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We consider the Plebański class of nonlinear theories of vacuum electrodynamics, i.e., Lagrangian
theories that are Lorentz invariant and gauge invariant. Our main goal is to derive the transport law of the
polarization plane in such a theory, on an unspecified general-relativistic spacetime and with an unspecified
electromagnetic background field. To that end we start out from an approximate-plane-harmonic-wave
ansatz that takes the generation of higher harmonics into account. By this ansatz, the electromagnetic field
is written as an asymptotic series with respect to a parameter α, where the limit α → 0 corresponds to
sending the frequency to infinity. We demonstrate that by solving the generalized Maxwell equations to
zeroth and first order with respect to α one gets a unique transport law for the polarization plane along each
light ray. We exemplify the general results with the Born-Infeld theory.
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I. INTRODUCTION

In the standard Maxwell theory of vacuum electrody-
namics, the field strength tensor Fab (which comprises the
vector fields E⃗ and B⃗) is related to the excitation tensor
(which comprises the vector fields D⃗ and H⃗) by a linear
constitutive law. However, there are good reasons to
assume that this law has to be replaced by a nonlinear
relation for very strong electromagnetic fields. In the course
of history, several such nonlinear modifications of the
vacuum Maxwell theory have been suggested.
One of the best known examples is the theory of Born

and Infeld [1] from 1934. Its introduction was motivated by
the observation that in the standard Maxwell vacuum
theory the field energy in an arbitrarily small ball around
a point charge is infinite which leads to an infinite self-
force, and that this infinity might be overcome if one
modifies the constitutive law of the vacuum in a nonlinear
fashion. The Born-Infeld theory introduces a new hypo-
thetical constant of Nature, b0, with the dimension of a
(magnetic) field strength. In the limit b0 → ∞ the theory

approaches the standard Maxwell theory, i.e., the fact that
the latter is in good agreement with experiments can be
understood if one assumes that b0 is very large. On the
basis of the Born-Infeld theory one would have to expect
measurable deviations from the vacuum Maxwell theory in
electromagnetic fields that are of a similar order of
magnitude as b0. Although not exactly in the main stream
of physics, the Born-Infeld theory was always taken
seriously by many scientists. In the late 1990s this theory
got an additional strong push when Tseytlin [2] realized
that it can be derived, as an effective theory, from some kind
of string theories.
Another very well known nonlinear modification of the

vacuum Maxwell theory is the Heisenberg-Euler theory [3]
from 1936. It is a classical field theory which comes about,
as an effective theory, if one-loop corrections from quantum
electrodynamics are taken into account. In contrast to the
Born-Infeld theory, it does not involve any new hypotheti-
cal constant of Nature, i.e., it numerically predicts how
strong an electromagnetic field has to be in order to produce
measurable deviations from the standard vacuum Maxwell
theory. Since a few years (magnetic) fields of this strength
can be produced in the laboratory.
The Born-Infeld theory and the Heisenberg-Euler theory

are Lorentz invariant, they are gauge invariant, and they
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derive from a Lagrangian. The entire class of theories that
share these properties was systematically studied by
Plebański [4], with important early contributions by
Boillat [5]. We refer to it as to the Plebański class of
electromagnetic theories. The Born-Infeld theory and the
Heisenberg-Euler theory are the best known examples in
this class, but there are many more. In particular, there are
theories of the Plebański class that allow for regular black-
hole solutions if they are coupled to Einstein’s field
equations. The first two examples were found by Ayón-
Beato and García [6,7].
It is a general feature of nonlinear theories that the

superposition principle is no longer satisfied. As a conse-
quence, the propagation of light is influenced by electro-
magnetic background fields. This effect is known as “light-
by-light scattering” and it has been observed in 1997, see
Burke et al. [8], in good agreement with the prediction by
the Heisenberg-Euler theory. Another effect predicted by
most theories of the Plebański class, with the notable
exception of the Born-Infeld theory, is birefringence in
vacuo. This means that, according to these theories, a light
beam that enters into a region with a sufficiently strong
electromagnetic background field would split into two
beams, as in the case of a light beam entering into a
crystal according to ordinary optics, with the two different
beams corresponding to two different polarization states.
Such a birefringence in vacuo is predicted, in particular, by
the Heisenberg-Euler theory. Experimentalists are trying to
observe this effect since several years and there is the
general expectation that these attempts will be successful
soon, see in particular the most recent status report on the
so-called PVLAS experiment by Della Valle et al. [9]. In
this experiment not only the birefringence in vacuo but
also the dichroism of the Heisenberg-Euler theory is tried
to be measured. The latter means the effect that there are
different absorption coefficients for the two different
polarization states which results in an apparent rotation
of the polarization plane. Finally, we mention that there
are also attempts to verify effects from nonlinear electro-
dynamics with astrophysical observations. A particularly
promising idea is to observe the birefringence in vacuo if
light passes through a very strong magnetic field, such as
in the neighborhood of a magnetar. A first observation that
might indicate such an effect was already made, see
Mignani et al. [10].
We emphasize that experiments searching for birefrin-

gence in vacuo cannot be used as tests for the Born-Infeld
theory because in the latter there is no such effect. As an
alternative, the Born-Infeld theory may be tested with the
help of Michelson interferometry. Such an experiment was
discussed for the Heisenberg-Euler theory by Boer and van
Holten [11], Döbrich and Gies [12], Zavattini and Calloni
[13] and Grote [14], for the Heisenberg-Euler and the Born-
Infeld theories by Denisov, Krivchenkov and Kravtsov
[15], and in detail for a general theory of the Plebański class

by Schellstede et al. [16]. Moreover, there are suggestions
to test the Born-Infeld theory with wave-guides, see Ferraro
[17], or with fluid motions in a magnetic background field,
see Dereli and Tucker [18]. As of now, none of these
experiments has been actually carried through.
In this paper we want to study, for a general theory of the

Plebański class, the effect of a background field on the
transport law of the polarization plane along a light ray.
This will give us a new way of testing these theories, in
particular the Born-Infeld theory, experimentally. We
emphasize that this is to be distinguished from all the
experiments mentioned above. In particular, it is not to be
confused with the planned observation of dichroism by the
PVLAS experiment: The latter is an effect on the absorp-
tion of light, depending on the polarization state. Here we
want to investigate the direct effect of an electromagnetic
background field on the polarization plane.
To that end we start out from an approximate-plane-

harmonic-wave ansatz, taking the generation of higher
harmonics into account. By this ansatz the electromagnetic
field is written as an asymptotic series with respect to a
parameter α. Sending α to zero corresponds to sending the
frequency to infinity. We will see that we have to consider
the generalized Maxwell equations to zeroth order and to
first order with respect to α in order to determine the
transport law for the polarization plane. Earlier studies of
the high-frequency limit in nonlinear theories were
restricted to the derivation of the eikonal equation from
the zeroth order of the generalized Maxwell equations. It is
well known that, as a result, one finds that the light rays are
the null geodesics of two optical metrics; this was first
shown by Novello et al. [19] and later, in different
representations, by Obukhov and Rubilar [20] and by
Schellstede et al. [16]. To the best of our knowledge,
the transport law of the polarization plane was not yet
considered for an arbitrary theory of the Plebański class.
We will not specify the nonlinear electromagnetic theory,

