
 

Higher spin vortical zilches from Kubo formulae
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We compute thermal one-point functions in Maxwell’s theory sourced by vorticity for the zilch and
its higher spin extensions via the Kubo formalism. This leads to a generalization of the recent results of
[M. N. Chernodub, A. Cortijo, and K. Landsteiner, Phys. Rev. D 98, 065016 (2018)] to any spin, and their
value suggests a relation with possible anomalies for the higher spin tower of currents.
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I. INTRODUCTION

In the last ten years, a great deal of effort has been
devoted to the elucidation of how nondissipative transport
can arise in systems with ’t Hooft anomalies. Notably, in
the case of fermions, a series of works [1] established the
presence of thermal vortical conductivities whenever the
underlying theory has a mixed gravitational anomaly in its
chiral currents. While zero temperature effects can be
directly related to anomalies by demanding consistency
of the hydrodynamic expansion [2], the thermal case needs
the theory to be put on a nontrivial curved manifold [3,4].
This reasoning seems to be general and to apply alsowhen

the underlying theory has no fermionic excitations. This has
led various authors [5,6] to suppose that the old result of [7],
recently revisited by [8], should imply a nonvanishing
vortical conductivity for the helicity current Hμ. [9]
This current is, however, not gauge invariant and con-

trasting results exist in the literature regarding its thermal
expectation value [5,6,10]. However, higher spin gauge
invariant currents can be built from the helicity current and
one expects, as it happens in two-dimensional theories, that
these should also show quantum correction to their con-
servation laws.
Wewill call these currents higher spin zilchesZðsÞ

μ1…μs [11].
One would then expect these currents to develop thermal
nondissipative transport in the presence of vorticity, through

the presence of a term σðsÞZ uðμ1…uμs−1ωμsÞ in its hydrody-

namic expansion, with σðsÞZ ∼ Tsþ1 by dimensional analysis.
The existence of such terms has already been shown for the

spin-3 zilch by [10] through the quantization of Maxwell’s
theory in a rotating cylinder, for which they have found

hZ00iiβ;Ω ¼ 8

45
π2T4Ωi: ð1Þ

The aim of this work is to generalize these result to the
whole tower of zilches through the Kubo formalism. This
extension may be interesting, since it was already pointed
out that the spin three current is potentially measurable in
an experimental setup [12].
We carry out the computations, showing that indeed

such vortical responses are present for all odd spins, being
equal to

σðsÞZ ¼ 4

π2
ð2πTÞsþ1

jBsþ1j
sþ 1

; ð2Þ

where Bs are the Bernoulli numbers. This confirms the
results of [10] through a different method and opens up a
new interesting avenue for the field on anomalous transport
i.e., to relate higher spin ’t Hooft anomalies to the transport
properties of these higher spin currents.
In this respect, one should notice that our result closely

resembles the one obtained in [13,14]. The authors com-
pute the expectation value of the 1þ 1-dimensional free
bosonic currents as part of an old program aiming to relate
the moments of Hawking radiation with the gravitational
anomalies of an effective description of the horizon physics
[15–17].
It is known that such currents give a representation of the

W∞ algebra, as shown by [18]. In that case, however, the
cohomological problem for the consistent W∞ currents has
only trivial solutions for s > 2. Thus the possible anomalies
in the higher spin currents can be adsorbed into their
definition by a proper choice of a local counterterm.
In the two-dimensional case, then, the nonvanishing one-

point function can be attributed to the nonhomogeneous
transformation properties of the higher spin currents under
general conformal transformations (they are only quasi-
primary operators in the CFT). The final effect is very
similar to the Schwartzian transformation of the stress
tensor, which gives the starting point for the derivation of
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the trace and diffoemorphism anomalies in chiral CFTs, but
the mechanism for higher spin is different since the identity
operator cannot appear in the OPE of the higher spin
currents with the stress tensor. The anomalous transforma-
tion law is, however, a purely quantum effect given by the
normal ordering of the current operators and, in this sense,
it could still make up interesting and robust observables in a
variety of physical systems.
In the four-dimensional case the mechanism could be

