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We consider the Casimir effect in a gauge-invariant Hamiltonian formulation of non-Abelian gauge
theories in (2þ 1) dimensions, for an arbitrary gauge group. We show that the result is in good agreement
with recent lattice simulations. We also argue that the Casimir effect may be viewed as a good probe of
magnetic screening effects in (3þ 1)-dimensional gauge theories at high temperatures.
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I. INTRODUCTION

Yang-Mills gauge theories in two spatial dimensions can
be viewed as a guiding model for the more realistic, but also
more complicated, (3þ 1)-dimensional gauge theories.
The (2þ 1)-dimensional theories have nontrivial dynami-
cal content and propagating degrees of freedom making
them a better model than Yang-Mills theories in (1þ 1)
dimensions, yet they are still somewhat more amenable
to mathematical analysis compared to their (3þ 1)-
dimensional counterparts. The Euclidean 3-dimensional
theory, the Wick-rotated version of the (2þ 1)-dimensional
theory, can also be of direct relevance to the high temper-
ature limit of the (3þ 1)-dimensional theory [1]. In
particular, the mass which appears as a propagator mass
in (2þ 1) dimensions can be taken as the high temperature
value of the magnetic screening mass. With these moti-
vations, for many years, we have been pursuing a
Hamiltonian approach to the nonperturbative aspects of
Yang-Mills theories in (2þ 1) dimensions [2–4]. This
article will be in the nature of continued work along these
lines, focusing on the Casimir effect in Yang-Mills theories
in (2þ 1) dimensions. This was also inspired by the recent
lattice simulations of the Casimir effect for the SUð2Þ
gauge theory reported in [5]. We will argue that the Casimir
effect in the (2þ 1)-dimensional Yang-Mills theory can be
viewed as a probe of the magnetic mass in the pure QCD
plasma in (3þ 1) dimensions at high temperatures. This
will also furnish a calculation for a general gauge group

which can, hopefully, be tested in lattice simulations in the
near future.
We begin with a brief recapitulation of the salient points

of our Hamiltonian analysis. We considered the A0 ¼ 0
gauge, with the spatial components of the gauge potentials
parametrized as

Az ¼
1

2
ðA1 þ iA2Þ ¼ −∂MM−1;

Az̄ ¼
1

2
ðA1 − iA2Þ ¼ M†−1∂̄M† ð1Þ

Here we use complex coordinates z¼x1−ix2, z̄ ¼ x1 þ ix2
with ∂ ¼ 1

2
ð∂1 þ i∂2Þ, ∂̄ ¼ 1

2
ð∂1 − i∂2Þ, and M is an

element of the complexified group GC; i.e., it is an
SLðN;CÞ-matrix if the gauge transformations take values
in SUðNÞ. Gauge transformations act on M via
M → Mg ¼ gM, where g is an element of the group G,
say, e.g., SUðNÞ. Wave functions are gauge-invariant
functionals of H ¼ M†M, with the inner product given as

h1j2i ¼
Z

dμðHÞ exp½2cASwzwðHÞ�Ψ�
1Ψ2 ð2Þ

Here Swzw is the Wess-Zumino-Witten action (WZW),
given by

SwzwðHÞ¼ 1

2π

Z
Trð∂H∂̄H−1Þ

þ i
12π

Z
ϵμναTrðH−1∂μHH−1∂νHH−1∂αHÞ ð3Þ

In Eq. (2), dμðHÞ is the Haar measure for H which
takes values in SLðN;CÞ=SUðNÞ. Also cA denotes the
value of the quadratic Casimir operator for the adjoint
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representation; it is equal to N for SUðNÞ. The Hamiltonian
and other observables can be expressed as functions of the
current J of the WZW action, namely,

J ¼ 2

e
∂HH−1 ð4Þ

(We have included a prefactor involving the coupling e;
this is useful for later calculations.) The explicit formula
worked out in Refs. [2–4] is given asH ¼ H0 þH1, where

