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Based on the generalized Bloch equation, the transseries expansion for the phase (exponent) of the
ground state density for double-well potential is constructed. It is shown that the leading and next-to-
leading terms in semiclassical expansion are still defined by the flucton trajectory (its classical action) and
quadratic fluctuations (the determinant), respectively, while the next-to-next-to-leading term (at large
distances) is of nonperturbative nature. It comes from the fact that all flucton classical trajectories modified
by multi-instanton, instanton–anti-instanton additions lead to the same classical action behavior at large
distances. This correction is proportional to sum of all leading instanton contributions to energy gap.
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I. INTRODUCTION

It was understood long ago that the inter-relations between
two formulations of quantum mechanics, Schrödinger’s
based on the wave functions and Feynman’s based on path
integrals, become nontrivial in certain special problems.
In particular, if coordinates are definedon compactmanifolds
(such as Lie groups), there exist topologically distinct paths.
Since they cannot be continuously deformed into basic
topologically trivial paths, the issue of their normalization
(and especially their sign) in the path integral formalism is
nontrivial and requires basically a separate definition. It has
been very clearly explained in the remarkable paper by
L. Schulman [1] using the simplest example of a particle on a
circle [orOð2Þ ¼ Uð1Þ group], in which case the question is
whether angular momentum should be integer or half-
integer. In the latter case, thewave functions must be defined
as antiperiodic, and the winding paths contribution to the
integral must be defined as having an extra sign factor.
Only with this modification the path integral formalism
become finally fixed uniquely.
In our previous works [2,3], we introduced and studied a

version of the semiclassical theory based on the so-called
flucton paths in Euclidian time, the periodic ones which start

and end at some arbitrary location x0 and thus contribute
to the density matrix ρðx0Þ. Unlike the textbook WKB
(Wentzel-Kramers-Brillouin) approach, this one can be used
for multidimensional or Quantum Field Theory (QFT)
problems, and perturbative corrections to all orders can be
calculated via Feynman diagrams. These corrections has
been explicitly calculated, in one and two loops for a number
of examples including the quartic anharmonic oscillator
and sine-Gordon potential. These series on top of the flucton
were then reinterpreted and rederived, using the so-called
generalized Bloch equation.
If the potential of the problem has a single minimum, like

in anharmonic oscillator V ∼ x4, the flucton path is uniquely
defined by a condition that at the Euclidian time τ → �∞ it
should “relax” to that minimum. However, if there are two or
more degenerate minima (as is the case in the double-well or
sin-Gordon problems we also studied), there are also paths
which can relax to two different minima. Classical paths,
corresponding to transitions between those minima are
known as instantons (or anti-instantons, or multi-instantons
in general). Contributions of instantons to the ground state
energy have been studied in multiple papers, including e.g.,
our ownworks [4,5] inwhich it also has been done explicitly,
up to three loops.
The issue we address in this work is the instanton

contribution to the density matrix. In Fig. 1, we illustrate
it by two paths, both passing through some generic point x0
(which we take to be outside of both potential minima
marked by wide solid lines). The left sketch shows the
flucton path, which at τ → �∞ relaxes to the same (nearest)
minimum. The right sketch shows a path which relaxes to
different minima; we will call it “f þ i” (flucton plus
instanton) path. The Euclidean time τ is the vertical
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coordinate. (Recall that at finite temperatures it is defined on
a circle with circumference β ¼ ℏ=T, and the paths should
be periodic. Yet in this work, we consider zero temperature
quantum mechanics, so β ¼ ∞, and the only remaining
condition is that the paths must have a finite action.)
Since both paths pass through the point x0, they both

must contribute to ρðx0Þ. Yet since the paths are topologi-
cally distinct, the question of relative normalization of their
contributions to the integral naturally arises. We already
touched upon this issue in our previous paper [5] (for 0 <
x0 < 1 in between the minima), but now we would like to
do it more explicitly, using the classic example of the
double-well potential and the generalized Bloch equation
we also introduced before [5].
Nowadays, it is a well-known fact that in quantum

mechanics for potentials with two or more degenerate
minima the ground state energy contains nonanalytic terms
at g → 0 of instanton origin in addition to perturbation
theory in g; see for instance Ref. [6]. In particular, for the
ground state of the celebrated quartic double-well potential,
the standard perturbation theory expansion for energy
becomes transseries of the form,

Eðg2Þ ¼ EPTðg2Þ þ
X∞
k¼1

X
l

X∞
p¼0

�
1

jgj exp
�
−

c
g2

��
k

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k-instanton

×

�
log

c
g2

�
l
ck;l;pg2p|fflfflfflffl{zfflfflfflffl}

PT

; ð1Þ

see e.g., Ref. [7], in which the parameters c ¼ 1=6 and
ck;l;p are real parameters, g is the coupling constant (see
below), and the subscript PT stands for perturbation theory.
Similar expansion can be derived for all energy eigenval-
ues. Perhaps, L. D. Landau and E. M. Lifschitz were the
first who indicated to this phenomenon [8], J. Zinn-Justin
[9] derived this expansion systematically as a state of the

art, and together with U. Jentschura [10], they made
impressive concrete calculations of this expansion.
Recently, G. V. Dunne and M. Ünsal in a number of papers
revealed the hidden properties of (1) and made it under-
standable, at least, for us; see e.g., Ref. [11] and references
therein. Note that (1) implies that the energy can be written
as sum of perturbative and nonperturbative parts,

E ¼ EPT þ ENPT: ð2Þ
The aim of this paper is to derive nonanalytic terms in

g for ground state density (the square of the ground
state function) in a systematic way, thus constructing a
type of trans-series for the wave function assuming that the
transseries for the ground state energy is known. Explicitly,
it is done by separating perturbative and nonperturbative
parts in the wave function multiplicatively,