similar, and it could maybe be proven by performing an
appropriate reduction to two dimensions. We provide some
details on how it could be done in the conclusions.
The letter is organized as follows: in the first section, we

review the spin-3 computation for the zilch; in the second
section, we show how to define odd spin zilches and
compute their vortical conductivities in the Kubo formal-
ism, and we conclude with few remarks on future directions
for investigation. In order to make the letter more readable,
long computations are relegated to the Appendices.
Regarding notation, we mostly work in Euclidean signa-
ture, dividing the 4-momentum as kμ ¼ ðωn; k⃗Þ where
ωn ¼ 2πTn are bosonic Matsubara frequencies. In much
the same way we split the spacetime indexes in spatial
components, denoted by Latin letters i; j; k… and the time
direction denoted by 0.

II. VORTICAL ZILCH

As is the case for free theories, Maxwell theory itself
presents towers of higher spin currents, which are built
starting from the stress tensor

Tμν ¼ FμαFν
α −

1

4
gμνF2; ð3Þ

and the spin-3 zilch,

Zμνρ ¼ Fðμα∂ρ

↔
F̃νÞα; ð4Þ

where ∂ρ

↔
¼ 1

2
ð∂⃗ρ − ∂⃖ρÞ and F̃μν ¼ ϵμνρσFρσ is the dual field

strength. From now on, in order to avoid cluttering,
complete symmetrization in all of the zilches’ indexes is
implicit [19]. The zilch fulfills

∂μZμνρ ¼ Zμ
μρ ¼ 0: ð5Þ

This current was analyzed in various early works [20,21],
ultimately being deemed to be unimportant. Notice that
both the zilch current and the stress tensor (as well as
their higher spin counterparts we will define) are invariant
under the duality symmetry of Maxwell’s theory F → F̃,
F̃ → −F.
A renewed interest was sparked by [10], where it was

shown to possess a nontrivial one-point function at finite
temperature in the presence of vorticity. In this section, we
will reproduce the results of [10] by using the Kubo

formalism. We wish to compute the thermal response to
vorticity σZ, defined through

Zμνρ ¼ σZuðμuνωρÞ þ…; ð6Þ

or, in the fluid rest frame,

Z00i ¼
1

3
σZΩi: ð7Þ

At this point, it is worth noting that our definition of
zilch (4) does not coincide with the original definition of
Lipkin [20] which is used in [10], but it differs from that
one by the curl of the Poynting vector. One can show using
the results of [10] that such term gives no contribution to
the vortical conductivity. Another argument, perhaps less
stringent, is to notice that, in a rotating ensemble, the only
preferred direction is given by the vorticity vector. So, to
linear order, hT0iiβ;Ω ∼ cðTÞΩi and thus its curl cannot give
contributions proportional to the vorticity itself.
Once this has been clarified we can use linear response

theory to compute the relevant transport coefficients. In
this setup the vortical conductivity is given by the Kubo
formula

σZ ¼ 6lim
p⃗→0

−i
2pk

ϵijkðG00i;0jðpÞ þ C00i;0jðpÞÞ; ð8Þ

where

Gμνρ;αβðx − yÞ ¼ −ih½ZμνρðxÞ; TαβðyÞ�iΘðt − t0Þ; ð9Þ

Cμνρ;αβðx − yÞ ¼ 2i

�
δZμνρðxÞ
δgαβðyÞ

�
; ð10Þ

are the retarded Green’s function and the seagull term [22],
respectively, and the factor of 6 comes from (7) and
expressing the response in terms of the gravitomagnetic
field instead of the vorticity. The factor in (10) comes from
lowering the stress tensor with 2i δ

δg. From now on, we will
switch to momentum space where we can use the standard
relation

Gμνρ;αβð0; p⃗Þ ¼ −GE
μνρ;αβð0; p⃗Þ; ð11Þ

where GE is the Euclidean Green’s function and a similar
relation holds for the seagull term. The calculation is
greatly simplified by using Wick contractions of the field
strength Fμν in order to write the momentum space integrals

