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A recent experiment [J. L. Garrett, D. A. T. Somers, and J. N. Munday, Phys. Rev. Lett 120, 040401
(2018)] measured for the first time the gradient of the Casimir force between two gold spheres in vacuum at
room temperature, and placed a bound on the magnitude of the deviation of the measured force from the
proximity force approximation (PFA). The present work extends a previous theoretical analysis of this
experiment [G. Bimonte, Phys. Rev. D 97, 085011 (2018)], by analyzing in detail how the magnitude of the
deviation from PFA is affected by the inclusion or neglect of ohmic dissipation at zero frequency, a much
debated issue in the current Casimir literature, which goes by the name of the Drude vs plasma controversy.
We analyze as well the effect of connecting the conductors to charge reservoirs, which is the standard
configuration used in Casimir experiments. We describe a simple and effective decimation procedure,
allowing for a faster computation of the Casimir force for large aspect ratios of the system.
DOI: 10.1103/PhysRevD.98.105004

I. INTRODUCTION

In the last two decades many experiments by different
groups across the world have been carried out to measure
the Casimir force [1], and huge efforts have been made by
skilled experimentalists to achieve an ever increasing
precision (for reviews see Refs. [2–7]). There are distinct
good reasons behind the quest for precision in Casimir
experiments. One one hand, precise measurements chal-
lenge our fundamental understanding of subtle properties
of dispersion forces such as their nonadditivity and shape
dependence, as well as their dependence on material
properties of the bodies, like temperature and the optical
characteristics of the surfaces [3,4]. On the other hand,
controlling the Casimir force is essential in current searches
of non-Newtonian gravity in the submicron range [8,9].
Since the sensitivity of current devices for measuring small
forces is not yet sufficient to observe the gravitational force
at these small distances, the experiments just place bounds
on the magnitude of possible deviations from Newton’s
law, whose strength depends crucially on the theoretical
uncertainty on the magnitude of the much stronger Casimir
force between the test bodies.
In parallel with the experimental investigations and

motivated by them, intense efforts have been made by
theoreticians to improve the precision of computations of
the Casimir force. Until not long ago nobody knew how to

exactly compute the Casimir force in nonplanar setups, like
e.g., the standard experimental configuration of a sphere
and plate. The available theoretical arsenal was rather
meager and it basically consisted of the old-fashioned
proximity force approximation (PFA) introduced in the
1930s by Derjaguin [10] to deal with short-range forces
between two curved surfaces. Within this approximation,
the Casimir force between two curved surfaces is expressed
as the average over the local separation of the Casimir
pressure between two plane-parallel dielectric slabs, whose
expression was derived by Lifshitz over 60 years ago [11].
Corrections to PFA were generically expected to be the
order of a=R, with a the minimum separation and R the
characteristic radius of curvature of the surfaces, but
nobody could be sure of that. In order to obtain forces
that are large enough to be measured precisely, experiments
always use systems with large aspect ratios R=a, and so it
has always been given for granted that deviations from PFA
are negligible. Agreement with experimental data has been
indeed reported in all cases, apart from one very surprising
fact: the most precise room temperature sphere-plate
experiments utilizing gold-coated surfaces, carried out by
different groups, showed that agreement with theoretical
predictions is only possible if the optical data of gold are
extrapolated towards zero frequency by the dissipationless
plasma model of infrared optics, while the better motivated
dissipative Drude model is ruled out. This has come to be
known in the Casimir community as the Drude versus
plasma conundrum. For a review of this problem, see [4]
(see also the recent experiment [12] and references therein).*giuseppe.bimonte@na.infn.it
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Despite its plausibility, the assumption underlying the
theoretical analysis of the experiments, that deviations from
PFAwould be too small to fill the gap between the plasma
and the Drude models, could not be taken for granted and
remained open to challenge. The situation changed only
around 2005, when an extension of early results by Balian
and Duplantier [13] and Langbein [14] led to the discovery
of an exact scattering formula [15–17] for the Casimir free
energy of two compact dielectric bodies of any shapes. The
scattering formula provides a representation of the Casimir
free energy in the form of a functional determinant
involving the T-matrices of the two bodies, and the trans-
lation matrices that serve to express the multipole basis
relative to either body in terms of the multipole basis of the
other. The scattering formula led to rapid progress. With its
help it was proved rigorously that the PFA is indeed exact
in the asymptotic limit a=R → 0 for both the sphere-plate
and sphere-cylinder geometries [18], it was possible to
work out a systematic perturbative expansion to compute
the effect of small corrugations [19], and to analytically
compute the leading correction beyond PFA in a number of
distinct geometries [18,20–25], confirming that they are
indeed of order a=R, as it had been assumed before.
The reader may wonder at this point why one should be

content with knowing just the leading order correction to
PFA, rather than trying to directly compute the scattering
formula numerically, in order to obtain virtually exact
values for the Casimir force. Unfortunately, even when
the T-matrix is known exactly (as it is the case for dielectric
spheres and plates) computing the scattering formula
numerically is not at all an easy task, even with the help
of the powerful computers that are available today. The
problem is that the multipole order for which convergence
is achieved scales like R=a, and therefore for typical
experimental aspect ratios R=a of the order of 103 or
larger, tens of thousands of multipoles are needed. For over
ten years after the discovery of the scattering formula, such
a large number of multipoles has been out of reach, and
numerical simulations were restricted to small aspect ratios
R=a less than one hundred [26,27]. Only last year [28]
significant numerical improvements using state-of-the-art
algorithms for the computation of determinants of hierar-
chical off-diagonal low-rank matrices, allowed to handle
for the first time tens of thousands of multipoles, permitting
to compute deviations from PFA in the sphere-plate
configuration for experimentally relevant aspect ratios
around one thousand. The computed deviations from
PFA were compared to the experimental bound obtained
in the experiment [29], and it was concluded that the Drude
model is indeed in better agreement with the data than the
plasma model.
The numerical algorithms used in [28] are rather sophis-

ticated and are not easy to implement for nonexperts. At
about the same time when [28] appeared, an alternative
semianalytic approach was presented in [30], which allows

us to reach the same level of precision with a far smaller
numerical effort. The latter approach combines the leading-
order correction to PFA for positive Matsubara modes,
which can be computed by means of the derivative
expansion (DE) [20,22–25], with the exact sphere-plate
formula for the zero-frequency contribution that was
worked out in [31] for two metallic bodies modeled as
Drude conductors. The effectiveness of this approach in
providing a remarkably precise expression of the Casimir
force for all separations, hinges on the fact that for positive
Matsubara frequencies the electromagnetic field effectively
behaves as a massive field, with a mass proportional to the
temperature T and to the Matsubara discrete index n. As a
result of this feature, the Casimir interaction is short-ranged
for positive Matsubara frequencies, and this in turn renders
the DE very precise. A drawback of the approach presented
in [30] is that in the simple version discussed there, it
cannot be applied to the plasma model, because no exact
formula exists for its zero-frequency contribution for
transverse electric (TE) polarization.
The vast majority of experimental and theoretical inves-

tigations of the Casimir effect focused in the past on the
sphere-plate geometry. Very recently, however, a new experi-
ment [32] hasmeasured for the first time the (gradient of the)
Casimir force between two gold-coated spheres. The data
were found to be in good agreement with theoretical
predictions based on the standard PFA. Following a pro-
cedure analogous to that of the sphere-plate experiment by
the IUPUI group [29], the authors of [32] used nine sphere-
sphere and three sphere-plate setups of different radii to
obtain an experimental bound on themagnitude of deviations
from the PFA.
Prior to this experiment, the electromagnetic two-sphere

problem received little attention in the literature: in [33] the
Casimir energy of two metallic spheres was studied in the
limit of large separations, while in [34] it was demonstrated
that the small-distance limit of the two-sphere scattering
formula indeed reproduces the PFA. In particular, there
were no published works devoted to computing beyond
PFA corrections for this system, that could be directly
compared with the experimental data of [32]. Motivated by
the lack of theoretical predictions, the computation of
the force-gradient (the quantity actually measured in the
experiment) was undertaken in [35], following the same
approach that was used in [30] to study the sphere-plate
system. In [35] analysis was restricted to the experimental
configuration of two grounded gold spheres, modeled as
Drude conductors. This case is well suited to the scheme of
[30], because for two grounded Drude conductors the
electromagnetic zero-frequency Matsubara contribution
coincides with the corresponding contribution for two
Dirichlet spheres, for which an exact formula was worked
out in [31] exploiting conformal invariance (the same
formula has been later derived directly from the scattering
formula using a similarity transformation in [36]).
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The deviation from PFA obtained in [35] were found to be
consistent with the (rather loose) experimental bound placed
in [32].
The present work extends [35] in two respects: in the first