Ψ ¼ e−ϕPT−ϕNPT ≡ ψPTψNPT; ð3Þ
hence, the log of wave function can be represented as a sum
of perturbative and nonperturbative terms. This is the key
observation which comes naturally from the Riccati-Bloch
equation. Then, we will try to clarify the obtained transs-
eries in the framework of path integral formalism. The
celebrated quartic double-well potential will be taken as the
example. Thus, overall, the derivation will be made from
two different directions: (i) from quantum mechanics using
the generalized Bloch equation of the type presented in
Ref. [3] and (ii) from the Euclidian time path integral
following a variety of flucton-instanton trajectories.
Needless to say, the celebrated quartic double-well

potential, written for future convenience in the form

VðxÞ ¼ 1

2
x2ð1 − gxÞ2; ð4Þ

where g is the coupling constant, plays an exceptionally
important role in different physical sciences and chemistry.
It has two degenerate minima situated at x ¼ 0 and x ¼ 1

g,

respectively, and a maximum at x ¼ 1
2g. The potential is also

symmetric with the center of symmetry at xc ¼ 1
2g,

V

�
x −

1

2g

�
¼ V

�
−xþ 1

2g

�
:

It is seen explicitly when the potential (4) is rewritten as

Vðx̃Þ ¼ g2

2

�
x̃ −

1

2g

�
2
�
x̃þ 1

2g

�
2

−
1

32g2
; ð5Þ

where x̃ ¼ x − 1
2g. It implies the parity of the eigenfunction,

being even or odd. Hence, the eigenfunction can be
represented in the form

ΨðxÞ ¼ Ψ
�
x −

1

2g

�
� Ψ

�
−xþ 1

2g

�
; ð6Þ

FIG. 1. The flucton path (left) and flucton-plus-instanton path
(right) both pass from some generic point x0 and relax to one or
two degenerate minima, to ensure the finiteness of the action.
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with plus sign for even and minus sign for odd eigenfunc-
tions [12]. However, to study the transseries expansion in
quantum mechanics for the ground state eigenfunction, it is
more convenient to use the exponential representation (3)
where the phase is given by the sum of perturbative and
nonperturbative parts,

logΨ ¼ logΨPT þ logΨNPT:

In QFT and quantum mechanics in the path integral
formalism the density matrix, calculated in saddle-point
method, appears as the sum over saddle point contributions
as for large positive (negative) distance x0, hence, in the
form of a linear superposition. It implies that the repre-
sentation (6) is more natural than non-linear representation
(3). However, the concrete calculations are performed
much more easily in the representation (3). Afterwards
the results can be re-expanded (in additive way) for the
representation (6), see Sec. IV.
The potential (4) belongs to a special class of anhar-

monic potentials,

VðxÞ ¼ ṼðgxÞ
g2

¼ 1

2
x2 þ a3gx3 þ a4g2x4 þ…; ð7Þ

as well as the celebrated sine-Gordon potential. The
function Ṽ has a minimum at x ¼ 0 it always starts from

the quadratic term. The frequency of the small oscillations
in the potential V near the minimum can always be placed
equal to 1, ω ¼ 1 and g is the coupling constant of
dimension [1x], see e.g., Ref. [3]. For the sake of future
convenience, the classical (vacuum) energy is always taken
to be zero, Vð0Þ ¼ 0, and a2;3;… are real, dimensionless
parameters; hence, VðxÞ ≥ 0. We call (gx) the classical
coordinate; see below. Both the classical coordinate and the
Hamiltonian with the potential (7),

H ¼ −
1

2m
∂2
x þ

1

g2
ṼðgxÞ; ∂x ¼

d
dx

;

m ¼ 1; x ∈ ð−∞;∞Þ; ð8Þ
are invariant with respect to simultaneous change,

x → −x; g → −g:

It implies that the energy is the function of g2,

E ¼ Eðg2Þ: ð9Þ

A particular form of the transseries (1) for the ground
state energy of the quartic double-well potential (4), which
we are going to exploit, has the form (if for the sake of
simplicity we assume g > 0)

EðgÞ ¼ EPT þ ENPT ¼
X
n¼0

g2nEPT;n þ
1

g
e−S0ðAð1Þ

0 þ Að1Þ
1 g2 þ…Þ þ 1

g2
e−2S0ðAð2Þ

0 þ Að2Þ
1 g2 þ…Þ

þ…þ logðg2Þ 1
g
e−S0

�
1

g
e−S0ðBð1Þ

0 þ Bð1Þ
0;1g

2 þ…Þ þ 1

g2
e−2S0ðBð1Þ

1 þ Bð1Þ
1;1g

2 þ…Þ þ…

�

þ log2ðg2Þ 1
g2

e−2S0
�
1

g
e−S0ðBð2Þ

0 þ Bð2Þ
0;1g

2 þ…Þ þ 1

g2
e−2S0ðBð2Þ

1 þ Bð2Þ
1;1g

2 þ…Þ þ…

�
þ…; ð10Þ

where S0 ¼ 1
6g2 is one-instanton classical action; the param-

eters E s, A s, and B s are real and can be calculated
constructively; and some of them are explicitly known (see
Ref. [10] and references therein). The form (10) is slightly
different from the standard form of transseries, see e.g.,
Ref. [11], being of the type (1): it takes into account the
appearance in the standard form for transseries the imagi-
nary parts in some coefficients with their further cancella-
tions due to the Bogomolny mechanism [13,14]. It is worth
emphasizing that one can see explicitly in (10) the presence
of two structures,

ξ ¼ 1

g
e−S0 ; χ ¼ logðg2Þ 1

g
e−S0 ; ð11Þ

in addition to the coupling constant g itself, cf. Ref. [10],
Eqs. (8.1) and (8.2). Therefore, the transseries (10) can be
considered as the triple Taylor expansion in g, ξ, χ,

E ¼
X

Ek;l;pg2kξlχp: ð12Þ

Note that χ has the meaning of one-instantion contribution
in a leading order: classical action plus determinant. It is
worth noting that nonperturbative energy ENPT can be
reorganized into the form of perturbation series,