FμνðpÞFρσ

⎴
ðqÞ ¼ ð2πÞ−4δðpþ qÞLμνρσðpÞ; ð12Þ

LμνρσðqÞ ¼ −
4

q2
q½μgν�½σqρ�: ð13Þ

Using this, one arrives at the Feynman integrals

CHRISTIAN COPETTI and JORGE FERNÁNDEZ-PENDÁS PHYS. REV. D 98, 105008 (2018)

105008-2



Gμνρ;αβðpÞ ¼
−i
2β

X
n

Z
d3k⃗
ð2πÞ3 ϵν

στγ

�
p
2
− k

�
ρ

½LμσαξðkÞLτγβ
ξðp − kÞ þ LμσβξðkÞLτγα

ξðp − kÞ�; ð14Þ

Cμνρ;αβ ¼ ipγ 1

β

X
n

Z
d3k⃗
ð2πÞ3 ½ϵνðα

στδβÞρLμγστðkÞ − ϵνγ
δτδρðαLμβÞδτðkÞ�; ð15Þ

where we use Lorentz indexes for simplicity and kμ ¼
ðωn; k⃗Þ and we drop terms proportional to gαβ from the
equations since we are only interested in the case αβ ¼ 0j.
Once the correct expressions in momentum space are

inserted and the linear order in momentum p is extracted,
the final result can be written in terms of the following
family of divergent integrals

Iða;b;cÞD ¼ 1

β

X
n

Z
dDk
ð2πÞD

jk⃗j2aω2c
n

ðω2
n þ jk⃗j2Þb

; ð16Þ

where ωn ¼ 2πnT are the bosonic Matsubara frequencies.
The integral is divergent, but it can be regulated following
[6,23] via dimensional regularization, followed by zeta-
function regularization of the Matsubara sums. The finite
result reads

Iða;b;cÞD ¼TDþ1þ2ða−bþcÞ2−D=2þ1ð2πÞD=2þ2ða−bþcÞ

×
ΓðaþD=2ÞΓðb−a−D=2Þ

ΓðD=2ÞΓðbÞ ζð−D−2ða−bþcÞÞ:

ð17Þ

In terms of these integrals, the contributions to the vortical
zilch are given by

G00i;0jðpÞ ¼ iϵijkpkIG
3 ; ð18Þ

C00i;0jðpÞ ¼ iϵijkpkIC
3 ; ð19Þ

where

IG
3 ¼ 2

3

�
1

3
Ið1;1;0Þ3 − 2Ið1;2;1Þ3 − Ið0;1;1Þ3 þ 2Ið0;2;2Þ3

�

¼ 8

135
π2T4; ð20Þ

IC
3 ¼ −

2

3

�
1

3
Ið1;1;0Þ3 − Ið0;1;1Þ3

�
¼ 4

135
π2T4: ð21Þ

All these integrals are in fact proportional to each other, and
summing them up gives

σZ ¼ 8

15
π2T4; ð22Þ

reproducing the result of [10] once we convert to their
conventions [24].

III. GENERALIZATION TO HIGHER SPINS

At this point, we would like to generalize the result of the
previous section to the whole tower of higher spin currents
constructed from the zilch. We would expect, on general
grounds, such a one-point function to display contributions
going like Tsþ1 in a thermal background in the presence of
vorticity. A related but different approach to compute the
response of higher spin gauge fields was developed in [25]
using the chiral kinetic theory of [26].
For starters, we can already guess that none of the even

spin currents would give rise to nonvanishing vortical
zilches. In fact, a moment of thought shows us that they
should come with Matsubara sums of odd powers of the
frequencies ωn, which vanish identically in our regulari-
zation scheme.
Restricting the analysis only to odd spins s ¼ 3þ 2n, we

can proceed with the construction of the higher spin zilches
in position space, whose explicit form is needed for the
computation of the contact terms. One can guess the answer
to be [27]

ZðsÞ
μ1…μs ¼ Fðμ1

α∂↔μ2…∂↔μs−1F̃μsÞα: ð23Þ

The zilches are indeed conserved and traceless on-shell

∂μZðsÞ
μμ2…μs ¼ 0; ð24Þ

ZðsÞμ
μμ3…μs ¼ 0: ð25Þ

The proof of these properties can be found in the
Appendix B.
The aim of this section is to see whether, in the presence

of vorticity, the following linear response expansion holds:

ZðsÞ
μ1…μs ¼ σðsÞZ uðμ1…uμs−1ωμsÞ þ…: ð26Þ

This leads in the rest frame to the following Kubo-type
relation for the higher spin vortical conductivity
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σðsÞZ ¼ 2slim
p⃗→0

i
2pk

ϵijkðG00…0i;0jðpÞ þ C00…0i;0jðpÞÞ; ð27Þ

where the two-point functions and the seagull term are the
obvious generalizations of (9) and (10) and the 2s factor
comes by correctly taking into account symmetrization and
the relation between vorticity and gravitomagnetic field.
The only minor technical difficulty in generalizing the
computation, once the explicit form of the higher spin
zilches is given, is the computation of the seagull term.
In order to do this, one should rewrite the flat space

expression with covariant derivatives and take functional
derivatives with respect to the metric. The position space

expression for the contact term is rather complicated and is
reported in the Appendix. In practice, it suffices to say that
most terms are made up of a field strength and a dual
contracted by one index. However, in momentum space, all
these terms give a vanishing contribution to the seagull
diagram due to the identity

ϵναβγLμαβγðqÞ ¼ 0: ð28Þ

Finally, there is one last contribution where such terms are
not contracted, which can be recast into the compact
expression

Cμ1…μs;αβðx − yÞ ¼ −
ðs − 2Þ

2

�
Fðμ1γ ∂

↔

μ2…∂↔μs−2F̃μs−1
δ − Fðμ1

δ∂↔μ2…∂↔μs−2F̃μs−1γ

� δΓγ
μsÞδ

δgαβðyÞ þOð∂ΓÞ: ð29Þ

We can then read the contributions to the higher vortical conductivities from

Gμ1…μs;αβðpÞ ¼
−i
2β

X
n

Z
d3k⃗
ð2πÞ3 ð−Þ

ðs−3Þ=2ϵμ1
στγ

�
p
2
− k

�
μ2

…

�
p
2
− k

�
μs−1

× ½LμsσαξðkÞLτγβ
ξðp − kÞ þ LμsσβξðkÞLτγα

ξðp − kÞ�; ð30Þ

Cμ1…μs;αβðpÞ ¼ ðs − 2Þipγ 1

β

X
n

Z
d3k⃗
ð2πÞ3 ð−Þ

ðs−3Þ=2kμ2…kμs−2 ½ϵμ1ðαστδβÞμs−1LμsγστðkÞ − ϵμ1γ
δτδμs−1ðαLμsβÞδτðkÞ�: ð31Þ

Setting ðμ1;…; μsÞ ¼ ð0; 0…; iÞ has essentially the effect
of multiplying the contributions from the s ¼ 3 case by an
appropriate power of Matsubara frequencies. The thermal
contributions then read

G00…0i;0jðpÞ ¼ iϵijkpkIG
s ; ð32Þ

C00…0i;0jðpÞ ¼ iϵijkpkIC
s ; ð33Þ

where, setting s ¼ 3þ 2n and working with odd spins
only, we obtain

IG
s ¼ 2

s

�
s − 2

3
ðIð1;1;nÞ3 − 2Ið1;2;nþ1Þ

3 Þ

−
4

3
Ið1;2;nþ1Þ
3 − Ið0;1;nþ1Þ

3 þ 2Ið0;2;nþ2Þ
3

	
; ð34Þ

IC
s ¼ −

2

s
ðs − 2Þ

�
1

3
Ið1;1;nÞ3 − Ið0;1;nþ1Þ

3

�
: ð35Þ

The factors of s − 2 come from integrals in which the
spatial index is on one of the momenta, since there are s − 2
ways in which this can happen, while the factor of 1=s is a

remnant of the symmetrization procedure. After regulari-
zation, the integrals combine to give

σðsÞZ ¼ 4

π2
ð2πTÞsþ1

jBsþ1j
sþ 1

; ð36Þ

where Bn are the Bernoulli numbers. We should note that,
since even Bernoulli numbers are alternating in sign, the
modulus comes from multiplication by the appropriate
number of minus signs, as in (30) and (31). This formula is
valid for odd spins s ¼ 3þ 2n. For even spin the result
should vanish, as a consequence of the vector (and not
pseudovector) nature of the even zilches, which forbids
them to transform in a parity-odd way. In our framework
this is seen from the sign cancellation between positive and
negative Matsubara frequencies for even spins. As we have
pointed out in the Introduction, this result closely resembles
the one obtained for the one-point functions of the W∞
currents of the free complex boson.

