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We investigate the quantum radiation emitted by a uniformly accelerated Unruh-DeWitt detector in de
Sitter spacetime. We find that there exists a nonvanishing quantum radiation at late times in the radiation
zone of the conformally flat coordinates, which cover the region behind the cosmological horizon for the
accelerated detector. The theoretical structure of producing the late-time quantum radiation is similar to that
of the same model in Minkowski spacetime: it comes from a nonlocal correlation of the quantum field in the
Bunch-Davies vacuum state, which can be traced back to the entanglement between the field modes defined
in different regions in de Sitter spacetime.
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I. INTRODUCTION

A localized object linearly and uniformly accelerated in
the Minkowski vacuum would experience a thermal noise
at a temperature proportional to its proper acceleration
[1,2]. This effect can be obtained straightforwardly by well-
established theories, but it is very difficult to detect in
laboratories since the overall factor in the above “Unruh
temperature” of the noise is so tiny that the proper
acceleration of the localized object has to be very large
for detectable signals. One possibility in experiment may
be using intense laser fields to accelerate charged particles,
as proposed in Refs. [3–7], where the main observable is
the quantum correction by the above “Unruh effect” to the
classical radiation of the charges accelerated by laser fields.
A major concern in those proposals is that quantum
fluctuations of the field driving the charge and the response
of the driven charge are perfectly coherent under equilib-
rium conditions at late times. It has been shown that in
(1þ 1)-dimensional Minkowski spacetime, indeed, a uni-
formly accelerated Unruh-DeWitt detector with derivative
coupling has no quantum radiation under equilibrium
conditions because of quantum interference [8–10]. It
seems that the only chance of detecting something would
be in nonequilibrium situations.1

While the equilibrium argument for the vanishing late-time
quantum radiation in (1þ 1) dimensions sounds convincing,
it turns out that a uniformly accelerated Unruh-DeWitt
detector in (3þ 1)-dimensional Minkowski spacetime still
emits nonzero quantum radiation after relaxation, though the
radiation does not originate from the thermal radiance that the
detector experiences as in the Unruh effect [13]. This implies
that more physics than equilibrium conditions have been
involved in the late-time quantum radiation associated with
the Unruh effect. Recently, the authors of Refs. [14–16]
pointed out that the quantum radiation in similarmodels does,
in fact, originate from a nonlocal property of the Minkowski
vacuum state of a field, which induces the Unruh effect at the
same time.Thequantumradiation is nonvanishing, in general,
and the vanishing result obtained earlier in (1þ 1) dimen-
sions is a special case due to the property of the field theory in
two-dimensional Minkowski spacetime.
For a uniformly accelerating localized object, the Rindler

coordinates would be its natural reference frame [17]. The
Rindler coordinates only cover a part of Minkowski
spacetime, called the R-wedge, which is causally discon-
nected with its conjugate Rindler wedge constructed on its
opposite side (the L-wedge). It is well known that the
Minkowski vacuum state of a field can be described by an
entangled state of the Fock states of the field modes defined
separately in those two Rindler wedges [1,18,19]. The
entanglement between the field modes in the two wedges*sylin@cc.ncue.edu.tw
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1The laser field is never static, and the acceleration of the
driven charge is not uniform. In such nonequilibrium conditions,
the quantum radiation of an Unruh-DeWitt detector is indeed
nonzero [11,12]. However, nonequilibrium conditions are not the
main point of this paper, see below.
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can be understood as the origin of quantum radiation
produced by a uniformly accelerated Unruh-DeWitt detec-
tor under equilibrium conditions [14–16].
The above insight from the simple Unruh-DeWitt detec-

tor models also applies to the quantum radiation by a
relativistic charged particle in uniform acceleration coupled
to vacuum fluctuations [20,21]. One may wonder if this
observation is general in any spacetime with similar
properties such as the existence of different timelike
Killing vectors in different coordinates and so different
stationary states of the field, and that some coordinates only
cover part of the space and others are global, etc.
De Sitter spacetime is maximally symmetric and suffi-

ciently simple, while it is important in describing the
inflationary phase of the early Universe as well as the
accelerating expansion of our Universe at the present
epoch. Properties of the quantum fields in de Sitter
spacetime have recently attracted much attention in rela-
tivistic quantum information and cosmology [22–28]. It is
well known that vacuum fluctuations of quantum fields in
de Sitter spacetime exhibit thermal properties [2,17,29–32]
characterized by the Gibbons-Hawking temperature TGH ¼
H=2π, where H is the Hubble parameter [29]. It is also
known that an Unruh-DeWitt detector uniformly acceler-
ated in de Sitter spacetime would experience thermal
fluctuations at a temperature T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ A2

p
=2π with the

proper acceleration A in the weak coupling limit, reflecting
the combination of the Unruh effect and the Gibbons-
Hawking effect [33]. The quantum radiation produced by
an Unruh-DeWitt detector in de Sitter spacetime, including
both the cases of inertial and uniformly accelerated
detectors, would be a good starting point for our study
beyond Minkowski spacetime.
Nevertheless, not every nice model in Minkowski

spacetime behaves normally in de Sitter spacetime. For
example, if a massless scalar field is minimally coupled to
the scalar curvature of the background de Sitter spacetime,
a classical particle coupled to the field with a monopole
interaction can radiate even in inertial motion, as shown in
Ref. [34], where the authors found that in response to this
classical radiation the mass of the particle decreases in time
and never reach an equilibrium state. Fortunately, in
Ref. [35], the authors investigated various models and
found that in de Sitter spacetime, inertial charges moving in
(i) electromagnetic fields, or (ii) a massless scalar field
conformally coupled to the scalar curvature, do not emit
classical radiation.2 The charged particles or detectors
interacting with the scalar field (ii) possess the simplest
possibilities for considering the quantum radiation under
equilibrium conditions in de Sitter spacetime.
The photon emission of a spinless electric charge in de