H0 ¼ m
Z
z
Jaðz⃗Þ

δ

δJaðz⃗Þ
þ 2

π

Z
z;w

1

ðz − wÞ2
δ

δJaðw⃗Þ
δ

δJaðz⃗Þ
þ 1

2

Z
x
∶∂̄JaðxÞ∂̄JaðxÞ∶

H1 ¼ iefabc

Z
z;w

Jcðw⃗Þ
πðz − wÞ

δ

δJaðw⃗Þ
δ

δJbðz⃗Þ
ð5Þ

where m ¼ e2cA=2π. Regularization issues have been
discussed in some detail in the cited references.
The basic strategy we used was to solve the Schrödinger

equation keeping all terms in H0 at the lowest order,
treating H1 as a perturbation. In ordinary perturbation
theory (carried out using our Hamiltonian formulation), one
would expand H ¼ expðtaφaÞ in powers of the Hermitian
field φa; in addition, since m ¼ e2cA=2π we would also
expand in powers of m. In our case, we keep the term
involving m even at the lowest order. So even if we expand
H in terms of φa, our expansion would correspond to a
partially resummed version of what would be normal
perturbation expansion. Formally, we keep m and e as
independent parameters in keeping track of different orders
in solving the Schrödinger equation, only setting m ¼
e2cA=2π at the end. The lowest order computation of the
wave function in this scheme was given in [3] and gave the
string tension for a Wilson loop in the representation R as
σR ¼ e4cAcR=4π, cR being the quadratic Casimir value for
the representation R. We have also considered corrections
to this formula, taking the expansion to the next higher
order (which still involves an infinity of correction terms)
and found that the corrections were small, of the order of
−0.03% to −2.8% [6]. The resulting values for the string
tension agree well with the lattice estimates [7,8].
Some of the other issues explored within this approach

include string breaking effects [9], effective action and ZN
vortices [10], supersymmetric theories [11], and entangle-
ment effects [12]. Glueball masses have been discussed
in [13].

II. THE CASIMIR ENERGY FOR
PARALLEL WIRES

There is an important feature which emerged from our
analysis, which is very useful for the present purpose [14].
We can absorb the factor e2cASwzw in (2) into the definition of

the wave function by writing Ψ ¼ e−cASwzwΦ. The inner
product for the Φ’s will involve just the Haar measure
without the e2cASwzw factor. However, the Hamiltonian
acting on Φ will now be given by H → ecASwzwHe−cASwzw.
We can expand H as H ¼ expðtaφaÞ ≈ 1þ taφa þ � � �,
with the field φa being hermitian. As mentioned earlier,
this “small φ” expansion is suitable for a (resummed)
perturbation theory. The Hamiltonian is then

H ¼ 1

2

Z �
−

δ2

δϕ2
þ ϕð−∇2 þm2Þϕþ � � �

�
ð6Þ

where ϕaðk⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cAkk̄=ð2πmÞ

p
φaðk⃗Þ. This is clearly the

Hamiltonian for a field of mass m with the corresponding
vacuum wave function

Φ0 ≈ exp

�
−
1

2

Z
ϕa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

p
ϕa

�
ð7Þ

The Hamiltonian (6) corresponds to the action

S ¼
Z

d3x
1

2
½ _ϕa _ϕa − ð∇ϕaÞð∇ϕaÞ −m2ϕaϕa� þ � � � ð8Þ

These results show that the propagator for the gauge-
invariant component of the gluon field is the same as that of
a massive scalar field with mass equal to m ¼ ðe2cA=2πÞ.
Further, the parametrization (1) of the gauge potentials
becomes, in the small φ-expansion

Aa
i ≈

1

2
½−∂iθ

a þ ϵij∂jφ
a þ � � ��;

M ¼ exp

�
−
i
2
taðθa þ iφaÞ

�
ð9Þ

In the case of a perfectly conducting plate, the boundary
condition is that the tangential component of the electric
field should be zero. In other words, we need

ϵijniFa
0j ¼ 0; ð10Þ

where ni is the unit vector normal to the plate. This is also
the condition used in [5]. In terms of the parametrization in
(9), focusing just on the gauge-invariant part φa, this means
that we need

niϵijϵjk∂k _φ
a ¼ −ni∂i _φ

a ¼ 0 ð11Þ

Since the time-derivative does not affect the spatial boun-
dary conditions, this is equivalent to imposing Neumann
boundary conditions on the scalar field φa or, equivalently,
on ϕa. The end result is that, within this approximation of
keepingm, but expanding the field H to the lowest order in
φa, the Casimir energy will be given by that of a massive
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scalar field with Neumann boundary conditions on the
plates.
We now consider the standard arrangement of two

parallel plates (or rather wires since we are in two spatial
dimensions) which are of infinite extent in the x2-direction
and are normal to the x1-direction. The wires are separated
by a distance R. We take the range of x2 to be L, with
L → ∞ eventually. The fields in the region between the
wires have the mode expansion