place, corrections to PFA are presented here for both the
Casimir force and its gradient. Second, and more impor-
tantly, deviations from PFA are computed here for both the
plasma model, as well as for the Drude model. We also
address in detail the effect of grounding the spheres, by
separately considering both cases of grounded or isolated
conductors. We underline that in Casimir experiments with
conducting surfaces, the conductors are always connected
to charge reservoirs in order to get rid of possible charges
that may be present on the surfaces, and/or to apply a bias
potential to compensate for differences among the work
functions of the surfaces [37]. Despite this, practically all
theoretical studies implicitly assume that the conductors as
isolated, by using the expression of the T-matrices (the Mie
coefficients in the case of spheres) that actually describe
isolated conductors. The question of grounding or not the
conductors is explicitly discussed in very few works
[31,38]. In the current experimental situation, the distinc-
tion between grounded or isolated conductors is more a
matter of principle than a necessity, since the difference
between the two models manifests itself only at the level of
beyond PFA deviations, which are too small to be detected
with current apparatus.
The analysis of the new models studied in this paper, i.e.,

the plasma model and the Drude model with isolated
conductors (which coincides with what is usually under-
stood as Drude model, with no other qualifications, in the
Casimir literature) is considerably more difficult than
the model of grounded Drude conductors studied in [35].
The positive Matsubara modes present no particular diffi-
culty, and can be accounted for by means of the DE.
However, the zero-frequency contribution is problematic,
since no exact solution exists for either the Drude or the
plasmamodels. One could imagine using the DE to estimate
this contribution aswell, of course.Unfortunately,within the
plasmamodel the DE is known to fail for the zero-frequency
TE mode [39,40], and even for the Drude model, where it is
applicable, it is expected to be less precise for moderate
values ofR=a, due to themassless character of the transverse
electric (TM) mode for zero frequency. So, a different route
is necessary. The Drude model is easier, because its zero-
frequency contribution can be computed numerically,
quickly and with high precision, by expressing the exact
scattering formula in a bisphericalmultipole basis [31]. The
huge advantage offered by the latter basis, as contrastedwith
the standard spherical basis (in which the origins of the
multipoles are placed at the centers of the two spheres) is that
it ensures a much faster convergence rate, since the required
(bispherical) multipole order scales only like

ffiffiffiffiffiffiffiffiffi
R=a

p
, rather

thanR=a. This implies that for aspect ratiosR=a of the order
of, say, 103 just 100 bispherical multipoles are sufficient,

instead of ten thousands! Bispherical coordinates are
unfortunately of no help with the plasma model, because
the corresponding boundary conditions for zero-frequency
TE polarization cannot be expressed in a simple manner in
this coordinate system (while the TM contribution is
identical to the Drude model). To handle the TE zero-
frequency contribution it is necessary to resort to the
conventional spherical multipole basis. To cope with the
slow convergence of the latter for large aspect ratios, a very
simple decimation procedure of the scattering formula can
be devised, that allows to reduce by a significant factor the
size of the involved matrices without significantly jeopard-
izing precision. It turns out that for gold the plasma model
deviations from PFA can be accurately reproduced by just
taking to infinity the plasma frequency, when evaluating the
zero-frequency contribution. In this limit, the zero-fre-
quency plasma model coincides with the perfect-conductor
model, and in a previous work [40] it was shown that the
latter model can be computed efficiently in bispherical
coordinates.
The plan of the paper is as follows: in Sec. II we describe

the two-sphere system, review the general scattering for-
mula, and we show how the DE can be used to compute the
contribution of the positive Matsubara modes. In Sec. III
we discuss the zero-frequency contributions, within the
Drude and the plasma models, and we analyze the effect of
grounding or not the conductors. In Sec. IV we describe a
simple decimation procedure for the scattering formula,
which allows for a faster computation of the Casimir force
at zero frequency for large aspect ratios of the system. In
Sec. V we present the results of our numerical computa-
tions, while in Sec. VI we present our conclusions.

II. CASIMIR INTERACTION OF TWO SPHERES

We consider a system of two spheres of respective radii
R1 and R2 placed in vacuum, and we let a the tip-to-tip
distance (see Fig. 1).We adopt here the same parametrization
of the two sphere system that was used in [35]. According to
this parametrization the geometry of the system is charac-
terized by the effective radius R̃ ¼ R1R2=ðR1 þ R2Þ and by
the dimensionless parameter u ¼ R̃2=ðR1R2Þ.
The exact Casimir free energyF of a two-body system is

provided by the scattering formula. We recall that the
general form of this formula [15–17] for two objects of any
shape (denoted as 1 and 2) in vacuum is

F ¼ kBT
X
n≥0

0Tr ln½1 − N̂ðiξnÞ�; ð1Þ

where the operator N̂ðiξnÞ is

N̂ ¼ T̂ð2ÞÛT̂ð1ÞÛ: ð2Þ

Here kB is Boltzmann’s constant, T is the temperature, ξn ¼
2πnkBT=ℏ are the (imaginary) Matsubara frequencies, and
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the prime in the sum indicates that the n ¼ 0 term is taken
with weight 1=2. In Eq. (2), T̂ðjÞ denotes the T-operator of
object j, evaluated for imaginary frequency iξn, and Û is the
translation operator that serves to transform the chosen
basis of outgoing fields relative to one of the two objects
into the basis of ingoing fields relative to the other object. In
the specific case of two spheres, the scattering formula is
usually expressed in terms of two sets of spherical multi-
poles, whose origins are placed at the centers of the two
spheres. In this basis, the matrix elements of the T-operators
of the two (isolated) spheres coincide with the respective
Mie coefficients. The explicit expression of the matrix
elements of the translation operators Û can be found in
Refs. [34,41], and shall not be written here for brevity.
Symmetry of the two sphere system under rotations around
the z-axis passing through their centers, as well as under
reflections in the (x, y) plane, allows us to express the
scattering formula as a sum over non-negative eigenvalues
m of the z-component of the angular momentum:

F ¼ 2kBT
X
n≥0

0 X0∞

m¼0

Tr ln½1 − N̂ðiξn;mÞ�; ð3Þ

where N̂ðiξn;mÞ denotes the restriction of the operator N̂ to
the subspace of multipoles with azimuthal number m, and
the prime in the sum over m indicates that the m ¼ 0 term
has to be taken with weight 1=2. The trace Tr in Eq. (3) is
taken over the spherical multipoles index l as well as over
the polarizations α ¼ TE, TM:

Tr ¼
X∞
l¼jmj

tr; ð4Þ

where tr denotes the trace over α. The Casimir force F ¼
−F 0 and its gradient F0 are obtained by taking derivatives
of Eq. (3) with respect to the separation a. The explicit
scattering formula for the Casimir force is:

F ¼ 2kBT
X
n≥0

0 X0∞

m¼0

Tr

� ∂aN̂

1 − N̂

�
; ð5Þ

while the formula for the force-gradient is

F0 ¼ 2kBT
X
n≥0

0 X0∞

m¼0

Tr
� ∂2

aN̂

1 − N̂
þ
� ∂aN̂

1 − N̂

�
2
�
; ð6Þ

where ∂a denotes a derivative with respect to the separation
a. Starting from the scattering formula, it is possible to
show [34] that in the limit of large aspect ratios R̃=a → ∞
the Casimir force F approaches the PFA:

FðPFAÞða; R1; R2Þ ¼ 2πR̃F ðppÞðaÞ; ð7Þ

where F ðppÞðaÞ denotes the famous Lifshitz formula [11]
providing the unit-area Casimir free energy for two plane-
parallel slabs respectively made of the same materials as the
two spheres:

F ðppÞða; TÞ ¼ kBT
2π

X
n≥0

0
Z

∞

0

k⊥dk⊥

×
X

α¼TE;TM

ln ½1 − rð1Þα ðiξn; k⊥Þrð2Þα ðiξn; k⊥Þe−2aqn �: ð8Þ

In this equation, k⊥ is the in-plane momentum, rðiÞα ðiξn; k⊥Þ
denotes the Fresnel reflection coefficient of the i-slab (in
our case both slabs are made of gold) for polariza-
tion α ¼ TE;TM, evaluated for the imaginary frequency
ω ¼ iξn and qn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n=c2 þ k2⊥

p
.

