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We investigate the large gauge transformations of a two-form gauge field in four-dimensional
Minkowski space. Our goal is to establish a connection between these asymptotic symmetries and the
scalar soft theorems described by Campiglia, Coito and Mizera whereas the soft scalar mode should be
interpreted in terms of its two-form dual counterpart.
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I. INTRODUCTION AND OUTLOOK

In Refs. [1,2], it was pointed out that the soft theorem for
the emission of a scalar particle can be recast, to leading
order and at tree level, in the form of a Ward identity for the
corresponding S-matrix

QþS − SQ− ¼ 0; ð1:1Þ

with Q� suitable operators expressed in terms of creation
and annihilation operators of external physical quanta. Q�

can be split into their hard parts Q�
h and soft parts Q�

s .
In particular, in retarded Bondi coordinates in four-

dimensional Minkowski space, the soft “scalar charges”
can be expressed in terms of the massless scalar mode
φðu; r; z; z̄Þ ¼ bðu; z; z̄Þ=rþ oð1rÞ as follows:

Qþ
s ¼

Z
S2
bðu; z; z̄ÞΛðz; z̄Þγzz̄dzdz̄; ð1:2Þ

where Λðz; z̄Þ is an arbitrary function of the two angular
coordinates z and z̄ on the unit sphere while γzz̄ is the
corresponding metric. The interpretation of this Ward
identity in terms of an underlying symmetry, however,
remained elusive. Indeed, differently from the analogous
results holding for the case of soft particles with spin s ≥ 1
[3–14] (for a review see Ref. [15]), for the case of soft
scalars it is not clear a prioriwhat the underlying symmetry

should be that is capable of explaining the conservation of
the corresponding charges. Similar considerations would
apply to the soft theorems for pions considered in Ref. [16].
In this paper we propose a relation between the operators

Q�
s , in four space-time dimensions, and the Noether

charges associated to the large gauge symmetries of a
two-form gauge field, to be interpreted as propagating the
same massless scalar degree of freedom (d.o.f.), in a dual
picture.1 In this fashion Eq. (1.1) would appear to be
naturally interpreted as the Ward identity arising from the
large gauge symmetry of a two-form field.
We begin in Sec. II by exploring the asymptotic

symmetries and the corresponding charges for a two-form
gauge field in the radial gauge, selected so as to keep
appropriate falloff conditions. The latter are identified so
as to be compatible with the equations of motion in that
gauge and so as to provide a finite flux of energy per unit of
retarded time at null infinity. In particular, we identify the
on-shell-propagating radiative mode in the component
Bzz̄ ¼ rCzz̄ðu; z; z̄Þ þ oðrÞ.
In Sec. III we recall the duality relation connecting scalar

and two-form fields in D ¼ 4, and identify the relation
between the propagating scalar mode bðu; z; z̄Þ and the
two-form physical d.o.f. Czz̄ðu; z; z̄Þ as Czz̄ ¼ −γzz̄b. On
the other hand, the asymptotic charge for the two-form
residual symmetry takes the form

Q̃þ ¼ −
1

r

Z
S2
Czz̄γ

zz̄ð∂zϵz̄ − ∂ z̄ϵzÞdzdz̄; ð1:3Þ

where ϵzðz; z̄Þ, ϵz̄ðz; z̄Þ are arbitrary gauge parameters
[subject to gauge-for-gauge transformations generated
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1During the completion of this work the paper [17] appeared,
where it was indeed proposed to interpret the scalar soft theorems
in terms of the asymptotic symmetries of its dual two-form field,
much in the spirit of our present approach.
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by a scalar function ϵðz; z̄Þ on the unit sphere]. We thus
propose to further identify

Qþ
s ¼ rQ̃þ; ð1:4Þ

namely Λγzz̄ ¼ ∂zϵz̄ − ∂ z̄ϵz.
The possibility to analyze the relation between asymp-

totic symmetries and soft theorems from the perspective of
dual theories may be worth exploring in a number of
additional contexts. To begin with, one option to further
check the duality that we propose in our work would be to
look for a soft theorem for the two-form, so as to see
whether it involves the same scalar charge. Moreover, while
already approached to some extent for the case of electro-
magnetic fields in D ¼ 4 [18,19], it would be interesting to
reconsider from this vantage point the issue of higher-
dimensional asymptotic symmetries for gravity and for
higher spins. It is tantalizing to speculate that some
symmetries may be better identified in a given dual
description rather than in other, on-shell equivalent, pic-
tures, a possibility that is conceivable on account of the
typically nonlocal relation that connects two dual covariant
descriptions of the same d.o.f. On the other hand, dualities
are notoriously difficult to keep beyond the free level,
which may still be sufficient to some extent when dealing
with asymptotic states, but certainly provides a serious
warning about the possible scope of conclusions that may
be drawn from this type of analyses.
Coming back to soft scalars, let us also observe that, while

