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Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain

(Received 16 October 2018; published 30 November 2018)

We study continuously self-similar solutions of four-dimensional Einstein-Maxwell-dilaton theory, with
an arbitrary dilaton coupling. Self-similarity is an emergent symmetry of gravitational collapse near the
threshold of black hole formation. The resulting “critical collapse” picture has been intensively studied in
the past for self-gravitating scalar fields or perfect fluids, but little is known concerning other systems.
Here, we assess the impact of gauge fields on critical collapse, in the context of low-energy string theories.
Matter fields need not inherit the symmetries of a spacetime. We determine the homothetic conditions that
scale invariance of the metric imposes on the dilaton and electromagnetic fields, and we obtain their general
solution. The inclusion of a potential for the dilaton is compatible with the homothetic conditions if and
only if it is of the Liouville type. By imposing also spherical symmetry, a detailed analysis of critical
collapse in these systems is possible by casting the field equations as an autonomous system. We find
analytically that Choptuik’s critical exponent depends on the dilaton coupling. Despite this and the
presence of two novel fixed points, the electromagnetic field necessarily vanishes for the critical solution.
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I. INTRODUCTION

Critical behavior plays a prominent role in gravitational
collapse [1]. As with all critical phenomena, its importance
stems from its universality properties, which determine that
one can predict general features of the outcome of a process
of gravitational collapse irrespective of the details of the
initial data. This is most clearly illustrated by the universal
nature of the critical exponent controlling how the mass of
the black hole formed M approaches the threshold value
M0 (typically zero) as any given parameter p determining
the initial conditions is tuned to criticality (p ¼ p�),

M −M0 ∼ ðp − p�Þβ: ð1Þ

This famous Choptuik scaling law [2] is a hallmark of
critical collapse, and the critical exponent β is universal in
the sense that it is the same for all families of initial data
parametrized by a single parameter p.
Critical collapse has been extensively studied in the

context of a minimally coupled scalar field [2–4], which
was the original arena for Choptuik’s seminal studies, as
well as for self-gravitating perfect fluids [5–10]. Both
classes of investigations build on mathematical results by
Christodoulou [11,12] and are thus typically performed
under the simplifying assumption of spherical symmetry.1

Another key feature in critical collapse is the emergence of
self-similarity as an intermediate attractor for near-critical
solutions [1,16,17]. This feature comes in two possible
flavors, continuous or discrete, and it is not understood
how to tell a priori which one will be revealed by any given
system. For instance, the minimally coupled massless scalar
field exhibits discrete self-similarity, whereas gravitational
collapse of perfect fluids reveals continuous self-similarity.
Much less attention has been dedicated to critical

collapse in alternative theories of gravity, such as those
arising in low-energy string theory. In this paper, we
investigate continuous self-similar collapse in Einstein-
Maxwell-dilaton (EMD) theories. This is a well-motivated
model that captures the main features of four-dimensional
effective string theories,2 but it can also be regarded as an
extension of the standard Einstein-massless scalar system.
It might seem that solutions at the threshold of black hole
formation could be largely discounted as nongeneric
configurations, but they are very important in at least
one respect: they effectively correspond to the formation
of naked singularities and therefore have some bearing on
the cosmic censorship conjecture [18]. In particular, tuning
initial data near criticality provides the means to probe the
deep quantum gravity regime. In the present context, this
would be the string theory providing the ultraviolet
completion for the EMD model.

*jvrocha@icc.ub.edu
†mtomasevic@icc.ub.edu
1However, see [13–15] for similar investigations away from

spherical symmetry.

2Actually, for certain choices of the dilaton coupling constant,
it is known to be a consistent truncation of string theory, as
mentioned in the following.
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The dynamics of black hole mergers within this theory
was examined only recently [19], indicating such processes
are essentially indistinguishable from those in general
relativity (GR)—and therefore compatible with LIGO-
VIRGO detections [20], thus promoting EMD to an
interesting alternative to GR—when the charges are small.
Nevertheless, the presence of a scalar field coupled not only
to gravity, but to a gauge field as well, advises the use of
caution when considering such theories as viable alter-
natives to GR. For instance, the relaxation of a linearly
perturbed EMD black hole in isolation has been shown to
lead to significant departures from Einstein-Maxwell
theory in the electromagnetic sector [21].
Somewhat surprisingly, no study of gravitational collapse

has been conducted inEMD theory so far. Perhaps the closest
related investigation is the one by Hamadé et al. [22], which
studies the gravitationally coupled axion-dilaton system (see
also [23]). Both this system and the EMD model are
consistent truncations of the four-dimensional low-energy
heterotic string, but they are distinct: the former does not
include theMaxwell field, whereas herewe consider a single
real scalar, the dilaton. In any case, Ref. [22] showed
numerically that the critical solution at the threshold of black
hole formation is continuously self-similar, thus suggesting
that the same assumption for critical collapse in the EMD
system is justified.
In the interest of generality, we allow the dilaton coupling

parameter a to take arbitrary values. Furthermore, we will
extend the pure EMD system by including a Liouville
potential for the scalar field. Potentials of this type contain
as a particular case a simple cosmological constant, and they
arise naturally in string effective actions, either through
symmetry breaking mechanisms [24] or by dimensional
reduction of a parent cosmological constant term [25].
Interestingly, this class of dilaton potentials is consistent
with continuous self-similarity, as we will see.
In this paper, we shall consider exclusively source-free

solutions of the EMD field equations. Moreover, the entire
family of solutions we present in Sec. IV—and not just the
critical solution—displays continuous self-similarity.
Hence, in this respect, our analysis differs from the usual
considerations of gravitational critical collapse employing
numerical simulations, where self-similarity arises only at
the threshold between full dispersal (or formation of a
starlike solution) and collapse to a black hole. Instead, we
partly follow previous work by Brady on homothetic scalar
field collapse [26], which heavily relies on the use of
continuous self-similarity (see [27] for earlier work along
similar lines). Accordingly, our critical solutions interpolate
between black holes and naked singularities.
The assumption of spherical symmetry and continuous

