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InD ¼ 2þ 1 dimensions, elementary particles of a given helicity can be described by local Lagrangians
(parity singlets). By means of a “soldering” procedure, two opposite helicities can be joined together and
give rise to massive spin-s particles carrying both helicities�s (parity doublets), and such Lagrangians can
also be used in D ¼ 3þ 1 to describe massive spin-s particles. From this point of view the parity singlets
(self-dual models) in D ¼ 2þ 1 are the building blocks of real massive elementary particles inD ¼ 3þ 1.
In the three cases s ¼ 1, 3=2, 2 there are 2s self-dual models of order 1; 2;…; 2s in derivatives. In the spin-3
case the fifth order model is missing in the literature. Here we deduce a fifth order spin-3 self-dual model
and fill up this gap. It is shown to be ghost free by means of a master action which relates it with the top
model of sixth order. We believe that our approach can be generalized to arbitrary integer spin-s in order to
obtain the models of order 2s and 2s − 1. We also comment on the difficulties in relating the fifth order
model with their lower order duals.
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I. INTRODUCTION

Although we have not yet seen higher spin (s ≥ 3=2)
elementary particles in nature, massive particles of arbi-
trarily high spin are predicted by string theory. It is
tempting to connect the nondetection of such particles to
the theoretical difficulties we have in formulating a self-
consistent theory where such particles interact with them-
selves or with other fields like the gravitational field. As we
increase the spin we need higher rank tensors. However,
only 2sþ 1 degrees of freedom (d.o.f.) should survive for
a massive spin-s particle in D ¼ 3þ 1 dimensions.
Consequently, several spurious fields must be consistently
eliminated which becomes cumbersome, especially when
interactions are present. The tensor fields must obey the
so-called Fierz-Pauli constraints [1].
Even the Lagrangians for free particles must be fine-

tuned for higher spins in order to produce the correct
constraints [2]. We believe that those Lagrangians could be
systematically obtained from a “soldering” procedure of
opposite helicities in D ¼ 2þ 1 space-time; see more on

soldering in [3–9]. In D ¼ 2þ 1 dimensions, differently
from the real world, it is possible to write down local
Lagrangians for elementary particles of given helicity.
Helicity eigenstates are described by parity singlets, the
so-called self-dual (SD) models in D ¼ 2þ 1. For in-
stance, two Maxwell-Chern-Simons theories (spin-1) of
helicities þ1 and −1, suggested in [10], can be soldered
into the spin-1 Maxwell-Proca model whose action has the
same form in arbitrary dimensions. Likewise, two spin-2
self-dual models of helicitiesþ2 and−2 of second order1 in
derivatives, suggested in [11], can be soldered into the
massive spin-2 Fierz-Pauli (FP) theory. The fine-tuned
mass term of the FP theory is automatically generated.
It works also for higher derivative models. In particular,
the relative −3=8 factor between R2

μν- and R2-terms in
the linearized version of the “new massive gravity”
(NMG) of [12] can also be automatically produced by
the soldering of two linearized topologically massive
gravities (LTMG) of opposite helicities þ2 and −2; see
[8]. The case of spin-3=2 has also been recently achieved
[13]. The spin-3 case is still under investigation.
From a constructive point of view, we believe that the

self-dual models in D ¼ 2þ 1 are the building blocks
for massive particles in the real world. Therefore, it is
certainly interesting to learn how to build them systemati-
cally for arbitrarily higher spins, especially their higher
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order versions. As we increase the number of derivatives,
the number of FP constraints which are identically satisfied
as opposed to dynamically satisfied also increases which
makes easier, in principle, the introduction of interactions
without destroying the constraints.
The higher derivative self-dual models can be obtained

from their first order counterparts order by order2

(LðsÞ
SDj → LðsÞ

SDðjþ1Þ) in, at least, two different ways: either
by means of a master action approach [14] (spin-1) (see
[15,16]) for the spin-2 case, or via a Noether gauge
embedding (NGE) procedure where the amount of local
symmetries increases along with the number of deriva-
tives; see [17] (spin-1), [18] (spin-3=2) and [16] (spin-2).
Those three cases are consistent with a “2s” rule for the
highest possible order in derivatives of a ghost-free self-
dual model for spin-s particles. The case of spin-3
investigated here is quite challenging. Although the sixth
order model is known [19], starting with the first order
model of [20] we have obtained in [21] and [22] the
second [23], the third [24], and a fourth order spin-3 self-
dual model via the NGE and the master action procedures,
respectively. Although they are all ghost-free, we have not
been able to go beyond the fourth order and reach the sixth
order model. The NGE procedure requires more symmetry
in the higher order term than in the rest of the Lagrangian

which is not the case in the Lð3Þ
SD4 model found in [21].

Regarding the master action, the highest order term in the
Lagrangian cannot have any particle content which is not

the case for either of Lð3Þ
SD4 as we have shown in [22]; see

also Sec. IV in the present work. Here we tackle that
problem by going downward from the sixth order theory
[19] and finding a ghost-free fifth order model (Sec. II). In
Sec. III we connect it with the sixth order model via
master action. In Sec. IV we investigate a class of fourth
order Lagrangians in search for a possible fourth order

self-dual model different from Lð3Þ
SD4 of [22] which would

allow us to go further downward from Lð3Þ
SD5. In Sec. V we

have our conclusions and perspectives.