ENPT ¼
X
n¼0

g2nAnENPT;nðgÞ; ð13Þ

where

ENPT;0¼
�
1

g
e−S0 þ 1

g2
e−2S0 ½Að2Þ

0 þBð2Þ
0 logðg2Þ�

þ 1

g3
e−3S0 ½Að3Þ

0 þBð3Þ
0;1 logðg2ÞþBð3Þ

0;2log
2ðg2Þ�

þ…þ 1

gp
e−pS0

Xp−1
q¼0

AðpÞ
0;q log

qðg2Þþ…

�
; ð14Þ

TRANSSERIES FOR THE GROUND STATE DENSITY AND … PHYS. REV. D 98, 105007 (2018)

105007-3



with A0 ¼ −
ffiffi
1
π

q
in (13). This is the sum of all leading

instanton contributions to nonperturbative energy. In fact, it
represents the sum over multi-instanton saddle points in the
leading approximation, when classical action plus deter-
minant (one-loop contribution) are taken into account. The
nth correction in (13) has a similar form:

ENPT;n ¼
�
1

g
e−S0 þ 1

g2
e−2S0 ½Að2Þ

n þ Bð2Þ
n logðg2Þ�

þ 1

g3
e−3S0 ½Að3Þ

n þ Bð3Þ
n;1 logðg2Þ þ Bð3Þ

n;2log
2ðg2Þ�

þ…þ 1

gp
e−pS0

Xp−1
q¼0

AðpÞ
n;qlogqðg2Þ þ…

�
: ð15Þ

Natural questions to ask arewhether transseries expansion
exists for a wave function of the type (12) with x-dependent
coefficients and if so how to construct it. In order to proceed,
let us derive the generalized Bloch equation, cf. Ref. [3],
specific for the potential with two degenerate minima. The
first step is standard: we begin with the Schrödinger equation
for the wave function and go to the equation on its
logarithmic derivative yðxÞ, which eliminates the overall
normalization constant from consideration. We arrive at the
familiar Riccati equation where the boundary condition
yð0Þ ¼ 0 should be imposed. However, in order to find
the non-singular at real x solution which will guarantee the
normalizability of the eigenfunction, two extra conditions
should be imposed: (i) y should be asymptotically antisym-
metric, yð−xÞ ¼ −yðxÞ; in concrete, it should behaves
asymptotically like yðxÞ ∼ gxjxj at large jxj (at g > 0),
and (ii) derivative at origin is equal to the eigenvalue,
y0ð0Þ ¼ E. The condition (ii) reveals the meaning of the
quantization of energy in the nonlinear Riccati equation: for
given g, there exists the single value of the ground state

energy EðgÞ for which (i) holds. The second step is that we
have to extract the product of two linear functions of the
coordinate from the logarithmic derivative assuming the
remaining function depends essentially on the classical
coordinate (gx),

xð1 − gxÞzðgx; gÞ ¼ −
ψ 0ðxÞ
ψðxÞ ¼ yðxÞ: ð16Þ

It reflects the fact that, since the original potentialVðxÞ (7) has
twominima at x ¼ 0 and x ¼ 1=g, the logarithmic derivative
of thewave function (the derivative of the phase) has to vanish
linearly at x ¼ 0 and x ¼ 1=g, respectively. Now, we have to
write the equation for function z. Substituting the construction
(16) to the Schrödinger equation

�
−
1

2

d2

dx2
þ 1

g2
ṼðgxÞ

�
ψðxÞ ¼ EψðxÞ;

where the Planck constant is placed equal to 1, ℏ ¼ 1, and
redefining the coordinate u ¼ gx assuming g > 0, we arrive
at the equation

g2uð1 − uÞz0ðuÞ þ g2ð1 − 2uÞzðuÞ − u2ð1 − uÞ2zðuÞ2
¼ 2g2E − ṼðuÞ; ṼðuÞ ¼ u2ð1 − uÞ2; ð17Þ

which is called the generalized Bloch equation. Note that
here zðuÞ has the meaning of a reduced logarithmic deriva-
tive; see (16). Wewill study Eq. (17), imposing the boundary
condition zð0Þ ¼ E andputting also the condition zðuÞ∼ ∓ 1
at u → �∞.
Now, we proceed in solving Eq. (17) at the weak

coupling regime g → 0 by expanding consistently both
the energy E and zðuÞ in transseries (10) and

zðuÞ ¼
X
n¼0

g2nzPT;nðuÞ þ ge−S0ðζð1Þ0 ðuÞ þ g2ζð1Þ1 ðuÞ þ…Þ þ e−2S0ðζð2Þ0 ðuÞ þ g2ζð2Þ1 ðuÞ þ…Þ

þ…þ log g2
�
e−2S0ðζ̃ð2Þ0 ðuÞ þ g2ζ̃ð2Þ1 ðuÞ þ…Þ þ 1

g
e−3S0ðζ̃ð3Þ0 ðuÞ þ g2ζ̃ð3Þ1 ðuÞ þ…Þ þ…

�

þ 1

g
log2g2

�
e−3S0ðζ̂ð3Þ0 þ g2ζ̂ð3Þ1 þ…Þ þ 1

g2
e−4S0ðζ̂ð4Þ0 þ g2ζ̂ð4Þ1 þ…Þ þ…

�
þ…; ð18Þ

respectively. We will explore in details the following issues: (i) the perturbation theory in powers of g, (ii) the one-instanton
contribution ∼e−S0 , (iii) two-instanton contributions ∼e−2S0 , and (iv) the sum of leading multi-instanton contributions.