ϕa ¼
Z

dk
2π

X∞
n¼0

Ca
n;k

ffiffiffiffi
2

R

r
cos

�
nπx1
R

�
eikx2 ð12Þ

This is consistent with the Neumann boundary conditions.
We note that the Casimir energy of massive scalar fields for
the parallel plate geometry with Dirichlet boundary con-
ditions is known [15]. The result for Neumann conditions is
essentially the same. Here we reproduce the result and
express it in a form more suitable for comparison with
lattice estimates. With the mode expansion (12), the action
(8) becomes

S ¼
Z

dt
dk
2π

X
n

1

2
½ _Ca

n;k
_Ca
n;k − Ω2

n;kC
a
n;kC

a
n;k� þ � � � ð13Þ

where Ω2
n;k ¼ k2 þ ðnπ=RÞ2 þm2. The diagonalization of

the Hamiltonian is trivial, yielding the unrenormalized
zero-point energy

E ¼ L
2
dimG

Z
dk
2π

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnπ=RÞ2 þ k2 þm2

q

¼ L
2Γð− 1

2
Þ dimG

Z
dk
2π

Z
∞

0

ds

s3=2
e−sðk2þm2ÞX∞

n¼0

e−sðnπ=RÞ2

ð14Þ

Using the Poisson summation formula we get

E ¼ L
2Γð− 1

2
Þ dimG

Z
dk
2π

Z
∞

0

ds

s3=2
e−sðk2þm2Þ

×
1

2

�
1þ Rffiffiffiffiffi

πs
p þ 2

X∞
n¼1

Rffiffiffiffiffi
πs

p e−n
2R2=s

�
ð15Þ

The first two terms in this expression are divergent and they
have to be subtracted. The first term is independent of the
distance R between the wires, corresponds to a self-energy
contribution, and gets subtracted when we consider the
energy shift EðRÞ − EðR → ∞Þ, which is the relevant
renormalized quantity of interest. The second term is
proportional to the spatial volume RL and is part of a
uniform spatial density of vacuum energy which must also
be subtracted out in the renormalized expression for the
Casimir energy. The final renormalized expression is thus

E ¼ L
2Γð− 1

2
Þ dimG

Z
dk
2π

Z
∞

0

ds

s3=2
e−sðk2þm2Þ

×
X∞
n¼1

Rffiffiffiffiffi
πs

p e−n
2R2=s ð16Þ

Doing the k-integration and using the variable transforma-
tion s ¼ ðnR=mÞeθ, we find

E¼−
LR
4
dimG

�
m
πR

�
3=2X∞

n¼1

Z
dθ

n3=2
coshð3θ=2Þe−2nmRcoshθ

¼−
LR
4
dimG

�
m
πR

�
3=2X∞

n¼1

K3=2ð2nmRÞ
n3=2

ð17Þ

Using the following expression for modified Bessel func-
tion K3=2,

K3=2ðzÞ ¼
ffiffiffiffiffi
π

2z

r
e−z

�
1þ 1

z

�
ð18Þ

we can rewrite the Casimir energy as

E ¼ − dimG
L

16πR2
½2mRLi2ðe−2mRÞ þ Li3ðe−2mRÞ� ð19Þ

where LisðwÞ is the polylogarithm function

LisðwÞ ¼
X∞
1

wn

ns
ð20Þ

We may note that, in the m → 0 limit, the expression (19)
agrees with the well-known result for (dimG) massless
scalars in (2þ 1) dimensions,