II. THE FIFTH ORDER SELF-DUAL
MODEL Lð3Þ

SD5

We start this section recalling the construction of the
sixth order spin-3 self-dual model SDð3Þ

6 of [19]. We
follow a route slightly different from [19] which we think
could be more easily generalized to arbitrary integer spins.
First, for the spin-1 and spin-2 cases, the highest self-dual
models of order 2s are given respectively by the Maxwell-
Chern-Simons [10] and the linearized higher derivative
topologically massive gravity of [16,25]. They can be

written in a compact way with the help of dual fields h�.
Namely,3

Lð1Þ
SD2 ¼

m
2
hμEμνh�ν −

m2

2
hμh�μ;

Lð2Þ
SD4 ¼

m
2
hμνEμαh�αν −

m2

2
hμνh�μν; ð1Þ

where the dual fields are given by

h�μ ¼ Eμνhν=m; ð2Þ

h�μν ¼ ðEμ
α
□θν

β þ Eν
α
□θμ

βÞhαβ=ð2m3Þ: ð3Þ

The transverse operators

Eρδ ≡ ϵρδσ∂σ; □θρσ ≡□ηρσ − ∂ρ∂σ; ð4Þ

are such that

EμνEαβ ¼ □ðθμβθνα − θμαθνβÞ: ð5Þ

The dual fields identically satisfy the respective FP
constraints:

∂μh�μ ¼ 0; ∂μh�μν ¼ 0; ημνh�μν ¼ 0: ð6Þ

The equations of motion are given, respectively, by

Eμ
αh�α ¼ mh�μ; ð7Þ

Eðμαh�ανÞ ¼ 2mh�μν: ð8Þ

By applying Eβμ on the equations of motion, using (5)
and (6), equations of motion recursively and symmetrizing
the result (only in the spin-2 case of course) we derive the
Klein-Gordon (KG) equations:

ð□ −m2Þh�β ¼ 0; ð□ −m2Þh�βν ¼ 0: ð9Þ

The Pauli-Lubanski equations, (7) and (8), single out one
helicity eigenstate. They form altogether with (6) and (9) all
the required equations for helicity-s particles (s ¼ 1, 2) in
D ¼ 2þ 1 dimensions (parity singlets) represented by the
dual field h�. The natural generalization of (1) for spin-3
would be a sixth order self-dual model for a totally
symmetric rank-3 tensor,

Lð3Þ
SD6 ¼

m
2
hμνρEμαh�ανρ −

m2

2
hμνρh�μνρ: ð10Þ

2The notation LðsÞ
SDn stands for the Lagrangian density of the

spin-s self-dual model of order n in derivatives.

3We use ημν ¼ ð−;þ;þÞ, ðαβÞ ¼ αβ þ βα and ðαβγÞ ¼ αβγ þ
βγαþ γαβ.
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The totally symmetric dual field h�μνρ is obtained by
applying some fifth order differential operator on hμνρ such
that the required spin-3 Fierz-Pauli constraints are identi-
cally satisfied:

∂μh�μνρ ¼ 0; ημνh�μνρ ¼ 0: ð11Þ

If we apply Eβ
μ on the equations of motion:

Eðμαh�ανρÞ ¼ 3mh�μνρ; ð12Þ

and use (5), (11), and (12) recursively, we obtain the
expected KG equations ð□ −m2Þh�βνρ ¼ 0.
The invariance of the third order Lagrangian hμνh�μν

under linearized reparametrizations and Weyl transforma-
tions δhμν ¼ ∂ðμΛνÞ þ ημνψ is enough to guarantee that the
spin-2 FP constraints in (6) hold identically. Likewise, we
require invariance of the fifth order Lagrangian hμνρh�μνρ
under

δhμνρ ¼ ∂ðμΛνρÞ þ ηðμνψρÞ: ð13Þ

The first symmetry implies that the six indices of the two
hμνρ fields present in hμνρh�μνρ be contracted with indices of
transverse operators Eμν or □θμν. There are only two
possibilities at fifth order:

LAB ¼ hμνρ□2Eμ
αðAθβνθγρ þ BθνρθβγÞhαβγ ð14Þ

The vector Weyl invariance then fixes B ¼ −A=4.
Therefore, the sixth order spin-3 self-dual model, in
agreement with [19], is given by (10) where

h�μνρ ¼
□

2

3m5
Eðμα

�
θβνθ

γ
ρÞ −

1

4
θνρÞθβγ

�
hαβγ: ð15Þ

Alternatively, one can start with a rather general ansatz
for a fifth order Lagrangian including all possible con-
tractions (five terms) and the symmetry (13) will finally
lead us to the same answer.
Both sixth and fifth order terms in Lð3Þ