self-similarity appears quite restrictive, so let us briefly
discuss their validity. Spherical symmetry has always
played an important role in gravitation. Here, we note that

it is a good approximation when considering collapsing
matter close to criticality, since it becomes more accurate at
the later stages when the system relaxes down to a stable
state [14] (see however Ref. [15] for an indication that
this picture might change at very large rotation rates). On
the other hand, self-similarity arises naturally as one
approaches the threshold of black hole formation, as we
already alluded to. For the case of a massless scalar field,
Choptuik showed [2] that near the critical solution, (dis-
crete) self-similarity emerges in the form of “echoes.” It can
also be mentioned that the similarity hypothesis, concern-
ing the tendency of gravitational systems to evolve to self-
similar form and thus to asymptotically approach a more
symmetric state, has been analyzed in depth [16], including
in particular the case of spherically symmetric solutions.
The continuous self-similarity property: The assumption

of continuous self-similarity (CSS) entails a significant
degree of simplification. In fact, it is as powerful as an
isometry; the only difference is that for the former there
exists a diffeomorphism that leaves the metric invariant
only up to a constant factor. In technical terms, the
spacetime possesses a homothetic vector field (HVF) ξ
such that [16,28]

Lξgμν ¼ 2gμν; ð2Þ

where gμν stands for the metric tensor. In practice, CSS
imposes a drastic simplification when in combination with
spherical symmetry: solutions depend on a single coor-
dinate and the equations of motion reduce to ODEs. The
present article focuses on this kind of self-similarity, so we
will have nothing to say about discrete self-similarity.
In a CSS spacetime, as defined above, there is total

absence of a characteristic scale. Hence, at first sight this
property appears to be equivalent to scale invariance. While
this is true for the gravitational sector (metric functions
depend only on ratios of coordinates [28]), this symmetry is
not necessarily inherited by matter fields coupled to gravity
[16,29]. In fact, a minimally coupled scalar fieldΦ need not
be invariant along the homothetic vector field, and more
generally one has [26], as rederived in Sec. III A below,

LξΦ ¼ −κ; ð3Þ

where κ is an arbitrary real number. (The minus sign is
conventional.) In the case of complex scalar fields, the
occurring global internal symmetries can mix up with
spacetime symmetries, and other homothetic actions are
possible [30,31].
On the other hand, for the Einstein-Maxwell system, the

self-similarity condition (2) implies [32,33]

LξFμν ¼ Fμν þ κ̃ ⋆ Fμν; ð4Þ
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where Fμν denotes the Maxwell field strength, ⋆ Fμν is its
Hodge dual, and κ̃ is an undetermined scalar quantity3 that
indicates a departure of the electromagnetic field strength
from inheriting the homothety of the metric.
Overview of main results: The primary questions we

address in the present study are twofold: (i) What are the
conditions that continuous self-similarity dictates for
the dilaton and Maxwell fields; (ii) Does the inclusion
of the electromagnetic field (and possibly a potential for the
dilaton) alter the critical collapse picture obtained for
the spherical Einstein-massless scalar system? In particular,
does it affect the critical exponent β, which governs
Choptuik scaling close to the threshold of black hole
formation?
Concerning question (i), we will show that, for the

combined Einstein-Maxwell-dilaton system, the self-
similarity condition (ii) allows slightly more general actions
of the homothety on the dilaton and electromagnetic field
strength. The transformation law for the scalar field is still
the same as (3), but the coupling between the dilaton and
the Maxwell field introduces modifications to Eq. (4). The
inclusion of a potential of the exponential (Liouville) type
is consistent with continuous self-similarity, but only if the
coefficient in the exponent of the potential is fixed in terms
of the dilaton homothetic parameter κ [see Eq. (47)].
As for question (ii), we first note that consistency

between the time and radial components of the Maxwell
equations demands that either the electric field vanishes or
that the dilaton homothetic parameter κ and the dilaton
coupling a are not independent [see Eq. (60)]. Taking this
constraint into account, the outcome of our analysis is the
following: in spherical symmetry, continuous self-similar
vacuum solutions of the EMD system with a regular origin
necessarily have vanishing electric field. In this sense, the
electric field is irrelevant for critical collapse in the context
of source-free EMD theories. However, the critical expo-
nent strongly depends on the homothetic parameter κ. For
CSS solutions with a nontrivial electric field (obtained by
relaxing the condition of regularity at the origin) the critical
exponent is not the same for all EMD theories, given that κ
is fixed by the value of the dilaton coupling. Thus, the
critical solution is not universal in the broader sense, as it
depends on the dilaton coupling that selects a given theory
within the whole EMD family.
Related literature: There have been a few studies, both

semi-analytic [34] and fully numerical [35,36], of gravita-
tional collapse with charged scalar fields. The outcome was
that the addition of electromagnetic charge does not change
the (mass) critical exponent β. However, the dynamics

displayed in this case differs from the Einstein-Maxwell-
dilaton system since the governing equations of motion are
distinct: while in the former theory the scalar field is
derivatively coupled to the gauge vector potential, in the
latter it couples directly to the field strength (squared) with a
characteristic exponential form.
In this respect, Ref. [37] is of more relevance for

our purposes, since it investigated gravitational collapse
in low-energy string theory, employing numerical evolu-
tions. Unfortunately, this work addresses critical collapse
only tangentially and offers no insight as to the appearance
(or not) of self-similarity near criticality. Moreover, the
system considered therein was coupled to an additional
complex charged scalar field, which is absent in our study.
Some analytic solutions describing self-similar collapse