The PFA formula for the force gradient is obtained
by taking a derivative of Eq. (7) with respect to the
separation a:

x

z
a

Au − coated sphere

R1

R2

Au − coated sphere

H1

H2

FIG. 1. The sphere-sphere Casimir setup. The sphere-sphere
geometry is characterized by the effective radius R̃ ¼ R1R2=
ðR1 þ R2Þ and the dimensionless parameter u ¼ R̃2=R1R2.
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F0ðPFAÞða; R1; R2Þ ¼ −2πR̃FðppÞðaÞ; ð9Þ

where FðppÞ ¼ −∂F ðppÞ=∂a is the Casimir pressure
between two plane-parallel slabs.
Our aim is to go beyond the PFA, by performing a

precise computation of both the Casimir force and force
gradient. Our strategy to obtain precise values of the
Casimir force and its gradient is similar to the one adopted
in [30,35]. We start by separating in Eq. (3) the classical
term F n¼0 from the contribution F n>0 of the positive
Matsubara modes, and we accordingly split the free
energy as:

F ¼ F n¼0 þ F n>0: ð10Þ

The corresponding decompositions of the force F and force
gradient F0 are

F ¼ Fn¼0 þ Fn>0; ð11Þ

F0 ¼ F0
n¼0 þ F0

n>0: ð12Þ

The zero-frequency term of the scattering formula is
associated with classical (as opposed to quantum) thermal
fluctuations of the electromagnetic field, and for this reason
is it known in the literature as the classical term. The latter
provides the dominant contribution to the Casimir inter-
action in the high-temperature limit a=λT ≫ 1, where
λT ¼ ℏc=ð2πkBTÞ (λT ¼ 1.2 microns at room tempera-
ture). In the next section we shall show how to compute
the classical term for several distinct models of a conductor
that are frequently considered in the literature. In this
section, we focus our attention on the contribution of the
positive Matsubara modes.
In [35] it was shown that the contribution of the positive

Matsubara modes can be accurately estimated by the DE
[20,22–25]. Let us briefly recall the arguments providing
support to this claim. Compared to the classical term,
positive Matsubara modes contribute significantly to the
Casimir force only for separations that are not too large
compared with λT , and are in fact dominant for a=λT ≪ 1.
This implies that for all separations for which the positive
Matsubara modes matter, the condition a=R̃ ≪ 1 is always
satisfied, provided that, as it always happens in practice, the
radii of the spheres are both much larger than λT . Another
important thing to bear in mind is that for positive
Matsubara frequencies ξn, the electromagnetic field is
effectively massive, the effective mass being proportional
to ℏξn=c2. The massive character of the positive modes
implies that the corresponding Casimir interaction satisfies
the locality requirements, that ensure existence of the DE
[20,22–25]. In [35], using the DE, the following formula
for F0

n>0 was obtained:

F0
n>0 ¼ −2πR̃FðppÞ

n>0ðaÞ
�
1 − ðθ̃ðaÞ þ uκ̃ðaÞÞ a

R̃
þ oða=R̃Þ

�
;

ð13Þ

where the coefficients θ̃ðaÞ and κ̃ðaÞ [42] are

θ̃ ¼ F ðppÞ
n>0ðaÞ − 2αn>0ðaÞ

aFðppÞ
n>0ðaÞ

; ð14Þ

κ̃ðaÞ ¼ 1 − 2
F ðppÞ

n>0ðaÞ
aFðppÞ

n>0ðaÞ
: ð15Þ

In the above equations, F ðppÞ
n>0 denotes the contribution of

the positive Matsubara modes to Lifshitz formula Eq. (8),

and FðppÞ
n>0 ¼ −∂F ðppÞ

n>0=∂a is the corresponding pressure.
The first term between the square brackets on the rhs of
Eq. (13) coincides with the PFA Eq. (9) (restricted of course
to positive Matsubara modes), while its second term
provides the leading correction beyond PFA. An essential
ingredient of Eqs. (14) and (15) is the coefficient αn>0ðaÞ,
that can be extracted from the Green function G̃ð2Þðk;aÞ of
the perturbative expansion of F n>0, to second order in the
amplitude of a small deformation of one of the surfaces
around the plane-parallel geometry. More precisely,
αn>0ðaÞ is proportional to the coefficient of k2⊥ in the
small-momentum Taylor expansion of G̃ð2Þðk; aÞ (see [35]
for details). It is the existence of the latter Taylor expansion
which is ensured by the locality properties satisfied by the
Casimir interaction, for positive Matsubara frequencies.
The corresponding formula for the Casimir force Fn>0

can be obtained by integrating Eq. (13) with respect to the
separation a:

Fn>0 ¼ 2πR̃F ðppÞ
n>0ðaÞ

�
1 − ðθðaÞ þ uκðaÞÞ a

R̃
þ oða=R̃Þ

�
;

ð16Þ
where the coefficients θðaÞ and κðaÞ are

θ ¼ 2ψn>0ðaÞ − GðppÞ
n>0ðaÞ

aF ðppÞ
n>0ðaÞ

; ð17Þ

κðaÞ ¼ 1þ GðppÞ
n>0ðaÞ

aF ðppÞ
n>0ðaÞ

: ð18Þ

In these equations, the coefficient ψn>0ðaÞ coincides with
the integral of αn>0ðaÞ:

ψn>0 ¼ −
Z

∞

a
dxαn>0ðxÞ; ð19Þ

while GðppÞ
n>0ðaÞ coincides with the integral of F ðppÞ

n>0ðaÞ with
respect to the separation a:
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GðppÞ
n>0ða; TÞ ¼ −

Z
∞

a
dxF ðppÞ

n>0ðxÞ

¼ kBT
4π

X
n>0

Z
∞

0

k⊥dk⊥
qn

X
α¼TE;TM

Li2½rð1Þα ðiξn; k⊥Þrð2Þα ðiξn; k⊥Þe−2aqn �; ð20Þ

where LisðxÞ ¼
P∞

k¼1 x
k=ks denotes the polylogarithm

function. Equations (13) and (16) show that within the
PFA, the forces Fn>0 and F0

n>0 depend only on the effective
radius R̃, while the leading corrections beyond PFA do
depend also on the ratio of the radii R1 and R2 via the
parameter u.
The expressions of the coefficients αn>0ðaÞ and ψn>0ðaÞ

are too long to be reported here. We just note that
both have expressions of the form αn>0=ψn>0¼P

n>0

R
k⊥dk⊥gα=ψ ðk⊥;ϵðiξnÞ;aÞ, where gα=ψ ðk⊥;ϵðiξnÞ;aÞ

are certain functions of the in-plane momentum k⊥, of the
permitivities ϵðiξnÞ and of the separation a, that can be
easily computed numerically. The values of the coefficients
θðaÞ, κðaÞ, θ̃ðaÞ and κ̃ðaÞ were computed using the
tabulated optical data for gold [43], suitably extrapolated
towards zero frequency using either the Drude prescription
(with Drude parameters ωp¼ 9 eV=ℏ and γ¼0.035eV=ℏ)

or the plasma prescription. The weighted dispersion rela-
tion described in [44] was used to suppress the influence of
the extrapolation on the obtained values of the permittivity
for positive Matsubara frequencies.
The Drude values for the two pairs of coefficients (θðaÞ,

κðaÞ) and (θ̃ðaÞ, κ̃ðaÞ) are listed, for several values of the
separation a, in Tables I and II, respectively, while the
corresponding values for the plasma prescription are listed
in Tables III and IV, respectively. As it can be seen by
comparing Tables I and II with Tables III and IV, respec-
tively, the Drude and plasma prescriptions lead to nearly
identical values of the corresponding coefficients.
Now that we have addressed the contribution of the

positive Matsubara modes, we can turn our attention to the
zero-frequency contributions. These contributions shall be
dealt with in the next two sections, first within the Drude
prescription and then within the plasma prescription.

TABLE I. Values of the coefficients θ and κ for Au at room temperature (Drude prescription).

aðμmÞ 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

θ 0.717 0.694 0.664 0.636 0.609 0.584 0.561 0.540 0.520 0.502 0.484 0.468
κ 0.440 0.471 0.496 0.515 0.532 0.546 0.559 0.571 0.583 0.593 0.603 0.613

aðμmÞ 0.70 0.75 0.8 0.85 0.9 0.95 1 1.2 1.4 1.6 1.8 2
θ 0.453 0.439 0.425 0.412 0.400 0.389 0.378 0.340 0.307 0.279 0.256 0.237
κ 0.622 0.630 0.639 0.647 0.655 0.662 0.669 0.696 0.719 0.739 0.757 0.774

TABLE II. Values of the coefficients θ̃ and κ̃ for Au at room temperature (Drude prescription).

aðμmÞ 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

θ̃ 0.456 0.4715 0.470 0.463 0.454 0.4445 0.435 0.425 0.415 0.4055 0.396 0.387
κ̃ 0.245 0.270 0.289 0.305 0.319 0.331 0.342 0.353 0.362 0.371 0.380 0.389

aðμmÞ 0.70 0.75 0.8 0.85 0.9 0.95 1 1.2 1.4 1.6 1.8 2
θ̃ 0.379 0.370 0.362 0.3545 0.347 0.3395 0.332 0.306 0.282 0.261 0.242 0.225
κ̃ 0.397 0.405 0.413 0.421 0.429 0.437 0.444 0.474 0.502 0.529 0.554 0.578

TABLE III. Values of the coefficients θ and κ for Au at room temperature (plasma prescription).

aðμmÞ 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

θ 0.725 0.700 0.670 0.639 0.612 0.586 0.563 0.541 0.521 0.503 0.486 0.469
κ 0.440 0.472 0.496 0.515 0.532 0.547 0.560 0.572 0.583 0.594 0.604 0.613

aðμmÞ 0.70 0.75 0.8 0.85 0.9 0.95 1 1.2 1.4 1.6 1.8 2
θ 0.454 0.440 0.426 0.413 0.401 0.389 0.378 0.339 0.307 0.279 0.256 0.236
κ 0.622 0.631 0.639 0.647 0.655 0.662 0.670 0.696 0.712 0.739 0.758 0.774
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III. THE ZERO-FREQUENCY CONTRIBUTION