SD6 are invariant
under the same set of gauge transformations (13). This is
the typical situation in the highest (2s) order self-dual
models; see [16]. The high degree of symmetry avoids the
presence of ghosts which commonly appear in higher

derivative theories. The absence of ghosts in Lð3Þ
SD6 has

been explicitly proven in [19] in the gauge ∂jhjμν ¼ 0.
They have also shown that the fifth order term hμνρh�μνρ has
by itself no particle content, very much like the third order
linearized gravitational Chern-Simons term in the spin-2
case; see [10]. Since the latter one can be combined with the
linearized Einstein-Hilbert action (another empty theory) in
order to produce a meaningful spin-2 self-dual model
(linearized topologically massive gravity), one naturally

wonders whether we could combine hμνρh�μνρ with some
fourth order term and end up with a ghost free fifth order
self-dual model.
As we have already mentioned, there is a systematic

procedure to go from the nth to the (nþ 1)th order self-dual
model by either using the embedding of gauge symmetries
or a master action [14] approach. However, to the best we
know there is no systematic way to go downward in
derivatives. In the spin-2 and spin-1 cases both self-dual

models of order 2s − 1, i.e., Lð2Þ
SD3 and Lð1Þ

SD1, are built up
from two terms of zero particle content. This is a key
ingredient in the master action approach. So we must seek
for a highly symmetric fourth order term. Starting with a
general ansatz:

Lð4Þ ¼ ahμνα□2hμνα þ bhμ□2hμ þ chμνα□∂μ∂ρhρνα

þ dhμ□∂μ∂νhν þ ehμνα∂μ∂ν
□hα

þ f∂μ∂νhμνα∂γ∂ρhγρα þ g∂μ∂ν∂αhμνα∂ρhρ: ð16Þ

Let us first define a subclass of models invariant under
traceless reparametrizations4:

δhμνρ ¼ ∂ðμΛ̄νρÞ; ημνΛ̄μν ¼ 0: ð17Þ

Such symmetry can be implemented if

c ¼ −3a; d ¼ 1

4
ð9aþ 5bÞ; e ¼ −2b;

f ¼ g ¼ 3aþ b: ð18Þ

Accordingly, (16) becomes

Lð4Þ
ða;bÞ ¼ a

�
RμνρRμνα −

3

4
RμRμ

�
þ b

4
RμRμ; ð19Þ

where the spin-3 Ricci-like curvature and its vector con-
traction have been introduced in [24], namely,

Rμνρ ¼ □hμνρ − ∂αð∂μhανρ þ ∂νhαμρ þ ∂ρhαμνÞ þ ∂μ∂νhρ

þ ∂ν∂ρhν þ ∂ρ∂μhν;

Rρ ¼ ημνRμνρ ¼ 2

�
□hρ − ∂α∂βhαβρ þ

1

2
∂α∂ρhα

�
:

ð20Þ

Note thatRμνρ, and consequentlyRμ, is invariant under (17).
The traceless reparametrization symmetry (17) plays in the
massive spin-3 theory inD ¼ 2þ 1, and also inD ¼ 3þ 1
[2], the same role of the linearized reparametrizations

4There is one case where we have invariance under arbitrary
reparametrizations δhμνα ¼ ∂ðμλναÞ; however, it coincides with the
fourth order term appearing in [21] which contains a ghost.
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δhμν ¼ ∂ðμΛνÞ in the spin-2 FP theory, i.e., it is the symmetry
of the massless limit of the theory and is instrumental in
deriving the FP constraints in the massive case.
Now we are ready to suggest an ansatz for the fifth

order spin-3 self-dual model. Usually, the lower deriva-
tive term of the nth order self-dual model becomes the
higher derivative term of the (n − 1)th model but with
opposite sign. Thus, the second term of (10), with
opposite sign, now becomes the highest order term of

Lð3Þ
SD5. We add up the fourth order term (19) and require

the final Lagrangian to fit into the form (10) in terms of a
fourth order dual field τ�μνρ:

Lð3Þ
SD5¼

m2

2
hμνρh�μνρ−Lð4Þ

ða;bÞ ¼
m
2
hμνρEματ�ανρ−

m2

2
hμνρτ�μνρ:

ð21Þ

From (21) and (15) we end up with a unique solution:

a ¼ 1

2m2
; b ¼ −

3

4
a ¼ −

3

8m2
: ð22Þ

Explicitly, the fourth order dual field is given by

τ�μνρ ¼
1

m4

�
□

2hμνρ −
1

4
ηðμν□2hρÞ −□∂ðμ∂βhβνρÞ

þ□

4
ηðμν∂γ∂βhρÞγβ þ

□

4
∂ðμ∂νhρÞ þ

7

16
ηðμν∂ρÞ□∂ · h

þ 3

4
∂ðμ∂ν∂γ∂βhγβρÞ −

9

8
∂μ∂ν∂ρð∂ · hÞ

−
3

8
ηðμν∂ρÞ∂γ∂β∂δhγβδ

�
: ð23Þ

It turns out that the fourth order term in (21) is exactly the
same one appearing in the fourth order description of
massive spin-3 particles (parity doublet) of [26]. It can be
written as the product of a spin-3 second order Einstein-like
and a Schouten-like tensor very much like the fourth order
term (K-term) of the NMG theory [12]. After integrating by
parts we can write

LSG ≡m2

2
hμνρτ�μνρ ¼

1

2m2
SμναðhÞGμναðhÞ

¼ 1

2m2
RμνλRμνλ −

15

32m2
RμRμ; ð24Þ

where (see [24])

Gμνλ ≡Rμνλ −
1

2
ηðμνRλÞ;

Sμνλ ¼ Gμνλ −
1

4
ηðμνGλÞ ¼ Rμνλ −

1

8
ηðμνRλÞ: ð25Þ

The definition of the Einstein-like tensor is consistent with
the traceless reparametrization in D ¼ 2þ 1 in the sense
that GμνλðhÞ ¼ 0 implies a pure gauge solution hμνρ ¼
∂ðμΛ̄νρÞ just like GμνðhÞ ¼ 0 leads to hμν ¼ ∂ðμΛνÞ in the
spin-2 case. Besides traceless reparametrizations (17), the
fourth order term LSG is the only possible combination
among all fourth order terms (16) which is invariant also
under transverse Weyl transformation (quite similar again
to the K-term in NMG)