apart from the fact that we require it to be of the Plebański
class. However, we mention that not all theories of this type
are to be considered as physically meaningful: Some of
them violate causality in the sense that the light cones of the
optical metrics are not inside the light cone of the spacetime
metric, see Schellstede et al. [21]. Also, not all of them give
rise to a well-posed initial-value problem, see Abalos
et al. [22].
The paper is organized as follows. In Sec. II we briefly

review the basic features of theories of the Plebański class. In
Sec. III we introduce our approximate-plane-wave ansatz on
an arbitraty general-relativistic spacetime and for an arbi-
trary electromagnetic background field. In Sec. IV we
evaluate the generalized Maxwell equations to zeroth order
which gives us the eikonal equation and an algebraic
condition on the polarization plane. In Sec. V we consider
the generalizedMaxwell equations to first order and discuss
the additional conditions they give us on the polarization
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plane. In Sec. VI we exemplify the results with the Born-
Infeld theory.

II. THE PLEBAŃSKI CLASS OF NONLINEAR
ELECTRODYNAMICAL THEORIES

We consider a general-relativistic spacetime, i.e., an
oriented 4-dimensional manifold with a metric tensor gab
of Lorentzian signature. The covariant derivative associated
with the Levi-Civita connection of the metric will be
denoted ∇a. Latin indices take values 0, 1, 2, 3 and are
lowered with gab and raised with its inverse gbc.
The Plebański class [4] consists of all nonlinear elec-

trodynamical theories that derive from an action of the form

S½Ac� ¼
1

4πc

Z
M

�
LðF;GÞ þ 4π

c
jaAa

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgbcÞj

p
d4x:

ð1Þ

Here M is a domain of the spacetime, d4x ¼ dx0 ∧ dx1 ∧
dx2 ∧ dx3, ja is a given current density, Aa is the
electromagnetic potential,

Fab ¼ ∇aAb −∇bAa ð2Þ

is the electromagnetic field strength and L is the
Lagrangian for the electromagnetic field. It is assumed
that the latter depends only on the two invariants

F ¼ 1

2
FabFab and G ¼ −

1

4
Fab

⋆Fab: ð3Þ

Here and in the following, ⋆ denotes the Hodge star
operator, i.e.,

⋆Fab ¼
1

2
εabcdFcd ð4Þ

where εabcd is the totally antisymmetric Levi-Civita tensor
field (volume form) associated with the spacetime metric.
By (2) the homogeneous Maxwell equation is automati-

cally satisfied,

εabcd∇bFcd ¼ 0: ð5Þ

Requiring that the variational derivative of the action (1)
with respect to the potential Ac vanishes, for all compact
domains M and all variations that keep Ac fixed on the
boundary of M, leads to the inhomogeneous Maxwell
equation,

∇aHab ¼ −
4π

c
jb; ð6Þ

where

Hab ¼ −
∂L
∂Fab

¼ −2LFFab þ LG
⋆Fab ð7Þ

is the electromagnetic excitation. For the sake of brevity,
we write

LF ¼ ∂L
∂F ; LG ¼ ∂L

∂G ð8Þ

and

LFF ¼ ∂2L
∂F2

; LGG ¼ ∂2L
∂G2

; LFG ¼ ∂2L
∂F∂G : ð9Þ

It is the constitutive law (7) that distinguishes different
theories, while the Maxwell equations (5) and (6) are
always the same.
Each particular theory of the Plebański class is charac-

terized by a particular Lagrangian and, thereby, by a
particular constitutive law. Let us mention the two most
important examples: For the Born-Infeld theory [1], the
Lagrangian reads

L ¼ b20 − b20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b20
−
G2

b40

s
ð10Þ

where b0 is a hypothetical constant of Nature with the
dimension of a magnetic field strength. For b0 → ∞ the
Born-Infeld theory reproduces the standard Maxwell vac-
uum theory. For the Heisenberg-Euler theory [3],

L ¼ E2
0

�
−
1

2

F
E2
0

þ Λ
�
F2

E4
0

þ 7
G2

E4
0

�
þ…

�
ð11Þ

where E0 ¼ m2c4=e3 and Λ ¼ ℏc=ð90πe2Þ. Here m is the
electron mass, e is the electron charge, ℏ is the reduced
Planck constant and the ellipses in (11) stand for terms of
third and higher order in F and G.

III. APPROXIMATE-PLANE-HARMONIC-WAVE
ANSATZ

An approximate-plane-harmonic wave is a one-param-
eter family Fα

cd of field strength tensors, depending on a real
parameter α, of the form

Fα
cd ¼ Fcd þ αFð1Þ

cd þ
X∞
K¼2

αKFðKÞ
cd ð12Þ

where

Fð1Þ
cd ¼ RefeiS=αfð11Þcd g ð13Þ

and
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FðKÞ
cd ¼

XK
K̃¼0

RefeiK̃S=αfðKK̃Þcd g for K ≥ 2: ð14Þ

Here Fcd is a given electromagnetic background field that is

independent of α, S is a real-valued function and fðKK̃Þcd is a
complex-valued antisymmetric tensor field for each pair of
integersK, K̃ that occurs. We assume that, on the spacetime

region considered, the tensor fields ∇aS and fð11Þcd have no
zeros. The series is to be understood as an asymptotic
series, not as a convergent series.
The function S is called the eikonal function. On a

sufficiently small neighborhood, the field Fð1Þ
ab is approx-

imately a plane harmonic wave: The surfaces S ¼ constant
are the wave-fronts and the gradient of S divided by alpha
defines the wave four-covector. Correspondingly, the fre-
quency measured by an observer with four-velocity Ua is
ω ¼ Ua∇aS=α. The limit α → 0 corresponds to sending
the frequency to infinity. The idea is to feed the ansatz (12)
into Maxwell’s equations, to solve these equations itera-
tively order by order in α and, in this way, to asymptotically
approach a one-parameter family of exact solutions.
Our ansatz (12) is a generalization of the standard

approximate-plane-harmonic-wave ansatz. The latter goes
back to Ralph Luneburg and is detailed, for wave propa-
gation in linear and isotropic media, e.g., in the textbook by
Kline and Kay [23]. Our ansatz is more general in two
respects: First, we take a nonzero background field into
account. In a linear theory, it suffices to consider the case
with zero background field because, by the superposition
principle, the propagation of the approximate-plane-
harmonic wave is independent of a background field. In
a nonlinear theory, however, the propagation is influenced
by a background field. Second, the higher-order fields, FðKÞ