Em¼0 ¼ − dimG
Lζð3Þ
16πR2

ð21Þ

There are other equivalent ways to arrive at result (19).
Using

Ωn;k ¼
� ∂2

∂x20
�Z

dk0
π

eik0x0

k20 þΩ2
n;k

����
x0¼0

ð22Þ

we can carry out the summation over n (in (14)) to
obtain

E ¼ −LR2 dimG
Z

d2k
ð2πÞ2

k20
ω

1

e2ω − 1

¼ −
LR
4π

dimG
Z

∞

0

dp
p3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p 1

e2R
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
− 1

ð23Þ

where ω2 ¼ R2ðk20 þ k2 þm2Þ and in the second line we
used polar coordinates in the ðk; k0Þ-plane and integrated
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over the angle and p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k2

p
. A further substitution

pR ¼ sinh q, and z ¼ coshq, reduces this to

E ¼ − dimG
L

4πR2
ðmRÞ3

Z
∞

1

dz
ðz2 − 1Þ
e2mRz − 1

: ð24Þ

Expansion of the integrand in powers of e−2mRz gives the
result (19) in terms of the polylogarithms.
It is useful to write the energy (19), for our case, in terms

of the string tension corresponding to the fundamental
representation. This has been calculated in [3]. Ignoring the
small corrections discussed in [6], this is given by

σF ¼ e4
cAcF
4π

: ð25Þ

We may thus write mR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x, where x ¼ R

ffiffiffiffiffiffi
σF

p
.

The Casimir energy is thus given by

E
LσF

¼ −
dimG
16π

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x

Li2
�
e−2

ffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x
	

þ 1

x2
Li3

�
e−2

ffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x
	�

: ð26Þ

This is the main result of this paper. It holds for an arbitrary
compact group; for the case of SUðNÞ, we have cA ¼ N,
cF ¼ ðN2 − 1Þ=ð2NÞ. There will be corrections to this
formula due to the fact that we have neglected interactions
involving cubic and higher powers of φa and due to the
corrections to the string tension in the expression for m in
terms of σF. Nevertheless, the fact that string tension given
in (25) to the lowest order in our expansion scheme is in
good agreement with lattice calculations [7] suggests that
the formula (26) can be a good estimate of the Casimir
energy.
We have the Neumann boundary condition on the field

ϕa for perfectly conducting wires, as mentioned before. But
if we choose different boundary conditions, the result can
be different. Formula (26) holds for the field obeying
Neumann conditions at both wires or Dirichlet conditions
at both wires. The Dirichlet condition is equivalent to the
magnetic field B (which is −∇2φa in our approximation)
vanishing at the wire. If we consider the Neumann con-
dition at one wire and the Dirichlet condition at the other,
the modes involved are of the form sin ððnþ 1

2
Þπx1=RÞ. The

Casimir energy is now given by

EDN ¼ L
2
dimG

Z
dk
2π

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
nþ 1

2

	
π=R

�
2

þ k2 þm2

s
:

ð27Þ

The renormalized finite Casimir energy now works out
to be

EDN ¼ − dimG
L

16πR2
½2mRLi2ð−e−2mRÞ þ Li3ð−e−2mRÞ�

EDN

LσF
¼ −

dimG
16π

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x

Li2
�
−e−2

ffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x
	

þ 1

x2
Li3

�
−e−2

ffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p
x
	�

: ð28Þ

Notice that, as expected, this corresponds to a repulsive
force because the arguments of the polylogarithms have
changed sign. The two energies E from (26) (same as
ENN ¼ EDD) and EDN from (28) are shown in Fig. 1 for the
case of SUð2Þ.

III. LATTICE ESTIMATES AND THE
MAGNETIC MASS

The Casimir energy for the parallel wire geometry was
recently evaluated for the SUð2Þ gauge theory by lattice
simulation in [5], with the boundary condition of the
tangential component of the electric field vanishing at
the wires. (This would be the Neumann-Neumann case for
the field ϕa in our parametrization of Aa

i .) Essentially, the
expectation value of the energy density was calculated,
with a suitable renormalization. The result was fitted to the
form

E
LσF

¼ − dimG
ζð3Þ
16π

x−νe−MCasx=
ffiffiffiffi
σF

p ð29Þ

The authors find that the best fit values of the parameters
are ν ¼ 2.05 and MCas ¼ 1.38

ffiffiffiffiffiffi
σF

p
. The authors also

commented on the fact that MCas is significantly smaller
than the smallest value for glueball mass, which is
approximately 4.7

ffiffiffiffiffiffi
σF

p
. The smallness of the exponent is

not a surprise from our point of view, since the coefficient
of x in the exponential in (26) is 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA=πcF

p ¼ 2
ffiffiffiffiffiffiffiffiffiffi
8=3π

p
∼

1.84 for the case of SUð2Þ. This is also, as expected,
significantly smaller than what is given by the glueball