A. Drude prescription: Grounded vs isolated
conductors

Within the Drude prescription, a conductor is transparent
to static magnetic fields. This implies that TE modes do not
contribute to the scattering formula for zero frequency. On
the contrary, zero-frequency TM modes, which represent
electrostatic fields, are screened out by a Drude conductor
and therefore they do contribute with full power to the
n ¼ 0 term of the scattering formula.
To compute the contribution of zero-frequency TM

modes, we take advantage of the fact that the Laplace
equation obeyed by the electrostatic potential ϕ is
separable in bispherical coordinates [45]. We recall that
bispherical coordinates (μ, η, ϕ) are defined by ðx;y;zÞ¼
bðsinηcosϕ;sinηsinϕ;sinhμÞ=ðcoshμ− cosηÞ, where �b
represent the z-coordinates of the foci F� ≡ ð0; 0� bÞ of
the spheres of equation μ ¼ μ�, where μþ > 0 and μ− < 0.
The spheres have radii R� ¼ b=j sinh μ�j, and their centers
are placed at the points C� of the z-axis of coordinates
z� ¼ b coth μ� (see Fig. 2). Below, we shall use the
notation R1 ≡ Rþ and R2 ≡ R−. The regular and outgoing
eigenfunctions of Laplace equation in bispherical coordi-
nates are [45]:

ϕð�Þ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcosh μ − cos ηÞ

p
× exp½�ðlþ 1=2Þμ�Pjmj

l ðcos ηÞeimϕ; ð21Þ

where l ≥ 0, and m ¼ −l;…; l. Relative to the sphere
Rþ (R−) outgoing and regular eigenfunctions correspond,
respectively to the upper (lower) and lower (upper) sign in
the exponential. We thus see that in the bispherical
coordinate system, a single set of partial waves serves as
a basis of scattering states for both spheres. This implies at
once that in bispherical coordinates the translation operator
Û is just the identity, which in turn implies that the N̂
operator reduces to the product of the T-operators of the
spheres:

N̂ ¼ T̂ð−ÞT̂ðþÞ; ð22Þ

where here and below we do not display from brevity the
dependence of all matrices on the azimuthal number m. It
remains to compute the matrix elements of the T-operators

Tð�Þ
l;l0 ¼ hl; m;�jT̂ð�Þjl0; m;∓i of the two spheres in the

bispherical basis, where we set jl; m;�i≡ ϕð�Þ
lm .

The expression of the T-matrix of a conducting sphere
depends on whether the sphere is grounded or not. If the
spheres are grounded (or what is the same, connected to a
charge reservoir) the fluctuations of the electrostatic poten-
tial ϕ satisfy Dirichlet (D) boundary conditions (bc) on the
surfaces of the spheres, and then it is a simple matter to
check that the matrix elements of the T-operators are

FIG. 2. The two-sphere system in bispherical coordinates. The
thin solid and dashed lines are curves of constant bispherical
coordinates μ and η respectively. The sphere of radius R1 has
equation μ ¼ μþ, with μþ > 0, while the sphere of radius R2 has
equation μ ¼ μ−, with μ− < 0. Bispherical partial waves have
their origins at the foci F�, while standard spherical multipoles
have their origins at the sphere centers C�.

TABLE IV. Values of the coefficients θ̃ and κ̃ for Au at room temperature (plasma prescription).

aðμmÞ 0.10 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

θ̃ 0.463 0.477 0.475 0.467 0.458 0.447 0.437 0.427 0.417 0.407 0.398 0.389
κ̃ 0.244 0.269 0.289 0.306 0.319 0.332 0.343 0.352 0.363 0.372 0.380 0.389

aðμmÞ 0.70 0.75 0.8 0.85 0.9 0.95 1 1.2 1.4 1.6 1.8 2
θ̃ 0.380 0.371 0.363 0.355 0.348 0.340 0.333 0.306 0.282 0.261 0.242 0.225
κ̃ 0.397 0.406 0.413 0.421 0.430 0.437 0.444 0.474 0.502 0.529 0.554 0.578
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Tð�Þ
l;l0 ¼ δl;l0Z

2lþ1
� ; l; l0 ≥ jmj ðD bcÞ ð23Þ

where Z� ¼ exp½∓μ��. Since the T-matrices of the spheres
are diagonal, evaluation of the scattering formula is
straightforward, yielding the Casimir energy:

F ðDÞ
n¼0 ¼

kBT
2

X∞
l¼0

ð2lþ 1Þ ln½1 − Z2lþ1�; ð24Þ

where Z ¼ ZþZ−, and we introduced the superscript (D) to
remind us that this is for D bc. The parameter Z has the
following expression in terms of R1, R2 and a:

Z ¼ ½1þ xþ x2u=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ x2u=2Þð2þ xþ x2u=2Þ

q
�−1;
ð25Þ

where x ¼ a=R̃. The energy (24) was derived in [31] and it
was used in [35] to study the two sphere problem with
grounded spheres.
At this point we turn our attention to the case of two

isolated spheres. This is the configuration usually under-
stood in the Casimir literature by the expression Drude bc.
When evaluated in the standard spherical basis with origins
placed in the spheres centers, the matrix elements of the
T-matrix coincide with the familiar Mie coefficients. What
we want to do here is to reexpress the zero-frequency Mie
coefficients in the bispherical coordinate system. For two
isolated spheres, the fluctuations of the electrostatic poten-
tial are subjected to the constraint that the fluctuation of the
total charge on either sphere is zero. This seemingly
innocent condition complicates considerably the task of
computing the Casimir energy. The partial waves in
Eq. (21) are not fit to Drude bc, because for m ¼ 0 they
include an undesired monopole contribution. This can be

seen by expanding ϕð�Þ
lm in spherical multipoles with origins

at the foci F�:

ϕð�Þ
l0m ¼

Xl0
l¼jmj

ðl0 þ jmjÞ!
ðlþ jmjÞ!ðl0 − lÞ!

�
2b
r̂�

�
lþ1

Pjmj
l ðcos θ̂�Þeimϕ;

ð26Þ

where r̂� is the radial distance from F�, and the angles θ̂�
are defined such that θ̂� ¼ 0 for η ¼ 0. From this expan-

sion, we see that for m ≠ 0 the partial waves ϕð�Þ
l0m are free

from monopole contributions, and therefore they auto-
matically respect the constraint of total zero charge. This
implies at once that the contribution to the Drude Casimir
energy of the modes with m ≠ 0 is identical to the
corresponding contributions in the D case. This in turn

permits us to write the Drude Casimir energy F ðDrÞ
n¼0 as:

F ðDrÞ
n¼0 ¼ F ðDrÞ

n¼0

���
m¼0

þ kBT
2

X∞
l¼1

2l ln½1 − Z2lþ1�; ð27Þ

where F ðDrÞ
n¼0jm¼0 represents the contribution of the modes

with m ¼ 0. We denote by N̂0, T̂
ð�Þ
0 the restrictions of the

Drude operators N̂ and T̂ð�Þ, respectively, to the m ¼ 0

subspace, and then F ðDrÞ
n¼0jm¼0 is:

F ðDrÞ
n¼0

���
m¼0

¼ kBT
2

ln det½1 − N̂0�; ð28Þ

where

N̂0 ¼ T̂ð−Þ
0 T̂ðþÞ

0 ; ð29Þ

and it is understood that the determinant is restricted to the
l, l0 space. To remove the undesired monopole term r̂−1�
from ϕð�Þ

l0 , form ¼ 0we consider a new set of partial waves

ϕ̄ð�Þ
l defined as:

ϕ̄ð�Þ
l ≡ ϕð�Þ

l0 − ϕð�Þ
00 ; l ≥ 1: ð30Þ

To determine the matrix elements of the Drude T-operator

ðTð�Þ
0 Þl;l0 in the basis of the ϕ̄ð�Þ

l , we proceed as follows.