cd
for K ≥ 2, come not only with the same frequency as

the first-order field Fð1Þ
cd (the terms with K̃ ¼ 1) but also

with integer multiples of this frequency (the terms with
K̃ ≠ 1). This reflects the generation of higher harmonics
which is well-known from optics in nonlinear media. It
should not come as a surprise that it has to be taken into
account also in the nonlinear vacuum theories of the
Plebański class. Higher harmonics play no role if one
considers Maxwell’s equations only to the lowest order
(i.e., α0). This is the reason why it was not necessary to take
them into account in [24] where the eikonal equation was
derived for Maxwell’s equations with a local but otherwise
arbitrary constitutive law. In the present paper, however, we
want to derive the transport law for the polarization plane
which requires considering Maxwell’s equations also to the
next order (i.e., α1). We will see that these equations cannot

in general be solved if we set all terms fðKK̃Þcd with K̃ ≠ 1

equal to zero.
For our purpose we need the series (12) up to

second order,

Fα
cd ¼ Fcd þ αRefeiS=αfð11Þcd g

þ α2Reffð20Þcd þ eiS=αfð21Þcd þ e2iS=αfð22Þcd g þ… ð15Þ

which includes frequency doubling (K̃ ¼ 2) and the gen-
eration of a nonoscillatory mode, known from nonlinear
media as optical rectification (K̃ ¼ 0). The homogeneous
Maxwell equation (5) is automatically satisfied for all α if
we assume that (15) derives from a potential,

Fα
cd ¼ ∇cAα

d −∇dAα
c: ð16Þ

It is easy to see that such a potential (up to an arbitrary
gradient term) must be of the form

Aα
d ¼ Ad þ α2Refað10Þd þ eiS=αað11Þd g

þ α3Refað20Þd þ eiS=αað21Þd þ e2iS=αað22Þd g þ… ð17Þ

Then (16) holds to zeroth order in α with

Fcd ¼ ∇cAd −∇dAc; ð18Þ

to first order with

fð11Þcd ¼ ið∇cSa
ð11Þ
d −∇dSa

ð11Þ
c Þ; ð19Þ

and to second order with

fð20Þcd ¼ ∇ca
ð10Þ
d −∇da

ð10Þ
d ; ð20Þ

fð21Þcd ¼∇ca
ð11Þ
d −∇da

ð11Þ
d þ ið∇cSa

ð21Þ
d −∇dSa

ð21Þ
c Þ; ð21Þ

fð22Þcd ¼ 2ið∇cSa
ð22Þ
d −∇dSa

ð22Þ
c Þ: ð22Þ

Here we have used our assumption that the gradient
of S has no zeros which implies that S ≠ 0 almost every-
where and that, accordingly, the functions 1, sinðSðxÞ=αÞ,
cosððSðxÞ=αÞÞ, sinð2SðxÞ=αÞÞ, and cosð2SðxÞ=αÞ are lin-
early independent.
Feeding the approximate-plane-harmonic wave (12)

into the constitutive law (7) gives, after a rather long but
straightforward calculation, an excitation of the form

Hα
ab ¼HabþαRefeiS=αhð11Þab g

þα2Refhð20Þab þeiS=αhð21Þab þei2S=αhð22Þab gþ… ð23Þ

The zeroth order term in (23) is just the excitation of the
background field,

Hab ¼ −2LFFab þ LG
⋆Fab; ð24Þ

the first-order amplitude is
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hð11Þab ¼ 1

2
χab

cdfð11Þcd ; ð25Þ

and the second-order amplitudes are

hð20Þab ¼ 1

2
χab

cdfð20Þcd þ 1

2
ψab

cdeffð11Þcd f̄ð11Þef ; ð26Þ

hð21Þab ¼ 1

2
χab

cdfð21Þef ; ð27Þ

hð22Þab ¼ 1

2
χab

cdfð22Þcd þ 1

2
ψab

cdeffð11Þcd fð11Þef ; ð28Þ

with

χab
cd¼LGεab

cd−2LFðδcaδdb−δdaδ
c
bÞ−4LFFFabFcd

þ2LFGðFab
⋆Fcdþ⋆FabFcdÞ−LGG

⋆Fab
⋆Fcd ð29Þ

and

ψab
cdef ¼ 1

4
ð−2LFFFab þ LFG

⋆FabÞðgcegdf − gdegcfÞ þ 1

2
ðδcaδdb − δcbδ

d
aÞð−2LFFFef þ LFG

⋆FefÞ

−
1

8
ð−2LFGFab þ LGG

⋆FabÞεcdef −
1

4
εab

cdð−2LFGFef þ LGG
⋆FefÞ þ 1

2
ð−2LFFFFab þ LFFG

⋆FabÞFcdFef

−
1

2
ð−2LFFGFab þ LFGG

⋆FabÞFcd⋆Fef þ 1

8
ð−2LFGGFab þ LGGG

⋆FabÞ⋆Fcd⋆Fef: ð30Þ

We see that the first- order constitutive law (25) is of the
same form as the constitutive law of a linear medium, but
now with a constitutive tensor χabcd that depends on the
invariants F andG of the background field. Quite generally,
such a constitutive tensor can be decomposed into principal
part, skewon part, and axion part (see Hehl and Obukhov
[25]). In (29), the first term is the axion part, the rest is the
principal part, and the skewon part is zero. It is known [25]
that the skewon part is always vanishing if the theory
derives from a variational principle.
At the second order, we get for each of the three

amplitudes hð2K̃Þab a linear law with the same constitutive
tensor χabcd as for the first order, but for K̃ ¼ 0 and K̃ ¼ 2
additional quadratic terms with a second-order constitutive
tensor ψab

cdef which looks rather complicated.
We will now evaluate the Maxwell equations. The

homogeneous Maxwell equation is satisfied if we express

the amplitudes fðKK̃Þcd in terms of the potential according to
(19), (20), (21), and (22). Feeding the excitation (23) into
the inhomogeneous Maxwell equation requires at zeroth
order

−
4π

c
jb ¼ ∇aHab; ð31Þ

0 ¼ ∇aShð11Þab ; ð32Þ

and at first order

0 ¼ ∇ahð11Þab þ i∇aShð21Þab ; ð33Þ

0 ¼ ∇aShð22Þab : ð34Þ
Here we have assumed that the current jb is independent of
α, i.e., that only the background field may have a source

whereas our approximate-plane-harmonic wave is source-
free. Moreover, we have again used our assumption that
the gradient of S has no zeros which implies that the
functions 1, sinðSðxÞ=αÞ, cosððSðxÞ=αÞÞ, sinð2SðxÞ=αÞÞ,
and cosð2SðxÞ=αÞ are linearly independent.
At zeroth order we get one equation, (32), that has to be

satisfied. With (19) and (25) this equation reads

0 ¼ ∇aSχabcd∇cSa
ð11Þ
d : ð35Þ

We will evaluate this equation in the next section. We will
see that it gives us the eikonal equation for S and an

algebraic condition on að11Þd which is known as the zeroth

order polarization condition. Note that að11Þd is not gauge-

invariant: As can be read from (19), the field strength fð11Þcd

is unchanged if a multiple of ∇dS is added to að11Þd . We will
see that the zeroth order polarization condition is actually a

condition on the (gauge-invariant) plane spanned by að11Þd
and∇dS. We refer to this plane as to the polarization plane.
At first order we get two equations, (33) and (34), that

have to be satisfied. With (19), (20), (21), (25), (27), and
(28) these equations read