IV. DISCUSSION AND CONCLUSIONS

We have explicitly computed the vortical conductivities
for zilches of spin higher than three in the Kubo formalism.
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Let us briefly comment on the physical interpretation of our
results, especially of equation (36).
First, one may take the limit s → 1 of the expressions for

the conductivities σsZ, obtaining σ1Z ¼ 4=3T2. One may
desire to interpret this as a regularized computation of the
vortical conductivity for the helicity current. In fact, our
definition of the zilches allows to take a smooth s → 1
limit, at least for the charges, and thus analytically continue
the expressions to lower spins. However, while with our
normalization the definition of the conserved chargesQs

Z ¼R
d3xZs

0…0 coincides with the ones in [10], the s → 1 limit
of the currents Z0…0i does not coincide with the expression
for the helicity current in any simple gauge.
Another important point to be clarified is whether the

higher spin responses are actually stemming from anoma-
lies. As we have mentioned in the introduction, some results
are available in 1þ 1 dimensions, where theW algebras do
not have higher spin diffoemorphism anomalies. One can,
however, define W currents which transform covariantly
under diffeomorphisms, but have a nontrivial conservation
law. In this sense one can recover the expressions for the
one-point functions (at least for relatively small spin, in
which case the conservation law is actually computable) by
an argument along the lines of [3] or [4].
Because of this, it would be very interesting to develop a

systematic way to compare the four-dimensional result in the
presence of vorticity to the two-dimensional ones, much in the
same way as the case of strong magnetic field, where the low-
energy physics is essentially given by the 1þ 1-dimensional
description of the lowest Landau level. One could for example
try to study the system on IR2 × S2 with the vorticity playing
the role of a chemical potential for the SOð3Þ symmetry and
perform a Kaluza-Klein reduction. Intuitively, the operator
spectrum should contain an SOð2Þ doublet of fields ai which
are scalars from the point of view of the two-dimensional
theory, and strongly reminiscent of the W∞ case. We will,
however, leave such reflections for future works.
Furthermore, one needs to recall that, at least in

dimensions higher than two, higher spin theories are free
[28]. Thus, we expect that the inclusion of interactions that
will softly break the higher spin symmetry would cause our
results to change. In a different context, however [29], it
was shown that similar breaking only has the effect of
renormalizing the gauge coupling of the current which
appear in the anomaly polynomial.
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APPENDIX A: REGULARIZATION OF Iða;b;cÞ

Here, we briefly show how to regulate the various
divergent integrals appearing in the thermal computations.
We will use a mix of ζ-function and dimensional regulari-
zation. This is quite suitable, since the spatial integral
happens to be in an odd number of dimensions and thus it
will get automatically regulated. We wish to compute

Iða;b;cÞD ¼ 1

β

X
n

Z
dDk
ð2πÞD

jk⃗j2aω2c
n

ðω2
n þ jk⃗j2Þb

: ðA1Þ

We start with the spatial part, which can be expressed in
terms of

Iða;bÞD ðΔÞ ¼
Z

dDk⃗
ð2πÞD

jk⃗j2a
ðΔþ jk⃗j2Þb

: ðA2Þ

Changing to spherical coordinates and using the integral
representation of Euler’s beta function,

Bðu; vÞ ¼
Z

∞

0

dyyu−1ð1þ yÞ−v−u; ðA3Þ

gives immediately

Iða;bÞðΔÞ ¼ ΔD=2þa−b

ð4πÞD=2ΓðD=2Þ
ΓðaþD=2ÞΓðb − a −D=2Þ

ΓðbÞ :