Sitter spacetime has been calculated in Refs. [37,38], along

the same line of Refs. [39,40], using the time-dependent
perturbation theory in the in-out formalism. However,
time dependent perturbation theory gives the radiation
rates in transient rather than those at late times. For our
purpose, we have to go beyond the perturbation theory.
In the present paper, therefore, we will start with an exactly
solvable model for an Unruh-DeWitt detector in (3þ 1)-
dimensional de Sitter spacetime, with the internal harmonic
oscillator minimally coupled to a massless scalar field
while the quantum field conformally coupled to the scalar
curvature of the classical spacetime. We will demonstrate
that an Unruh-DeWitt detector in uniform acceleration
produces late-time quantum radiation, while an inertial
detector along a geodesic does not. The origin of this
nonvanishing late-time quantum radiation under equilib-
rium conditions can be interpreted as a consequence of the
nonlocal correlation of the vacuum state in de Sitter
spacetime. This quantum radiation is different from the
one emitted by the Unruh-DeWitt detector in oscillatory or
circular motion in the late-time nonequilibrium stationary
state [11,12,41–44].
This paper is organized as follows. In Sec. II, we

introduce the model consisting of an Unruh-DeWitt detec-
tor and a massless scalar field in (3þ 1) dimensional de
Sitter spacetime. We assume that the detector follows a
trajectory in uniformly acceleration. Then, in Sec. III, the
Heisenberg equations are solved under the stationary-state
condition. We compute the two-point function of the field
in Sec. IVand find that a cancellation similar to the models
in Minkowski spacetime also occurs in de Sitter spacetime.
We then compute the expectation value of the stress-energy
tensor and the energy radiation rate in Sec. V from the
remaining terms of the two-point function of the field.
A discussion on (1þ 1)-dimensional case is given in
Sec. VI before our conclusion in Sec. VII. Throughout
the paper, we use the unit c ¼ ℏ ¼ 1.

II. DETECTOR-FIELD MODEL IN
DE SITTER SPACETIME

A. Equations of motion

In the flat coordinates of de Sitter spacetime, the line
element is written as

ds2 ¼ dt2 − a2ðtÞdx2; ð1Þ

where the scale factor is given by aðtÞ ¼ eHt with a
constant H and the cosmic time t. Here the spatial section
of the line element is described by the comoving coordinate
dx2¼δijdxidxj, for which we use the notation ðx1;x2;x3Þ¼
ðx;x⊥Þ.
In de Sitter spacetime, we consider the model consisting

of a detectorQ and a massless scalar field ϕ with the action

S ¼ S0ðQÞ þ SintðQ;ϕÞ þ S0ðϕÞ; ð2Þ
2This does not imply that the models with the inertial charges

radiating in de Sitter spacetime are ill-behaved, see [36].
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with

S0ðQÞ ¼
Z

dτ
1

2
ðð∂τQÞ2 − Ω2

0Q
2Þ; ð3Þ

S0ðϕÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
fgμν∂μϕ∂νϕ − ξRϕ2g; ð4Þ

SintðQ;ϕÞ ¼ λ

Z
dτ

Z
d4xQðτÞϕðxÞδð4ÞD ðx − zðτÞÞ

¼ λ

Z
dτQðτÞϕðzμðτÞÞ; ð5Þ

where zμðτÞ denotes the detector’s trajectory parametrized
by its proper time τ in the coordinates (1), and ξ is
the nonminimal coupling constant to the spacetime
curvature. In the present paper we adopt the conformal
coupling ξ ¼ 1=6.
The Heisenberg equations of motion give

∂2
τQ̂þΩ2

0Q̂ ¼ λϕ̂ðzðτÞÞ ð6Þ

1

a3
∂tða3∂tϕ̂Þ −

△ϕ̂

a2
þ ξRϕ̂ ¼ λ

a3

Z
dτQ̂ðτÞδ4Dðx − zðτÞÞ:

ð7Þ

Here we used the coordinates (t, x, x⊥) of Eq. (1), then
δ4Dðx − zðτÞÞ should be understood as

δ4Dðx − zðτÞÞ ¼ δDðt − tðτÞÞδ3ðx − zðτÞÞ: ð8Þ

Introducing the conformal time ηð−∞ < η < 0Þ by

eHt ¼ −
1

Hη
≡ aðηÞ; ð9Þ

the line element Eq. (1) can be rewritten as

ds2 ¼ aðηÞ2ðdη2 − dx2Þ ¼ aðηÞ2ημνdx̄μdx̄μ; ð10Þ

Let us introduce the field χðxÞ by rescaling the field ϕ,

ϕ̂ ¼ χ̂

a
: ð11Þ

Then the equations of motion reduce to

∂2
τQ̂þ Ω2

0Q̂ ¼ λ
χ̂ðz̄ðτÞÞ
aðtðτÞÞ ; ð12Þ

∂2
ηχ̂ −△χ̂ ¼ λ

Z
dτ
aðτÞ Q̂ðτÞδ4Dðx̄ − z̄ðτÞÞ; ð13Þ

where x̄μ ¼ ðη;xÞ ¼ ðη; x; x1⊥; x2⊥Þ, and δ4Dðx̄ − z̄ðτÞÞ in
Eq. (13) means

δ4Dðx̄ − z̄ðτÞÞ ¼ δDðη − ηðτÞÞδ3ðx − zðτÞÞ; ð14Þ

where we have used the relation δDðt − tðτÞÞ ¼
δDðη − ηðτÞÞ=aðτÞ. Note that ∂2

η −△≡ □̄ in Eq. (13) is
the d’Alembert operator with respect to the (conformally
transformed) flat spacetime coordinate metric ημν.

B. Uniform acceleration in de Sitter space

Below we present the detector’s trajectory in uniform
acceleration in de Sitter spacetime, which is denoted by
zμðτÞ in the coordinates of Eq. (1), or equivalently by z̄μðτÞ
with the coordinates of Eq. (10). Consider a detector that
moves along the trajectory given in [33],

xeHt ¼ K; x2 ¼ x3 ¼ 0; ð15Þ

where K is a constant, in the coordinates of (1). Then one
has dτ2¼dt2þaðtÞ2dx2¼ð1−K2H2Þdt2, which implies

t ¼ τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p ; ð16Þ

if we choose τ ¼ 0when t ¼ 0. So, the four velocity of this
detector is

vμ ¼ dzμ

dτ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −H2K2
p d

dt
ðt; Ke−Ht; 0; 0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p ð1;−HKe−Ht; 0; 0Þ; ð17Þ

which gives vμvμ ¼ 1. The four acceleration vector of the
trajectory now reads

aμ ¼ dvμ

dτ
¼ 1

1 −H2K2
ðH3K2;−H2Ke−Ht; 0; 0Þ; ð18Þ

which satisfies

aμaμ ¼ −
H4K2

1 −H2K2
≡ −A2; ð19Þ

where the proper acceleration A is a constant of time. In this
sense zμðτÞ is under uniform acceleration.
In the static coordinates for de Sitter space, the worldline

zμ is actually a timelike curve with a positive constant r,
which is the distance from the detector to the observer at the
origin (r ¼ 0).
Writing