0 ¼ ∇aðχabcd∇cSa
ð11Þ
d Þ þ∇aSχabcd∇ca

ð11Þ
d

þ i∇aSχabcd∇cSa
ð21Þ
d ; ð36Þ

0 ¼ ∇aSχabcd∇cSa
ð22Þ
d − ψab

cdef∇aS∇cSa
ð11Þ
d að11Þf : ð37Þ

Wewill evaluate these two equations, as far as necessary for
our purpose, in Sec. V below. They will give us a differ-
ential equation for að11Þd which is known as the first-order

transport equation and algebraic conditions on að21Þd and
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að22Þd which are the first-order polarization conditions.

These equations are not in general satisfied if að22Þd ¼ 0,
i.e., frequency doubling has to be taken into account if
Maxwell’s equations are to be solved to first order.
If one wants to go beyond the first order, one can do this

step by step. At the Kth level one gets transport equations

for the amplitudes aðKK̃Þd and polarization conditions on the

amplitudes aððKþ1ÞK̃Þ
d .

IV. EVALUATION OF THE ZEROTH-ORDER
FIELD EQUATION

In Sec. IVA we will derive the eikonal equation from
the zeroth-order field equation (35), in Sec. IV B we will
determine the Hamiltonian for the rays and in Sec. IV C
we will evaluate the zeroth-order polarization condition.
The main results of Secs. IVA and IV B are not new. In
particular, it is known that for any theory of the Plebański
class the rays are the null geodesics of two optical metrics.
This was first demonstrated by Novello et al. [19]. The
same result was rederived, using a different representation,
by Obukhov and Rubilar [20] who also showed that the
optical metrics have Lorentzian signature if they are non-
degenerate. Still another form of the optical metrics was
derived by Schellstede et al. [16]. However, we have to
rederive these known results here because in doing so we
will also establish a number of new relations that will be
needed later. We will use the same representation as in [16].

A. Derivation of the eikonal equation

In the following we write

pa ¼∇aS; ua ¼Fab∇bS; va ¼�Fab∇bS ð38Þ

which implies

paua ¼ pava ¼ 0: ð39Þ

Then the zeroth-order field equation (35) can be
rewritten as

Mb
dað11Þd ¼ 0 ð40Þ

where

Mb
d ¼ χab

cdpapc ¼ −2LFpapaδdb þ 2LFpbpd

− 4LFFubud þ 2LFGðubvd þ vbudÞ − LGGvbvd:

ð41Þ

Note that Mb
d is self-adjoint with respect to the spacetime

metric, i.e.,Mab ¼ Mba. This is a consequence of the above-
mentioned fact that the skewon part of the constitutive tensor

vanishes. Also note that the axion part gives no contribution
to (41) which is a general result [25,26].
From (41) we read that pd is in the kernel ofMb

d, so (40)

is satisfied by að11Þd ¼ ψpd with any scalar factor ψ.
However, by (19) such a potential gives a trivial first-order

field strength. As we require fð11Þcd ≠ 0, we need a solution

að11Þd of (40) that is linearly independent of pd, i.e., the
kernel ofMd

b has to be at least two-dimensional. This is the
case if and only if the adjugate Ad

b of Md
b (also known as

the classical adjoint) vanishes, cf. Itin [27]. A straightfor-
ward (though tedious) calculation shows that the adjugate is
given by

Ab
a ¼−8LFðMðpcpcÞ2þNpcpcududþPðududÞ2Þpbpa

ð42Þ

where

M ¼ L2
F þ 2LFLFGG −

1

2
LFLGGF − PG2; ð43Þ

N ¼ 2LFLFF þ 1

2
LFLGG − PF; ð44Þ

P ¼ LFFLGG − L2
FG: ð45Þ

Here we have used the well-known [4] identities

�FacFbc ¼ −Gδba; FacFbc − �Fac
�Fbc ¼ Fδba ð46Þ

which imply

ucvc ¼ −Gpcpc; ucuc − vcvc ¼ Fpcpc: ð47Þ

By (42), the zeroth-order field equation (40) admits a

solution að11Þd giving a nontrivial field strength if and only if

0 ¼ LFðMðpcpcÞ2 þ Npcpcudud þ PðududÞ2Þ: ð48Þ

This is the eikonal equation. It is a first-order partial
differential equation for the function S. Each solution to
this equation determines a family of light rays, in the same
way as in Hamiltonian mechanics each solution to the
Hamilton-Jacobi equation determines a family of trajecto-
ries, see the next subsection. If viewed as an algebraic
condition on the covector pa, (48) is known as the
dispersion relation, as the characteristic equation or as
the Fresnel equation.
From now on we require LF ≠ 0 because otherwise the

eikonal equation is an identity, so there is no well-defined
notion of rays. If in addition M ≠ 0, (48) factorizes
according to

ðg̃bcþ pbpcÞðg̃de− pdpeÞ ¼ 0 ð49Þ
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where

g̃bc� ¼ gbc þ σ�FbdFc
d

¼ ð1þ σ�FÞgbc þ σ��Fbd�Fc
d ð50Þ

and

σ� ¼ N
2M

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

4M2
−

P
M

r
: ð51Þ

g̃bcþ and g̃bc− are known as the optical metrics. Note that σ� is
always real because N2 − 4MP can be rewritten as the sum
of two squares,

N2 − 4MP ¼ ðLFLGG − NÞ2 þ 4ðLFLFG − PGÞ2: ð52Þ

The determinant of g̃cd� is

detðg̃cd� Þ ¼ ð1þ σ�F − σ2�G
2Þ2 detðgcdÞ: ð53Þ

As (gcd) is of Lorentzian signature, the right-hand side of
(53) is either zero or negative. This demonstrates that the
optical metrics are either degenerate or Lorentzian (i.e.,
of signature ð−þþþÞ or ð− − −þÞ), as was already
observed by Obukhov and Rubilar [20]. If the determinant
is nonzero, the covariant components of the optical
metrics are

ðg̃−1Þ�cd ¼
gcd − σ��Fc

b�Fdb

1þ σ�F − σ2�G
2

¼ ð1þ σ�FÞgcd − σ�Fc
bFdb

1þ σ�F − σ2�G
2

: ð54Þ

Indeed, with the help of the identities (46) it is easy to
check that (50) and (54) imply ðg̃−1Þ�acg̃cb� ¼ δba.
If M ¼ 0, the eikonal equation factorizes as well, but

we will not consider this case because it shows some
pathologies, see [21]. We restrict for the rest of the paper
to background fields for which LF ≠ 0, M ≠ 0 and
ð1þ σ�F − σ2�G

2Þ ≠ 0 so that we have two optical metrics
of Lorentzian signature. Then the eikonal equation is of the
form (49), i.e., it requires pa ¼ ∇aS to be a null covector of
at least one of the two optical metrics. This is true if and
only if

papa þ σ�uaua ¼ 0 ð55Þ

holds with at least one of the two signs where σ� is given
by (51). We refer to the two equations (55) with pa ¼ ∇aS
as to the two partial eikonal equations.
We end this section with two useful results.