II. WEAK COUPLING REGIME: PERTURBATION SERIES VS SEMICLASSICAL EXPANSION

Looking at the generalized Bloch equation (17), one can immediately realize a striking fact that the perturbation theory
expansion
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EPTðgÞ ¼
X
n¼0

g2nEPT;n;

zPTðuÞ ¼
X
n¼0

g2nzPT;nðuÞ ð19Þ

can be constructed self-consistently, without involving
nonperturbative, exponentially small terms, cf. Ref. [3],
Sec. III.C.2. Owing to this property, we can separate
perturbative and nonperturbative contributions in z. From
now on, we will drop the notation “PT” in z but will keep it
for energy E.
In the zeroth order in g, Oðg0Þ in (17), in which all terms

proportional to the coupling are ignored, the equation to
solve is very simple,

−u2ð1 − uÞ2z0ðuÞ2 ¼ −u2ð1 − uÞ2; ð20Þ
leading to

z0ðuÞ ¼ �1; ð21Þ
here, the sign is chosen by requiring the normalizability of
the unperturbed wave function Ψ0. Thus, we take the sign
plus for u < 0: z0 ¼ −1 and the sign minus for u > 0:
z0 ¼ 1. Hence, the solution is discontinuous at u ¼ 0. This
is the indication that we cannot go to the domain of small
juj: the expansion (19) for zPT is convergent at large juj >
u0 only, see below.
This result [uð1 − uÞz0] is, in fact, the classical momen-

tum at zero energy, and therefore, when we return to
the wave function, the zeroth order term gives the well-
known semiclassical action. So, the zero approximation
admits a simple interpretation as the exponent is equal
to the classical action in the semiclassical wave function
ψ ∼ expð− R

x pðx0Þdx0Þ but at zero energy.
Moving to the next term zPT;1 ¼ z1 of the expansion

(19), one finds the following equation Oðg2Þ in order to
find it:

uð1 − uÞz00ðuÞ þ ð1 − 2uÞz0ðuÞ − 2u2ð1 − uÞ2z0ðuÞz1ðuÞ
¼ 2EPT;0: ð22Þ

Note here that the equation involves the known function z0
and unknown z1, and both of them appear linearly. The
similar feature takes place in all orders; finding zn does not
involve solving a differential equation rather than a linear
algebraic one.
An important feature of the procedure is that the pertur-

bative energy EPT needs to be used in (17) instead of E, in
the form of perturbative expansion in powers of g2. These
coefficients EPT;n should be found separately, by some other
method, not via the perturbation theory in the generalized
Bloch equation. For example, the nonlinearization procedure
can be used for it [15]. Since the zeroth order potential is
the harmonic oscillator one, EPT;0 ¼ 1=2. Hence, the first
correction, which emerges from (22), is given by

z1ðuÞ ¼
ð1 − 2uÞz0 − 1

2u2ð1 − uÞ2z0
; ð23Þ

which is a rational function in u. At large u > 0, the
correction tends to zero, z1 → −u−3, in agreement with
boundary conditions at large juj. Otherwise, it grows up to
infinity with decreasing juj toward 0 or 1. It implies that we
cannot go to the domain of small juj and should remain at
large juj, which is typical for the semiclassical approxima-
tion. In Ref. [3], it was shown explicitly that this correction is
related to the determinant in flucton loop expansion. In a
similar way, one can find z2ðuÞ using the first perturbation
correction EPT;1 and known z0;1 by solving the equation

uð1 − uÞz01ðuÞ þ ð1 − 2uÞz1ðuÞ − u2ð1 − uÞ2
× ðz21 þ 2z0ðuÞz2ðuÞÞ ¼ 2EPT;1: ð24Þ

As a result,

z2ðuÞ ¼
uð1 − uÞz01ðuÞ þ ð1 − 2uÞz1 − 2EPT;1

2u2ð1 − uÞ2z0
−

z21
2z0

ð25Þ

is the rational function inu. At juj → ∞, z2 ∼ − 3
2u6

, overall, it
is of the orderOðg4Þ. This correction is related with the two-
loop contribution in flucton loop expansion [3].
In general, in the same way, one can write the equation

for znðuÞ,

uð1 − uÞz0n−1ðuÞ þ ð1 − 2uÞzn−1ðuÞ − u2ð1 − uÞ2
× ½Qn þ 2z0ðuÞznðuÞ� ¼ 2EPT;n−1; ð26Þ

where

Qn ¼
Xn−1
i¼1

zizn−i:

Finally, the solution gets the form

znðuÞ ¼
uð1− uÞz0n−1ðuÞ þ ð1− 2uÞzn−1 − 2EPT;n−1

2u2ð1− uÞ2z0
−
Qn

2z0
:

ð27Þ

In general, it is the rational function in u,

znðuÞ ¼
pnðuÞ

2u2nð1 − uÞ2nzn0
¼ pnðuÞ

2Ṽn ; ð28Þ

where pn is the nth degree polynomial with rational
coefficients and Ṽ is the potential defined (17). Thus,
znðuÞ is given by the sum of n-loop Feynman diagrams
weighted with appropriate symmetry factors in flucton
calculus.
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III. WEAK COUPLING REGIME: TRANSSERIES
EXPANSION, EXPONENTIALLY SMALL TERMS

A. One-instanton contribution

Analyzing the generalized Bloch equation (17), one can
immediately realize the striking fact that the one-instanton
contribution to energy and reduced logarithmic derivative

E1IðgÞ ¼ A0e−S0
X
n¼0

g2n−1E1I;n;

z1IðuÞ ¼ A0e−S0
X
n¼0

g2nþ1ζð1Þn ðuÞ; ð29Þ

see (10), can be constructed without involving exponen-
tially small terms of higher orders e−pS0 ; p ¼ 2. Here

A0 ¼ −
ffiffi
1
π

q
is normalization factor given by the instanton

determinant at g ¼ 1 and E1I;n define energy corrections to
one-instanton; systematically, they are rational numbers
E1I;0¼1; E1I;1¼−71

12
; E1I;2¼−6299

288
… [10], Sec. 8,

Eq. (8.13a). Note that E1I;n at n ¼ 1, 2 were calculated
alternatively in instanton calculus using two- and three-
loop Feynman integrals [4,16], respectively.
Now, we proceed to the calculation of exponentially

small terms in g in expansion (18), (29). For the first step,
let us collect all terms of the order Oðge−S0Þ in Eq. (17),
which is of the lowest order in g in front of the exponen-
tially small term e−S0 ,

−2u2ð1 − uÞ2z0ðuÞζð1Þ0 ðuÞ ¼ −2E1I;0; ð30Þ
cf. Eq. (20), where E1I;0 ¼ 1, see e.g., Ref. [9], and z0 is
given by (21). Its solution has the form