Consider scattering the outgoing wave ϕ̄ð�Þ
l0 , originating

from the sphere R�, by the sphere R∓. For the scattered
field one can make the ansatz:

ϕðscatj∓Þ
l0

���
Dr

¼ ϕðscatj∓Þ
l0 jD −

2b
r∓

kð∓Þ
l0 ; ð31Þ

where ϕðscatj�Þ
l0 jD denotes the scattered field for D bc, and

2b=r� is the potential of a charge placed at the center of the
sphere R� (r� is the radial distance from the center of the

sphere R�). The D scattered field ϕðscatj∓Þ
l0 jD is easily

computed with the help of Eq. (23). The coefficient kð�Þ
l0

is determined such as to cancel the monopole terms present

in ϕðscatj�Þ
l0;0 jD. A straightforward computation yields:

kð�Þ
l0 ¼ e∓μ�ðe∓2l0μ� − 1Þ: ð32Þ

At this point, all we have to do is to expand the scattered
field on the rhs of Eq. (31) in the basis of the regular waves

ϕ̄ð�Þ
l of the sphere R∓. The latter task is easily accom-

plished with the help of the following translation formula:

R�
r�

¼
X∞
l¼0

e−ljμ�j
�
R�
r̂�

�
lþ1

Plðcos θ̂�Þ; ð33Þ

together with the inverse of Eq. (26) for m ¼ 0
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�
2b
r̂�

�
l0þ1

Pl0 ðcos θ̂�Þ ¼
Xl0
l¼0

ð−1Þlþl0 l0!
ðl0 − lÞ!l! ϕ

ð�Þ
l;0 : ð34Þ

The final result is

ðTð�Þ
0 Þl;l0 ¼ ½δll0 þ ð1 − Z2

�Þð1 − Z2l0
� Þ�Z2lþ1

� : ð35Þ

As we see, the matrices Tð�Þ
0 of the spheres are non-

diagonal, which renders an exact evaluation of the scatter-
ing formula impossible. A remarkable exception occurs
though in the sphere-plate geometry. The configuration of a
sphere of radius R facing a plane corresponds, e.g., to the
choice μ− ¼ 0 (which is the equation of the z ¼ 0 plane)
and Rþ ≡ R. From Eq. (35) we see that for μ− ¼ 0 the

matrix Tð−Þ
0 becomes the identity. Equation (29) then shows

that the N0-matrix of the sphere-plate system in bispherical

coordinates coincides with the matrix TðþÞ
0 of the sphere. At

this point, one makes the crucial observation that the energy

F ðDrÞ
n¼0jm¼0 actually depends only on the equivalence class

⟦N0⟧ formed by the matrices that represent the operator N̂0,
where any two elements within the equivalence class differ
by a similarity transformation by some nonsingular matrix
M. It is easy to verify that by an appropriate choice of M it
is possible to express the equivalence class of N̂0 as:

N̂0 ¼ ⟦½δll0 þ ð1 − Z2Þð1 − Z2l0 Þ�Z2l0þ1⟧; ð36Þ

where we used also the relation Z ¼ Zþ that holds in the
sphere-plate case. The peculiar feature of the matrix on the
rhs of the above equation is that it consists of a diagonal
matrix plus a matrix whose elements depend only on the
column index l0. In [31] it is shown that such a structure
allows for a direct computation of detð1 − N̂0Þ, which
together with Eq. (27) leads to the following remarkable

formula for F ðDrÞ
n¼0 in the sphere-plate case:

F ðDrÞ
n¼0jsp−pl ¼

kBT
2

�X∞
l¼1

ð2lþ 1Þ ln½1 − Z2lþ1�

þ ln

�
1 − ð1 − Z2Þ

X∞
l¼1

Z2lþ1
1 − Z2l

1 − Z2lþ1

�	
:

ð37Þ

Unfortunately, for two spheres of finite radii R�, no such
tricks seem to exist, and therefore no direct computation
detð1 − N̂0Þ is possible. The latter determinant has to be
computed numerically in this case, and here too bispherical
coordinates display their power, since the number of
bispherical multipoles that are needed to achieve conver-
gence scales just like

ffiffiffiffiffiffiffiffiffi
R̃=a

p
, instead of R̃=a which is the

scaling law in the standard representation with spherical
multipoles. As a result of this improvement, for aspect

ratios R̃=a as large as 104 it is possible to compute
detð1 − N̂0Þ very accurately with just 100 bispherical
multipoles or so, an easy task for a laptop.
It is interesting to compare the forcesFðDÞ

n¼0 andF
ðDrÞ
n¼0, to see

what is the effect of grounding the spheres. The first thing to

notice is that FðDÞ
n¼0 and FðDrÞ

n¼0 have the same asymptotic
expansion in the limit a=R̃ → 0, up to order a=R̃:

FðDÞ
n¼0 ≃ FðDrÞ

n¼0 ¼ −kBT
ζð3ÞR̃
8a2

�
1þ 1

6ζð3Þ
a

R̃
þ oða=R̃Þ

�
;

ð38Þ

where ζðxÞ is Riemann zeta function. The leading term

coincides with the PFA Eq. (7), since F ðppÞ
n¼0jDr ¼ F ðppÞ

n¼0jD ¼
−kBTζð3Þ=ð16πa2Þ. The leading correction beyond PFA,
i.e., the term proportional to a=R̃ on the rhs of the above
equation, is consistent with the DE (see [35]) and interest-
ingly it is independent of the parameter u.
While coinciding in the regime of small separations,

FðDÞ
n¼0 and FðDrÞ

n¼0 do have drastically different behaviors in
the opposite limit of large separations a=R̃ → ∞. In the
language of bispherical coordinates, the large distance limit
corresponds to taking μ� → �∞, i.e., Z� → 0. In this
limit, one easily finds:

FðDÞ
n¼0 ¼ −kBT

R1R2

a3

�
1þO

�
R1 þ R2

a

��
; ð39Þ

FðDrÞ
n¼0 ¼ −18kBT

R3
1R

3
2

a7

�
1þO

�
R1 þ R2

a

��
: ð40Þ

We recall that in all Casimir experiments, the conductors
are always connected to charge reservoirs. This configu-
ration is used to get rid of possible stray charges that could
be present on the surfaces, and to compensate by a suitably
adjusted bias potential for unavoidable differences between
the work functions of the conductors and/or potential
patches [37]. The correct model for the TM zero-frequency
mode of the experimental setups is therefore represented by
the D bc, rather than the commonly considered Drude bc.
Since according to Eq. (38) grounded and isolated spheres
have the same energy up-to first-order beyond PFA, it is
clear that the differences between the two models show up
only at the level of second-order corrections beyond PFA,
which are exceedingly small for typical experimental
values of the aspect ratio. This explains why experimen-
tally, there has be no need so far to make a distinction
between the two cases. In the next section the deviations
from PFA of grounded and isolated spheres shall be
computed numerically.
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B. Perfect conductor

We consider now the zero-frequency contribution for a
perfect conductor (PC). We study this model because its
zero-frequency term can be easily computed numerically in
bispherical coordinates, and more importantly because for
separations larger than a few times the plasma length, the
deviation from PFA for a PC provides a very good
approximation to the deviation from PFA for the zero-
frequency term of the plasma model, to be studied in the
next subsection.
The difference between the Drude model, that was

studied in the previous subsection, and a PC consists in
the fact that the latter expels not only electrostatic fields but
also static magnetic fields (perfect Meissner effect). As a
result of this circumstance, in addition to the contribution of
the TMmodes, which is identical to the classical term of the
Drude model, the PC classical term receives a contribution
also from the TE modes. For a PC the latter is identical to
the classical term of a scalar field subjected to Neumann
(N) bc [46].
The classical Casimir interaction of PC sphere and plate

was investigated numerically in [46], using a large simu-
lation of the scattering formula in the standard spherical
multipole basis. The same problem was studied in [40]
using bispherical coordinates. What renders interesting the
PC classical Casimir interaction is that the DE fails for a
classical N field, since the associated perturbative kernels
lack the analyticity properties for small in-plane momenta
that are necessary for existence of the DE. Indeed, in the
sphere-plate geometry, the leading correction beyond PFA
for a classical N field has a log2ðR=aÞ dependence [40,46],
instead of the a=R dependence that is characteristic of
situations in which the DE is valid (see [20,22–25]).
Here we use the bispherical coordinates to study the

classical PC two-sphere problem. As we said earlier, the PC
TM classical contribution is identical to the Drude case, and
so it remains to compute the TE contribution, i.e., the N
classical term. Similar to the Drude model studied in the
previous section, Eq. (22) holds also to the N problem, and
therefore all we need to determine N̂ are the bispherical

matrix elements TðNj�Þ
l;l0 of the T-operators the spheres,

where the superscript stands for Neumann. It is convenient

to express TðNj�Þ
l;l0 as a perturbation of the D case, and thus

we decompose TðNj�Þ
l;l0 in the form:

TðNj�Þ
l;l0 ¼−Zlþ1=2

� Zl0þ1=2
� ½δl;l0 þδTð�Þ

l;l0 �; l; l0 ≥ jmj: ð41Þ

The matrix TðNj�Þ
l;l0 is computed as follows. One considers

again scattering the outgoing wave ϕð�Þ
l0m , originating from

the sphere R�, by the sphere R∓. By definition of the

T-matrix, the total field ϕðtotj∓Þ
l0m outside the sphere R∓ is the

sum of the incoming field plus the scattered field:

ϕðtotj∓Þ
l0m ¼ ϕð�Þ

l0m −
X
l

ϕð∓Þ
lm TðNj∓Þ

l;l0 : ð42Þ

The T-matrix for N bc is then determined by demanding
that the total field satisfies the condition:

∂μϕ
ðtotj∓Þ
l0m jμ¼μ∓ ¼ 0 ð43Þ

on the surface of R∓. After substituting Eq. (42) into the
above equation, and then making use of the expression of
the T-matrix in Eq. (41), it is not hard to prove the following
exact equation that has to be satisfied by the matrix δTð�Þ:

Bð�ÞδTð�Þ ¼∓ 2 sinh μ�1; ð44Þ

where Bð�Þ is the matrix of elements

Bð�Þ
ll0 ¼ ½ð2lþ 1Þ cosh μ� � sinh μ��δll0

− ðl − jmjÞδl;l0þ1 − ðl0 þ jmjÞδlþ1;l0 : ð45Þ

The linear equations satisfied by δTð�Þ cannot be solved
analytically, but can be easily solved numerically. We note
that according toEqs. (5) and (6) the computation ofF andF0
involve the first and second derivatives of the T-matrix with
respect to the separation, which in turn involve μ-derivatives
of δTð�Þ. The linear equation satisfied by the μ-derivatives of
δTð�Þ are easily found by taking the μ-derivatives of both
sides of Eq. (44).
The N classical force and force-gradient can be com-

puted numerically in bispherical coordinates very quickly
because also for N bc, the scattering formula converges in
these coordinates for a multipole order that scales likeffiffiffiffiffiffiffiffiffi
R̃=a

p
. As a demonstration of the improved rate of

convergence in bispherical coordinates, we recall that the
values of the N sphere-plate classical energy that were
obtained in [46] by including up to 5000 spherical multi-
pole for aspect ratio R=a ≃ 103, can be reproduced by
including just 100 bispherical multipoles [40].