in dilaton gravity were presented over the years, e.g.,
[38–41], although none has been obtained for EMD theory.
Reference [42] also derived exact collapsing solutions for
the Einstein-scalar field system sharing some features akin
to critical behavior, though not displaying any form of
self-similarity.
Outline of the paper: The rest of the paper is organized

as follows. In the next section, we present the family of
EMD theories under consideration and its governing field
equations. The homothetic conditions imposed on the
matter fields to be consistent with the self-similarity of
the metric are derived and solved in Sec. III. These results
are used as inputs for the CSS collapses studied in the rest
of the paper, but they can also be regarded as Ansätze.
So readers interested in quickly getting to the critical
collapse analysis can skip Sec. III entirely. In Sec. IV,
we restrict to continuous self-similar collapses in spheri-
cally symmetry. The equations of motion are cast in the
form of an autonomous system, for which solutions are
obtained as integral curves. The critical exponent is then
extracted from the growing mode determined by linear
perturbations around a fixed point of the dynamical system.
Section V is devoted to discussion and outlook. The article
is also supplemented with some Appendices. Appendices A
and B collect several identities and a proof concerning
homothetic vector fields and its action on the stress-energy
tensor. Appendices C and D extend the study of Sec. IV to
include a Liouville potential and for the case of a purely
magnetic Maxwell field, respectively.

II. THE EINSTEIN-MAXWELL-DILATON SYSTEM

The four-dimensional Einstein-Maxwell-dilatonmodelwe
consider is governed by the following action (G ¼ c ¼ 1),

S ¼ 1

16π

Z
dx4

ffiffiffiffiffi
jgj

p
½R − 2ð∇ΦÞ2 − e−2aΦF2 − 4VðΦÞ�:

ð5Þ
Here g represents the determinant of the metric gμν, Aμ is the
Maxwell field whose field strength is Fμν ¼ ∂μAν − ∂νAμ,
and Φ is a scalar field, the dilaton, for which we include a

3The scalar κ̃ must be constant in the case of a non-null
electromagnetic field. This condition is somewhat relaxed
when the electromagnetic field is null, characterized by
FμνFμν ¼ 0 ¼ Fμν ⋆ Fμν. In that case, k½μ∇ν�κ̃ ¼ 0, where kμ

is the repeated principal null direction of Fμν [33].
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generic potentialVðΦÞ, at this point. Later on, wewill restrict
V to be of the Liouville type. The Ricci tensor, denoted by
Rμν, yields the curvature scalarRuponcontraction.The scalar
and vector fields couple with a strength controlled by the so-
called dilaton coupling constant a. Special values of
the dilaton coupling appear naturally in different contexts.
The four-dimensional low-energy effective action for heter-
otic string theory takes the form (5) with a ¼ 1, while a ¼ffiffiffi
3

p
corresponds to Kaluza-Klein reduction of 5D Einstein

gravity on the circle. Einstein-Maxwell theory is recovered by
choosing a ¼ 0, VðΦÞ ¼ 0, and consistently setting the
dilaton to zero.
The field equations derived from Eq. (5) read

∇2Φþ a
2
e−2aΦFμνFμν −

dV
dΦ

¼ 0; ð6aÞ

∇μðe−2aΦFμνÞ ¼ 0; ð6bÞ

Rμν −
1

2
Rgμν ¼ 8πTμν ≡ 8πðTðdilÞ

μν þ TðEMÞ
μν Þ: ð6cÞ

The full stress-energy tensor Tμν has contributions from
the dilaton and the electromagnetic field,

8πTðdilÞ
μν ¼ 2∇μΦ∇νΦ − gμν½ð∇ΦÞ2 þ 2VðΦÞ�; ð7aÞ

8πTðEMÞ
μν ¼ e−2aΦ

�
2FμσFν

σ −
1

2
gμνF2

�
: ð7bÞ

Generically, both the dilaton and Maxwell fields source
the Einstein equations. We refer to solutions without
additional sources as “source-free” or simply “vacuum”
solutions.
In four dimensions, the electromagnetic stress-energy

tensor is traceless (i.e., EM is conformal in four dimen-
sions), gμνTðEMÞ

μν ¼ 0, and therefore by contracting the
Einstein equation (6c) with the inverse metric one obtains

R ¼ 2ð∇ΦÞ2 þ 8VðΦÞ: ð8Þ

Replacing this back in the Einstein equation leads to

Rμν ¼ 2∇μΦ∇νΦþ 2gμνVðΦÞ þ 8πTðEMÞ
μν : ð9Þ

Exact source-free solutions of EMD in the static, spheri-
cally symmetric case (with vanishing potential) have been
known for some time [43–46].4 Beyond this, but still
restricting to spherically symmetric configurations, some
time-dependent solutions are known analytically but, to the
best of our knowledge, only when the dilaton coupling

takes the heterotic string value [48–50]. None of those
solutions display continuous self-similarity.

III. SELF-SIMILARITY CONDITIONS FOR
THE SOURCE-FREE EMD SYSTEM

We restrict our investigations to self-similarity of the
continuous kind. As mentioned in the introduction, this
amounts to assuming the existence of a homothetic vector
field ξ satisfying

Lξgμν ¼ ∇μξν þ∇νξμ ¼ 2gμν: ð10Þ

From this expression, it follows a slew of relations
involving the action of the homothety on tensors derived
from the metric, as well as on matter fields, which are
collected in Appendix A.
Our goal now is to determine—by applying the Lie

derivative along a HVF to the field equations—what is the
action of Lξ on the dilaton and Maxwell fields in order to
be consistent with the assumed homothety. Does it imply
LξΦ ¼ −κ ¼ constant and LξFμν ∝ Fμν? If so, how is the
proportionality constant related with κ? Once we know
how Φ and F behave under the homothety, we can plug it
into the equations of motion to investigate spherically
symmetric CSS solutions, which is the subject of Sec. IV.