ζð1Þ0 ¼ 1

u2ð1 − uÞ2z0
¼ 1

Ṽz0
; ð31Þ

for juj > 1, and here the potential Ṽ is defined in (17).
Asymptotically,

ζð1Þ0 →
1

z0u4
; u → �∞; ð32Þ

hence, the boundary condition at u ¼ �∞ is satisfied. For
the next step, let us collect all terms of the order Oðg3e−S0Þ
in Eq. (17), which is of the next-to-lowest order in g in front
of the exponentially small term e−S0 ,

uð1 − uÞð∂uζ
ð1Þ
0 ðuÞÞ þ ð1 − 2uÞζð1Þ0 ðuÞ

− 2u2ð1 − uÞ2z0ζð1Þ1 ðuÞ
¼ −2E1I;1 þ 2u2ð1 − uÞ2z1ζð1Þ0 ðuÞ; ð33Þ

where E1I;1 ¼ −71=12, see e.g., Ref. [9] and also Ref. [16],
and z1 is given by (23). Its solution has the form

ζð1Þ1 ¼ 1

z0

�
−

71

12u2ð1 − uÞ2 − z1ζ
ð1Þ
0 þ ∂uζ

ð1Þ
0

2uð1 − uÞ

þ ð1 − 2uÞζð1Þ0

2u2ð1 − uÞ2
�
: ð34Þ

In general, collecting terms of the order Oðg2nþ1e−S0Þ in
Eq. (17), we arrive at the equation

uð1 − uÞð∂uζ
ð1Þ
n−1ðuÞÞ þ ð1 − 2uÞζð1Þn−1ðuÞ

− 2u2ð1 − uÞ2z0ζð1Þn ðuÞ
¼ −2E1I;n þ 2u2ð1 − uÞ2Qð1Þ

n ; ð35Þ

where

Qð1Þ
n ¼

Xn
i¼1

ziðuÞζð1Þn−iðuÞ: ð36Þ

It is easily solved, and the explicit form of the nth
correction reads

ζð1Þn ¼ 1

z0

�
−

E1I;n

u2ð1 − uÞ2 −Qð1Þ
n þ ∂uζ

ð1Þ
n−1

2uð1 − uÞ

þ ð1 − 2uÞζð1Þn−1
2u2ð1 − uÞ2

�
:

Finally, the nth correction has the form of a rational
function with integer coefficients similar to (28).
Concluding, one can see that in order to construct z1IðuÞ

we have to know the perturbative contribution zPTðuÞ only.
It is a type of nested construction.

B. Two-instanton contribution

From the generalized Bloch equation (17), one can
immediately realize that the two-instanton contribution

E2IðgÞ ¼ Að2Þ
0 e−2S0

X
n¼0

g2n−2E2I;n;

z2IðuÞ ¼ Að2Þ
0 e−2S0

X
n¼0

g2nζð2Þn ðuÞ; ð37Þ

see (10), second line, and (18), second line, can be con-
structed without involving exponentially small terms of
higher orders e−pS0 , p > 2 or logarithmic contributions
logqðg2Þe−pS0 , q ≥ 1, p ≥ 2.
Here, Að2Þ

0 ¼ 1
π is a normalization factor given seemingly

by the two-instanton determinant at g ¼ 1 and E2I;n define
energy corrections to two-instanton. Systematically, they
are written in the form of linear function in Euler constant γ
with rational coefficients:
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E2I;0 ¼ γ; E2I;1 ¼ −
23

2
−
53

6
γ;

E2I;2 ¼
13

12
−
1277

72
γ…;

see [10], Sec. 8, Eq. (8.14a). We are not familiar with any
attempt to calculate these coefficients in instanton calculus
using the Feynman diagramm techniques.
Collecting the terms of the order Oðg0e−2S0Þ in Eq. (17),

which is the lowest order in g in front of the exponentially
small term e−2S0 , we arrive at

−2u2ð1 − uÞ2z0ðuÞζð2Þ0 ðuÞ ¼ −2E2I;0; ð38Þ
cf. Eq. (20), where E2I;0 ¼ 1, see e.g., Ref. [9], and z0 is
given by (21). Its solution has the form

ζð2Þ0 ¼ 1

u2ð1 − uÞ2z0
¼ 1

Ṽz0
; ð39Þ

for juj > 1; here, the potential Ṽ is defined at (17). It

coincides with ζð1Þ0 (31).
For the next step, let us collect all terms of the order

Oðg2e−2S0Þ in Eq. (17), which is of the next-to-lowest order
in g in front of the exponentially small term e−2S0 ,

uð1 − uÞð∂uζ
ð2Þ
0 ðuÞÞ þ ð1 − 2uÞζð2Þ0 ðuÞ

− 2u2ð1 − uÞ2z0ζð2Þ1 ðuÞ
¼ −2E2I;1 þ u2ð1 − uÞ2ð2z1ζð2Þ0 þ ðζð1Þ0 Þ2Þ; ð40Þ

where z1 is given by (23) and ζð1Þ0 is from (31). Its solution
has the form

ζð2Þ1 ¼ 1

z0

�
E2I;1

u2ð1 − uÞ2 −
1

2
ð2z1ζð2Þ0 þ ðζð1Þ0 Þ2Þ

þ ∂uζ
ð2Þ
0

2uð1 − uÞ þ
ð1 − 2uÞζð2Þ0

2u2ð1 − uÞ2
�
: ð41Þ

It is easy to find the nth correction,

ζð2Þn ¼ 1

z0

�
E2I;n

u2ð1−uÞ2−
Qð2Þ

n

2
þ ∂uζ

ð2Þ
n−1

2uð1−uÞþ
ð1−2uÞζð2Þn−1
2u2ð1−uÞ2

�
;

ð42Þ

where

Qð2Þ
n ¼ 2

Xn
i¼1

ziðuÞζð2Þn−iðuÞ þ
Xn−1
i¼0

ζð1Þi ðuÞζð1Þn−iðuÞ:

It is evident that in order to construct two-instanton
contribution z2IðuÞ we have to know perturbative

contribution zPTðuÞ and one-instanton contribution z1IðuÞ
only. As a result, the correction ζð2Þn is a rational function.
It is needless to demonstrate that in order to determine

the k-instanton contribution,

EkIðgÞ ¼ AðkÞ
0 e−2S0

X
n¼0

g2n−kE2I;n;

zkIðuÞ ¼ AðkÞ
0 e−2S0

X
n¼0

g2n−kþ2ζð2Þn ðuÞ; ð43Þ

we have to know perturbative contribution zPTðuÞ and all
one-, two-, and (k − 1)-instanton contributions zðk−1ÞIðuÞ.
It is a type of nested construction, and it does not involve
logarithmic contributions.