δhμνρ ¼ ηðμνψT
ρÞ; ∂μψT

μ ¼ 0: ð26Þ

The fifth order term in (21) can also be written in a more
inspiring form, namely,

m2

2
hμνρh�μνρ ¼

1

4m3
SμναðhÞGμναðEhÞ; ð27Þ

where ðEhÞμνα ¼ ð2=3ÞEðμβh
β
ναÞ. Notice that the fifth order

term in Lð3Þ
SD5 is invariant under (17) and full Weyl trans-

formations; see (13). It is a common feature of lower order
(below 2s) self-dual models that the highest derivative term
has more symmetries than its lower derivative partner. Next

we show via master action that the particle content of Lð3Þ
SD5

is the same one of Lð3Þ
SD6, i.e., helicity þ3 or −3 particles,

depending on the sign of the fifth order term, without
ghosts.
The generalization of the sixth order model (10) for

arbitrary spin-s goes in the following way. We first replace
hμνρ by a rank-s totally symmetric field hα1���αs . The dual
field h�α1���αs is built up out of a differential operator of order
2s − 1 applied on hα1���αs such that the rank-s generalization
of (13) becomes a symmetry of hα1���αsh�α1���αs . As we
increase the spin we have more terms which contribute;
however, the rank-s version of (13) is enough [27] to
uniquely fix the dual field h�α1���αs . The factor 3m will be
replaced by sm on the right-hand side of (12). We believe
that the lower order 2s − 1 self-dual model can be defined
for arbitrary spin-s following the same route of the fifth
order spin-3 model. Namely, we define a term of order
2s − 2 by requiring traceless reparametrizations and then
impose that its symmetrized curl becomes the already
known 2s − 1-term hα1���αsh�α1���αs . This is in progress
[27]. The increasing number of derivatives does not lead
to ghosts due to the increasing number of local symmetries.
The proof of absence of ghosts is still cumbersome due to
the higher derivatives.

III. MASTER ACTION: Sð3ÞSD5 → Sð3ÞSD6

In this section we use the master action technique to

connect Lð3Þ
SD5 with Lð3Þ

SD6. We start with the SSD5 action and
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add a mixing term between the old field and the new dual
field. The mixing term is the fifth order term of SSD5.
The SD5 action is given by

Sð3ÞSD5½h� ¼
Z

d3x

�
−

1

2m2
SμναðhÞGμναðhÞ

þ 1

4m3
SμναðhÞGμναðEhÞ

�
: ð28Þ

It has been shown in [19] that the fifth order term has no
particle content. The fourth order term LSG has also an
empty spectrum as we have shown in [26] via a duality
transformation to a rank-2 theory; we will say more about it
later on. Following the master action procedure, we use the
fifth order term as mixing to construct the following master
action:

SM½h;f� ¼ Sð3ÞSD5½h�−
1

4m3

Z
d3xSμναðh−fÞGμναðEðh−fÞÞ;

ð29Þ

where fμνα is the new field introduced through the mixing
term. In order to find a dual map between correlation
functions of the dual models, we add a source term jμνα

coupled to a totally symmetric dual field τ�μνα and define the
following generating functional:

ZM½j� ¼
Z

DhDf exp i

�
SM½h; f� þ

Z
d3xτ�μναjμνα

�
:

ð30Þ

The dual field is given by τ�μνα ¼ ð1=m4ÞGμναðSðhÞÞ; see
explicitly in (23). It guarantees the gauge symmetry of the
master action under δhμνα ¼ ∂ðμΛ̄ναÞ þ ηðμνψT

αÞ.
After making the shift f → f þ h in (29) we recover the

fifth order self-dual model plus a decoupled fifth order term
depending only on fμνρ. Since the fifth order term has no
particle content, this guarantees that the particle content of

SM½h; f� is the same of Sð3ÞSD5½h�. On the other hand, the
action can be written as5

SM¼
Z

d3x

�
−

1

4m3
SμναðfÞGμναðEfÞ− 1

2m2
SμναðhÞGμναðhÞ

þ 1

2m3
SμναðhÞGμναðEfÞþ 1

m4
SμναðhÞGμναðjÞ

�
; ð31Þ

which is equivalent to

SM ¼
Z

d3x

�
−

1

4m3
SμναðfÞGμναðEfÞ

þ 1

8m4
SμναðEfÞGμναðEfÞ þ 1

4m5
GμναðEfÞSμναðjÞ

−
1

2m2
Sμνα

�
h −

Ef
2m

−
j
m2

�
Gμνα

�
h −

Ef
2m

−
j
m2

��
:

ð32Þ

After making the shift

hμνα → hμνα þ
1

2m
ðEfÞμνα þ

jμνα
m2

; ð33Þ

the last term of (32) decouples. Since such a term has no
particle content it can be trivially Gaussian integrated.
Thus, we finally obtain the sixth order self-dual model
given by6

Sð3ÞSD6½f� ¼
Z

d3x

�
−

1

4m3
SμναðfÞGμναðEfÞ

þ 1

8m4
SμναðfÞGμναðE2fÞ þ f�μναjμνα þOðj2Þ

�
;