A. Action of the homothety on the dilaton
and Maxwell fields

In this section, we make heavy use of identities con-
cerning HVFs, which are displayed in Appendix A.
Applying the Lie derivative to Eq. (8) and using identity

(A7), we obtain

ð∇σΦÞ∇σðLξΦÞ ¼ −2ð2V þ V 0LξΦÞ: ð11Þ

On the other hand, acting on the dilaton equation with
the Lie derivative, and using relations (A8), (A11) and
(A12), one finds

∇2ðLξΦÞ − a2e−2aΦF2LξΦþ ae−2aΦFμνLξFμν

− ae−2aΦF2 − ð2V 0 þ V 00LξΦÞ ¼ 0: ð12Þ

If we consider pure Einstein-dilaton gravity—by setting
Fμν ¼ 0 and VðΦÞ ¼ 0—we get ∇2ðLξΦÞ ¼ 0, which
combined with (11) implies LξΦ ¼ constant, as can be
shown by using Stokes’s theorem.
Applying the Lie derivative to the Maxwell equation,

we get

−2a∇μðLξΦÞFμν−2a∇μΦLξFμνþ∇μðLξFμνÞ¼ 0: ð13Þ

If we take the divergence of this equation we obtain a trivial
identity.

4Other solutions with unusual asymptotics have been pre-
sented in [25,47].
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Acting with the Lie derivative on the (traceless part of
the) Einstein equation yields

2∇μðLξΦÞ∇νΦþ 2∇νðLξΦÞ∇μΦþ 2gμνð2V þV 0LξΦÞ
þ e−2aΦ½2ðLξFμσÞFν

σ þ 2ðLξFνσÞFμ
σ − gμνFρσðLξFρσÞ

− 4FμσFν
σ þ gμνF2�

− 2ae−2aΦðLξΦÞ
�
2FμσFν

σ −
1

2
gμνF2

�
¼ 0: ð14Þ

We recover (11) by taking the trace of this equation. If
we instead contract with Fμν, all the terms vanish inde-
pendently and we get a trivial identity. However, if we take
the divergence of (14) (and use the previous results, as well
as the Bianchi identity for Fμν) we get a simple constraint:

Fρσ½∇ρðLξFνσÞ þ∇σðLξFρνÞ þ∇νðLξFσρÞ� ¼ 0: ð15Þ

This means that the Lie derivative of the electromagnetic
field strength, LξFμν, also satisfies the Bianchi identity, at
least when contracted with Fμν.

B. Solving the homothetic conditions

In order to solve the homothetic conditions obtained
above, we assume that ∇μΦ is a timelike vector. Although
this is a restriction on the collapse of scalar fields, which
generally does not satisfy this condition throughout the
whole evolution, it appears to be justified for the case of
exactly continuously self-similar collapses.5

First, it is convenient to express (14) in terms of the
dilaton stress-energy (7a) and the following tensor:

Eμν ≡ e2aΦTðEMÞ
μν ¼ 1

4π

�
FμσFν

σ −
1

4
gμνF2

�
: ð16Þ

The result becomes significantly more compact, namely

LξEμν − 2aðLξΦÞEμν ¼ −e2aΦLξT
ðdilÞ
μν : ð17Þ

It can be shown that if ∇μΦ is a timelike vector, then
the assumption of homothety implies that the left and
right sides vanish independently [see Appendix B]. This is
not surprising, given that a similar result holds in the case
of Einstein-Maxwell theory with a perfect fluid source
[32,33], and taking into account the equivalence between
scalar fields and perfect fluids [51]. Moreover, it turns
out that

LξV ¼ −2V; Lξ∇μΦ ¼ 0: ð18Þ

On account of Eq. (A7), it follows immediately that

LξΦ ¼ −κ; ð19Þ

with κ a constant. Therefore, condition (11) is automati-
cally satisfied. Note that the identities (18) also imply

LξV 0 ¼ −2V 0: ð20Þ

To figure out the implications of

LξEμν ¼ 2aðLξΦÞEμν ð21Þ

for the action of the homothety on the Maxwell field
we adapt the methods of [32,33]. The procedure depends
on whether the field strength is null or not. Technically, a
null electromagnetic field Fμν is characterized by the
conditions

FμνFμν ¼ 0 ¼ Fμν ⋆ Fμν: ð22Þ

We now analyze the two cases separately.
Non-null electromagnetic field: Assume first that the

Maxwell field strength is non-null. In this case, it is a
general result that Fμν can be expressed in terms of the
two distinct principal null directions, kμ and nμ, which
furthermore may be normalized so that kμnμ ¼ −1:

Fμν ¼ τμν cosαþ⋆ τμν sinα; τμν≡
ffiffiffiffiffiffi
8π

p
fðkμnν−nμkνÞ:

ð23Þ

Here, α and f are scalar quantities. The electromagnetic
stress-energy tensor can then be written in the form [32]

Eμν ¼ f2½gμν þ 2ðkμnν þ nμkνÞ�; f2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EμνEμν

p
:

ð24Þ

It then follows that

LξEμν¼−2ð1−aLξΦÞEμν

þ2f2½gμνþkμLξnνþnνLξkμþkνLξnμþnμLξkν�:
ð25Þ

When combined with Eq. (21), this implies

kμLξnν þ nνLξkμ þ kνLξnμ þ nμLξkν ¼ 2ðkμnν þ kνnμÞ:
ð26Þ

Contracting with kμ and nμ we find, respectively,

Lξkν ¼ ð2þ kμLξnμÞkν; ð27Þ

Lξnν ¼ ð2þ nμLξkμÞnν: ð28Þ
5We have checked this explicitly for the solutions obtained in

Sec. IV.