C. Two-instanton log contribution

From the generalized Bloch equation (17), one can
immediately realize that the two-instanton contribution

E2I−logðgÞ ¼ Að2lÞ
0 logðg2Þe−2S0

X
n¼0

g2n−2E2Il;n;

z2IlðuÞ ¼ Að2lÞ
0 logðg2Þe−2S0

X
n¼0

g2nζð2lÞn ðuÞ; ð44Þ

see (10), second line, and see (18), second line, can be
constructed without involving exponentially small terms of
higher orders e−pS0 , p > 2 or logarithmic contributions
logqðg2Þe−pS0 , q ≥ 1, p > 2.
Here, Að2lÞ

0 ¼ 1
π is the normalization factor given seem-

ingly by the two-instanton determinant at g ¼ 1 and E2Il;n

define energy corrections to two-instanton logarithmic
contribution, systematically, they are given by rational
coefficients:

E2Il;0 ¼ 1; E2Il;1 ¼ −
53

6
; E2Il;2 ¼

1277

72
;…;

see Ref. [10], Sec. 8, Eq. (8.14a). We are not familiar with
any attempt to calculate these coefficients in instanton
calculus.
Collecting the terms of the order Oðlogðg2Þe−2S0Þ in

Eq. (17), which is the lowest order in g in front of the
exponentially small term logðg2Þe−2S0 , we arrive at

−2u2ð1 − uÞ2z0ðuÞζð2lÞ0 ðuÞ ¼ −2E2Il;0; ð45Þ
cf. Eq. (20), where E2I;0 ¼ 1, see e.g., Ref. [9], and z0 is
given by (21). Its solution has the form

ζð2lÞ0 ¼ 1

u2ð1 − uÞ2z0
¼ 1

Ṽz0
; ð46Þ

for juj > 1; here, the potential Ṽ is defined at (17). It

coincides with ζð1Þ0 (31) and with ζð2Þ0 (39).
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It is easy to find the nth correction,

ζð2lÞn ¼ 1

z0

�
E2I;n

u2ð1−uÞ2−
Qð2lÞ

n

2
þ ∂uζ

ð2lÞ
n−1

2uð1−uÞþ
ð1−2uÞζð2lÞn−1
2u2ð1−uÞ2

�
;

ð47Þ

where

Qð2lÞ
n ¼ 2

Xn
i¼1

ziðuÞζð2Þn−iðuÞ:

One can see that in order to construct ζ2IlðuÞ we have to
know perturbative contribution zPTðuÞ only. Thus, it is a

type of nested construction. As a result, the correction ζð2lÞn

is a rational function.

D. Leading semiclassical
multi-instanton-inspired correction

The sum of the exponentially small contributions to
the ground state energy in the leading order, when the
perturbation theory around the multi-instanton is neglected,
can be written in the form

A0ENPT;0 ¼ A0

�X
p¼1

Bðl0;pÞ
0 g−pe−pS0 þ logðg2Þ

×
X
p¼2

Bðl;pÞ
0 g−pe−pS0 þ log2ðg2Þ

×
X
p¼3

Bðl2;pÞ
0 g−pe−pS0 þ…

�
; ð48Þ

cf. Eq. (14). We assume and then check correctness
afterward that the sum of the exponentially small contri-
butions in g to the reduced phase z in the leading order,
when the perturbation theory around multi-instanton is
neglected, has the form

A0ζNPT;0ðuÞ

¼ A0

�X
p¼1

Bðl0;pÞ
0 g−pþ2e−pS0ζðl

0;pÞ
0 ðuÞ

þ logðg2Þ
X
p¼2

Bðl;pÞ
0 g−pþ2e−pS0ζðl;pÞ0 ðuÞ

þ log2ðg2Þ
X
p¼3

Bðl2;pÞ
0 g−pþ2e−pS0ζðl

2;pÞ
0 ðuÞ þ…

�
; ð49Þ

where lq in the superscript of Bðl2;pÞ
0 means presence of the

logq in front of the sum.
Now, let us take the generalized Bloch equation (17),

substitute in there the energy in the form (10) and the
reduced logarithmic derivative zðu; gÞ in the form (18), and
collect carefully, one by one, the expressions in g and e−S0

which occur in (49). Finally, it turns out that the coefficient
in front of the defining expression has the form

−2u2ð1 − uÞ2z0ðuÞζ0ðuÞ þ 2B0 ¼ 0 ð50Þ
(where upper indices in ζ0 and B0 are dropped for conven-
ience), independently on upper indices, cf. Eq. (20) aswell as
(30), (38), and (45); here, z0 is given by (21). Its solution has
the form

ζ0ðuÞ ¼
B0

u2ð1 − uÞ2z0
¼ B0

Ṽz0
; ð51Þ

for juj > 1; here, the potential Ṽ is defined at (17).
Substituting (51) into (49), we arrive at an unexpectedly
compact expression,