aðtðτÞÞ ¼ eHtðτÞ ¼ eHτ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2K2

p ≡ eατ; ð20Þ

where we defined

α ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þH2

p
; ð21Þ
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then the trajectory of the uniformly accelerated detector can
be parametrized by its proper time in the coordinates (1) as

zμðτÞ ¼ ðτ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p
; Ke−Hτ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−H2K2

p
; 0; 0Þ; ð22Þ

or in the conformally flat coordinates (10) as

z̄μ ¼
�
−
e−ατ

H
;Ke−ατ; 0; 0

�
; ð23Þ

which is a straight line satisfying z̄μz̄μ ¼ α−2 in the chart
(see Fig. 1).
We note that the hypersurfaces η2 − ρ2 ¼ 0, ρ≡ jxj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ jx⊥j2

p
are the horizons for a local observer at rest

along the worldline (η, 0, 0, 0) in the conformally flat
coordinates (10) (which are the r ¼ 1=H hypersurfaces in
the static coordinates for de Sitter space). Analogous to the
Rindler wedges in Minkowski space, below we call the
regions with η2 − ρ2 > 0 and η2 − ρ2 < 0 as the R-region
and F-region, respectively (see Fig. 1). The whole worldline
of the uniformly accelerated detector (23) is inside the
R-region and has a two-way causal connection with the
inertial observer resting at the spatial origin.

III. SOLUTION FOR THE DETECTOR-FIELD
EQUATIONS

A. Detector’s equation of motion
with radiation reaction

Equation (13) can be formally solved to obtain

χ̂ ¼ χ̂hðx̄Þ þ χ̂inhðx̄Þ; ð24Þ

where χh is the homogeneous solution, which is given by
the free quantized field, and χinh is the inhomogeneous
solution given by

χ̂inhðx̄Þ ¼ λ

Z
d4x̄0ḠRðx̄; x̄0Þ

Z
∞

τ0

dτ
aðτÞ Q̂ðτÞδ4Dðx̄0 − z̄ðτÞÞ;

ð25Þ

in the conformally flat coordinates, assuming the coupling
is switched-on at τ ¼ τ0. Here the retarded Green’s function

ḠRðx̄; x̄0Þ≡ 1

4π
δDðσ̄Þθðη − η0Þ; ð26Þ

with Synge’s world function

σ̄ðx̄; x̄0Þ ¼ 1

2
ημνðx̄μ − x̄0μÞðx̄ν − x̄0νÞ

¼ 1

2
ððη − η0Þ2 − jx − x0j2Þ; ð27Þ

is simply identical to the one in Minkowski space by virtue
of the conformal coupling to the curvature. The retarded
Green’s function can be more complicated in the cases with
ξ ≠ 1=6 (e.g., for the minimal coupling (ξ ¼ 0), see
Ref. [34]).
Inserting the worldline (22) into (25) while taking into

account the relation between the cosmic time and the
conformal time with (9) and (20), we have

χ̂inhðx̄Þ ¼ λ

Z
0

ζ0

dζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p
ḠRðx̄; z̄ðζÞÞQ̂ðτðζÞÞ; ð28Þ

with

ζ ¼ −
1

H
e−ατ ð29Þ

and ζ0 ¼ ζðτ0Þ. In solving (12), one needs to know χ̂inhðz̄Þ,
but χ̂inhðx̄Þ ∝ jx̄ − z̄ðζÞj−1 diverges in the coincidence
limit x̄ → z̄ðζÞ. To control the divergence, we may use
the regularized retarded Green’s function [13,45],

ḠΛ̄
Rðx̄; x̄0Þ¼

1

4π

ffiffiffi
8

π

r
Λ̄2e−2Λ̄

4σ̄2θðη−η0Þ !Λ̄→∞
ḠRðx̄; x̄0Þ; ð30Þ

where we introduce the UV regulator Λ̄ in the conformally
transformed flat spacetime of the coordinate x̄μ following
the philosophy of the effective field theory. Then we have
the local expansion

λ

Z
0

ζ0

dζ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p
ḠRðz̄ðζÞ; z̄ðζ0ÞÞQ̂ðτðζ0ÞÞ

≃
λ

4π

�
Λ̄β −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2K2

p d
dζ

þOðΛ̄−1Þ
�
Q̂ðτðζÞÞ ð31Þ

where β ¼ 27=4Γð5=4Þ=π1=2, and we have used

FIG. 1. Penrose diagram of the conformally flat coordinates for
de Sitter space. The bold solid curve represents the worldline of
the uniformly accelerated detector, which is a straight line in the
conformally flat coordinates.
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1

2
ημνðx̄μðζÞ − x̄μ0ðζ0ÞÞðx̄νðζÞ − x̄ν0ðζ0ÞÞ

¼ 1

2
ð1 −H2K2Þðζ − ζ0Þ2: ð32Þ

Substitute (24) and (28) with (31) into (12), we find that
Eq. (12) reduces to

�
d2

dτ2
þ 2γ

d
dτ

þ Ω2

�
Q̂ðτÞ ¼ λ

aðtðτÞÞ χ̂hðz̄ðτÞÞ; ð33Þ

in the large Λ limit. Here γ ≡ λ2=8π, and we have
introduced Λ̄=a ¼ Λ and a renormalized frequency,

Ω2 ¼ Ω2
0 −

λ2Λβ
4π

: ð34Þ

We note that Λ is the UV cutoff with respect to the proper
time of the detector, corresponding to the shortest timescale
of the detector and the highest frequency of the field modes
that the detector can sense. So Λ should be taken as a
constant in the physical coordinate of the detector, while
Λ̄ ¼ aðηÞΛ would depend on the conformal time η, which
is not directly measurable anyway. For the regulator Λ̄
depending only on η and independent of η0 in (30), the
expansion in (31) has the same form as the one for a
constant Λ̄.
In this paper, we are interested in the late-time behavior

of the field (τ0, ζ0 → −∞). The late-time steady state
solution for Eq. (33) is given by

Q̂ðτÞ ¼ 1

2π

Z
∞

−∞
dωQ̃ðωÞe−iωτ; ð35Þ

where

hðωÞ ¼ 1

−ω2 − 2iωγ þΩ2
; ð36Þ

Q̃ðωÞ ¼ λhðωÞδφ̃ðωÞ; ð37Þ

with the Fourier-transformed homogeneous solution for the
field δφ̃ with respect to τ defined by

χ̂hðz̄ðτÞÞ
aðtðτÞÞ ¼ 1

2π

Z
dωδφ̃ðωÞe−iωτ: ð38Þ

Then the inhomogeneous solution (25) can be written as

χinhðx̄Þ ¼
λ2

2π

Z
∞

−∞
dωhðωÞδφ̃ðωÞ

Z
∞

−∞

dτ
aðtðτÞÞ

× e−iωτḠRðx̄ − z̄ðηðτÞÞÞ ð39Þ

at late times.