ð34Þ

where f�μνα ¼ ð1=2m5ÞGμναðSðEfÞÞ is the dual field h�μνα
given in (15) after the replacement hμνα → fμνα. The

equivalence between the Sð3ÞSD5 and Sð3ÞSD6 actions is guaran-
teed by the master action SM. So the action (34) describes
helicity þ3 (or −3) eigenmodes depending on the sign of
the fifth order term. The correlation functions in both
theories are related by

hτ�μ1ν1α1…τ�μNνNαN iSD5 ¼ hf�μ1ν1α1…f�μNνNαN iSD6 þ C:T:;

ð35Þ

where C.T. are contact terms which appear due to the
quadratic terms on the sources in the master action. The

equations of motion ofLð3Þ
SD5ðhÞ are mapped in the equations

of motion of Lð3Þ
SD6ðfÞ via the substitution

τ�μνα → f�μνα: ð36Þ

The equivalence between the new fifth order spin-3 self-
dual model given in (21) or (28) and the sixth order model
of [19] raises the question of whether there might be
another master action allowing us to go further downwards
to reach a fourth order self-dual model and eventually fill

5We have used the following properties in the source term:
GμναðSðhÞÞjμνα ¼ GμναðhÞSμναðjÞ ¼ SμναðhÞGμναðjÞ.

6We have used the property: SμναðEfÞGμναðEfÞ ¼
SμναðfÞGμναðE2fÞ.

HIGHER ORDER SELF-DUAL MODELS FOR SPIN-3 … PHYS. REV. D 98, 105002 (2018)

105002-5



up the gap in the chain of self-dual models found in [21]

from Lð3Þ
SD1 to Lð3Þ

SD4. In the next section we investigate this
issue by studying the particle content of the family of fourth
order models (19).

IV. THE PARTICLE CONTENT OF Lða;bÞ
A key ingredient in the master action approach is the fact

that both the higher and the lower derivative terms have no
particle content. It turns out that the fourth order term
present in the fourth order self-dual model of [22] contains
2 d.o.f. and one of them is a ghost. This was an obstacle to
go beyond the fourth order self-dual model in [22].
The fourth order term of [22] corresponds to Lða;bÞ with
b ¼ −a while the one we have used in (21) corresponds to
b ¼ −3a=4. The latter has no particle content. In order to
clarify this issue and investigate any other possibility we
examine the particle content of Lða;bÞ. As a byproduct
we offer an alternative proof of absence of content in the
b ¼ −3a=4 case.
Explicitly, the Lða;bÞ model (19) is given by

Lða;bÞ ¼ ahμνρ□2hμνρ þ 3a∂μhμνρ□∂λhλνρ

þ bðhμ□2hμ − 2∂μ∂νhμνα□hαÞ

−
ð9aþ 5bÞ

4
∂ · h□∂ · hþ ð3aþ bÞ½ð∂μ∂νhμνρÞ2

þ ∂μ∂ν∂ρhμνρ∂ · h�: ð37Þ

Since the term hμνρ□2hμνρ is required in order to have a
truly spin-3 content we assume henceforth a ¼ 1 and
rename the model as Lb ≡ Lð1;bÞ. It is invariant, for
arbitrary values of b, by the traceless reparametrizations
(17) determined by five gauge parameters Λ̄μν which allow
us to fix five gauge conditions.
Because of higher order time derivatives, the analysis of

the particle content of the free theory Lb is nontrivial.
Henceforth, we follow the approach of [28]; see also
[19,25]. We first fix a gauge at action level, find a general
solution of the gauge conditions in terms of helicity
variables without introducing time derivatives, and plug
it back in the action. Whenever we fix a gauge at action
level we might lose equations of motion which may not be
recovered from the remaining equations of motion.
According to the recent references [29,30] in order not
to lose relevant equations of motion we are only allowed to
fix at action level the so-called complete gauge conditions.
In our case this means that our five gauge conditions must
uniquely fix the five independent parameters Λ̄μν without
any freedom for integration constants. It can be shown that
the five gauge conditions

∂jhjkμ ¼ 0; ð38Þ

where j, k ¼ 1, 2, μ ¼ 0, 1, 2, are complete. Namely,
requiring that the conditions (38) are reached starting from
arbitrary field configurations,

∂jðhjkμ þ ∂jΛ̄kμ þ ∂kΛ̄jμ þ ∂μΛ̄jkÞ ¼ 0; ð39Þ

we uniquely determine the five parameters7 Λ̄kμ by repeat-
edly applying space derivatives on (39). We obtain

Λ̄kμ ¼ −
1

∇2
∂jhjkμ þ

1

∇4
∂ðk∂i∂jhijμÞ −

∂k∂μ

3∇6
ð∂i∂j∂lhijlÞ:

ð40Þ

The general solution to (38) is given in terms of five
independent fields:

hjkl ¼ ∂̂j∂̂k∂̂lψ ; hjk0 ¼ ∂̂j∂̂kϕ; ð41Þ

h00j ¼ ∂̂jγ þ ∂jΓ; h000 ¼ ρ; ð42Þ

where ∂̂j ¼ ϵjk∂k satisfies ∂̂i∂̂j ¼ ∇2δij − ∂i∂j and ∂̂i∂̂i ¼
∂j∂j ¼ ∇2. Back in (37) with a ¼ 1 we have the decou-
pling of the couple ðγ;ψÞ from the trio ðϕ; γ; ρÞ,