our main focus in this work is on the four-dimensional case,
the very existence of analogous duality relations between
free massless scalars and (D − 2)-forms in D dimensions
provides natural candidate explanations for the correspond-
ing soft scalar charges identified in any even D in Ref. [2],
while also possibly indicating the existence of analogous
results in odd dimensionalities as well.

II. ASYMPTOTIC SYMMETRIES FOR
TWO-FORM GAUGE FIELDS

We consider the gauge field described by an antisym-
metric rank-two tensor Bμν ¼ −Bνμ subject to the reducible
gauge transformation

δBμν ¼ ∂μϵν − ∂νϵμ; ð2:1Þ
where the linear dependences among the components of ϵμ
are encoded in the gauge-for-gauge symmetry δϵμ ¼ ∂μϵ,
where ϵ is a scalar parameter. The gauge-invariant field
strength is

Hμνρ ¼ ∂μBνρ þ ∂ρBμν þ ∂νBρμ; ð2:2Þ
while the Lagrangian and equations of motion are given by2

L ¼ −
1

6
HμνρHμνρ; ∂μHμνρ ¼ 0; ð2:3Þ

or equivalently, in components of Bμν,

□Bμν þ∇μ∇ρBνρ −∇ν∇ρBμρ ¼ 0: ð2:4Þ

Our goal in this section is to investigate the asymptotic
symmetries of this theory, much in the spirit of what can be
done for the Maxwell theory and for (linearized) gravity
(see e.g., Refs. [3–11]) or for higher spins [12–14].3 We
adopt Bondi retarded coordinates xμ ¼ ðu; r; z; z̄Þ such that
the Minkowski metric in D ¼ 4 is

ds2 ¼ −du2 − 2dudrþ r2γzz̄dzdz̄; ð2:5Þ

where γzz̄ is the metric of the Euclidean two-sphere.
To begin with, we exploit the gauge-for-gauge symmetry

to set ϵr ¼ 0, thus fixing the scalar parameter ϵ, up to an
r-independent but otherwise arbitrary function ϵðu; z; z̄Þ.
Then, we employ the gauge transformations

δBru ¼ ∂rϵu; δBri ¼ ∂rϵi; ð2:6Þ

to reach the “radial gauge”

Bru ¼ 0 ¼ Bri; ð2:7Þ

where xi, with i ¼ 1, 2, stand for z, z̄. This leaves a residual
gauge freedom with parameters ϵuðu; z; z̄Þ and ϵiðu; z; z̄Þ,
and the gauge-for-gauge redundancy ϵðu; z; z̄Þ. We may
then further exploit the u dependence of ϵðu; z; z̄Þ to set
ϵuðu; z; z̄Þ ¼ 0. The result of this gauge-fixing strategy is
the following: one is left with the gauge-field components

Buiðu; r; z; z̄Þ; Bzz̄ðu; r; z; z̄Þ; ð2:8Þ

while still keeping the residual gauge parameters

ϵiðz; z̄Þ; ð2:9Þ

together with the residual gauge-for-gauge symmetry
encoded in

ϵðz; z̄Þ: ð2:10Þ

Expanding the equations (2.4) in the above gauge yields

∂rDjBju ¼ 0; ð2:11Þ

∂2
rBui þ

1

r2
∂rDjBij ¼ 0; ð2:12Þ

2We are adopting the mostly plus signature.

3Asymptotic symmetries for fields of mixed symmetry are a
much less explored subject. For the case of p-forms see Ref. [20].
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∂u∂rBui −
1

r2
∂uDjBij − ∂2

rBui −
Δ − 1

r2
Bui

−
1

r2
DiDjBju ¼ 0; ð2:13Þ

2

�
∂r −

1

r

�
∂uBij −

Δ
r2
Bij þ

�
∂r −

2

r

�
ðD½iBj�u − ∂rBijÞ

−
1

r2
D½iDlBj�l ¼ 0; ð2:14Þ

whereDi denotes the covariant derivative on the unit sphere
and Δ ¼ DiDi is the Laplacian on the unit sphere.
In order to impose consistent falloff conditions, we