IV. TWO-POINT FUNCTION OF FIELD

Now, we consider the two-point function defined by

hχ̂ðx̄Þχ̂ðx̄0Þi − hχ̂hðx̄Þχ̂hðx̄0Þi
¼ hχ̂inhðx̄Þχ̂hðx̄0Þi þ hχ̂hðx̄Þχ̂inhðx̄0Þi þ hχ̂inhðx̄Þχ̂inhðx̄0Þi;

ð40Þ

assuming that the quantum field is initially in the Bunch-
Davies vacuum [17,30].

A. Inhomogeneous term hχ inhðx̄Þχ inhðx̄0Þi
The correlation function of the inhomogeneous solu-

tions, namely, the last term of Eq. (40), in the Bunch-Davies
vacuum, can be worked out straightforwardly:

hχ̂inhðx̄Þχ̂inhðx̄0Þi ¼
−iλ2H2

ð4πÞ2α2Rðx̄ÞRðx̄0Þ
Z

dω
2π

½hðωÞ

− hð−ωÞ� e
−iωðτF−ðx̄Þ−τF−ðx̄0ÞÞ

1 − e−2πω=α
: ð41Þ

Here we have used the identity

hðωÞ − hð−ωÞ ¼ 4iγωjhðωÞj2; ð42Þ

which has the form of the fluctuation-dissipation theorem.
One can read off the Gibbons-Hawking-Unruh temperature
Tα ¼ α=ð2πkBÞ from the Planck factor in the integrand of
the above result. Since we have taken the frequency ω with
respect to the proper time τ of the uniformly accelerated
detector in (35), Tα may be interpreted as the temperature
experienced by the detector in the Bunch-Davies vacuum in
the weak-coupling limit.

B. Interference term hχ̂ hðx̄Þχ̂ inhðx̄0Þi
The first term on the right hand side of Eq. (40) can be

expressed as

hχ̂hðx̄Þχ̂inhðx̄0Þi ¼ λ2
Z

dτ
1

aðtðτÞÞ
1

2π

Z
dωhðωÞe−iωτ

× ḠRðx̄0 − z̄ðζÞÞhχ̂hðx̄Þδφ̃i; ð43Þ

in which, by (38),

hχ̂hðx̄Þδφ̃i ¼
Z

∞

−∞
dτ

hχ̂hðx̄Þχ̂hðz̄ðτÞÞi
aðtðτÞÞ eiωτ ð44Þ

with the positive frequency Wightman function
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hχ̂hðx̄Þχ̂hðz̄ðτÞÞi

¼ −
1

4π2½ðη − ζðτ − iεÞÞ2 − ðxþ KHζðτ − iεÞÞ2 − x2⊥�
¼ −

1

8π2σ̄ðx̄; z̄ðτÞÞ ð45Þ

(ε → 0þ) in the Bunch-Davies vacuum, which is equiv-
alent to Minkowski space Wightman function. The poles of
the above integrand on the complex plane of τ will be found
by solving ζðτÞ in

0 ¼ 2σ̄ðx̄; z̄ðτÞÞ ¼ ðη − ζðτ − iεÞÞ2
− ðxþ KHζðτ − iεÞÞ2 − x2⊥

¼ ð1 − K2H2Þζ2 − 2ðηþ KHxÞζ þ η2 − ρ2: ð46Þ
The poles will depend on the sign of η2 − ρ2. Below we
discuss the cases with x̄μ in the R-region (η2 − ρ2 > 0) and
in the F-region (η2 − ρ2 < 0) separately.
For x̄μ in the R-region, η2 − ρ2 > 0, and the poles in the

complex τ plane are located at

τ ¼ τR� þ i2πn=α − iε; ðn ¼ 0;�1;�2; � � �Þ; ð47Þ
where τR� are the principal values defined by

τR�ðx̄Þ≡ −
1

α
ln

�
α2

H
ð−η −HKx ∓ Rðx̄ÞÞ

�
ð48Þ

with

Rðx̄Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHKηþ xÞ2 þ ð1 −H2K2Þx2⊥

q
: ð49Þ

In fact, R is the counterpart of the Minkowski retarded
distance [46] in the conformally flat coordinates for de
Sitter space, namely,

���� ddη σ̄ðx̄; z̄ðτÞÞ
����
τ¼τR−

¼ Rðx̄Þ: ð50Þ

Applying the residue theorem to the integration, we
obtain
Z

∞

−∞
dτ

eiωτ

eατ½ðη − ζðτÞ − iεÞ2 − ðxþ KHζðτÞÞ2 − x2⊥�

¼ −iπH
αRðx̄Þ

�
eiωτ

R
−

e2πω=α − 1
−

eiωτ
R
þ

e2πω=α − 1

�
: ð51Þ

For x̄μ in the F-region, η2 − ρ2 < 0, the poles are
located at

τ ¼ τF− þ i2πn=α − iε; and τFþ þ iπð2n − 1Þ=α;
ðn ¼ 0;�1;�2; � � �Þ; ð52Þ
where τF� are defined by

τF�ðx̄Þ≡ −
1

α
ln

�
α2

H
ð�ðηþHKxÞ þRðx̄ÞÞ

�
: ð53Þ

Still, Rðx̄Þ ¼ j d
dη σ̄ðx̄; z̄Þjτ¼τF−

is the counterpart of the

Minkowski retarded distance here. By the residue theorem,
we obtain

Z
∞

−∞
dτ

eiωτ

eατ½ðη − ζðτÞ − iεÞ2 − ðxþ KHζðτÞÞ2 − x2⊥�

¼ −iπH
αRðx̄Þ

�
eiωτ

F
−

e2πω=α − 1
−
eπω=αeiωτ

F
þ

e2πω=α − 1

�
: ð54Þ

C. Subtracted two-point function of field in F-region

In a similar way to the case of an accelerated detector in
Minkowski spacetime [14–16], we will show that the
inhomogeneous term cancels out by the interference term.
Since we are interested in the quantum radiation, which is
evaluated in the F-region, we here consider the case
η2 − ρ2 < 0. In this case, summarizing the result in the
previous section, we have

hχ̂hðx̄Þχ̂inhðx̄0Þi¼
−iλ2H2

ð4πÞ2α2Rðx̄ÞRðx̄0Þ
Z

dω
2π

hðωÞ

×

�
eπω=αeiωðτFþðx̄Þ−τF−ðx̄0ÞÞ

e2πω=α−1
−
eiωðτF−ðx̄Þ−τF−ðx̄0ÞÞ

e2πω=α−1

�
:

ð55Þ

The eiωðτF−ðx̄Þ−τF−ðx̄0ÞÞ term in the integrand of the above result
and the conjugate term in hχ̂inhðx̄Þχ̂hðx̄0Þi will cancel the
whole inhomogeneous term hχ̂inhðx̄Þχ̂inhðx̄0Þi in (41), so the
subtracted two-point function of the field reduces to

hχ̂ðx̄Þχ̂ðx̄0Þi− hχ̂hðx̄Þχ̂hðx̄0Þi ¼
−iλ2H2

ð4πÞ2α2Rðx̄ÞRðx̄0ÞF ðx̄; x̄0Þ;

ð56Þ

where we defined

F ðx̄; x̄0Þ≡
Z þ∞

−∞

dω
2π

eπω=α

e2πω=α − 1
½hðωÞe−iωðτF−ðx̄Þ−τFþðx̄0ÞÞ

− hð−ωÞe−iωðτFþðx̄Þ−τF−ðx̄0ÞÞ� ð57Þ

for x̄, x̄0 are both in the F-region. In terms of the original
nonscaled scalar field ϕ, the subtracted two-point function
of the field is simply

hϕ̂ðx̄Þϕ̂ðx̄0Þiren ≡ hϕ̂ðx̄Þϕ̂ðx̄0Þi − hϕ̂hðx̄Þϕ̂hðx̄0Þi

¼ −iλ2H2F ðx̄; x̄0Þ
ð4πÞ2α2aðηÞRðx̄Þaðη0ÞRðx̄0Þ : ð58Þ
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We note that the fluctuation-dissipation relation in the form
of Eq. (42) plays an important role in the cancellation of the
inhomogeneous term.
The whole integrand of F in (57) converges as ω → 0.

However,whenwe remove the square brackets and break the
integrand into two terms in order to get a closed form of the
integral, each term is singular at ω ¼ 0 due to the Planck
factor. One can introduce a regulator ϵ → 0þ to the Planck
factor for convenience to regularize the singularity, e.g.,

1=ðe2πω=α − 1Þ → 1=ðe2πðωþiϵÞ=α − 1Þ. The result should not
depend on the sign of the regulator ϵ, which can be checked
by numerical method as well as analytically as shown in
Appendix B of Ref. [20]. In addition to the poles ω ¼ inα,
n ∈ Z, for the Planck factor in Eq. (57), the function hðωÞ
defined in (36) has two poles at ω ¼ Ω�, where Ω� ≡ γ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 −Ω2

p
for Ω < γ and Ω� ≡ γ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − γ2

p
for Ω > γ.

So F ðx̄; x̄0Þ in (57) can be expressed as

F ðx̄; x̄0Þ ¼ i
2πðΩþ − Ω−Þ

�
θðτ̄− − τ̄0þÞ

�X∞
n¼0

� ð−1Þnα
nα − Ω−

−
ð−1Þnα
nα − Ωþ

�
e−nαðτ̄−−τ̄0þÞ þ πe−Ω−ðτ̄−−τ̄0þÞ

sinðπΩ−=αÞ
−
πe−Ωþðτ̄−−τ̄0þÞ

sinðπΩþ=αÞ
�

þ θðτ̄0þ − τ̄−Þ
�X∞
n¼1

� ð−1Þnα
nαþ Ω−

−
ð−1Þnα
nαþΩþ

�
e−nαðτ̄0þ−τ̄−Þ

�

þ θðτ̄0− − τ̄þÞ
�X∞
n¼1

� ð−1Þnα
nα − Ω−

−
ð−1Þnα
nα −Ωþ

�
e−nαðτ̄0−−τ̄þÞ þ πe−Ω−ðτ̄0−−τ̄þÞ

sinðπΩ−=αÞ
−
πe−Ωþðτ̄0−−τ̄þÞ

sinðπΩþ=αÞ
�

þ θðτ̄þ − τ̄0−Þ
�X∞
n¼0

� ð−1Þnα
nαþ Ω−

−
ð−1Þnα
nαþΩþ

�
e−nαðτ̄þ−τ̄0−Þ

�	
; ð59Þ

where we denoted τ̄� ≡ τF�ðx̄Þ and τ̄0� ≡ τF�ðx̄0Þ.
In the next section, we calculate the energy momentum tensor, where we introduce the symmetrized two-point correlator,

fhϕ̂ðxÞϕ̂ðx0Þiren þ hϕ̂ðx0Þϕ̂ðxÞireng=2. Using the above result, we find that the symmetrized two-point correlator can be
written as

1

2
fhϕ̂ðxÞϕ̂ðx0Þiren þ hϕ̂ðx0Þϕ̂ðxÞireng ¼ −iλ2H2fF ðx̄; x̄0Þ þ F ðx̄0; x̄Þg

2ð4πÞ2α2aðηÞRðx̄Þaðη0ÞRðx̄0Þ ¼
−iλ2H2fGðx̄; x̄0Þ þ Gðx̄0; x̄Þg
2ð4πÞ2α2aðηÞRðx̄Þaðη0ÞRðx̄0Þ ð60Þ

where

Gðx̄; x̄0Þ ¼ −iθðτF−ðx̄0Þ − τFþðx̄ÞÞ
�

1

ΩþΩ−

α

2π
þ f−ðx̄; x̄0Þ þ fþðx̄; x̄0Þ þ

1

α

X∞
n¼1

gα;nðx̄; x̄0Þ
�

þ iθðτFþðx̄Þ − τF−ðx̄0ÞÞ
�

1

ΩþΩ−

α

2π
þ 1

α

X∞
n¼1

g−α;nðx̄; x̄0Þ
�
; ð61Þ

with

f�ðx; x0Þ≡ �eΩ�ðτFþðxÞ−τF−ðx0ÞÞ

ðΩþ −Ω−Þ sinðπΩ�=αÞ
;

gκ;nðx; x0Þ≡ κ2

π

ð−1ÞnenκðτFþðxÞ−τF−ðx0ÞÞ
ðΩ− − nκÞðΩþ − nκÞ : ð62Þ

The subtracted two-point function in de Sitter space-
time (58) has properties similar to that in Minkowski
spacetime [7]. First, the inhomogeneous term is canceled
out by the interference term. Second, the factor
eπω=α=ðe2πω=α − 1Þ appears in (57), which is also a common
property to the case in Minkowski spacetime. As discussed
in Refs. [14–16], the factor eπω=α=ðe2πω=α − 1Þ comes from

entanglement between the field modes in different regions.
The subtracted two-point function reflects a nonlocal
correlation of the quantum field in the Bunch-Davies
vacuum state in de Sitter spacetime, which can be traced
back to the entanglement between the field modes con-
structed in the partially covered regions in de Sitter
spacetime.