Lb ¼ Lγψ þ LϕΓρ; ð43Þ

where

Lγψ ¼ −ðbþ 3Þγ∇6γ þ 2bγ∇6
□ψ − ðbþ 1Þψ∇6

□
2ψ ;

ð44Þ

and

LϕΓρ¼−
ðbþ1Þ

4
ðρ̃□2ρ̃þ3ρ̃□∇2ρ̃Þ−3

2
ðbþ1ÞΓ∇2

□ _̃ρ

−3ðbþ1Þρ̃□∇4ϕ− ðbþ3Þρ̃∇6ϕ− ðbþ3Þϕ□∇6ϕ

−3ðbþ3Þϕ∇8ϕþ3ðbþ3Þϕ∇6 _Γ−
9

4
ðbþ1ÞΓ□∇4Γ;

ð45Þ

where ρ̃ ¼ ρ − 3∇2ϕ and _f ¼ ∂tf. If b ≠ −3 we can write

Lγψ ¼ −ðbþ 3Þγ̃∇6γ̃ − 4
ðbþ 3=4Þ
ðbþ 3Þ ψ∇6□2ψ ; ð46Þ

where γ̃ ≡ γ − ðb=ðbþ 3ÞÞ□ψ decouples from ψ . Because
of the double massless pole we have, in general, a massless
ghost unless b ¼ −3=4 where Lγψ has no particle content.

7Recall that ημνΛ̄μν ¼ 0; therefore, Λ̄00 ¼ Λ̄jj is not an
independent variable.
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On the other hand, if b ¼ −3, after the trivial shift γ →
γ̄ þ ð2=3Þ□ψ in (46) we have

ðLγψÞb¼−3 ¼ −6γ̄∇6
□ψ ¼ −

3

2
½ðγ̄ þ ψÞ∇6

□ðγ̄ þ ψÞ
− ðγ̄ − ψÞ∇6

□ðγ̄ − ψÞ�: ð47Þ

Therefore, even if we change the overall sign of the
Lagrangian, one of the two modes γ̄ � ψ is a ghost.
Independently of what we find in LϕΓρ we conclude that
whenever b ≠ −3=4 the Lagrangian Lb contains at least
one ghost mode. This is in agreement with the analysis
made in [22] for the case b ¼ −1 which appears in the
fourth order self-dual model of that reference. From now on
we focus on the only possible ghost free case: b ¼ −3=4.
After the redefinition

Γ ¼ Γ̃ − _̃ρ=ð3∇2Þ; ð48Þ

we get rid of the highest time derivatives present in (45).
We perform another redefinition

ρ̃ ¼ ρ̄þ 3∇2ϕ; ð49Þ

in order to cancel out all time derivatives of ϕ. So we end up
with

Lb¼−3
4
¼ −

81

4
ϕ∇8ϕ −

9

2
ϕ∇6ρ̄þ 27

4
ϕ∇6 _̃Γ −

1

4
ρ̄∇2

□ρ̄

−
9

16
Γ̃∇4

□Γ̃ ¼ −
81

4
ϕ̄∇8ϕ̄ −

9

16
Γ̄∇6Γ̄; ð50Þ

where

ϕ̄ ¼ ϕ −
_̃Γ

6∇2
þ ρ̄

9∇2
; Γ̄ ¼ Γ̃ −

2

3∇2
_̄ρ: ð51Þ

The equations of motion of (50) lead to trivial solutions
ϕ̄ ¼ 0 ¼ Γ̄. Therefore, Lb¼−3

4
has no particle content. Since

we have made several changes of variables involving time
derivatives we should make sure that the two sets of fields
ΦK ¼ ðϕ;Γ; ρÞ and Φ̄K ¼ ðϕ̄; Γ̄; ρ̄Þ are canonically equiv-
alent. Notice that the diagonal form (50) could have been
obtained at once from (45) at b ¼ −3=4 via

ϕ ¼ ϕ̄þ
_̄Γ

9∇2
−

□

9∇4
ρ̄; ð52Þ

Γ ¼ − _̄ϕþ
�
5þ □

∇2

�
Γ̄
6
þ
�
□þ 3∇2

9∇2

�
_̄ρ; ð53Þ

ρ ¼ 6∇2ϕ̄þ _̄Γþ
�
3∇2 − 2□

3∇4

�
ρ̄: ð54Þ

In matrix form we have ΦJ ¼ M̂JKΦ̄K . The differential
matrix operator M̂JK can be read off from (52)–(54), it turns
out remarkably that detðM̂Þ ¼ 1. The reader can check
explicitly that M̂JKΦK ¼ 0 → Φk ¼ 0. Therefore, ΦJ and
Φ̄J are indeed canonically equivalent. Moreover, the
absence of ρ̄ in (50) follows from a residual symmetry
of the gauge (38) at b ¼ −3=4. At this specific point a
transverse Weyl symmetry shows up. The residual sym-
metry can be revealed by requiring invariance of the gauge
(38) under δhμνρ ¼ ∂ðμΛ̄νρÞ þ ηðμνψT