ζNPT;0ðuÞ ¼
ENPT;0

u2ð1 − uÞ2z0
¼ ENPT;0

ṼðuÞz0
: ð52Þ

It corresponds to logarithmic derivative

yNPT;0 ¼ xð1 − gxÞζNPT;0ðgxÞ ¼
1

g2
ENPT;0ffiffiffiffiffiffiffiffiffiffiffiffi
VðxÞÞp

z0
;

and the nonperturbative phase at large x ≫ 0 is equal to

ϕNPT;0ðxÞ ¼
ENPT;0

g2z0

Z
1ffiffiffiffiffiffiffiffiffiffi
VðxÞp dx ¼ −

ENPT;0

g2
log

�
1 −

1

gx

�

≈
ENPT;0

g2
1

gx
: ð53Þ

Hence, the leading nonperturbative contribution to phase in
semiclassical domain is subdominant in comparison to both
the classical action, which is the leading (dominant) con-
tribution,

ϕPT;0ðxÞðxÞ ¼ g
x3

3
−
x2

2
; x ≫ 0; ð54Þ

also the first perturbative correction, which is next-to-leading
contribution

ϕPT;1ðxÞðxÞ ¼ log gx; ð55Þ
see (23). However, the second perturbative correction (25),
which leads to the next-to-next-to-leading contribution,

ϕPT;2ðxÞðxÞ ¼ −
9

2g
1

x3
; ð56Þ

is subdominant to the leading nonperturbative correction
(53). Hence, the nonperturbative correction (53) being of
order Oð1=xÞ provides asymptotic behavior intermediate to
the first and second perturbative corrections being of “alien”
nature for semiclassical perturbation theory. It can be used to
calculate the leading nonperturbative instanton contribution
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to the energy gap ENPT;0 as a coefficient in front of the 1=x
term in the asymptotic expansion of phase.
Following the philosophy of construction of the approxi-

mate wave function for double-well potential [17,18]
neither leading nonperturbative correction ϕNPT;0ðxÞ nor
the perturbative correction ϕPT2;0ðxÞ is of importance.

IV. CONNECTION TO PATH INTEGRALS

Now, when the perturbative and nonperturbative correc-
tions to the phase of the wave function in semiclassical
perturbation theory are found, wewould like to return to the
original issue indicated in the Introduction: the contribu-
tions of the flucton and flucton-plus-instanton classical
path contributions should naturally appear additively in
the path integral for the density matrix ρðx0Þ ¼ ψðx0Þ2 ¼
exp ð−2ϕðx0ÞÞ. In order to do it, the representation (3) used
to construct transseries expansion should be rewritten as the
product of two factors:

Ψ ¼ e−ϕPT−ϕNPT ¼ e−ϕPTe−ϕNPT :

As we already know [2,3], the Taylor expansion

ϕPTðuÞ ¼
X
n¼0

g2nϕPT;nðuÞ

corresponds to the loop expansion in flucton calculus: ϕPT;0

is the classical flucton action; one-loop contribution
g2ϕPT;1 ¼ logD is the logarithm of the determinant;
ϕPT;2 is the two-loop contribution; and, in general, ϕPT;n

is the n-loop contribution. It allows us to rewrite the
perturbative part of the flucton density ðΨPTÞ2 as the
saddle-point expansion,

e−2ϕPT ¼ e−2ϕPT;0F0 ≡ 1

D2
e−2ϕPT;0ð1 − 2g4ϕPT;2 þ…Þ:

ð57Þ

The second factor e−2ϕNPT can be expanded in the Taylor
series in powers of the nonperturbative phase ϕNPT. It
corresponds to the expansion in powers of the exponential
in the one-instanton classical action,

e−2ϕNPT ¼ 1þ e−S0F1ðx; gÞ þ e−2S0F2ðx; gÞ þ…; ð58Þ

where for functions F1;2;… the first terms in the expansion
in powers g can be found explicitly. In particular,

F1 ¼
Z

dx
gxð1 − gxÞz0

×

�
1 −

g2

2

�
83

6
þ 1þ 2gx
ðgxÞ2ð1 − gxÞ2z0

�
þ…

�
:

Thus, the expansion (58) appears as the expansion in
powers e−S0 . Combining (57) and (58), we arrive at the

expansion for density in the form a superposition of saddle-
point contributions (and expansion around each of them
multiplied by the product of determinants),

e−2ϕ ¼ e−2ϕPT;0F0 þ e−2ϕPT;0−S0F0F1

þ � � � þ e−2ϕPT;0−nS0F0F̃n þ…; ð59Þ

where F̃n is a polynomial in F’s. The first term corresponds
to the flucton classical trajectory with classical action
ð2ϕPT;0Þ, while limg→0

1
g2 F0ðu; gÞ represents the determi-

nant (quadratic fluctuations); the second one is the
fluctonþ instanton trajectory contribution with classical
action (2ϕPT;0 þ S0), while limg→0

1
g4 F0ðu; gÞF1ðu; gÞ rep-

resents the determinant (quadratic fluctuations) around this
trajectory; the (nþ 1)th term should correspond to the
fluctonþ n-instanton contribution with classical action
(2ϕPT;0 þ nS0), while F0ðu; g ¼ 0ÞF̃nðu; g ¼ 0Þ represents
determinant (quadratic fluctuations) around this trajectory;
etc. The main point is that different classical paths lead to
additive contributions to the path integral, and thus to the
density matrix. It is evident that the expansion (59) is
different for large positive and negative x. The symmetry is
restored when the new variable is introduced x̃ ¼ x − 1