ðA4Þ

Our initial integral has now become

Iða;b;cÞD ¼ Tð2πTÞDþ2ða−bþcÞð1þ ð−Þ2cÞ

×
X∞
n¼0

nDþ2ða−bþcÞIða;bÞD ð1Þ: ðA5Þ

The final sum is regulated by using zeta function regulari-
zation ζðsÞ ¼ P∞

n¼1
1
ns. Notice that the whole expression

vanishes when c is half integer, which is the case for even
spin zilches. Algebraic simplifications then give

Iða;b;cÞD ¼ TDþ1þ2ða−bþcÞ2−D=2þ1ð2πÞD=2þ2ða−bþcÞ

×
ΓðaþD=2ÞΓðb − a −D=2Þ

ΓðD=2ÞΓðbÞ
× ζð−D − 2ða − bþ cÞÞ; ðA6Þ

which is perfectly well defined for D ¼ 3.
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In order to obtain the final expression in the main text,
one uses that

ζð−sÞ ¼ ð−Þs Bsþ1

sþ 1
; ðA7Þ

where Bn are the Bernoulli numbers, e.g., B2 ¼ 1=6, B4 ¼
−1=30 etc. Direct computation shows that all the relevant
integrals are proportional to each other with proportionality
constants independent of the powers c of the frequency.

APPENDIX B: CONSTRUCTION
OF THE HIGHER ZILCHES AND FORM

OF THE CONTACT TERMS

In this section, we explicitly verify the conservation for
the higher zilch currents and derive from these currents the
contact terms for the Kubo formula computation. We omit
for simplicity unimportant normalization factors. We start
by showing that the current is conserved ∂μZðsÞ

μμ2…μs ¼ 0. In
order to do this, one expands

ZðsÞ
μμ2…μs ¼

1

s

�
Fμ

α∂↔ðμ2…∂↔μs−1F̃μsÞα þ Fðμ2
α∂↔μ3…∂↔μsÞF̃μα

�

þ s − 2

s
Fðμ2

α∂↔μ∂
↔

μ3…∂↔μs−1F̃μsÞα: ðB1Þ

When applying the divergence, the last term vanishes due
to the equation of motion□Fμν ¼ □F̃μν ¼ 0. This happens
since its contraction with the two sided derivative reads

∂↔þ
μ ∂
↔μ ¼ □

↔
, where ∂↔þ

μ ¼ ∂⃗μ þ ∂⃖μ. The first two terms give
a contribution

∂μZðsÞ
μμ2…μs ¼

1

s

�
Fμ

α∂↔ðμ2…∂↔μs−1∂μF̃μsÞα

þ ∂μFðμ2
α∂↔μ3…∂↔μsÞF̃μα

�
; ðB2Þ

where we have already dropped the other combination
which vanishes due to Maxwell’s equation ∂μFμν ¼
∂μF̃μν ¼ 0.
The remaining terms have to be manipulated a bit in

order to show that they cancel. To do this one uses the
Bianchi identity and the antisymmetry in αμ to substitute
∂μFμ2α by − 1

2
∂μ2Fμα and the same for F̃. This results in

∂μZðsÞ
μμ2…μs ¼ −

1

2s
∂ðμ2ðFμα∂↔μ3…∂↔μsÞF̃μαÞ: ðB3Þ

Since the number of double sided derivatives is odd, the
expression is both symmetric and antisymmetric in F ↔ F̃
so it vanishes.
Tracelessness follows in a similar way. In fact, using the

equation of motion we can rewrite the trace of the zilches as

ZðsÞμ
μμ3…μs ¼

2

sðs − 1ÞF
μα∂↔ðμ3…∂↔μsÞF̃μα −

ðs − 2Þðs − 3Þ
4sðs − 1Þ ∂μFðμ3

α∂↔μ4…∂↔μs−1∂μF̃μsÞα

þ s − 2

sðs − 1Þ
�
Fμ

α∂↔ðμ3…∂↔μs−1∂μF̃μsÞα − ∂μFðμ3
α∂↔μ4…∂↔μsÞF̃μα

�
; ðB4Þ

which is immediately seen to vanish term by term once the
Bianchi identity is used to simplify the second line. Notice
that is critical for the spin to be odd in order for the
computation to work out. Having constructed a conserved
spin-s zilch in flat spacetime, we wish to extend it to the
curved case to extrapolate the contact terms relevant to our
calculation.
Now we move on to compute the contact term, by

making the partial derivatives covariant. We will work only
at linear level in the curved metric and, in order to do this, it
is expedient to rewrite the currents as

