport vector
field. This may be interpreted as a transversality condition.
For a solution of multiplicity two there is no additional
restriction, i.e., aﬁ,“) is confined to a three-dimensional
subspace that contains p,. By contrast, for a solution of
multiplicity one the polarization condition restricts agl Dioa
two-dimensional space that contains p,, i.e., it fixes the

polarization plane (the plane spanned by agll) and p;)
uniquely.

V. EVALUATION OF THE FIRST-ORDER
FIELD EQUATION

We now turn to the first-order field equation which gives
us the two conditions (36) and (37). We can write them, in a
slightly more compact form, as

0=V peall) + porapdVeal " +iM,4allV,  (83)

0= MbdaEiZZ)

—ya e ppealVall. (84
We want to determine what kind of information these
equations give us on the polarization plane spanned by a b“
and p,.

We know from the preceding section that for a solution
of multiplicity one this plane is already uniquely fixed at
the zeroth-order level, so the first-order equations cannot
give us any additional information on this plane. One just
has to check for consistency, i.e., one has to verify that the
sum of the first two terms in (83) is in the image space of
M ¢ and that the second term in (84) is in the image space
of y,,°%f. Then (83) and (84) give us polarization

(21) (22)

conditions on a; ’ and a,; . We have already emphasized

that (84) is not in general satisfied by agzz) =0, i.e., that
frequency doubling has to be taken into account if the field
equation should hold at first order, and that at the next order
in general also a nonzero a®” is needed.

As in this paper we will be satisfied with determining the
potential up to first order, there is nothing else to be done
for solutions of multiplicity one. Therefore, in the follow-
ing we will restrict ourselves to solutions of multiplicity
two. We know from the preceding section that then a dl D is
restricted at the zeroth-order level only by the condition

K4 afill) = 0. This condition restricts the polarization plane

to a three-dimensional space, i.e., it still allows the
polarization plane to arbitrarily rotate along a ray. We will
now demonstrate that the first-order equation (83) gives us
a transport law which uniquely determines the polarization
plane along a ray if it is given at one point of this ray.
We will consider first solutions of multiplicity two with
u,u* =0 and then with u,u® # 0.

A. Transport equation in the case u,u“=0

For a solution of multiplicity two with u,u® = 0 the rays
are lightlike geodesics not only with respect to each of the
two optical metrics but also with respect to the spacetime
metric. (The affine parametrizations are in general differ-
ent.) For such a solution we have u, and v, parallel to p,
and the matrix M,? projects onto the line spanned by p,,
recall Proposition IV.4. As a consequence, (83) reduces to

4£Fpavaaé”) + 2Va(£Fp“)a(b”)
~VLoew peal) = yp, (85)

where y is an undetermined scalar function. Recall from
Proposition IV.4 that in the case at hand the two transport
vector fields K¢ and K¢ are multiples of p“, i.e., that p“ is
tangent to the rays. Therefore, (85) gives us a first-order

ordinary differential equation for ag,“) along each ray. As y

is arbitrary, for each initial condition this differential
equation has a solution that is unique up to a multiple
of p,. In other words, (85) gives us a unique transport law
for the polarization plane.

If VOLge,, ¢ pcagl) =0, we read from (85) that the
polarization plane is parallel with respect to the transport
law defined by the Levi-Civita derivative of the spacetime
metric, as it is in the standard Maxwell vacuum theory; in
general, however, in a theory of the Plebanski class a
background field with nonconstant £ produces a rotation
of the polarization plane. This gives us a new experimental
test of this type of theories in situations where the rays
behave as in the standard vacuum Maxwell theory but the
polarization plane does not. We will exemplify this with the
Born-Infeld theory in the next section.

B. Transport equation in the case u, u® # 0

We now consider a solution of multiplicity two with
u,u® # 0. For such solutions we know from Proposition [V.5
that the matrix M, has a three-dimensional kernel spanned

(11)

by pp. up, and vy, ie., that a;  is of the form

agl) =auy + pvg +ypa- (86)

By the same token, as the matrix M, is self-adjoint with

respect to the spacetime metric, (83) is true with some afl) if
and only if the equation
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0= 2{V(rap*pea ) + puayVeal '} (87)

is true for 7% = p’, z¥ = u’, and z¥ = v®. Itis easy to check
that for z” = p? the equation is identically satisfied, for all
a<d1 D of the form (86). Therefore, we only have to consider it
for z% = u” and z* = 0.