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

–5

5

FIG. 1. Comparison of ENN ¼ EDD from (26) (solid line) and
EDN from (28) (dashed line).
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mass. While the numerical value differs from the value for
MCas=

ffiffiffiffiffiffi
σF

p
in [5], it should be noted that the form of the

function is different as well. The motivation to use (29) as a
fitting function for the Casimir energy was that it reduced to
the massless formula correctly, upon setting MCas ¼ 0 and
ν ¼ 2. So it may be viewed as a two-parameter extension of
the formula for the massless case. Our formula (26) also
correctly reduces to the massless limit, and so one may
contemplate a modification of (26) with additional param-
eters to be used as a fitting function. One could consider,
e.g., changing the prefactor in (26); there is a reasonable
argument for this. Notice that the prefactor is a measure of
the number of degrees of freedom, as evidenced by the
dimG factor. Lattice simulations of QCD shows that the
number of degrees of freedom do not quite reach a value
corresponding to a gas of free gluons even at very high
temperatures, where we expect a deconfined gluon plasma.
(This has been known for a while; a recent review which
gives updated results is [16]; in particular, see Fig. 4 of this
reference.) In our calculation presumably such an effect
can arise from higher-order terms in φa which have been
neglected.
Another observation is that our calculation based on the

previous Hamiltonian analysis shows, as explained in more
detail later, that there are strong theoretical reasons why the
expression for the Casimir energy should involve powers of
e−2mR where m is the mass as it appears in the propagator
for the gauge-invariant part of the gauge potential. So here
we will keep the value of m as the one given by the
Hamiltonian analysis, not treated as a parameter to be
obtained from fitting. However, based on what was said
earlier, we shall use a prefactor and try to fit the lattice
calculation to the formula

E
LσF

¼−A
dimG
16π

�
1.84
x

Li2ðe−1.84xÞþ
1

x2
Li3ðe−1.84xÞ

�
ð30Þ

where A is to be treated as fitting parameter and we have
also put in the values of cA, cF for SUð2Þ. A comparison of
(29) and (30), with the best fit values ν ¼ 2.05, MCas ¼
1.38

ffiffiffiffiffiffi
σF

p
for (29) and A ¼ 0.9715 for (30), is shown in

Fig. 2. The range of x is taken to be 0.1 to 0.7 as done in [5].
The graph shows clearly that our formula does capture the
lattice calculation of the Casimir energy with good quanti-
tative accuracy.
It is worth emphasizing the significance of the gauge-

invariant Hamiltonian analysis we have used here. A priori,
it is not clear that the Casimir effect for the non-Abelian
theory can be reduced to that of a massive scalar field. Our
approach shows that this can indeed be done. Second, we
get a specific value for the propagator mass m, namely,
e2cA=ð2πÞ, as well as its relation to the string tension, since
we also have an independent prediction for σF. Taking this
value, without determining it via fitting to lattice data, we
get good agreement. We have used an overall coefficient A

as a parameter determined by fitting. But the best fit value is
0.9715, so that in retrospect, we see that even if we took A
to be 1, as it is in our lowest order calculation, the
agreement is still within a few percent.
The good agreement between the lattice results in [5] and

our analytical expression (26) for theCasimir energyprovides
yet another strong indication (in addition to the string tension
agreement [7,8]) that our Hamiltonian analysis, in particular
the quadratic approximation, provides a good effective
description for (2þ 1)-dimensional Yang-Mills theory.
The mapping of the Casimir energy to that of a massive

scalar field has been discussed in [17]1 for compact Abelian
electrodynamics in three dimensions, where the monopoles
are responsible for the mass generation. Our approach
justifies a mapping to the massive scalar for the non-
Abelian Yang-Mills theory, and also yields predictions for
m and σF.
A few more comments on the formula for the Casimir

energy are in order at this point. First of all, there is an
intuitive reasoning for the exponential dependence on x
which is as follows. The expectation value of the energy
involves the propagator since