Proposition IV.1. Let σ be one of the two solutions,
σ ¼ σþ or σ ¼ σ−, to (51). Then the following conditions
are mutually equivalent:
(a) N2¼ 4MP, i.e., the two optical metrics coincide,

σ ¼ N
2M.

(b) LFLGG ¼ N and LFLFG ¼ PG.
(c) DM ¼ L2

F, DN ¼ 2L2
Fσ and DP ¼ L2

Fσ
2.

(d) 2DLFF ¼ LFσð1 þ FσÞ, DLGG ¼ 2LFσ and
DLFG¼LFGσ2.

In (c) and (d), D ¼ 1þ Fσ − G2σ2.
Proof. ðaÞ ⇔ ðbÞ is obvious from (52). We now assume

that one, and thus also the other, of these conditions is true.
Then we find from (a) that

N ¼ 2Mσ; P ¼ Mσ2 ð56Þ

and from inserting (b) into (43) that

M ¼ L2
F − PG2 −

NF
2

ð57Þ

(56) and (57) demonstrate that then (c) is true. Conversely,
(c) obviously implies (a), so we have proven that (a), (b),
and (c) are mutually equivalent. Finally, we observe that (a)
and (c) together with (44) imply (d) and that (d), if inserted
into (43), (44), and (45), implies (a), so all four conditions
are indeed mutually equivalent. □

Proposition IV.2. Assume that pa ¼ ∇aS is a solution
to the eikonal equation papa þ σuaua ¼ 0 with σ ¼ σþ or
σ ¼ σ−. Then the eigenvalues of the matrix (Mb

d) are λ1 ¼
λ2 ¼ 0 and

λ3 ¼ 2LFσuaua; ð58Þ

λ4¼ð4LFσ−4LFFþ4LFGGσ−LGGð1þFσÞÞuaua ð59Þ

Proof. By assumption, zero is a double-eigenvalue of
the matrix (41). Then the remaining two eigenvalues λ3 and
λ4 can be determined in the following way. The formulas
for the trace of a matrix and for the trace of the square of a
matrix in terms of its eigenvalues yield

Mb
b ¼ λ3 þ λ4; ð60Þ

Mb
dMd

b ¼ λ23 þ λ24: ð61Þ

Upon calculating the traces with the help of (39), solving
(60) and (61) for the eigenvalues results in the given
expressions for λ3 and λ4. □

B. Hamiltonian for rays and transport vector fields

We say that S is a solution to the eikonal equation of
multiplicity two if pa ¼ ∇aS satisfies the Eq. (55) with
both signs, and we say that it is a solution of multiplicity
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one if (55) holds with one sign but not with the other.
The multiplicity may change from point to point.
Each of the two partial eikonal equations has the form of

the Hamilton-Jacobi equation, Hðx;∇SÞ ¼ 0, with the
Hamiltonian

H�ðx; pÞ ¼
1

2
g̃bc� ðxÞpbpc: ð62Þ

The solutions to Hamilton’s equations

_xa¼∂H�ðx;pÞ
∂pa

; _pa¼−
∂H�ðx;pÞ

∂xa ; Hðx;pÞ¼0 ð63Þ

are known as the bicharacteristic curves or as the rays.
They are the null geodesics of the optical metric. Every
solution S to the eikonal equation is associated with a
congruence of rays whose tangent vector field is given by

Kb
�ðxÞ ¼

∂H�ðx; pÞ
∂pb

����
p¼∇SðxÞ

¼ g̃bc� ðxÞ∇cSðxÞ; ð64Þ

i.e.,

Kb
� ¼ pb − σ�Fbcuc: ð65Þ

This vector field is known as the transport vector field
associated with the solution S of the eikonal equation. For
solutions of multiplicity two, we have two transport vector
fields Kbþ and Kb

−. However, they are always proportional
to each other so that the rays (as unparametrized curves) are
uniquely determined. We will prove this in the next section.
Note that the nondegeneracy of the optical metric implies
that the transport vector field cannot have zeros if we
assume that pa ¼ ∇aS has no zeros (as required for an
eikonal function of an approximately plane wave), i.e, that
“rays cannot stand still.”
The following proposition establishes a property of the

transport vector field that will be crucial for the next
section.
Proposition IV.3. Assume that pa ¼ ∇aS satisfies the

eikonal equation papa þ σuaua ¼ 0 where σ ¼ σþ or
σ ¼ σ−. Let g̃ab ¼ gab þ σFacFb

c and Ka ¼ g̃abpb. Then

g̃cdpcud ¼ g̃cdpcvd ¼ 0; g̃cducvd ¼ 0; ð66Þ

g̃cducud ¼ g̃cdvcvd ¼ ucucð1þ σF − σ2G2Þ: ð67Þ

As a consequence, the transport vector field satisfies

Kapa ¼ Kaua ¼ Kava ¼ 0: ð68Þ

Proof. This can be verified in a straightforward manner
with the help of the identities (46). □

C. Polarization condition

If we fix a solution pa ¼ ∇aS to the eikonal equation
papa þ σuaua ¼ 0 with σ ¼ σþ or σ ¼ σ−, the zeroth-
order field equation (40) gives an algebraic restriction on

að11Þb . This is the zeroth-order polarization condition. In this
section we investigate to what extent the polarization

condition fixes the allowed values for að11Þb and, thereby,

for the lowest-order field-strength amplitude fð11Þcd .
Thereby we have to distinguish solutions of multiplicity

two from solutions of multiplicity one. Clearly, if the two
optical metrics coincide, σþ ¼ σ−, every solution is of
multiplicity two. In a background field with σþ ≠ σ−, a
solution is of multiplicity two if and only if uaua ¼ 0.
In this case pa is a principal null covector, i.e., a covector
with papa ¼ 0 for which ua and va are multiples of pa. In
the following proposition we determine the general form of
the matrix Mb

d for this special case. For more details on
principal null solutions to the eikonal equation we refer to
Abalos et al. [22] where also pictures of the cones of the
optical metrics can be found.
Proposition IV.4. Assume that pa ¼ ∇aS satisfies

papa ¼ 0 and uaua ¼ 0. Then pa is a solution of multi-
plicity two to the eikonal equation. The covectors ua and va
are multiples of pa,

uc ¼ Fc
apa ¼ μpc; vc ¼ �Fc

apa ¼ νpc; ð69Þ

where the coefficients μ and ν satisfy

μ2 ¼ −
F
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

4
þG2

r
;