V. RADIATION RATE

In this section, we evaluate the radiation rate produced
by an accelerated detector in de Sitter spacetime. We work
with the coordinate (η, x, x⊥), which should be written x̄μ.
However, we omit the “bar,” unless otherwise noted
explicitly, for simplicity.
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The classical energy momentum tensor of a scalar field
with nonminimal coupling term to the scalar curvature is

Tμν ¼ ð1 − 2ξÞ∇μϕ∇νϕ − 2ξϕ∇μ∇νϕ

þ
�
2ξ −

1

2

�
gμν∇αϕ∇αϕþ ξ

2
gμνϕ∇α∇αϕ ð63Þ

with ξ ¼ 1=6. In quantum theory, we promote the above
field amplitude ϕ to operators ϕ̂ and calculate the renor-
malized expectation value of the stress-energy tensor
operator,

hT̂μνðxÞiren ¼ lim
x0→x

�
2

3
∇μ∇0

ν −
1

3
∇0

μ∇0
ν −

1

6
gμν∇α∇0

α

þ 1

12
gμν∇0α∇0

α

�
hϕ̂ðxÞ; ϕ̂ðx0Þiren; ð64Þ

where hϕ̂ðxÞ; ϕ̂ðx0Þiren ≡ hðϕ̂ðxÞϕ̂ðx0Þ þ ϕ̂ðx0Þϕ̂ðxÞÞiren=2
is the symmetrized two-point correlator of the field, which
is taken here because hT̂μνðxÞiren is measurable and so
should be real. ∇ and ∇0 denote the covariant derivatives
with respect of x and x0, respectively, such that

lim
x0→x

∇μ∇0
νhϕ̂ðxÞϕ̂ðx0Þiren

¼ lim
x0→x

� ∂
∂xμ

∂
∂x0ν

�
hϕ̂ðxÞϕ̂ðx0Þiren; ð65Þ

lim
x0→x

∇0
μ∇0

νhϕ̂ðxÞϕ̂ðx0Þiren

¼ lim
x0→x

� ∂
∂x0μ

∂
∂x0ν − Γρμνðx0Þ ∂

∂x0ρ
�
hϕ̂ðxÞϕ̂ðx0Þiren ð66Þ

Given the worldline (23) and the corresponding four
velocity vμðτÞ ¼ d

dτ z
μðτÞ ¼ −αzμðτÞ for a uniformly accel-

erated detector in the conformally flat coordinates, we
introduce the spacelike vector uμðτÞ by (cf. [13,47])

uμðτÞuμðτÞ ¼ −1; uμðτÞvμðτÞ ¼ 0; ð67Þ

which implies

xμ − zμðτ−ðxÞÞ ¼
α

H
RðxÞaðτ−ðxÞÞ½uμðτ−ðxÞÞ þ vμðτ−ðxÞÞ�;

ð68Þ

such thatvμðτ−Þðxμ−zμðτ−ÞÞ¼αRaðτ−Þ=H, anduμðτ−Þxμ¼
−αRaðτ−Þ=H because uμðτ−Þzμðτ−Þ ∝ uμðτ−Þvμðτ−Þ ¼ 0.

By using the relations

∂
∂x̄μ RðxÞ ¼ H2

α2RðxÞ
�
ðηþHKxÞðδ0μ þHKδ1μÞ

−
H2

α2
ημαxα

�
; ð69Þ

∂τF∓ðxÞ
∂x̄μ ¼ α

H
eατ

F∓ðxÞ
�
�ðδ0μ þHKδ1μÞ

−
1

RðxÞ
�
ðηþHKxÞðδ0μ þHKδ1μÞ

−
H2

α2
ημαxα

�	
; ð70Þ

e−ατ
F
þðxÞe−ατF−ðxÞ ¼ −α2ðη2 − x2 − jx⊥j2Þ; ð71Þ

we end up with the following expression, after some
tedious algebra,

uμðτF−ðxÞÞvνðτF−ðxÞÞhTμνðxÞiren¼
2

3

λ2

ð4πÞ2
H2

αa2ðηÞR2ðxÞJ ðxÞ;

ð72Þ

where we defined

J ðxÞ≡ ðr−−α−1Þ
ð2r−−α−1Þ2

�
θðτF−−τFþÞ

�
ðr−−α−1Þ

×

�
Ω−f−þΩþfþþ

X∞
n¼1

ngα;n

�

−r−

�
Ω2

−f−
α

þΩ2þfþ
α

þ
X∞
n¼1

n2gα;n

�	
þθðτFþ−τF−Þ

×

�
ðr−−α−1Þ×

X∞
n¼1

ng−α;nþr−
X∞
n¼1

n2g−α;n

	�
ð73Þ

with

r− ≡ aðτF−ðxÞÞαRðxÞ=H; ð74Þ

f� ¼ f�ðx; xÞ and gκ;n ¼ gκ;nðx; xÞ from (62), and

X∞
n¼1

ngκ;n ¼
κ2=π

Ω− − Ωþ

�
F1;κ;Ω−

Ω− − κ
−
F1;κ;Ωþ

Ωþ − κ

�
ð75Þ

X∞
n¼1

n2gκ;n ¼
κ2=π

Ω− −Ωþ

�
F1;κ;Ω−

Ω− − κ
−
F1;κ;Ωþ

Ωþ − κ

−
2F2;κ;Ω−

Ω− − 2κ
þ 2F2;κ;Ωþ

Ωþ − 2κ

�
ð76Þ

where
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Fn;κ;w ≡ enκðτFþðxÞ−τF−ðxÞÞ2F1

�
nþ 1; n −

w
κ
; nþ 1

−
w
κ
;−eκðτFþðxÞ−τF−ðxÞÞ

�
: ð77Þ

The radiation rate with respect to the proper time of the
detector and measured by a global observer in the con-
formally flat coordinates is obtained by

dE
dτ

¼ lim
r̃→∞

Z
dΩ2

ð2Þr̃
2uμðτF−ÞvνðτF−ÞhTμνiren; ð78Þ

where Ωð2Þ denotes the angular variables. The physical
radial distance r̃ in the above expression is

r̃ ¼ aðηÞαRðxÞ=H ð79Þ
in de Sitter spacetime (note that this r̃ is not the radial
coordinate r in the static de Sitter coordinates). So we have

dE
dτ

¼ lim
r̃→∞

2

3

λ2α

ð4πÞ2
Z

dΩ2
ð2ÞJ ðxÞ: ð80Þ

A. A= 0

When the proper acceleration A vanishes, the detector
will be inertial and going along a geodesic. We find that the
energy radiation rate dE=dτ reduces to zero in this case, as
was shown in Ref. [31]. Indeed, in the late-time limit,
η → 0, from Eq. (53), we have

aðτF−Þ ¼
H
α2

1

ð−HKxþRðxÞÞ ; ð81Þ

which yields

r− − α−1 ¼ α

H
aðτF−ðxÞÞRðxÞ − α−1 ¼ HKx

αð−HKxþRðxÞÞ :

ð82Þ

J ðxÞ is in proportion to (r− − α−1) from Eq. (73). Then,
J ðxÞ reduces to zero in the limit of K ¼ 0, i.e., A ¼ 0.