To that end, we recall that a solution of multiplicity two
with u,u® # 0 exists only if the two optical metrics
coincide. In the following we write ¢ for ¢, = o_ and
K for K¢ = K®. If we express Lrr, Lrg, and L with
the help of part (d) of Proposition IV.1, we see that y,,¢
can be written as

)(ade = EGgade - 2£F(5252 - 6252)

2L
O B (14 6F)Fed — 6GoFed)

2EFU*

+ F o, (6GFed — *Fed)) (88)

where D = 1 + oF — 6°G>.

If we insert this expression and (86) into (87) with x* =
u? and with x” = v, we get after some lengthy algebra the
two equations

AL puub KV ,a = aa + bp, (89)
AL puyub KV, = af — ba, (90)

where
a= -2V, (Lru.u‘K?), (91)

b=VLsepeap’vul
+2Lpp" (P p* = pep? g ) (F 'V Fap+ F AV Fyp).
(92)

These equations determine the change of @ and f and, thus,
of the polarization plane, along each ray. In particular, b
determines the rotation of the polarization plane with
respect to the basis covectors u;, and v, which are
orthogonal to each other, but not parallely transported,
with respect to the optical metric.

VI. EXAMPLE: BORN-INFELD THEORY

As an example, we consider the transport law for the
polarization plane in the Born-Infeld theory [1] where the
Lagrangian is given by (10). In this case, for any back-
ground field, the two optical metrics coincide,

-1
0, =0_= b%ﬁ s (93)
FeF?,
~ab ~ab ab [
9 =90 =97 - (94)
b+ F

so there is no birefringence and every solution to the
eikonal equation is a solution of multiplicity two.

We assume that the underlying spacetime is the Minkowski
spacetime with standard inertial coordinates (x*=ct,x!,
x%,x%), i.e., gup =Nap Where (1,,)=diag(—1,1,1,1). As the
background field we choose the superposition of a time-
dependent electric field and a constant magnetic field, both in
x* direction; so the only nonvanishing components of the
field strength tensor are

E(7)
Foz = —F3 =

Fiy=—=Fy =By. (95)
Note that the homogeneous Maxwell equation is indeed
satisfied, e?*“/V,F ., = 0. For this electromagnetic field,

002 3y _Loa g X
S xt et ) =—(x*=x")=—-=1t  (96)
c c

pa:vaS7

is a principal null covector field, p,p” = 0 and
U, = Fabpb = _E(t)pa’ (97)
Vg = *Fabpb = —CBOPa’ (98)

so the eikonal equation is satisfied with u,u® = 0. The
transport vector field K¢ is proportional to p?, i.e., the rays
are straight lightlike lines in x> direction. Note that they are
lightlike not only with respect to the spacetime metric; they
are lightlike geodesics also with respect to the optical metric.
Whereas K¢ is adapted to an affine parameter with respect to
the optical metric, p“ is adapted to the parametrization with
the time coordinate ¢ which is an affine parameter with
respect to the spacetime metric.

The amplitude aél D must be orthogonal to p, with
respect to the spacetime metric, so we may write it in the
form

a,(]l D _ £(8L cosg + 82sing) + yp, (99)

with scalar coefficients { and y and an angle ¢ which gives,
at each point along the ray, the rotation of the polarization
plane with respect to the (x', x?) basis vectors which are
parallel with respect to the Levi-Civita derivative of the
metric along the ray.