ν2 ¼ F
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

4
þG2

r
; μν ¼ −G: ð70Þ

The transport vector fields are proportional to pa,

Ka
� ¼ ξ�pa; ð71Þ

where

ξ� ¼ 1 − σ�μ2: ð72Þ

The matrix Mb
d reduces to

Md
b ¼ ð2LF − 4LFFμ

2 þ 4LFGμν − LGGν
2Þpbpd: ð73Þ

Proof. If papa ¼ 0 and uaua ¼ 0, (55) is trivially
satisfied with both signs, i.e., the covector pa is lightlike
with respect to both optical metrics.Moreover, we read from
(66) and (67) that with respect to either of the two optical
metrics the covectors ua and va are orthogonal to pa and
lightlike. As two lightlike vectors are orthogonal with
respect to a Lorentzian metric if and only if they are linearly
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dependent, this proves that (69) has to hold with some
coefficients μ and ν. Then (70) follows from (46). Inserting
(69) into (65) and (41), respectively, yields (71) and (73).□
Recall that the eikonal equation requires the kernel of

Mb
d to be at least two-dimensional. Proposition (IV.4)

implies that the kernel is even three-dimensional if
uaua ¼ 0. We will now consider the case uaua ≠ 0.
Proposition IV.5. Assume that pa ¼ ∇aS is a solution

to one of the two eikonal equations, papa þ σuaua ¼ 0

where σ stands for σþ or for σ−. Let g̃ab ¼ gab þ σFacFb
c

be the corresponding optical metric and Ka ¼ g̃abpb be the
corresponding transport vector field. If uaua ≠ 0, the three
covectors pa, ua and va are linearly independent. They
span the orthocomplement of pa with respect to g̃ab. The
kernel of the matrix Mb

d consists of all covectors

að11Þb ¼ αub þ βvb þ γpb ð74Þ

where γ is arbitrary and α and β satisfy

�
m1

1 m1
2

m2
1 m2

2

��
α

β

�
¼

�
0

0

�
ð75Þ

where

�
m1

1 m1
2

m2
1 m2

2

�
¼ 2LFσ

�
1 0

0 1

�
−
�−4LFF 2LFG

2LFG −LGG

�

×

�
1 Gσ

Gσ 1þ Fσ

�
: ð76Þ

The kernel is three-dimensional if and only if pa ¼ ∇aS is a
solution of multiplicity two. The kernel is then spanned by
pd, ud, and vd, i.e., it coincides with the orthocomplement
of pb with respect to the optical metric.
Proof. Our assumption that uaua ≠ 0 implies, by (66)

and (67) together with g̃abpapb ¼ 0, that pa, ua, and va
are linearly independent and that they span the g̃ab-
orthocomplement of pa. After normalizing ua and va
with the help of (67) we may complement these three
covectors to a Newman-Penrose tetrad by choosing a
covector wa with

g̃abwapb ¼ 1; g̃abwawb ¼ 0;

g̃abwaub ¼ 0; g̃abwavb ¼ 0: ð77Þ

From (41) we calculate with the help of (47)

Mb
dwd¼2LFσuauawbþ2LFð1þσFfgFe

gwfpeÞpb; ð78Þ

Mb
dpd ¼ 0; ð79Þ

Mb
dud ¼ uauað2LFσ − 4LFF þ 2LFGGσÞub

þ uauað2LFG − LGGGσÞvb; ð80Þ

Mb
dvd ¼ uauað2LFGð1þ FσÞ − 4LGGGσÞub

þ uauað2LFσ − LGGð1þ FσÞ þ 2LFGGσÞvb:
ð81Þ

The first two equations (78) and (79) demonstrate thatMb
d

leaves the two-space spanned by wd and pd invariant and
that it has a one-dimensional kernel on this two-space. The
last statement follows from the fact that wd is not in the
kernel: It is mapped onto a covectorMb

dwd that is nonzero
if σ ¼ 0 (because then it is a nonzero multiple of pb) and
also if σ ≠ 0 (because then it has a nonzero component in
the direction of wb). The other two equations (80) and (81)
demonstrate that the two-space spanned by ud and vd is left
invariant as well. On this two-space the matrix Mb

d must
have a one-dimensional or two-dimensional kernel because
the eikonal equation requires that the kernel of the full
matrixMb

d is at least two-dimensional. By (80) and (81), a
covector αub þ βvb is in the kernel if and only if (75) holds
with (76). The determinant of the matrix (76) vanishes as a
consequence of the eikonal equation. Clearly, a (2 × 2)-
matrix has a two-dimensional kernel if and only if it is the
zero matrix. The matrix (76) is the zero matrix if and only if
the symmetric matrix

1

uauaD

�
m1

1 m1
2

m2
1 m2

2

��
1þFσ −Gσ
−Gσ 1

�

¼ 2LFσ

D

�
1þFσ −Gσ
−Gσ 1

�
þ
�−4LFF 2LFG

2LFG −LGG

�
ð82Þ

is the zero matrix, where D ¼ 1þ Fσ −G2σ2. By com-
parison with part (d) of Proposition IV.1 we see that this is
the case if and only if the two optical metrics coincide.
As we assume that uaua ≠ 0 this is true if and only if
pa ¼ ∇aS is a solution of multiplicity two. □

With these results at hand it is now easy to evaluate the
polarization condition. We do this first for solutions of
multiplicity two.
Proposition IV.6. Let pa ¼ ∇aS be a solution of

multiplicity two to the eikonal equation, i.e., papa þ
σþuaua ¼ 0 and papa þ σ−uaua ¼ 0. Then the two
transport vector fieldsKaþ ¼ pa − σþFabub andKa

− ¼ pa −
σ−Fabub are linearly dependent. The polarization condition

Mb
dað11Þd ¼ 0 is equivalent to Kd

�a
ð11Þ
d ¼ 0 (which holds

with one sign if and only if it holdswith the other sign), i.e., it

restricts að11Þd to a three-dimensional subspace which con-
tains pa.
Proof. If uaua ¼ 0, this follows from Proposition IV.4.

If uaua ≠ 0 it follows from Proposition IV.5. □

We now prove the analogous statement for solutions of
multiplicity one.
Proposition IV.7. Let pa ¼ ∇aS be a solution of

multiplicity one to the eikonal equation, i.e., papa þ
σuaua ¼ 0 with σ ¼ σþ or σ ¼ σ− but not with both.
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Then the polarization condition Mb
dað11Þd ¼ 0 is true if

and only if að11Þb ¼ αub þ βvb þ γpb where α and β satisfy

(75) with (76). This condition restricts að11Þb to a two-
dimensional subspace that contains pb.
Proof. This is an immediate consequence of

Proposition IV.5. □

We summarize the results of this section in the following
way. For every solution pa ¼ ∇aS to the eikonal equation

the polarization condition requires that að11Þb satisfies

Kbað11Þb ¼ 0whereKb is the corresponding transport vector
field. This may be interpreted as a transversality condition.
For a solution of multiplicity two there is no additional

restriction, i.e., að11Þb is confined to a three-dimensional
subspace that contains pb. By contrast, for a solution of

multiplicity one the polarization condition restricts að11Þb to a
two-dimensional space that contains pb, i.e., it fixes the

polarization plane (the plane spanned by að11Þb and pb)
uniquely.