SELF-SIMILARITY IN EINSTEIN-MAXWELL-DILATON … PHYS. REV. D 98, 104063 (2018)

104063-5



Then, from the definition of τμν in (23),

Lξτμν ¼ ð1þ aLξΦÞτμν; ð29Þ

and, using ⋆ τμν ≡ 1
2
ϵμνρστ

ρσ and Eq. (A6),

Lξ ⋆ τμν ¼ ð1þ aLξΦÞ ⋆ τμν: ð30Þ

Therefore, we conclude that

LξFμν ¼ ð1þ aLξΦÞFμν þ κ̃ ⋆ Fμν; ð31Þ

where κ̃ ¼ Lξα. ▪
Null electromagnetic field: In the null case, the electro-

magnetic field strength can be written as [33]

Fμν ¼ KμAν − KνAμ; ð32Þ

in terms of its repeated principal null direction Kμ and a
spacelike vector Aμ that is orthogonal to Kμ. Similarly, the
Hodge dual can be expressed as

⋆ Fμν ¼ KμBν − KνBμ; ð33Þ

where Bμ is orthogonal to both Kμ and Aμ. Then,

Eμν ¼
1

4π
AσAσKμKν: ð34Þ

Acting with the Lie derivative on this expression, one finds

LξEμν ¼ −2Eμν þ
KμKν

2π
AσLξAσ

þ AσAσ

4π
½KμLξKν þ KνLξKμ�: ð35Þ

Using (21), this becomes

2KμKνAσLξAσ þ AσAσ½KμLξKν þ KνLξKμ�
¼ 8πð1þ aLξΦÞEμν: ð36Þ

It is now convenient to introduce a second null vector Nμ

such that

NμKμ ¼ −1; NμAμ ¼ 0; NμBμ ¼ 0: ð37Þ

Contracting the previous equation with Nμ yields an
expression for LξKν that is proportional to Kν. However,
one may always rescale the vectors Kμ → χKμ,
Aμ → χ−1Aμ, Bμ → χ−1Bμ so that

LξKν ¼ Kν: ð38Þ

Plugging this back in (36) we get

AσLξAσ ¼ aðLξΦÞAσAσ: ð39Þ

Note that orthogonality between Aμ and Kμ then implies

KμLξAμ ¼ −AμLξKμ ¼ −AμKμ ¼ 0: ð40Þ

Therefore, the vector LξAμ − aðLξΦÞAμ lies in the orthogo-
nal complement of spanfKμ; Aμg. It follows that

LξAμ − aðLξΦÞAμ ¼ θKμ þ κ̃Bμ; ð41Þ

for some scalars θ and κ̃. Inserting this result and (38)
back in Eq. (32), taking also (33) into account, we again
obtain (31). ▪
Therefore, irrespective of whether the electromagnetic

field is null or non-null, the most general homothetic
transformation laws for the dilaton and gauge fields are

LξΦ ¼ −κ; ð42aÞ

LξFμν ¼ð1 − aκÞFμν þ κ̃ ⋆ Fμν: ð42bÞ

The only assumption employed in deriving this result
was that the gradient of the dilaton is timelike.
Plugging results (42) and (20) back in (12) one obtains

the restriction

κ̃Fμν ⋆ Fμν ¼ 0: ð43Þ

Therefore, to be consistent with continuous self-similarity
either κ̃ ¼ 0 or the invariant Fμν ⋆ Fμν must vanish, as is
the case for a purely electric (or magnetic) Maxwell field.6

On the other hand, Eq. (13), together with (6b) and (42),
yields

ð∇μκ̃ − 2aκ̃∇μΦÞ ⋆ Fμν ¼ 0; ð44Þ

which can be seen as a condition on the scalar κ̃. A simple
solution is given by

κ̃ ¼ ηe2aΦ; ð45Þ

where η is constant, but more generally one only needs the
expression within parenthesis to be orthogonal to ⋆ Fμν.
This is satisfied in the case of spherically symmetric and
purely electric configurations, for example.
Before we end this section, let us consider what kind

of dilaton potential VðΦÞ is consistent with continuous
self-similarity of the spacetime. This is determined by
solving condition (18), supplemented by (19). It then
follows immediately that our results apply to the class of
potentials of the Liouville type,

6This statement assumes a ≠ 0; otherwise, we just recover the
Einstein-Maxwell system.
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VðΦÞ ¼ ΛeμΦ; ð46Þ

as long as

κμ ¼ 2: ð47Þ

This observation leads to an interesting result. In the
presence of a Liouville potential, the constant κ in the
homothetic transformation of the dilaton (which is arbitrary
when V ¼ 0) gets fixed in terms of the coefficient μ
controlling the exponential behavior of the potential.

IV. SPHERICALLY SYMMETRIC CSS SOLUTIONS

In this section, we investigate the effects of including
an electromagnetic field (with a coupling to the dilaton)
on the continuously self-similar spherical collapse of a
scalar field.
The approachwe take parallels that of Brady [26], with the

difference that we include an additional Maxwell field that
couples to the scalar. The idea is to cast the equations of
motion as an autonomous system, the integral curves of
which determine specific CSS solutions. The critical expo-
nents can then be read off from the relevant modes of the
linearized problem around the fixed points of the system.
One may also ask what happens if we include a Liouville

potential consistent with continuous self-similarity. We
derive the governing CSS equations for that case in
Appendix C, concluding also that it does not affect the
critical exponent.
We adopt spherical symmetry from now on, and employ

Bondi coordinates in which the line element reads

ds2 ¼ −gðu; rÞḡðu; rÞdu2 − 2gðu; rÞdudr
þ r2½dθ2 þ sin2θdφ2�: ð48Þ

Here u is a retarded null coordinate. Assuming continuous
self-similarity, the metric can be put in the form

ds2 ¼ −gðxÞḡðxÞdu2 − 2gðxÞdudrþ r2dΩ2; ð49Þ

where x≡ r=juj and dΩ2 represents the line element on the
unit sphere, dθ2 þ sin2θdφ2. The homothetic vector field
for such a metric is

ξ ¼ u
∂
∂uþ r

∂
∂r : ð50Þ

Recall that the Maxwell field is compatible with con-
tinuous self-similarity only if it is purely electric or purely
magnetic. Taking this into account it is not hard to show
that, for spherically symmetric configurations, condition
(31) actually implies κ̃ ¼ 0. Therefore, the most general
homothetic transformations of the matter fields consistent
with the equations of motion in spherical symmetry are

LξΦ ¼ −κ; LξFμν ¼ ð1 − aκÞFμν; ð51Þ

i.e., any additional contribution proportional to ⋆ Fμν in
LξFμν necessarily vanishes.
In the following, we analyze the purely electric case in

detail. The purely magnetic case is treated in Appendix D,
where it is shown to reduce to a formally identical
autonomous system.