C. Plasma model

We saw earlier that both the Drude and the PC models
can be addressed efficiently in bisperical coordinates.
Unfortunately, this is not possible with the plasma model.
Within this prescription, the classical Casimir interaction
receives a contribution from both TM modes and TE
modes. The TM contribution is identical to the Drude
case, grounded or isolated depending on the experimental
configuration, and therefore it can be handled in bispherical
coordinates. The troublesome contribution is the TE one.
We said earlier that TE modes describe classical fluctua-
tions of the magnetic field. The vector potential of the latter
satisfies inside the spheres the vector Helmoltz equation,
which is not separable in bispherical coordinates. Therefore
for the TE mode there is no alternative to using the standard
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spherical multipole basis. In the latter basis, and for zero
frequency, the plasma model N-operator has the matrix
representation [33,34]:

N ¼ Að2ÞAð1Þ; ð46Þ

where the matrices AðiÞ are

AðiÞ
l;l0 ¼

ðlþ l0Þ!
ðlþmÞ!ðl0 −mÞ!

�
Ri

L

�
2l0þ1

rðiÞl0 ; ð47Þ

where l; l0 ≥ jmj, L ¼ R1 þ R2 þ a is the center-to-center
distance, and

rðiÞl ¼ l
lþ 1

Ilþ3=2ðωðiÞ
p Ri=cÞ

Il−1=2ðωðiÞ
p Ri=cÞ

: ð48Þ

In the above equation, IpðzÞ are the modified Bessel

functions of the first kind, whileωðiÞ
p is the plasma frequency

of the sphere of radius Ri. The PC model is recovered from

the plasma model in the limit ωðiÞ
p Ri=c → ∞, in which rðiÞl

approaches the expression for N bc: rðiÞl → l=ðlþ 1Þ.
For the purpose of numerical computations, it is con-

venient to take advantage of the freedom to conjugate N by
a non-singular matrix M, to convert N to the following
symmetric form:

⟦N⟧ ¼ AA†; ð49Þ

where

Al;l0 ¼
�
R1

L

�
lþ1=2 ffiffiffiffiffiffiffi

rð1Þl

q ðlþ l0Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþmÞ!ðl−mÞ!ðl0 þmÞ!ðl0−mÞ!p
×

�
R2

L

�
l0þ1=2 ffiffiffiffiffiffiffi

rð2Þl0

q
; l;l0≥ jmj: ð50Þ

The improved numerical stability ensured by a sym-
metrized form of the N-matrix is extensively discussed
in [28].
When the scattering formula is computed numerically, it

is obviously necessary to truncate the multipole indices l, l0
and m below some maximum orders lmax, l0max and mmax,
respectively. In order to gain a precise feeling of how far
one needs to go with the multipole order, it is useful to
examine more closely the matrix A. One is interested here
in investigating how the matrix elements of A behave for
large aspect ratios R̃=a ≫ 1. A simple estimate of the
magnitude of the elements of the matrix A can be obtained
by taking their logarithms, and then using Stirling formula
for the factorials. When doing that, the multipole indices l,
l0 and m can all be treated as continuous variables. It is
useful to set l ¼ l0 þ l̃ and l0 ¼ l0R2=R1 þ l̃0, and then one
finds:

Al;l0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1Þl rð2Þl

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1

2πðR1 þ R2Þl0

s

× exp

�
−

a
R1

l0 −
ðl̃R2 − l̃0R1Þ2

2l0R2ðR1 þ R2Þ
−
R1 þ R2

2R2l0
m2

�
:

ð51Þ

The above expression provides us with a wealth of
information about the matrix A. First of all, it shows that the
multipole orders scale according to the following laws:

lmax ≈ R1=a, l0max ≈ R2=a and mmax ≈
ffiffiffiffiffiffiffiffiffi
R̃=a

p
(in practice,

in our numerical simulations we do observe convergence
for lmax − jmj ¼ 6R1=a≡ N1, l0max − jmj ¼ 6R2=a≡ N2

and mmax ¼
ffiffiffiffiffiffiffiffiffiffiffi
6R̃=a

p
). Second, Eq. (51) shows that the

rectangular matrix A of size N1 × N2 is indeed dominated
by the elements comprised within the oblique strip Σ of

“horizontal” half-width Δ1 ≃ R1=
ffiffiffiffiffiffi
R̃a

p
and “vertical” half-

width Δ2 ≃ R2=
ffiffiffiffiffiffi
R̃a

p
around the “main diagonal” l ≃

l0R1=R2 of the matrix A. A good deal of computer time
can indeed be saved by just storing the elements of A
contained within the strip Σ. Despite this, one runs into
trouble for aspect ratios R̃=a exceeding 100 or so. Large
aspect ratios can however be handled by a simple deci-
mation procedure, that allows to compress the size of the
matrix A, as shown in the next section.

IV. A DECIMATION SCHEME FOR
THE SCATTERING FORMULA

For large aspect ratios the computation of the classical
term for the plasma model becomes prohibitively time
consuming. For example, the precise computation of the
force for two spheres with a radius of 50 micron at a
minimum separation of 100 nm requires going up to
multipole index lmax ≃ 3000, which is an impossible task
for an ordinary laptop. To handle large aspect ratios, we
developed a very simple but effective decimation pro-
cedure, that permits to compress the size of the matrices
that need to be computed, without jeopardizing the pre-
cision of the computation. The decimation schemeworks as
follows.
One notes first that the scattering formulas for the

Casimir energy, force and force gradient can be all
expressed as sums of traces of products of the matrix A
and its derivatives. Consider e.g., the Casimir energy. By
exploiting the identity ln detB ¼ Tr lnB, that holds for any
positive matrix, one can write the classical term (which is
what we are after here, but the same thing can be done of
course for all Matsubara modes) of the scattering formula
Eq. (5) as:

F n¼0¼
kBT
2

Trln½1−ðAA†Þ�¼−
kBT
2

X∞
k¼1

1

k
TrðAA†Þk: ð52Þ
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Now comes the crucial observation: according to Eq. (51),
the matrix elements of A do not change appreciably if its
indices l and l0 are increased by amounts k and k0 whose
magnitudes are small compared to Δ1 and Δ2, respectively,
i.e., Al;l0 ≃ Alþk;l0þk0 for jkj ≪ Δ1, jk0j ≪ Δ2 (where for
brevity we suppressed the index m). Consider then two
submultiples p1 and p2 of N1 and N2, respectively, such
that 1 < p1 ≪ Δ1 and 1 < p2 ≪ Δ2, and let Ni=pi ≡ ni,
i ¼ 1, 2. Now imagine subdividing the matrix A into
n1 × n2 blocks Bj1;j2 , ji ¼ 1;…ni, each of size p1 × p2.
The blocks are numbered such that within Bj1;j2 the indices
l, l0 span the range p1ðj1 − 1Þ ≤ l − jmj < p1j1 and
p2ðj2 − 1Þ ≤ l0 − jmj < p2j2. Bearing in mind the pre-
vious observation about the slow variation of All0 , the
matrix elements of A can be considered as practically
constant within each block Bj1;j2 . It is therefore legitimate
to expect that a small error would be made in the evaluation
of the scattering formula if the exact matrix A was replaced
by the N1 × N2 matrix Ā whose elements are constant
within each block Bj1;j2 , and coincide with a representative
element aj1;j2 chosen among the p1 × p2 matrix elements
of A within Bj1;j2 . Consider at this point the n1 × n2 matrix
Adec formed by the chosen representatives aj1;j2 :
ðAdecÞj1;j2 ¼ aj1;j2 . It is not hard to convince oneself that
for each term in the series in Eq. (52) the approximate
identity holds:

TrðAA†Þk ≃ TrðĀĀ†Þk ¼ ðp1p2ÞkTrðAdecA
†
decÞk: ð53Þ

This identity implies that the value of F n¼0 should be
approximately invariant under the substitution of the
N1 × N2 matrix A by the following decimated and rescaled
n1 × n2 matrix Ã:

A → Ã ¼ ffiffiffiffiffiffiffiffiffiffi
p1p2

p
Adec; ð54Þ

F n¼0 ≃
kBT
2

Tr ln½1 − ÃÃ†�: ð55Þ

The substitution of the matrix A by the matrix Ã works as
well for the Casimir force and force gradient. We tested
Eqs. (54) and (55) in the N case, where the Casimir force
can be computed to high precision using bispherical
coordinates up to large aspect ratios. It was found that
the decimation procedure nicely reproduces the bispherical
values of the force and force gradient, for values of
the aspect ratio R̃=a around 1000, using blocks of size
around 10 × 10. We made sure that the decimated N-matrix
1 − ÃÃ† is still positive for blocks of this size, and we
found that the best results were obtained by picking for the
representatives aj1;j2 the elements of A in the upper left
corners of the blocks Bj1;j2 . To give the reader a quantitative
sense of the effectiveness of the decimation method, the
following example may suffice. For two spheres of radii

R1 ¼ R2 ¼ 50 micron at a separation a ¼ 100 nm, using
7 × 7 blocks, the percent error δ in the force, engendered by
the decimation procedure, is δ ¼ 0.1% for the m ¼ 0
modes. The error becomes smaller and smaller for larger
and larger values ofm. For example, form ¼ 1, 2 and 3 the
errors are δ ¼ 0.05%, 0.009% and 0.00025%, respectively.
This is good enough to obtain reliable estimates of the
small deviations from PFA we are after.

V. NUMERICAL COMPUTATIONS

In this section, we display the results of our numerical
computations. The latter are better presented by introducing
the following quantities β and β̃ that measure the deviations
of the computed forces from the PFA:

β ¼ R̃
a

�
F

FPFA
− 1

�
; ð56Þ

and

β̃ ¼ R̃
a

�
F0

F0
PFA

− 1

�
: ð57Þ

In analogy with the decompositions of the forces in
Eqs. (11) and (12), we consider the following decompo-
sitions of the deviations from PFA:

βn¼0 ¼
R̃
a

�
Fn¼0

FPFAjn¼0

− 1

�
; ð58Þ

βn>0 ¼
R̃
a

�
Fn>0

FPFAjn>0
− 1

�
; ð59Þ

β̃n¼0 ¼
R̃
a

�
F0
n¼0

F0
PFAjn¼0

− 1

�
: ð60Þ

and

β̃n>0 ¼
R̃
a

�
F0
n>0

F0
PFAjn>0

− 1

�
: ð61Þ

The PFAvalues of the forces and force gradients that appear
in the above equations are obtained by the obvious mod-
ifications of the standard formulas Eqs. (7) and (9). For
example, FPFAjn¼0¼2πR̃F ðppÞ

n¼0ðaÞ, while FPFAjn>0 ¼
2πR̃F ðppÞ

n>0ðaÞ. The corresponding quantities for the force
gradient are defined in the sameway. By a little computation
one can prove the following two equations, which relate the
full deviations to their two components:

β ¼ wβn¼0 þ ð1 − wÞβn>0; ð62Þ

β̃ ¼ w̃β̃n¼0 þ ð1 − w̃Þβ̃n>0; ð63Þ
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where the coefficients w and w̃ respectively represent the
fractional contributions of the classical PFA terms to the full
PFA force and force gradient:

wðaÞ ¼ FPFAjn¼0

FPFA
; ð64Þ

w̃ðaÞ ¼ F0
PFAjn¼0

F0
PFA

: ð65Þ

We note that the coefficients wðaÞ and w̃ðaÞ depend on the
separation, but they are both independent of the spheres radii.
The weights w and w̃ are displayed in Fig. 3 for the Drude
model (solid lines) and for the plasma model (dashed lines).
As expected, the plots show that the weight of the classical
term is rather small for small separations, while it becomes
larger and larger as the separation increases. Theplot in Fig. 3
shows also that, compared to the Drude mode, the classical
contribution has a larger weight within the plasma model,
because within the latter model both TE and TM polar-
izations contribute to the classical term, while in the Drude

model only the TM modes contribute for zero frequency.
Keeping in mind Eqs. (62) and (63), it is clear that for typical
experimental submicron separations, the influence of the
classical term gets suppressed by its relatively small weight
w, and therefore one can predict that the magnitude of the
total deviation fromPFA is determined to a large extent by the
positive Matsubara modes.
We examine separately the contributions of the positive

and classical modes to β and β̃. The values of the deviations
βn>0 and β̃n>0 for the positive modes need not be
computed, as they follow directly from Eqs. (13) and (16):

βn>0 ¼ −ðθðaÞ þ uκðaÞÞ ð66Þ

and

β̃n>0 ¼ −ðθ̃ðaÞ þ uκ̃ðaÞÞ: ð67Þ

These equations show that within the DE the coefficients
βn>0 and β̃n>0 depend on the separation and on the ratio
among the radii, via the parameter u, but they are both
independent of the effective radius R̃. We remark that

0.1 0.2 0.5 1 2
0.0

0.2

0.4

0.6

0.8

w

0.1 0.2 0.5 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

w

FIG. 3. The upper panel shows the ratio between the zero-
frequency contribution to the Casimir force and the total Casimir
force, while the lower planel displays the analogous ratio for the
force gradient. All forces are computed for gold at room
temperature, using the PFA. Solid lines are for the Drude model,
dashed lines for the plasma model.
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FIG. 4. Coefficients βn>0 (upper panel) and β̃n>0 (lower panel),
computed using the DE. Solid and dashed lines correspond,
respectively, to the Drude and plasma prescriptions. Red curves
are for the sphere-plate geometry, blue curves for two spheres of
equal radii.
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within the DE there is no difference between grounded and
isolated conductors. The values of the coefficients βn>0 and
β̃n>0, within the Drude and the plasma prescriptions, can be
computed using the values of (θ, κ) and (θ̃, κ̃) listed in
Tables I–IV. Since the latter are practically independent of
the used prescription, the values of the coefficients βn>0 and
β̃n>0 for the two prescriptions are practically coinciding.
This expectation is confirmed by Fig. 4, which shows plots
of βn>0 (upper panel) and β̃n>0 (lower panel), computed
using the Drude prescription (solid lines) and the plasma
prescription (dashed lines). The red curves in Fig. 4 are for
the sphere-plate geometry, while the blue curves are for two
spheres of equal radii. According to Eqs. (66) and (67) the
curves corresponding to all other values of R1=R2 lie in the
strip bounded by the sphere-plate and the R1 ¼ R2 curves
of Fig. 4.
We pass now to the deviations from PFA for the classical

force and force gradient. Plots of the coefficients βn¼0 and
β̃n¼0 for the Drude model are displayed in Fig. 5 for
grounded conductors, and in Fig. 6 for isolated conductors.

Since the Drude bc for zero-frequency does not involve any
length parameter besides the radii of the spheres and the
separation, the coefficients βn¼0 and β̃n¼0 are indeed
functions of the two dimensionless variables a=R̃ and u.
Therefore, it would be natural to display both βn¼0 and β̃n¼0

as functions of the dimensionless distance a=R̃. However,
this would make a comparison with the plots of βn>0 and
β̃n>0 less straightforward, and for this reason we found
preferable to display βn¼0 and β̃n¼0 in Figs. 5 and 6 as
functions of the dimensionful separation a. Using Eq. (38),
we see that the DE predicts for the Drude model constant
values for the deviations from PFA, i.e., βn¼0jDE ¼
1=ð6ζð3ÞÞ and β̃n¼0jDE ¼ 1=ð12ζð3ÞÞ, independently of
whether the conductors are grounded or not. From
Fig. 5, we see that for grounded conductors βn¼0 and
β̃n¼0 are actually extremely close to the prediction of the
DE (displayed by the thin horizontal blue lines in Fig. 5).
On the contrary, for isolated conductors, the numerical
values of βn¼0 and β̃n¼0 are different from those predicted
by the DE, even in the sign. This by no means signifies that
the DE fails in the latter case. The observed disagreement

0.1 0.2 0.5 1 2
0.1365

0.1370

0.1375

0.1380

0.1385

Drude model

grounded conductors

0.1 0.2 0.5 1 2

0.0693245

0.0693250

0.0693255

Drude model

grounded conductors

FIG. 5. Coefficients βn¼0 (upper panel) and β̃n¼0 (lower panel)
for the Drude model, with grounded conductors. Solid lines are
for two identical spheres with radius R ¼ 40 μm, dashed lines are
for two spheres of radii R1 ¼ 40 μm and R2 ¼ 80 μm, and the
dot-dashed lines are for two spheres of radii R1 ¼ 40 μm and
R2 ¼ 200 μm. The thin horizontal blue lines represents the
prediction of the DE.
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–0.18
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FIG. 6. Coefficients βn¼0 (upper panel) and β̃n¼0 (lower panel)
for the Drude model, with isolated conductors. Solid lines are for
two identical spheres with radius R ¼ 40 μm, dashed lines are for
two spheres of radii R1 ¼ 40 μm and R2 ¼ 80 μm, and the dot-
dashed lines are for two spheres of radii R1 ¼ 40 μm and
R2 ¼ 200 μm.
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with the DE likely has the same explanation as in the
sphere-plate case [31], where it was found that for realistic
separations the leading deviation from PFA predicted by
the DE is actually dominated by large subleading loga-
rithmic corrections.
In Figs. 7 and 8 we plot βn¼0 (upper panel) and β̃n¼0