hEi ∼
Z ∂

∂x0
∂
∂x00 hA

a
i ðx⃗; x0ÞAa

i ðx⃗; x00Þi
����
x0¼x0

0

þ � � � ð31Þ

The propagator hAa
i ðx⃗; x0ÞAa

i ðx⃗; x00Þi may be viewed in
terms of paths from x⃗ to one of the wires, from there to the
other wire, and then back to x⃗. This involves a distance of
2R, and with a propagator mass of m, we expect a factor
e−2mR. This should hold for all boundary conditions for
large R. Multiple transits can lead to the formula with the
summation as in the polylogarithm. This argument, as well
as our explicit calculation, makes it clear that the mass in
the propagator is what controls the exponential factor. Of
course the precise functional dependence of the Casimir
energy on e−2mR depends on the boundary conditions, as
displayed e.g., in Eqs. (26) and (28).

0.1 0.2 0.3 0.4 0.5 0.6 0.7

–8

–6

–4

–2

FIG. 2. Comparison of (29) (dashed line) and (30) (solid line).

1We thank M. Chernodub for bringing these papers to our
attention.
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Second, we note that the propagator mass is also related
to the magnetic screening mass in one higher dimension. If
we consider the (3þ 1)-dimensional Yang-Mills theory at
very high temperatures, in the imaginary time formalism,
all modes except for the lowest Matsubara frequency
decouple and the theory is expected to reduce to a three-
dimensional one with e2 ¼ g2T, where g is the 4-d coupling
and T is the temperature. The mass which appears in the
propagator of the Euclidean 3-dimensional theory then
serves as the magnetic screening mass of the high temper-
ature (3þ 1)-dimensional theory. For this reason, we often
refer to the propagator mass in our calculation [which is m
in the quadratic approximation, as mentioned after Eq. (8)]
as the magnetic mass. We are only considering the pure
Yang-Mills case here. In a theory like QCD, we have
fermions as well; since they do not have a mode of zero
Matsubara frequency (due to the antiperiodicity condition)
they do not survive the dimensional reduction at high
temperatures. Thus the propagator mass of the Euclidean
3-dimensional theory will serve as the magnetic mass in the
approximation of neglecting corrections due to fermions.
As mentioned earlier, the functional dependence of the

Casimir energy onm will depend on the choice of boundary
conditions and, more generally, on the geometry of the
configuration used. Thus fitting the energy to a single
exponential for different setups can yield different values
forwhatmight be considered a screeningmass or theMCas as
in [5]. Any attempt tomake a direct identification of this with
the magnetic mass can be ambiguous. The point is that the
use of the Hamiltonian (5) or (6) will involve only the single
parameter m, with different formulas for the different
configurations. If the formula appropriate to the setup is
used, all measurements should lead to a consistent value for
m; it is this value which can be identified with the magnetic
mass (modulo the fermionic contributionmentioned earlier).

As for the values of the magnetic mass, our Hamiltonian
calculation gives m ¼ e2cA=2π ¼ e2=π ≈ 0.32e2, for
SUð2Þ. There have been many other ways of estimating
the magnetic mass. These include various resummation and
gap equation approaches [18–21], lattice analyses in different
gauges [22] and amethodof identifying themagneticmass as
a common divisor for glueball masses [23]. The values
obtained are close towhatwe find, generally in the range 0.28
to 0.38 for m=e2, with the lattice values being somewhat
higher, close to 0.5. There is general consistency among the
values, none of them is close to the glueball masses. (All
numerical values with a short discussion are given in [4].)
Since there is some variation, one could also envisage the
mass as a fitting parameter, although our experience with the
string tension suggests that the Hamiltonian approach should
be closest to lattice simulations.
Finally, the main point which emerges from this dis-

cussion is that the Casimir effect in the (2þ 1)-dimensional
theory is a good probe of the magnetic mass for the (3þ 1)-
dimensional theory, in the limit of neglecting corrections
due to fermions, keeping in mind that the formula derived
from (6) for the chosen geometry should be used to
estimate the mass parameter. Therefore, lattice simulations
for groups other than SUð2Þ and comparison with our
formula (26), [or (28) for mixed boundary conditions] with
perhaps a prefactor A to be determined, will be worthwhile,
in terms of providing greater insights into this issue.
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