B. A ≠ 0 and Ω� ≫ α

In the case A ≠ 0 andΩ� ≫ α, we may roughly estimate
as J ðxÞ ∼ gα;1 ∼ α2=Ω2. Then we may write the radiation
rate as

dE
dτ

∼
λ2

ð4πÞ2
α3

Ω2
; ð83Þ

in the limit η → 0. This formula is similar to the result in
Minkowski spacetime [13,16], where the radiation rate is
expressed as

dE
dτ

∼
λ2

ð4πÞ2
A3

Ω2
; ð84Þ

except that the proper acceleration A in Minkowski
formula is replace by α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þH2

p
in Eq. (83). So in

the conformally flat coordinates for de Sitter spacetime a
detector going along a straight worldline is accelerating and
able to radiate except the cases with A ¼ 0. Note that each
time-slice of the spatially flat chart is a Cauchy surface of
the global de Sitter spacetime. Thus we expect that the
quantum radiation by the same detector would be similarly
nonzero in the global coordinates.

VI. DISCUSSION: VANISHING RADIATION
RATES IN (1 + 1)-DIMENSIONAL SPACETIMES

In the detector-field models in (1þ 1)-dimensional
Minkowski space, while there still exist nonlocal correla-
tions of the field similar to those in (3þ 1) dimensions, the
radiation rate of a uniformly accelerated detector vanishes
due to a special property in (1þ 1)-dimensional field
theory as well as the fluctuation-dissipation relation [8,48].
In (3þ 1)-dimensional Minkowski spacetime with the

minimal oscillator-field coupling, the subtracted two-point
correlators of the field up to the frequency integrations are
similar to (56)–(57), where the spatial and temporal
dependence is concentrated in the factor eiωðτFþðxÞ−τF−ðx0ÞÞ=
ðRðxÞRðx0ÞÞ and its complex conjugate. For a uniformly
accelerated detector moving along the worldline zμðτÞ ¼
ða−1 sinh aτ; a−1 cosh aτ; 0; 0Þ, one has [13,14,49]

τFþðxÞ ¼
1

a
ln
aðX −UV þ x2⊥ þ a−2Þ

2U
;

τF−ðxÞ ¼ −
1

a
ln
aðX −UV þ x2⊥ þ a−2Þ

2V
; ð85Þ

whereU≡x0−x1, V ≡ x0 þ x1 (U, V > 0 in the F-wedge),
x2⊥¼x22þx23, and X≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUV−x2⊥þa−2Þ2þ4a−2x2⊥

p
¼2R=a.

Thus, the factor relevant to the spatial dependence of the
radiation is

eiωðτFþðxÞ−τF−ðx0ÞÞ

RðxÞRðx0Þ
����
R3

1

¼ 4

a2XX0

�
a2

4UV 0 ðX −UV þ x2⊥

þ a−2ÞðX0 −U0V 0 þ x02⊥ þ a−2Þ
�
iω=a

;

ð86Þ

which gives a nonvanishing radiation rate by (78) and (64).
Note that R2hT01irenjx⊥¼0;R→∞ ≠ 0, namely, the differ-
ential radiated energy in the �x1-direction (parallel to
the linear motion of the detector) is not vanishing, due to
those terms with the derivatives of the R factors [13].
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For the scalar field in (1þ 1)-dimensional Minkowski
space, ξ ¼ 0 for the conformal coupling, which is also the
minimal coupling to the scalar curvature [17]. With the
derivative oscillator-field coupling, we simply let x⊥ ¼ 0, so
that τFþ → −a−1 ln aU and τF− → a−1 ln aV, and notice that
the retarded Green’s function of the field is Gretðx; x0Þ ¼
1
2
θðU −U0ÞθðV − V 0Þ and the positive-frequency Wight-

man function is Dþðx; x0Þ ¼ ð4πÞ−1 ln jσðx; x0Þj þ constant
so the 1=R factors are absent in the field correlators.
Then the location-dependent factors in the field correlators
reduce to

eiωðτFþðxÞ−τF−ðx0ÞÞjR1
1

¼ ½a2UV 0�−iω=a ¼ ½a2ðx0 − x1Þðx00 þ x01Þ�−iω=a: ð87Þ

Inserting this into the subtracted two-point correlator (56)
and symmetrizing it, the derivatives in (64) immediately give
hTμνirenjξ¼0 ¼ 0 for all μ, ν ¼ 0, 1. For the cases with ξ ≠ 0,
it is still straightforward to get hT01iren ¼ 0, though hT00iren
and hT11iren may not vanish. Thus one concludes that the
radiation rate is zero for a uniformly accelerated, derivative-
coupling Unruh-DeWitt detector inR1

1, though the nonlocal
correlations of the field do exist.
One may wonder if the conformal symmetry in (1þ 1)-

dimensional spacetime caused this result. Indeed, con-
formal symmetry guarantees a traceless stress-energy
tensor classically, and one expects that hgμνTμνi ¼
−4hTUVi would be vanishing or equal to the trace anomaly
for the models with conformal field-curvature coupling
(ξ ¼ 0). However, even if hTUVi ≠ 0, the symmetric
property hTUViren ¼ hTVUiren is sufficient to make
hT01iren ¼ hTVViren − hTUUiren þ hTUViren − hTVUiren in-
dependent of hTUViren. Thus, conformal symmetry is
irrelevant to the vanishing energy radiation rate here in
(1þ 1)-dimensional Minkowski spacetime.
The direct cause of the vanishing result is that in (1þ 1)

dimensions a massless field can always be split into the
right-mover and left-mover, which depend only on U and
V, respectively (e.g., ϕ̂ðxÞ ¼ ϕ̂RðUÞ þ ϕ̂LðVÞ). This prop-
erty insists even in the linearly interacting models, and
implies that the U- and V-derivatives of the field will select
the right-mover and left-mover, respectively (∂Uϕ̂ðxÞ ¼
∂Uϕ̂