V. EVALUATION OF THE FIRST-ORDER
FIELD EQUATION

We now turn to the first-order field equation which gives
us the two conditions (36) and (37). We can write them, in a
slightly more compact form, as

0¼∇aðχabcdpca
ð11Þ
d Þþpaχab

cd∇ca
ð11Þ
d þ iMb

dað21Þd ; ð83Þ

0 ¼ Mb
dað22Þd − ψab

cdefpapca
ð11Þ
d að11Þf : ð84Þ

We want to determine what kind of information these
equations give us on the polarization plane spanned by að11Þb
and pb.
We know from the preceding section that for a solution

of multiplicity one this plane is already uniquely fixed at
the zeroth-order level, so the first-order equations cannot
give us any additional information on this plane. One just
has to check for consistency, i.e., one has to verify that the
sum of the first two terms in (83) is in the image space of
Mb

d and that the second term in (84) is in the image space
of ψab

cdef. Then (83) and (84) give us polarization

conditions on að21Þd and að22Þd . We have already emphasized

that (84) is not in general satisfied by að22Þd ¼ 0, i.e., that
frequency doubling has to be taken into account if the field
equation should hold at first order, and that at the next order
in general also a nonzero að20Þ is needed.
As in this paper we will be satisfied with determining the

potential up to first order, there is nothing else to be done
for solutions of multiplicity one. Therefore, in the follow-
ing we will restrict ourselves to solutions of multiplicity
two. We know from the preceding section that then að11Þd is
restricted at the zeroth-order level only by the condition

Kdað11Þd ¼ 0. This condition restricts the polarization plane
to a three-dimensional space, i.e., it still allows the
polarization plane to arbitrarily rotate along a ray. We will
now demonstrate that the first-order equation (83) gives us
a transport law which uniquely determines the polarization
plane along a ray if it is given at one point of this ray.
We will consider first solutions of multiplicity two with
uaua ¼ 0 and then with uaua ≠ 0.

A. Transport equation in the case uaua = 0

For a solution of multiplicity two with uaua ¼ 0 the rays
are lightlike geodesics not only with respect to each of the
two optical metrics but also with respect to the spacetime
metric. (The affine parametrizations are in general differ-
ent.) For such a solution we have ua and va parallel to pa

and the matrix Mb
d projects onto the line spanned by pb,

recall Proposition IV.4. As a consequence, (83) reduces to

4LFpa∇aa
ð11Þ
b þ 2∇aðLFpaÞað11Þb

−∇aLGεab
cdpca

ð11Þ
d ¼ ψpb ð85Þ

where ψ is an undetermined scalar function. Recall from
Proposition IV.4 that in the case at hand the two transport
vector fields Kaþ and Ka

− are multiples of pa, i.e., that pa is
tangent to the rays. Therefore, (85) gives us a first-order

ordinary differential equation for að11Þb along each ray. As ψ
is arbitrary, for each initial condition this differential
equation has a solution that is unique up to a multiple
of pb. In other words, (85) gives us a unique transport law
for the polarization plane.

If ∇aLGεab
cdpca

ð11Þ
d ¼ 0, we read from (85) that the

polarization plane is parallel with respect to the transport
law defined by the Levi-Civita derivative of the spacetime
metric, as it is in the standard Maxwell vacuum theory; in
general, however, in a theory of the Plebański class a
background field with nonconstant LG produces a rotation
of the polarization plane. This gives us a new experimental
test of this type of theories in situations where the rays
behave as in the standard vacuum Maxwell theory but the
polarization plane does not. We will exemplify this with the
Born-Infeld theory in the next section.

B. Transport equation in the case uaua ≠ 0

We now consider a solution of multiplicity two with
uaua ≠ 0. For such solutionswe know fromProposition IV.5
that the matrixMb

d has a three-dimensional kernel spanned

by pb, ub, and vb, i.e., that a
ð11Þ
d is of the form

að11Þd ¼ αud þ βvd þ γpd: ð86Þ
By the same token, as the matrix Mb

d is self-adjoint with

respect to the spacetimemetric, (83) is truewith some að21Þd if
and only if the equation
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0 ¼ zbf∇aðχabcdpca
ð11Þ
d Þ þ paχab

cd∇ca
ð11Þ
d g ð87Þ

is true for zb ¼ pb, zb ¼ ub, and zb ¼ vb. It is easy to check
that for zb ¼ pb the equation is identically satisfied, for all

að11Þd of the form (86). Therefore, we only have to consider it
for zb ¼ ub and zb ¼ vb.
To that end, we recall that a solution of multiplicity two

with uaua ≠ 0 exists only if the two optical metrics
coincide. In the following we write σ for σþ ¼ σ− and
Ka for Kaþ ¼ Ka

−. If we express LFF, LFG, and LGG with
the help of part (d) of Proposition IV.1, we see that χabcd

can be written as

χab
cd ¼ LGεab

cd − 2LFðδcaδdb − δdaδ
c
bÞ

−
2LFσ

D
Fabðð1þ σFÞFcd − σG�FcdÞ

þ 2LFσ

D
�FabðσGFcd − �FcdÞÞ ð88Þ

where D ¼ 1þ σF − σ2G2.
If we insert this expression and (86) into (87) with xb ¼

ub and with xb ¼ vb, we get after some lengthy algebra the
two equations

4LFububKa∇aα ¼ aαþ bβ; ð89Þ
4LFububKa∇aβ ¼ aβ − bα; ð90Þ

where

a ¼ −2∇aðLFucucKaÞ; ð91Þ
b¼∇aLGεabcdpbvcud

þ2LFpbðpapx−pepegacÞð�Fa
d∇cFdbþFa

d∇c
�FdbÞ:

ð92Þ
These equations determine the change of α and β and, thus,
of the polarization plane, along each ray. In particular, b
determines the rotation of the polarization plane with
respect to the basis covectors ub and vb which are
orthogonal to each other, but not parallely transported,
with respect to the optical metric.