A. Reducing the equations of motion
to an autonomous system

From now on we restrict to a purely electric Maxwell
field. In terms of the Bondi coordinates used to express the
line element as in (49), the transformation of the matter
fields under homothety implies

Φ¼ϕðxÞ−κ logðu=u0Þ; F¼−
2qðxÞ
juj1þaκ du∧ dr; ð52Þ

where u0 is an arbitrary (null-)time scale. In the following,
we set it to u0 ¼ 1.
Expressed in terms of the self-similar variable x, the

Einstein equations (6c) become

ðxḡÞ0 ¼ gð1 − ω2Þ; ð53Þ

xg0 ¼ gγ2; ð54Þ

g − ḡ ¼ 2κ2 − ðḡ − 2xÞðγ2 þ 2κγÞ þ gω2; ð55Þ

where the prime stands for a derivative with respect to
variable x and

ϕðxÞ≡
Z

x

0

γðx̂Þ
x̂

dx̂; ð56Þ

ωðxÞ≡ xe−aϕðxÞqðxÞ
gðxÞ : ð57Þ

The Maxwell equations (6b) yield

xqg0 þ g½qð2aγ − 2Þ − xq0� ¼ 0; ð58Þ

xqg0 þ g½qð2aγ − 1þ aκÞ − xq0� ¼ 0; ð59Þ

from which it immediately follows that either qðxÞ ¼ 0 or7

aκ ¼ −1: ð60Þ
The first option simply states that the Maxwell field
vanishes so it recovers the Einstein-dilaton self-similar
system studied in Ref. [26]. Therefore, from now on wewill

7The metric function gðxÞ should not vanish, otherwise the
spacetime would be singular.
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assume that the homothety parameter κ and the dilaton
coupling a obey (60). Using Eq. (57) to replace qðxÞ with
ωðxÞ, the only nontrivial Maxwell equation is expressed as

xω0 ¼ −ω
�
1þ γ

κ

�
: ð61Þ

The dilaton equation (6a) turns out to be

xðḡ − 2xÞγ0 ¼ 2κx − γðg − 2xÞ þ
�
γ −

1

κ

�
gω2; ð62Þ

and it is in fact implied by the Einstein and Maxwell
equations as long as γðxÞ ≠ −κ.
Employing the field redefinitions

y≡ ḡ
g
; z≡ x

ḡ
; ð63Þ

and implementing the change of coordinate

ξ ¼ log x; ð64Þ
the field equations are converted into an autonomous
system:

_y ¼ 1 − ω2 − yð1þ γ2Þ; ð65aÞ

_z ¼ z

�
2 −

1 − ω2

y

�
; ð65bÞ

_ω ¼ −ω
�
1þ γ

κ

�
; ð65cÞ

ð1 − 2zÞ_γ ¼ 2κz − γ

�
1

y
− 2z

�
þ ω2

y

�
γ −

1

κ

�
; ð65dÞ

ðγ þ κÞ2 ¼
1þ κ2 − 1−ω2

y

1 − 2z
; ð65eÞ

where the overdot stands for a derivative with respect to ξ.
These equations reduce to the autonomous system obtained
by Brady [26] when the Maxwell field vanishes, ω ¼ 0. As
in Ref. [26], Eq. (65e) is an algebraic constraint, which
means that one only needs to care about the evolution
equations for the two degrees of freedom coming from the
metric, y and z, plus one degree of freedom accounting for

the electric field, ω. The addition of the electric field
enlarges the phase space of CSS solutions, which now
becomes three-dimensional.
Since Eq. (65e) is quadratic in γ it has generically two

solutions, the positive leaf and the negative leaf, depending
on the choice of signwhen taking the square root.We areonly
interested in real solutions. A given solution can change leaf
only when it hits the surface y ¼ 1−ω2

1þκ2
. Nevertheless, the

uncharged plane ω ¼ 0 has opposite character (attractive or
repulsive) on the two leafs, as we discuss in Sec. IVD.
Note that the autonomous system (65) enjoys a Z2

symmetry under which γ and κ flip sign simultaneously:

γ → −γ; κ → −κ: ð66Þ

This descends from the reflection symmetry of the original
equations of motion (6), under which the dilaton field Φ
and the dilaton coupling a also flip sign simultaneously.
Therefore, there is no loss of generality in considering only
non-negative values of κ, as we will do from now on.
Every integral curve of the dynamical system (65)

corresponds to a spherically symmetric CSS solution of
the Einstein-Maxwell-dilaton theory. Flowing along any
given integral curve (by increasing ξ) can be thought of as
moving to larger radial coordinate r at fixed retarded null
time u, since ξ ¼ logðr=jujÞ. Naturally, we are interested in
selecting only those solutions that have a regular origin. In
practice, this condition determines an ‘initial condition’ for
integral curves of relevance, to which we now turn.