RðUÞ and ∂Vϕ̂ðxÞ ¼ ∂Vϕ̂
LðVÞ). Suppose the detector

is uniformly accelerated in the R-wedge. Then in the
F-wedge the retarded field ϕ̂inhðxÞ ¼ ϕ̂L

inhðVÞ will be
purely left-moving, implying h∂Uϕ̂ðxÞ∂U0 ϕ̂ðx0Þiren ¼
h∂Uϕ̂ðxÞ∂U0 ϕ̂ðx0Þi − h∂Uϕ̂

R
h ðUÞ∂U0 ϕ̂R

h ðU0Þi ¼ 0 and so
hTUUðxÞiren must vanish in the F-wedge. On the other
hand, in the equilibrium conditions at late times, the
fluctuation-dissipation relation like (42) offers the neces-
sary cancellation in Sec. IV to make the correlations of the
left-movers h∂Vϕ̂ðxÞ∂V 0ϕ̂ðx0Þi in the presence of the
detector at any two points x, x0 in the F-wedge getting

the same value of the ones for the free field, and so the left-
moving renormalized energy flux hTVVðxÞiren is vanishing
in the F-wedge, too, implying hT01iren ¼ hTVViren −
hTUUiren ¼ 0 [14,48]. As we mentioned, in ð3þ 1ÞD
Minkowski spacetime, those terms independent of the
derivatives of R in the renormalized stress energy tensor
also vanish at x2⊥ ¼ 0, or θ ¼ 0, π, because of the same
property.
Now in the model considered in this paper with the

minimal oscillator-field coupling and the conformal field-
curvature coupling in ð3þ 1ÞD de Sitter spacetime, (53)
yields

eiωðτFþðxÞ−τF−ðx0ÞÞ

aðηÞRðx̄Þaðη0ÞRðx̄0Þ
����
dS4

¼ 1

aðx̄0ÞRaðx̄00ÞR0

�
R0 − x̄00 −HKx̄01

Rþ x̄0 þHKx̄1

�
iω=α

; ð88Þ

which looks different from (86) since the worldline of the
uniformly accelerated detector here is a straight line rather
than a hyperbola in the conformally flat coordinates.
In (1þ 1)-dimensional de Sitter spacetime, as the retarded
Green’s function for ξ ¼ 0 is similar to the one in (1þ 1)-
dimensional Minkowski spacetime (see e.g., [32]), the
location-dependent factors in the late-time field correlators
in the presence of a uniformly accelerated detector deriva-
tively coupled to the scalar field reduce to

eiωðτFþðxÞ−τF−ðx0ÞÞjdS2
¼
�jx̄01þHKx̄00j− x̄00−HKx̄01

jx̄1þHKx̄0jþ x̄0þHKx̄1

�
iω=α

¼
8<
:


ðHK−1ÞŪ0

ðHKþ1ÞV̄
�
iω=α

for x̄1þHKx̄0>0; x̄01þHKx̄00>0;

ðHKþ1ÞV̄ 0

ðHK−1ÞŪ
�
iω=α

for x̄1þHKx̄0<0; x̄01þHKx̄00<0;

ð89Þ

after taking x2⊥ ¼ 0. Here Ū ¼ x̄0 − x̄1, V̄ ¼ x̄0 þ x̄1,
Ū0 ¼ x̄00 − x̄01, and V̄ 0 ¼ x̄00 þ x̄01. It is straightforward
to see that hT01irenjξ¼0 ¼ 0 again, due to the similar
splitting of the left- and right-movers as well as the
fluctuation-dissipation relation.3

VII. CONCLUSION

We have investigated the late-time quantum radiation
emitted by a uniformly accelerated detector in de Sitter
spacetime. Our approximated result, Eq. (83), is a simple

3While the casewith the nonminimal/conformal coupling ξ ≠ 0
in (1þ 1) dimensions could be interesting, the nonminimal/
conformal coupling term to the curvature in general produces
an effective mass of the field in de Sitter spacetime, where more
complicated analysis is needed.
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generalization from the radiation rate at large acceleration
in Minkowski spacetime (84), with the proper acceleration
A in Minkowski spacetime replaced by α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þH2

p
in

de Sitter spacetime. Indeed, a uniformly accelerated detec-
tor in de Sitter spacetime is thermally excited at the
temperature T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þH2

p
=2π, which reflects the thermal

properties of both the Unruh effect and the Gibbons-
Hawking effect [33].
The Bunch-Davies vacuum state j0iBD in de Sitter

spacetime can be expressed in terms of the states defined
separately in the two static charts as [50,51]

j0iBD ¼ N
Y
j

X∞
nj¼0

e−πωnj jnjiR ⊗ jnjiL; ð90Þ

where N is a normalization constant, and jnjiR and jnjiL
are the nj-th excited states of a pair of Fourier modes
constructed in the R- and L-regions in the static coordi-
nates. Here each j denotes a Fourier mode of (ω, l, m),
where l andm are the degree and the order for the spherical
harmonics. This expression is similar to the one for the
Minkowski vacuum state in terms of the right- and left-
Rindler modes defined in the R- and L- wedges, respec-
tively. In the case of Minkowski spacetime, the late-time
quantum radiation emitted by a uniformly accelerated
detector is originated from the nonlocal correlation of
the vacuum state of the field, which can be traced back
to the entanglements between the right- and left-Rindler
modes [14–16]. The results in the present paper show that
the late-time quantum radiation produced by a uniformly

accelerated detector in de Sitter space similarly comes from
the nonlocal correlation of the vacuum state which can be
traced back to the entanglements between the modes in the
R- and L-regions in de Sitter spacetime.
In Minkowski spacetime, the causal structure for a

uniformly accelerated detector looks quite different from
the one for a free-falling detector. There exist horizons and
late-time quantum radiation for the former, but neither for
the latter. Thus one is tempted to say that the presence of the
horizons plays an important role in producing the non-
vanishing late-time quantum radiation. Nevertheless, an
inertial Unruh-DeWitt detector moving along a geodesic in
de Sitter spacetime shares the same cosmological horizon
with a family of the uniformly accelerated detectors (see
Fig. 1), and the late-time quantum radiation is vanishing for
the inertial detector. Thus the presence of the horizons does
not implies nonvanishing quantum radiation at late times,
though it is essential for the nonlocal correlations of the
field modes and the thermal property that the detector
experiences in vacuum.
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