ZðsÞ
μ1…μs ¼

Xs−2
k¼0

cs;k∂ðμ2…∂μkFμ1
α∂μkþ1

…∂μs−1−k F̃μsÞα; ðB5Þ

where cs;k ¼ ð−Þk
2s−2

ðs−2k Þ. To covariantize we simply replace
partial derivatives with covariant ones, and to linear order
we only have to worry of a single covariant derivative at a
time, so that we may write

ZðsÞ
μ1…μs ¼

Xs−2
k¼0

cs;k
Xk
i¼0

∂ðμ2…∇μi…∂μkFμ1
α∂μkþ1

…∂μs−1−k F̃μsÞα

−∂ðμkþ1
…∂μs−1−kFμ1

α∂μ2…∇μi…∂μk F̃μsÞα; ðB6Þ

where the minus sign is a consequence of the odd number
of derivatives.
The metric dependence of the above expression comes

from three different places. The first, which will not contain
external momenta when we perform the integral in momen-
tum space, is through the contraction of the α indexes
between F and F̃. The second contribution can be obtained
by expanding the covariant derivatives acting on the μj
indexes in terms of the Christoffel symbols. Those terms
with derivatives acting on the Christoffel symbols will
involve higher orders of the external momenta when we
integrate and thus can be dropped. The remaining ones will
be of the form
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Γγ
ðμiμj∂μ2…∂γ…∂μkFμ1

α∂μkþ1
…∂μs−1−k F̃μsÞα; ðB7Þ

and

Γγ
ðμiμ1∂μ2…∂μkFγ

α∂μkþ1
…∂μs−1−k F̃μsÞα; ðB8Þ

and the same with F ↔ F̃. These terms come into various
combinations in the complete sum but for our purposes it is
enough to argue that they will cancel term by term. To see
this, one takes the functional derivative with respect to the

external metric and goes to Fourier space. After performing
Wick contractions, what remains is an integral of the form

1

β

X
n

Z
d3q⃗
ð2πÞ3 ð…ÞϵμiαβγLμjαβγðqÞ; ðB9Þ

where the dots stand for a combination of momenta and the
rightmost part comes from the Wick contraction. The point
is that such formula vanishes identically since

ϵμ
αβγLναβγ ¼

1

q2
ϵμ

αβγðqνqβδαγ − qαqβδνγ − qνqγδαβ þ qαqγδνβÞ ¼ 0: ðB10Þ

Finally, the last source of contact terms are those cases in which one acts with the covariant derivative on the contracted
index α. In position space, they give a contribution

Xs−2
k¼0

cs;k
Xk
i¼0

Γγ
μiαð∂ðμ2……∂μkFμ1γ∂μkþ1

…∂μs−1−k F̃μsÞ
α − ∂μkþ1

…∂μs−1−kFμ1
α∂μ2…∂μk F̃μsÞγÞ þOð∂ΓÞ; ðB11Þ

where the μi-th derivative is missing. Since the indexes are all symmetrized, the sum over i just gives a factor of k.
Manipulating the binomial coefficient, one can recast the whole expression as

−
s − 2

2
Γγ
ðμ1αðFμ2γ ∂

↔

μ3…∂↔μs−1F̃μsÞ
α − Fμ2

α∂↔μ3…∂↔μs−1F̃μsÞγÞ þOð∂ΓÞ: ðB12Þ

Finally using

δΓγ
μνðxÞ

δgαβðyÞ





g¼δ

¼ 1

2
½−δðαμ δβÞν ∂γδðx − yÞ þ δðαν δβÞγ∂μδðx − yÞ þ δðαμ δβÞγ∂νδðx − yÞ�; ðB13Þ

one arrives at the momentum space expression for the contact terms.
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