2g;
the expansions become the same.
Furthermore, more close focus on the obtained result

reveals one more interesting phenomenon: the interaction
between classical objects, which leads to logarithmic terms
in the transseries. Indeed, let us look again at the lowest
order perturbative and nonperturbative results we already
obtained above. The equation reads

u2ð1 − uÞ2ðz0 þ znpÞ ¼
A0

g
expð−SiÞ þ � � � ð60Þ

Using the definitions of z and u, it means that

−
ψ 0
xðxÞ
ψðxÞ ¼ xð1 − gxÞzðuÞ ¼ xð1 − gxÞ

þ 1

xð1 − gxÞ
A0

g3
expð−SiÞ þ � � � ð61Þ

Integrating over the coordinate to recover the wave func-
tion, one finds

ψðxÞ ∼ exp

�
−
Z

x

xmin

dx0
�
x0ð1 − gx0Þ

þ 1

x0ð1 − gx0Þ
A0

g3
expð−SiÞ

��

≈ expð−Sfðx0ÞÞ
�
1þ log

�
xð1 − gxminÞ
xminð1 − gxÞ

�
A0

g3

× expð−SiÞ þ � � �
�
; ð62Þ
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where x > xmin, which is some normalization point. While
the flucton and instanton actions in the second term appear
in the exponent as a sum, the preexponent has nontrivial
logarithmic dependence on x and g. So, the classical flucton
and instanton actions are additive, but the determinants do
not simply factorize but indicate instead the appearance of
new series with logs.
In the language of paths, this dependence comes from the

fact that there is not just one single “f þ i” trajectory but a
whole family of such paths, parametrized by the time Δτ
between their centers. Integration over all paths of the
family, over Δτ, is the source of the discussed interaction.
Unfortunately, it is not so simple to calculate explicitly its
effect in the path integral formalism. But we do not have to
do so; we have already found the total contribution of the
“f þ i” family of paths.
We therefore reached the main goal of the paper: we

indeed see additive contributions to the density matrix of
the two paths sketched in Fig. 1, the flucton one and the
flucton-plus-instanton one. One can find in the exponent
the simple sum of both actions; this indicates that generi-
cally the flucton and instanton parts of the path are far away

and classically do not interact. However, the preexponent
does depend on x, so at one-loop level, such interaction
between them does exist. Note that the integral produces
logarithms, of similar origin as interinstanton logarithms in
the transseries for the energy. The relative normalization of
the two (or more, with multi-instantons) contributions is
therefore established.
Finally, we remind the reader that our ultimate goal is to

use the semiclassical theory of fluctons and instantons in
the QFT settings, in which the same issue of relative
normalization is present, but there is no handy generalized
Bloch equation available.

ACKNOWLEDGMENTS

E. S. thanks G. V. Dunne for indicating the work [1]. The
work of E. S. is supported in part by the U.S. Department
of Energy, Office of Science under Contract No. DE-FG-
88ER40388. A. V. T. gratefully acknowledges support from
the Simons Center for Geometry and Physics, Stony Brook
University, at which the research for this paper was initiated
and eventually completed.

[1] L. Schulman, Phys. Rev. 176, 1558 (1968).
[2] M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner,

Phys. Rev. D 93, 105039 (2016).
[3] M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner,

Phys. Rev. D 96 045005 (2017).
[4] M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner,

Phys. Rev. D 92, 025046 (2015); 92, 089902(E)
(2015).

[5] M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner,
Phys. Rev. D 92, 025047 (2015).

[6] A. M. Polyakov, Nucl. Phys. B120, 429 (1977).
[7] M. A. Shifman, Pis’ma Zh. Eksp. Teor. Fiz. 147, 444 (2015)

[JETP Lett. 120, 386398 (2015)].
[8] L. D. Landau and E. M. Lifshitz, Quantum Mechanics,

Non-Relativistic Theory, Course of Theoretical Physics,
3rd ed. (Pergamon, Oxford, 1977), Vol. 3.

[9] J. Zinn-Justin, Nucl. Phys. B192, 125 (1981); B218, 333
(1983).

[10] J. Zinn-Justin and U. D. Jentschura, Ann. Phys. (Amsterdam)
313, 197 (2004); 313, 269 (2004); Phys. Lett. B 596, 138
(2004).

[11] G. V. Dunne and M. Ünsal, Phys. Rev. D 89, 105009 (2014).
[12] In folklore, it is known as the E. M. Lifschitz prescription.

Taking, for instance, ΨðxÞ ¼ e−g
2x2 , the energy gap can be

evaluated up to the multiplicative constant.
[13] E. B. Bogomolny, Phys. Lett. B 91, 431 (1980).
[14] In standard calculations of the exponentially small terms,

the logarithmic terms appear in the form logð− 2
λÞ, see

Refs. [9,10], where λ is the coupling constant. The meaning
of the Bogomolny mechanism in superficial terms is in the
replacement of logð− 2

λÞ by − 1
2
logðλ2

4
Þ þ const.

[15] A. V. Turbiner, Usp. Fiz. Nauk 144, 35 (1984) [Sov. Phys.
Usp. 27, 668 (1984)].

[16] F. Wöhler and E. Shuryak, Phys. Lett. B 333, 467 (1994).
[17] A. V. Turbiner, Lett. Math. Phys. 74, 169 (2005).
[18] A. V. Turbiner, Int. J. Mod. Phys. A 25, 647 (2010).

E. SHURYAK and A. V. TURBINER PHYS. REV. D 98, 105007 (2018)

105007-10

https://doi.org/10.1103/PhysRev.176.1558
https://doi.org/10.1103/PhysRevD.93.105039
https://doi.org/10.1103/PhysRevD.96.045005
https://doi.org/10.1103/PhysRevD.92.025046
https://doi.org/10.1103/PhysRevD.92.089902
https://doi.org/10.1103/PhysRevD.92.089902
https://doi.org/10.1103/PhysRevD.92.025047
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(81)90197-8
https://doi.org/10.1016/0550-3213(83)90369-3
https://doi.org/10.1016/0550-3213(83)90369-3
https://doi.org/10.1016/j.aop.2004.04.004
https://doi.org/10.1016/j.aop.2004.04.004
https://doi.org/10.1016/j.aop.2004.04.003
https://doi.org/10.1016/j.physletb.2004.06.077
https://doi.org/10.1016/j.physletb.2004.06.077
https://doi.org/10.1103/PhysRevD.89.105009
https://doi.org/10.1016/0370-2693(80)91014-X
https://doi.org/10.3367/UFNr.0144.198409b.0035
https://doi.org/10.1070/PU1984v027n09ABEH004155
https://doi.org/10.1070/PU1984v027n09ABEH004155
https://doi.org/10.1016/0370-2693(94)90169-4
https://doi.org/10.1007/s11005-005-0012-z
https://doi.org/10.1142/S0217751X10048937