adopt two guiding criteria: we consider field configura-
tions that radiate a finite energy per unit time across
any spherical section Su of null infinity and we check
compatibility with the free equations of motion to leading
order as r → ∞.
The finiteness of the energy flux at infinity imposes that

the limit

PðuÞ ¼ lim
r→∞

Z
Su

γijγjkHuilðHujk −HrjkÞr−2dΩ ð2:15Þ

be finite, hence indicating that both Bij and Buj should
scale at most like r, as r → ∞. Equation (2.14) further
suggests that Bij should scale precisely like r, thus
saturating the energy bound, so that the leading component
of ∂uBij is unconstrained on shell. Indeed, we find that
the free equations of motion are solved to leading order
as r → ∞ by

Bui ¼ DjCij log rþ � � � ; Bij ¼ rCij þ � � � ; ð2:16Þ

where Cijðu; z; z̄Þ is an antisymmetric tensor on the sphere.
In particular, this class of asymptotic solutions highlights
Czz̄ as the single on-shell propagating d.o.f. carried by the
two-form field being the only independent function of the
leading solution space. Moreover, it carries a finite amount
of energy to null infinity encoded in

PðuÞ ¼
Z
Su

γijγjk∂uCil∂uCjkdΩ; ð2:17Þ

as required.
The falloff conditions (2.16) are invariant under any

gauge transformation parametrized by Eq. (2.9), which we
thus identify as providing the set of asymptotic symmetries
of the theory. We can compute the corresponding surface
charge [21–23]

Q̃þ ¼
I
Su

κurr2dΩ; ð2:18Þ

where the integration is performed on a sphere Su at
fixed retarded time u and for a large value of the radial
coordinate r, while the Noether two-form [21] κμν satisfies

κur ¼ ϵμHμur ¼ 1

r2
ϵiγ

ijHjru ¼
1

r2
ϵiγ

ij∂rBuj: ð2:19Þ

Making use of the equations of motion we can further
rewrite the charge as follows:

Q̃þ ¼ −
1

r

I
Su

γijγlkDiϵlCkjdΩ

¼ −
1

r

Z
γzz̄ð∂zϵz̄ − ∂ z̄ϵzÞCzz̄dzdz̄: ð2:20Þ

III. DUALITY AND SCALAR CHARGES

As is well known, a two-form gauge fieldBμν inD ¼ 4 is
dual, on shell, to a scalar field φ via the relation �dB ¼ dφ,
where d is the exterior derivative and � is the Hodge dual
in D ¼ 4

4; explicitly

1

2
r2γzz̄ϵμνρα∂μBνρ ¼ ∂αφ: ð3:1Þ

In components, we have

∂rBzz̄ ¼ r2γzz̄∂rφ;

∂rBuz ¼ −∂zφ;

∂rBuz̄ ¼ ∂ z̄φ;

∂uBzz̄ þD½zBz̄�u − ∂rBzz̄ ¼ −r2γzz̄∂uφ: ð3:2Þ

Comparing with the falloffs for the two-form (2.16), we see
that these equations are compatible to leading order with
the standard falloff condition for the massless scalar

φðu; r; z; z̄Þ ¼ bðu; z; z̄Þ
r

þ � � � ; ð3:3Þ

provided one identifies

bγzz̄ ¼ −Czz̄: ð3:4Þ

This relation provides the desired connection between the
on-shell d.o.f. Cij of the two-form field and the propagating

4This duality is just the simplest realisation of a group-
theoretical result that allows to identify irreps T and T̃ of
SOðnÞ described by different Young diagrams, whenever the
lengths of the first columns are in the relation l1 ¼ n − l̃1, with
all the other columns being equal. The duality between a scalar
and a two-form in D ¼ 4 corresponds to the identification
between the singlet representation • and the antisymmetric
rank-two form of SO(2), i.e., the little group for massless
particles in D ¼ 4.
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component b of the massless scalar. Equation (3.4) can be
rewritten covariantly as Cij ¼ ibΩij, where Ω is the
standard symplectic form on the Euclidean sphere.
Let us now compare “charge” operators arising from

scalar soft theorems [1] with the surface charges given by
two-form asymptotic symmetries (2.20), in order to connect
the former to the latter by means of the duality trans-
formation. We recall that the soft part of the scalar charges
can be expressed as

Qþ
s ¼

Z
S2
bðu; z; z̄ÞΛðz; z̄Þγzz̄dzdz̄; ð3:5Þ

where Λðz; z̄Þ is an arbitrary function of the two angular
coordinates. In view of Eq. (3.4), we propose to identify