For the electromagnetic field (95), the partial derivatives
of the Lagrangian are

(100)

(101)
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With these results, inserting (99) into (85) yields

p=—— (102)

where the overdot means derivative with respect to ¢ along
the ray, p?V ¢ = ¢. We see that the time-dependence of L
produces a rotation of the polarization plane. Integrating
(102) from #; = 0 with E(#;) = 0 to a time 7, with E(t,) =
E, gives

B, E,\ ByE, E}
Ap=—arctanh [ =2 ) =200 (14 o 20 ) ). (103
= op, et <cb0) 2cbg< * (czbg (103)

In principle, this can be utilized for a new laboratory test of
the Born-Infeld theory. If in the considered constellation
with strong fields E, and B, no rotation of the polarization
plane is detected, this gives a lower bound on b,. However,
the effect on the polarization plane is so small that with
present-day technology this test of the Born-Infeld theory is
not yet competitive with other tests. E.g., in Ref. [16] we
have seen that with interferometric methods one could find a
bound on by in the order of by > 7 x 107 T which corre-
sponds to by 2 7 x 10", /g/(\/cms) in Gaussian units.
Assuming that a rotation of the polarization plane by one
arcminute could be measured, Ap =3 x 107 rad, we
would need electric and magnetic fields of

E
BO—0’ ~3 x 1012 T2 (104)
C

for being competitive with the interferometric test. This is
not reachable in a laboratory experiment in the near future.

VII. CONCLUSIONS

It was the main purpose of this paper to derive the
transport law of the polarization plane in nonlinear vacuum
electrodynnamics. We have done this, on an unspecified
general-relativistic spacetime, for a theory of the Plebanski
class and an electromagnetic background field which were
arbitrary except for some nondegeneracy conditions. To
that end we have utilized an approximate-plane-harmonic-
wave ansatz which takes the generation of higher harmon-
ics and frequency rectification into account. According to
this ansatz, the electromagnetic field is written as an
asymptotic series with respect to a parameter a where
the limit @ — O refers to sending the frequency to infinity.
We have seen that the generalized Maxwell equations have
to be solved to zeroth and to first order with respect to « for
determining the transport law of the polarization plane in
lowest nontrivial order.

When considering the generalized Maxwell equations to
zeroth order, we have rederived the known result that, for

every theory of the Plebanski class and every background
field that satisfy the assumed nondegeneracy conditions,
there are two optical metrics which are both of Lorentzian
signature. For a solution of the zeroth-order equations one
needs a scalar function, the so-called eikonal function S,
whose gradient p, = V,,S is lightlike with respect to at
least one of the two optical metrics, and a covector field,
aél I), which has to satisfy an algebraic equation known as
the zeroth-order polarization condition.

We have seen that two cases have to be distinguished.
The first case is that of a solution of multiplicity one, i.e.,
the case that p, = VS is lightlike with respect to only one
of the optical metrics. Then the polarization plane (i.e., the

plane spanned by aé“) and p,) is uniquely determined by

the zeroth-order polarization condition. The first-order
equations give no additional information on the polariza-
tion plane and have to be checked only for consistency.
The second case is that of a solution of multiplicity two,
i.e., the case that p, = V,,S is lightlike with respect to both
optical metrics. Then the zeroth-order polarization con-
dition allows an arbitrary rotation of the polarization
plane along each ray. However, the generalized Maxwell
equations at first order give us a transport equation
which determines the polarization plane uniquely along
aray if it is given at one point of this ray. This transport law
has a fairly simple form in the case that p, is a principal
null covector of the electromagnetic background field,
F,’p, ~ p., see Sec. VA. It is much more awkward if
this is not the case, see Sec. V B.

We have exemplified the general results with the Born-
Infeld theory. In this theory the two optical metrics
coincide, i.e., all solutions of the eikonal equation are of
multiplicity two. We have considered a particular solution
where p,, is a principal null covector of a background field
on Minkowski spacetime. In this example, the rays are
straight lightlike lines, i.e., the light propagation is the same
as in the standard Maxwell vacuum theory. However, the
behavior of the polarization plane is different: Whereas in
the standard Maxwell theory it is parallely transported
along each ray, here it rotates with respect to a parallely
transported plane by an angle Ag. This is a feature that
could be observed in a laboratory experiment, sometimes in
the future, when sufficiently strong fields are available.
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