VI. EXAMPLE: BORN-INFELD THEORY

As an example, we consider the transport law for the
polarization plane in the Born-Infeld theory [1] where the
Lagrangian is given by (10). In this case, for any back-
ground field, the two optical metrics coincide,

σþ ¼ σ− ¼ −1
b20 þ F

; ð93Þ

g̃abþ ¼ g̃ab− ¼ gab −
FacFb

c

b20 þ F
ð94Þ

so there is no birefringence and every solution to the
eikonal equation is a solution of multiplicity two.
Weassume that the underlying spacetime is theMinkowski

spacetime with standard inertial coordinates (x0¼ct;x1;
x2;x3), i.e., gab¼ηab where ðηabÞ¼diagð−1;1;1;1Þ. As the
background field we choose the superposition of a time-
dependent electric field and a constantmagnetic field, both in
x3 direction; so the only nonvanishing components of the
field strength tensor are

F03 ¼ −F30 ¼
EðtÞ
c

; F12 ¼ −F21 ¼ B0: ð95Þ

Note that the homogeneous Maxwell equation is indeed
satisfied, εabcd∇bFcd ¼ 0. For this electromagnetic field,

pa ¼∇aS; Sðx0;x1;x2;x3Þ¼ 1

c
ðx3−x0Þ¼ x3

c
− t ð96Þ

is a principal null covector field, pbpb ¼ 0 and

ua ¼ Fabpb ¼ −EðtÞpa; ð97Þ
va ¼ �Fabpb ¼ −cB0pa; ð98Þ

so the eikonal equation is satisfied with uaua ¼ 0. The
transport vector field Ka is proportional to pa, i.e., the rays
are straight lightlike lines in x3 direction. Note that they are
lightlike not only with respect to the spacetime metric; they
are lightlike geodesics alsowith respect to the optical metric.
WhereasKa is adapted to an affine parameter with respect to
the optical metric, pa is adapted to the parametrization with
the time coordinate t which is an affine parameter with
respect to the spacetime metric.

The amplitude að11Þb must be orthogonal to pc with
respect to the spacetime metric, so we may write it in the
form

að11Þb ¼ ζðδ1b cosφþ δ2b sinφÞ þ γpb ð99Þ

with scalar coefficients ζ and γ and an angle φwhich gives,
at each point along the ray, the rotation of the polarization
plane with respect to the ðx1; x2Þ basis vectors which are
parallel with respect to the Levi-Civita derivative of the
metric along the ray.
For the electromagnetic field (95), the partial derivatives

of the Lagrangian are

LF ¼ −1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

b2
0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − EðtÞ2

c2b2
0

r ; ð100Þ

LG ¼ −B0EðtÞ
cb20

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

0

b2
0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − EðtÞ2

c2b2
0

r : ð101Þ
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With these results, inserting (99) into (85) yields

_φ ¼ −B0
dEðtÞ
dt

2cb20ð1 − EðtÞ2
c2b2

0

Þ
ð102Þ

where the overdot means derivative with respect to t along
the ray,pa∇aφ ¼ _φ.We see that the time-dependence ofLG
produces a rotation of the polarization plane. Integrating
(102) from t1 ¼ 0 with Eðt1Þ ¼ 0 to a time t2 with Eðt2Þ ¼
E0 gives

Δφ¼ B0

2b0
arctanh

�
E0

cb0

�
¼B0E0

2cb20

�
1þO

�
E2
0

c2b20

��
: ð103Þ

In principle, this can be utilized for a new laboratory test of
the Born-Infeld theory. If in the considered constellation
with strong fields E0 and B0 no rotation of the polarization
plane is detected, this gives a lower bound on b0. However,
the effect on the polarization plane is so small that with
present-day technology this test of the Born-Infeld theory is
not yet competitive with other tests. E.g., in Ref. [16] we
have seen that with interferometric methods one could find a
bound on b0 in the order of b0 ≳ 7 × 107 T which corre-
sponds to b0 ≳ 7 × 1011

ffiffiffi
g

p
=ð ffiffiffiffiffiffi

cm
p

sÞ in Gaussian units.
Assuming that a rotation of the polarization plane by one
arcminute could be measured, Δφ ≈ 3 × 10−4 rad, we
would need electric and magnetic fields of

����B0

E0

c

���� ≈ 3 × 1012 T2 ð104Þ

for being competitive with the interferometric test. This is
not reachable in a laboratory experiment in the near future.

VII. CONCLUSIONS

It was the main purpose of this paper to derive the
transport law of the polarization plane in nonlinear vacuum
electrodynnamics. We have done this, on an unspecified
general-relativistic spacetime, for a theory of the Plebański
class and an electromagnetic background field which were
arbitrary except for some nondegeneracy conditions. To
that end we have utilized an approximate-plane-harmonic-
wave ansatz which takes the generation of higher harmon-
ics and frequency rectification into account. According to
this ansatz, the electromagnetic field is written as an
asymptotic series with respect to a parameter α where
the limit α → 0 refers to sending the frequency to infinity.
We have seen that the generalized Maxwell equations have
to be solved to zeroth and to first order with respect to α for
determining the transport law of the polarization plane in
lowest nontrivial order.
When considering the generalized Maxwell equations to

zeroth order, we have rederived the known result that, for

every theory of the Plebański class and every background
field that satisfy the assumed nondegeneracy conditions,
there are two optical metrics which are both of Lorentzian
signature. For a solution of the zeroth-order equations one
needs a scalar function, the so-called eikonal function S,
whose gradient pb ¼ ∇bS is lightlike with respect to at
least one of the two optical metrics, and a covector field,

að11Þb , which has to satisfy an algebraic equation known as
the zeroth-order polarization condition.
We have seen that two cases have to be distinguished.

The first case is that of a solution of multiplicity one, i.e.,
the case that pb ¼ ∇bS is lightlike with respect to only one
of the optical metrics. Then the polarization plane (i.e., the

plane spanned by að11Þb and pb) is uniquely determined by
the zeroth-order polarization condition. The first-order
equations give no additional information on the polariza-
tion plane and have to be checked only for consistency.
The second case is that of a solution of multiplicity two,
i.e., the case that pb ¼ ∇bS is lightlike with respect to both
optical metrics. Then the zeroth-order polarization con-
dition allows an arbitrary rotation of the polarization
plane along each ray. However, the generalized Maxwell
equations at first order give us a transport equation
which determines the polarization plane uniquely along
a ray if it is given at one point of this ray. This transport law
has a fairly simple form in the case that pb is a principal
null covector of the electromagnetic background field,
Fa

bpb ∼ pa, see Sec. VA. It is much more awkward if
this is not the case, see Sec. V B.
We have exemplified the general results with the Born-

Infeld theory. In this theory the two optical metrics
coincide, i.e., all solutions of the eikonal equation are of
multiplicity two. We have considered a particular solution
where pb is a principal null covector of a background field
on Minkowski spacetime. In this example, the rays are
straight lightlike lines, i.e., the light propagation is the same
as in the standard Maxwell vacuum theory. However, the
behavior of the polarization plane is different: Whereas in
the standard Maxwell theory it is parallely transported
along each ray, here it rotates with respect to a parallely
transported plane by an angle Δφ. This is a feature that
could be observed in a laboratory experiment, sometimes in
the future, when sufficiently strong fields are available.
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