ρÞ.
In summary, the fourth order Lagrangians Lða;bÞ contain

a ghost mode for all values of b except b ¼ −3a=4 where
the model has no propagating d.o.f. Regarding the local
symmetries, the traceless reparametrization can be enlarged
in only two cases. We can have longitudinal Weyl sym-
metry δhμνρ ¼ ηðμν∂ρÞλ at b ¼ −a or transverse Weyl
symmetry δhμνρ ¼ ηðμνψT

ρÞ at b ¼ −3a=4. In the first case

the six parameters ðΛ̄μν; λÞ can be combined into arbitrary
reparametrizations governed by a traceful tensor Λμν which
is, however, not sufficient to make the theory ghost-free as
we have seen. In the second case we have maximal
symmetry with seven independent parameters ðΛ̄μν;ψT

μ Þ
and we end up with no particle content.
Now we are ready to come back to investigate the

existence of a possible fourth order self-dual model con-
nected via some master action with our fifth order model
(21). The natural candidate for the fourth order term is
Lb¼−3=4 for two reasons: it is the lower derivative term in

Lð3Þ
SD5 and it has no particle content. However, if we built up

a fourth order self-dual model only in terms of a totally

symmetric rank-3 tensor hμνρ, i.e., L
ð3Þ
SD4¼Lða;bÞðhμνρÞþ���,

where the dots stand for lower derivative terms, then the
equations of motion δSSD4=δhμνρ ¼ 0 must be of the form

Eβ
μh�βνρðhÞ þ Eβ

νh�βρμðhÞ þ Eβ
ρh�βμνðhÞ þ � � � ¼ 0; ð55Þ

where h�βνρðhÞ is of third order in derivatives and stem
entirely from Lða;bÞðhμνρÞ. Since we only have a totally
symmetric field hμνρ by hypothesis, h�βνρðhÞ must be also
totally symmetric h�βνρ ¼ h�ðβνρÞ. So if we apply ∂μηνρ on
(55), the resulting equation vanishes identically except for
lower derivative terms hidden in the dots. This means that

the fourth order term Lða;bÞðhμνρÞ present in Lð3Þ
SD4 must be

invariant under longitudinal Weyl transformations8:

δλhμνρ ¼ ηðμν∂ρÞλ: ð56Þ

This is only possible if b ¼ −a which rules out the good
candidate b ¼ −3a=4. Therefore, a possible fourth order

8R d3xλðημν∂ρÞ δSSD4

δhμνρ
¼ 0 ¼ − 1

3

R
d3x δSSD4

δhμνρ
ηðμν∂ρÞλ ¼

R
d3x δSSD4

δhμνρ
δλhμνρ.
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self-dual model made out of the b ¼ −3a=4-term must
have auxiliary fields besides hμνα in order to avoid the
above argument. This is under investigation.

V. CONCLUSION

In D ¼ 2þ 1 dimensions, elementary particles of hel-
icity þ1 or −1 can be described either by the second order
(in derivatives) Maxwell-Chern-Simons model of [10] or
by the first order SD model of [31]. In the spin-2 case there

are four (see [10,11,20] and [16,25]) self-dual modelsLð2Þ
SDj,

j ¼ 1, 2, 3, 4 describing þ2 or −2 helicity particles via jth
order theories. For spin-3=2 we have three self-dual models
of first, second [32,33], and third [18] order. In all those
cases the (jþ 1)th order model can be obtained from the
jth order one via master action and also via a NGE
procedure. There seems to be a 2s rule regarding the
highest possible order for a spin-s self-dual model without
ghosts. There is however, a caveat in the spin-3 case.
In Sec. II we have revisited the derivation of the sixth

order spin-3 self-dual model Lð3Þ
SD6 [19]. The model is made

out of one sixth plus one fifth order term. One can first
obtain the fifth order term based on Weyl and arbitrary
reparametrization invariances; then the sixth order term is
obtained via a symmetrized curl of the fifth order term.
Next, in order to go one step downward and derive Lð3Þ

SD5

we have started with the fifth order term of Lð3Þ
SD6 and

searched for a convenient fourth order term. Since lower
order requires less symmetry, we have obtained a fourth
order term by requiring traceless reparametrization invari-
ance (17) instead of general reparametrizations. This is also
motivated by the key role of traceless reparametrizations in
higher spin theories in D ¼ 3þ 1. In particular, this is the
symmetry behind the massless limit of the massive spin-3
Singh-Hagen model [2]. This requirement leads to the
family of fourth order terms Lða;bÞ in (19). Imposing that
the fifth order term is the symmetrized curl of the fourth
order term uniquely determines b ¼ −3a=4 where a trans-
verse Weyl symmetry shows up. Consequently the new

model Lð3Þ
SD5 is uniquely determined.

In Sec. III we have connected Lð3Þ
SD5 with L

ð3Þ
SD6 via master

action which guarantees that the particle content of Lð3Þ
SD5 is

the same one of Lð3Þ
SD6, i.e., massive particles of helicity þ3

or −3 without ghosts. In Sec. IV we have investigated the

possibility of going another step downward Lð3Þ
SD5 → Lð3Þ

SD4.