Qþ
s ¼ rQ̃þ; ð3:6Þ

and correspondingly for the residual symmetry parameters

Λγzz̄ ¼ ∂zϵz̄ − ∂ z̄ϵz: ð3:7Þ

A puzzling, although not completely unfamiliar5 feature of
the identification is the fact that, while the action of Qþ

s is
well defined on Iþ, i.e., even after performing the limit
r → ∞, our two-form asymptotic symmetry charge appears
to vanish in the large-r limit. This seems to be a conse-
quence of the fact that, in radial gauge, symmetry param-
eters are not allowed to grow with r, and hence are unable
to compensate for the falloff ∂rBui ∼ 1=r.
A possible way out of this inconvenience could be to

add terms of the type

∂zfðzÞr; ∂ z̄gðz̄Þr; ð3:8Þ

to the two-form components Buz, Buz̄ respectively. These
terms are indeed allowed by the leading equations of motion
and give no contribution to the energy flux at infinity. These
new terms would give rise to the modified charge

Z
½ϵz∂ z̄gðz̄Þ þ ϵz̄∂zfðzÞ�dzdz̄

−
1

r

Z
γzz̄ð∂zϵz̄ − ∂ z̄ϵzÞCzz̄dzdz̄; ð3:9Þ

which no longer goes to zero as r → ∞. On the other hand,
in this limit, it appears to become independent of the
physical d.o.f. Czz̄ and, in the dual interpretation, of the
radiative mode b of the massless scalar. Indeed, the fðzÞ and
gðz̄Þ, appearing in the first term of Eq. (3.9), are related by
duality to a scalar field φðu; r; z; z̄Þ ¼ −fðzÞ þ gðz̄Þ þ � � �,
which is static to leading order as r → ∞.

The terms (3.8) admit a natural interpretation if one
phrases the problem of studying the two-form falloffs in a
spacetime of generic dimension D. In this extended setup,
the asymptotic analysis of the equations of motion high-
lights two classes or “branches” of solutions: denoting by xi

coordinates on the celestial (D − 2)-sphere, one has a
radiation branch

Bui ¼
2

4 −D
Uiðu; xkÞrð4−DÞ=2 þ � � � ;

Bij ¼ Cijðu; xkÞrð6−DÞ=2 þ � � � ; ð3:10Þ
subject to Ui ¼ DjCij (unless D ¼ 6, in which case only
∂uUi ¼ ∂uDjCij need be imposed) and a Coulomb-like
branch

Bui ¼ ŨiðxkÞr5−D þ � � � ;

Bij ¼
1

D − 4
C̃ijðu; xkÞr5−D þ � � � ; ð3:11Þ

where ∂uC̃ij ¼ D½iŨj� and ðD − 5ÞDjŨj ¼ 0. Solutions of
the first type give rise to nonzero energy flux across
sections of null infinity, PðuÞ ≠ 0, and only give vanishing
contributions to the (global) charges as r → ∞. The second
class, on the other hand, does not contribute to the energy
flux, while giving nonzero contributions to charge inte-
grals. In D ¼ 4, the above expressions exhibit singularities
and Eq. (3.10) reduces to Eq. (2.16), while Eq. (3.11) gives
rise to Eq. (3.8).
The scalar radiative mode b, in four dimensions, appears

thus to be dual to the radiation solution for its two-form
counterpart. From this observation, it appears natural that
its soft charge may be dual to an asymptotically vanishing
two-form charge.
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Physique, Physique Mathématique des Interactions
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Note added.—Although the general logic is similar, our
results are not identical to those of Ref. [17]. In particular,
as already noticed, our charge vanishes in the limit r → ∞
and in this sense it fails to reproduce the expected trans-
formations on I . A possible source of explanation for this

5See e.g., Refs. [24–26], where charges depending on some
inverse power of the radial coordinate were considered and
interpreted as connecting asymptotic symmetries to soft theorems.
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behavior may be looked for in the difference between the
radial gauge, that we employ in this work, and the Lorenz
gauge that is used in Ref. [17], with the former possibly
being amenable to being weakened by allowing for sub-
leading corrections in the large-r behavior of the radial
components of the field Bμν. With hindsight, this may be

taken as an indication that gauge independence of the
results is to be assumed with some care, when it comes to
comparing asymptotic analyses, in the absence of a general
criterion allowing to establish a priori which components
of the gauge transformations may contribute to a non-
vanishing charge at I , given a set of consistent falloffs.
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