B. Regularity conditions at the origin

In the Bondi coordinates adopted, the origin is defined
by r ¼ 0. Again, we follow [26] and fix

gðu; 0Þ ¼ ḡðu; 0Þ ¼ 1; ð67Þ
which is nothing but a choice of normalization of the
coordinate u: it corresponds to the proper (null-)time of an
observer sitting at the origin. In terms of the fields
introduced in (63), this is expressed as

yðx ¼ 0Þ ¼ 1; zðx ¼ 0Þ ¼ 0: ð68Þ
A straightforward calculation reveals that the total stress-

energy tensor, evaluated at the origin and using (67),
behaves as

8πTμν⟶
r→0

0
BBBBBBBB@

γð0Þ2þωð0Þ2
r2

γð0Þ2þωð0Þ2
r2 0 0

γð0Þ2þωð0Þ2
r2

2γð0Þ2
r2 0 0

0 0 ωð0Þ2 − γð0Þ2 0

0 0 0 sin2θðωð0Þ2 − γð0Þ2Þ

1
CCCCCCCCA
: ð69Þ

JORGE V. ROCHA and MARIJA TOMAŠEVIĆ PHYS. REV. D 98, 104063 (2018)

104063-8



Therefore, in order to have a nonsingular center one must
impose

γðx ¼ 0Þ ¼ 0; ωðx ¼ 0Þ ¼ 0: ð70Þ

The same result follows from evaluating the Ricci and
Kretschmann scalars, since these quantities are given,
respectively, by

R⟶
r→0 2γð0Þ2

r2
;

K⟶
r→0

RμνρσRμνρσ ¼ 4ð2γð0Þ4−4γð0Þ2ωð0Þ2þ5ωð0Þ4Þ
r4

:

ð71Þ

Thus, our initial conditions are fully specified by
Eqs. (68) and (70). It is easily checked that these initial
conditions are consistent with the constraint Eq. (65e).

C. Local analysis of the autonomous system

Given the constraint (65e), the autonomous system
lives effectively in the three-dimensional phase space
fyðξÞ; zðξÞ;ωðξÞg. Clearly, real solutions can exist only
if the right side of Eq. (65e) is non-negative. This selects
two domains in the phase space where physical solutions
can be supported:

z ≤
1

2
and y ≥

1 − ω2

1þ κ2
ð72Þ

or

z ≥
1

2
and y ≤

1 − ω2

1þ κ2
: ð73Þ

Precisely at z ¼ 1=2 (and y ¼ 1−ω2

1þκ2
, as required by finite-

ness of the first derivative of the dilaton), the field γ can be
discontinuous, just like for the uncharged system studied by
Brady [26]—and with similar consequences. This repre-
sents a line in the three-dimensional phase space where
the standard uniqueness theorem for systems of ordinary
differential equations is not applicable. The upshot is that
integral curves may have (depending on the value of κ, as
we will see) a one-parameter family of possible continu-
ations upon crossing this line. Physically, this discontinuity
line—sometimes referred to as the self-similarity horizon—
represents a Cauchy horizon: solutions that reach this
line require extra data to define how they are extended
beyond it.
If one insists on γ being continuous across this line, then

Eq. (65d) implies

γ ¼ 1

κ

�
1−

ω2

κ2y

�
¼ κ2 −ω2 − 2κ2ω2

κ3ð1−ω2Þ when z¼ 1

2
: ð74Þ

In fact, solutions with a regular origin necessarily stick to
the ω ¼ 0 plane, as we discuss in Sec. IV D below.
Therefore, if such a solution reaches the discontinuity line
it must do so at a crossing point located at

C∶ ðy; z;ω; γÞ ¼
�

1

1þ κ2
;
1

2
; 0;

1

κ

�
: ð75Þ

Note that even when there is infinite nonuniqueness
of solutions past this crossing point, analyticity singles
out only one spacetime, since it imposes the following
directional derivatives for the integral curves at point C:

dz
dy

����
C
¼ −

κ2

2
;

dω
dy

����
C
¼ 0: ð76Þ

Let us now analyze the fixed points of the autonomous
system described by (65). In total, there are five stationary
points,

P1∶ ðy;z;ω;γÞ¼ ð1;0;0;0Þ

P2�∶ ðy;z;ω;γÞ¼
�
1

2
;

1

1� κ
;0;�1

�

P3�∶ðy;z;ω;γÞ¼
�

1

ð1þ κ2Þ2 ;0;�
κffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ2
p ;−κ

�
: ð77Þ

Points P1 and P2� are exactly the same that appear in the
self-similar collapse of a minimally coupled scalar field
[26]. In particular, P1 is the initial condition: solutions that
are regular at the center are described by curves in the phase
space that start at this point, when x ¼ 0 or equivalently
when ξ ¼ −∞.
Points P2� are saddle points: these are where the critical

solutions end up (and also where near-critical solutions
approach, before diverging along the repulsive direction).
In particular, a local analysis around those points deter-
mines Choptuik’s critical exponent.
On the other hand, points P3� are novel as they require a

nonvanishing Maxwell field. They actually sit at the
boundary of the lower domain in phase space (72). Note
that in the limit κ → 0 they coincide with point P1.
However, this is not a limit we can take while working
with the autonomous system (65). In fact, the eigenvalues
obtained for the linearized system around P3� do not match
those from linearizing around P1 when κ → 0 (see below).
This apparent contradiction is resolved once we take into
account that the condition aκ ¼ −1 was imposed to derive
the system of Eqs. (65) and that it cannot hold in this limit.
In other words, we cannot have a nontrivial Maxwell field
consistent with κ ¼ 0 and hence the equations reduce to
those of Ref. [26].
Next, we investigate the character of each of the stationary

points. Linearizing our autonomous system around P1,
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ðy; z;ω; γÞ ¼ ð1; 0; 0; 0Þ þ ðδy; δz; δω; δγÞ; ð78Þ

one obtains

_δy ¼ −δy; ð79aÞ

_δz ¼ δz; ð79bÞ

_δω ¼ −δω; ð79cÞ

_δγ ¼ 2κδz − δγ: ð79dÞ

This linear systemhas one positive eigenvalue (þ1) and three
degenerate negative eigenvalues (−1). The eigenvector
associated with the positive eigenvalue is ð0; 1; 0; κÞ. So
the “initial condition” point has a single growing mode,