A detailed study of Lða;bÞ reveals that only the case b ¼
−3a=4 has no particle content and could be a good
candidate to be the highest order term of a possible fourth

order self-dual model Lð3Þ
SD4. However, we have argued that

it cannot be entirely formulated in terms of a totally
symmetric field hμνρ; auxiliary fields are required. We
conjecture that only the self-dual models of order 2s and
2s − 1 can be formulated in terms of totally symmetric
rank-s fields hα1…αs without auxiliary fields. This is under
investigation.
In summary, although we can obtain Lð3Þ

SD6 from the new

fifth order model found here Lð3Þ
SD5 as well as the models

Lð3Þ
SDj, and j ¼ 2, 3, 4 can be obtained from Lð3Þ

SD1 of [20],
there is no connection between those two sets of models.

The key point is that the fourth order term of Lð3Þ
SD4 of [21]

has a nontrivial particle content, so it cannot be used to
produce an equivalent fifth order model via master action.
From the point of view of local symmetries, the fourth order
model of [21] is invariant under traceless reparametriza-
tions plus longitudinal Weyl transformations δhμνρ ¼
∂ðμΛ̄νρÞ þ ηðμν∂ρÞΦ which is equivalent to full reparamet-

rizations δhμνρ ¼ ∂ðμΛνρÞ while the model Lð3Þ
SD5 found here

is invariant under traceless reparametrizations and trans-
verse Weyl transformations δhμνρ ¼ ∂ðμΛ̄νρÞ þ ηðμνψT

ρÞ. So
there is no way of connecting those theories via Noether
gauge embedding.
We believe that if we could be able to go all the way

downward from Lð3Þ
SD6 until a first order model, we would

not end up at the model of [20]. There is probably a more
natural first order spin-3 self-dual model which would

allow us to go back upward until Lð3Þ
SD6. Eventually we

might be able to construct first order self-dual models for
arbitrary spin-s in a more systematic way and learn more
about higher spin theories.

ACKNOWLEDGMENTS

The work of D. D. is partially supported by CNPq (Grant
No. 306380/2017-0). A. L. R. dos S. is supported by a
CNPq-PDJ (Grant No. 150524/2018-8) while the work of
R. R. L. dos S. has been supported by FAPESP Grants
No. 2016/09489-0 and No. 2017/23966-9. D. D. thanks
E. L. Mendonça for a discussion.

[1] M. Fierz, Helv. Phys. Acta 12, 3 (1939); M. Fierz and W.
Pauli, Proc. R. Soc. A 173, 211 (1939).

[2] L. P. S. Singh and C. R. Hagen, Phys. Rev. D 9, 898 (1974).

[3] M. Stone, Illinois preprint, Report No. ILL-(TH)-89-23,
1989; Phys. Rev. Lett. 63, 731 (1989); Nucl. Phys. B327,
399 (1989).

DALMAZI, DOS SANTOS, and DOS SANTOS PHYS. REV. D 98, 105002 (2018)

105002-8

https://doi.org/10.1002/hlca.19390220102
https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/PhysRevD.9.898
https://doi.org/10.1103/PhysRevLett.63.731
https://doi.org/10.1016/0550-3213(89)90276-9
https://doi.org/10.1016/0550-3213(89)90276-9


[4] R. Banerjee and S. Kumar, Phys. Rev. D 60, 085005 (1999).
[5] A. Ilha and C. Wotzasek, Phys. Rev. D 63, 105013 (2001).
[6] C. Wotzasek, arXiv:hep-th/9806005 (unpublished).
[7] D. Dalmazi, A. de Souza Dutra, and E. M. C. Abreu, Phys.

Rev. D 74, 025015 (2006); 79, 109902(E) (2009).
[8] D. Dalmazi and E. L. Mendonça, Phys. Rev. D 80, 025017

(2009).
[9] D. Dalmazi and E. L. Mendonça, Phys. Rev. D 82, 105009

(2010).
[10] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)

140, 372 (1982).
[11] S. Deser and J. McCarthy, Phys. Lett. B 246, 441 (1990).
[12] E. Bergshoeff, O. Hohm, and P. K. Townsend, Phys. Rev.

Lett. 102, 201301 (2009).
[13] E. L. Mendonça, D. S. Lima, and A. L. R. dos Santos, Phys.

Lett. B 783, 387 (2018).
[14] S. Deser and R. Jackiw, Phys. Lett. B 139, 371 (1984).
[15] D. Dalmazi and E. L. Mendonça, Phys. Rev. D 79, 045025

(2009).
[16] D. Dalmazi and E. L. Mendonça, J. High Energy Phys. 09

(2009) 011.
[17] M. A. Anacleto, A. Ilha, J. R. S. Nascimento, R. F. Ribeiro,

and C. Wotzasek, Phys. Lett. B 504, 268 (2001).
[18] E. L. Mendonça, A. L. R. dos Santos, and D. S. Lima, Phys.

Lett. B 775, 147 (2017).
[19] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Ann.

Phys. (Amsterdam) 325, 1118 (2010).

[20] C. Aragone and A. Khoudeir, Rev. Mex. Fis. 39, 819
(1993), https://rmf.smf.mx/pdf/rmf/39/6/39_6_819.pdf.

[21] E. L. Mendonça and D. Dalmazi, Phys. Rev. D 91, 065037
(2015).

[22] D. Dalmazi and E. L. Mendonça, Eur. Phys. J. C 76, 373
(2016).

[23] C. Aragone and A. Khoudeir, Massive triadic Chern-Simons
spin-3 theory, in Proceedings of the SILARG VII (World
Scientific, Singapore, 1994), p. 529.

[24] T. Damour and S. Deser, Ann. Inst. Henri Poincaré, A, 47,
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