(lower panel) for the PC model, with grounded and isolated
conductors respectively. As we explained in the previous
section, the PC model coincides with the limit of the plasma
model, for infinite plasma frequency. The striking feature
displayed by Figs. 7 and 8 is that the deviations from PFA
for a PC have a much larger magnitude, compared to the
Drude model. The cause of this “anomaly” is the zero-
frequency TE mode, which for a PC is described by a N
scalar field, as we have seen in the previous section.
Finally, we consider the plasma prescription. Within the

latter model, the coefficients βn¼0 and β̃n¼0 depend para-
metrically on the plasma frequencyωp of the conductors, or
better on the plasma length λp ¼ c=ωp (λp ¼ 22 nm for
gold). It turns out that already for separations a larger than a
few times λp, βn¼0 and β̃n¼0 are close to the PC limit. This
can be seen from Table V, which compares the values of

βn¼0 for two equal isolated spheres of radius R ¼ 10 μm,
computed using the plasma model with those obtained by
the PC model. The difference between the two models
reaches a maximum of 8 percent, for the smallest separation
a ¼ 100 nm, and decreases quickly as the separation

increases. This suggests that one could well use βðPCÞn¼0 in

the place of βðplÞn¼0 in Eq. (62), to compute β for the plasma
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–0.8
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grounded conductors

FIG. 7. Coefficients βn¼0 (upper panel) and β̃n¼0 (lower panel)
for perfect grounded conductors. Solid lines are for two identical
spheres with radius R ¼ 40 μm, dashed lines are for two spheres
of radii R1 ¼ 40 μm and R2 ¼ 80 μm, and the dot-dashed lines
are for two spheres of radii R1 ¼ 40 μm and R2 ¼ 200 μm.
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–0.9

Perfect Conductor model

isolated conductors

FIG. 8. Coefficients βn¼0 (upper panel) and β̃n¼0 (lower panel)
for a perfect isolated conductor. Solid lines are for two identical
spheres with radius R ¼ 40 μm, dashed lines are for two spheres
of radii R1 ¼ 40 μm and R2 ¼ 80 μm, and the dot-dashed lines
are for two spheres of radii R1 ¼ 40 μm and R2 ¼ 200 μm.

TABLE V. Values of the coefficients βn¼0 for two equal isolated
spheres of radius R ¼ 10 μm, computed using the plasma model
(ωp ¼ 9 eV=ℏ) or the perfect conductor model. The fourth line of
the Table displays the values of βðplÞ, while the fifth line displays

the approximate values of βðplÞ that result from substituting βðplÞn¼0

by βðPCÞn¼0 in Eq. (62).

aðμmÞ 0.1 0.2 0.3 0.4 0.9 2

βðplÞn¼0
−1.82 −1.66 −1.54 −1.44 −1.16 −0.89

βðPCÞn¼0
−1.98 −1.72 −1.57 −1.46 −1.17 −0.89

βðplÞ −0.896 −0.889 −0.869 −0.852 −0.817 −0.796
βðplÞapp

−0.906 −0.894 −0.873 −0.855 −0.819 −0.796
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model. We remind that βðPCÞn¼0 can be computed quickly and
to high precision using bispherical coordinates. The sub-

stitution of βðplÞn¼0 by βðPCÞn¼0 indeed engenders small errors on
the values of β, as shown by the last two rows of Table V,
where we compare the exact plasma values of βðplÞ with the
approximate values βðplÞapp that are obtained in this way. The
maximum error of 1.1 percent occurs for the smallest
considered separation of 100 nm. Please note however that
a 1.1% error on β for a ¼ 100 nm, signifies an error R̃=a ¼
50 times smaller on the Casimir force, i.e., an error of
2 × 10−4 on the force, which is far beyond the present
accuracy of Casimir experiments. The error on β decreases
to 0.5% already for 200 nm, and becomes totally negligible
for separations larger than 300 nm. These considerations
justify using the perfect conductor model to estimate βn¼0

within the plasma prescription.
Now, we are ready to present the full coefficients β and β̃

for the above models of the conductors. In Fig. 9 we display
these coefficients for grounded conductors, while in Fig. 10
the same coefficients are displayed for isolated conductors.
Both figures show that for all considered separations and

for all models the deviation from PFA is of order one. We
also note that the magnitude of the deviations from PFA
engendered by the plasma model are always larger than
those of the Drude model, in qualitative agreement with the
findings of [28]. In fact, the increased magnitude of the
deviations from PFA for the plasma model is manifest for
separations larger than one micron, and is particularly
evident for grounded conductors. For R2 ≫ R1, the devia-
tions from PFA obtained by us for the two-sphere system,
for both the Drude and the plasma models with isolated
conductors (the only case studied in [28]), reproduce the
corresponding deviations for the sphere-plate geometry that
were computed in [28].
In Fig. 11 we display the room temperature Casimir force

(upper panel) and the force gradient (lower panel) for
two identical gold spheres of radius R ¼ 40 μm. The

Casimir force is normalized by the PFA force FðidÞ
PFA ¼

−π3ℏcR̃=ð360a3Þ for two ideal spheres at zero temperature,
while the force gradient is normalized by the corresponding

ideal force gradient F0ðidÞ
PFA ¼ π3ℏcR̃=ð120a4Þ. The solid

lines in Fig. 11 are for grounded spheres, the dashed lines
are for isolated spheres, while the dot-dashed lines
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FIG. 9. Coefficients β (upper panel) and β̃ (lower panel) for
grounded conductors. Solid lines are for two identical spheres
with radius R ¼ 40 μm, dashed lines are for two spheres of radii
R1 ¼ 40 μm and R2 ¼ 80 μm, and the dot-dashed lines are for
two spheres of radii R1 ¼ 40 μm and R2 ¼ 200 μm.
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FIG. 10. Coefficients β (upper panel) and β̃ (lower panel), for
isolated conductors. Solid lines are for two identical spheres with
radius R ¼ 40 μm, dashed lines are for two spheres of radii R1 ¼
40 μm and R2 ¼ 80 μm, and the dot-dashed lines are for two
spheres of radii R1 ¼ 40 μm and R2 ¼ 200 μm.
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represent the ordinary PFA forces. The figure shows clearly
that for separations larger than 500 nm, the plasma forces
deviate from the PFA much more than the corresponding
forces for the Drude model. The figure shows also that
grounding the conductors leads to a very small correction to
the forces for submicron separations, but its effect becomes
visible for large separations.
The experiment [32] measured the Casimir force gra-

dient between two gold-coated spheres at room temperature
in vacuum. A fit of the data taken with spheres of different
radii in the separation interval from 40 to 300 nm, was used
to set the bound β0 ¼ −6� 27 on the deviations from PFA
of the Casimir force gradient. The quantity β0 of [32] is the

same as the coefficient β̃ of the present work, and thus we
see from Figs. 9 and 10 that the bound is consistent with the
theoretical predictions of all models considered in this
paper. A discrimination between the deviations from PFA
predicted by these models requires a significant improve-
ment, by one or two orders of magnitude, in the sensitivity
of the experimental apparatus used in [32].

VI. CONCLUSIONS

We have computed the deviations from PFA for the
Casimir force and force-gradient between two sphere in
vacuum, at room temperature. The computations have been
carried out for four distinct models of the conductors, i.e.,
the Drude and plasma models, with grounded or isolated
conductors. We notice that, while the Drude and plasma
models have been investigated in many studies before, but
not in the sphere-sphere geometry considered in this work,
only rarely the effect of grounding the conductors has been
discussed in the literature. Despite the fact that all Casimir
experiments utilize conductors connected to charge reser-
voirs, the standard theoretical models used to interpret the
experiments exclude from the start fluctuations of the total
charges of the conductors, and thus describe isolated
conductors. Probably, the influence of grounding the
conductors has escaped detection so far because experi-
ments are carried out in the small separation regime, where
the effects of grounding are negligible, since they become
manifest only at the level of deviations from PFA.
For all models considered in this work, the magnitudes

of the obtained theoretical deviations from PFA are of order
one, and thus they are all consistent with the loose
experimental bound β̃ ¼ 6� 27 that was set by the recent
experiment [32], which measured the force-gradient
between two gold coated spheres in vacuum. Our results
indicate that a significant improvement in the sensitivity of
the apparatus, by one or two orders of magnitude, is
necessary in order to discriminate between the deviations
from PFA predicted by the four theoretical models.
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FIG. 11. Room temperature Casimir force between two iden-
tical gold sphere of radius R ¼ 40 μm, normalized by the PFA

force FðidÞ
PFA for ideal spheres at zero temperature (upper panel),

and the corresponding force gradient normalized by the force
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Solid lines are for grounded spheres, dashed lines are for isolated
spheres, while dot-dashed lines represent the standard PFA.
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