δzþ κδγ ∼ eξ; ð80Þ

and all other modes decay.
Linearizing around points P2�,

ðy; z;ω; γÞ ¼
�
1

2
;

1

1þ ϵκ
; 0; ϵ

�
þ ðδy; δz; δω; δγÞ; ð81Þ

where ϵ ¼ �1, we get the following linear system:

_δy ¼ −2δy − ϵδγ; ð82aÞ

_δz ¼ 4

1þ ϵκ
δy; ð82bÞ

_δω ¼ −
�
1þ ϵ

κ

�
δω; ð82cÞ

_δγ¼ 4ϵðϵκþ1Þ
ϵκ−1

δyþ2ðκþ ϵÞðϵκþ1Þ
ϵκ−1

δz−
2ϵκδγ

ϵκ−1
: ð82dÞ

There are four distinct eigenvalues for this system,

λ1;2¼
−ϵκ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4−3κ2

p

ϵκ−1
; λ3¼−

�
1þϵ

κ

�
; λ4¼−2; ð83Þ

and the first three are different for the two fixed points P2�,
since they depend on the value of ϵ. The first two
eigenvalues precisely agree with Brady’s results [26].
For 0 ≤ κ2 < 1 both λ1 and λ2 are real and can be shown
to have opposite signs. If 1 < κ2 only one of the points P2�
is physically relevant (the other has negative z-coordinate).
In that case, λ1;2 are both real and negative if 1 < κ2 ≤ 4=3,
or complex conjugate with negative real part if κ2 > 4=3.
The eigenvalue associated to the contribution from the
Maxwell field is λ3. Recalling we are restricting, without
loss of generality, the parameter space to κ ≥ 0, we observe
that this eigenvalue will always be negative for P2þ and

positive for P2− (for the relevant regime 0 ≤ κ2 < 1).8

Eigenvalue λ4 comes from the constraint equation on γ
and is therefore redundant.
Hence, for κ2 > 1 only the fixed point P2þ matters and it

is attractive (with spiralling character when κ2 > 4=3). For
0 ≤ κ2 < 1, both P2� are saddle points, but P2þ has a
single growing mode, whereas P2− has two relevant
directions: besides the one found in Ref. [26] for the
uncharged case, there is another along the electric field
direction. In a strict sense, P2− is then not a critical point.
It is well-known that the critical exponent β can be

extracted from such local analysis around the critical point
[6]. As usual, it is obtained as the inverse of the real part of
the eigenvalue associated with the growing mode,

β ¼ 1

Reλ2
¼ 1 − κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − 3κ2
p

− κ
: ð84Þ

When κ ¼ 0—for which there is an exact solution in closed
form obtained by Roberts [38]—the critical exponent
simply reduces to 1=2, but more generally we see it can
take any value in the interval ½1=2; 1=4Þ as κ is varied
between 0 and 1.
For completeness, we finally consider the linearization

around the remaining stationary points, P3�. This yields
the following linear system:

_δy ¼ −ð1þ κ2Þδy − 2ϵκffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p δωþ 2κ

ð1þ κ2Þ2 δγ; ð85aÞ

_δz ¼ð1 − κ2Þδz; ð85bÞ

_δω ¼ −ϵffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p δγ; ð85cÞ

_δγ ¼ −2ϵð1þ κ2Þ5=2δω − ð1þ κ2Þδγ; ð85dÞ

and the corresponding eigenvalues are

λ1 ¼ 1 − κ2; λ2 ¼ −ð1þ κ2Þ;
λ3 ¼ 1þ κ2; λ4 ¼ −2ð1þ κ2Þ: ð86Þ

For κ2 < 1 each of these points has two growing modes and
two decaying modes. For κ2 > 1 there is only one growing
mode and three decaying modes.

8One can consider κ < 0 by making use of the symmetry of the
autonomous system (65), which sends κ → −κ and γ → −γ. This
mapping effectively makes γ “switch leaves”, as it is the solution
of a quadratic equation (65e). We see from Eq. (77) that this
interchanges P2þ and P2−, so that ϵ=κ > 0 now holds for P2−,
which has a lower z-coordinate than P2þ when κ is negative.
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D. Phase space of CSS solutions

We are now in condition to form a global picture of what
the phase space of CSS solutions looks like. Shown in
Figs. 1 and 2 are four examples of phase space solutions,
differing in the value of κ. We grouped the figures in two
pairs, since the qualitative behavior changes if we restrict
ourselves to values κ2 < 1 or to κ2 ≥ 1. The curves plotted
were obtained by numerically integrating Eqs. (65).
Consider first the behavior of integral curves in the case

κ2 < 1, presented in Fig. 1. According to Sec. IV B, the
curves that start from the point P1 are the only regular
solutions (at the origin). Following these solutions, one
arrives at the crossing point C, from which they can be
continued in a nonunique fashion to the upper domain.
However, there exists only one solution that ends up at the
fixed point P2þ—this is the critical solution. Nearby
solutions are attracted to the critical curve for some time,
but when the fixed point is approached they run off along
the repulsive direction, forming either a black hole9 (curves
ending at y ¼ 0) or a naked singularity10 (curves for
which z → ∞).

The fixed point P2−, despite being present for κ2 < 1,
does not show up in either of the two panels of Fig. 1 only
because in both cases it is located above the plotted region.
As mentioned before, P2þ is a critical point—in the sense
that it has only one relevant mode—while P2− is not: once
we include the electric field it acquires a second relevant
mode in the ω-direction.
Taking into account Eqs. (65c) and (65e) it is straight-

forward to see that the ‘neutral’ plane ω ¼ 0 is an attractor
for solutions in the positive leaf, but it is a repulsive surface
for solutions in the negative leaf. We should note that
solutions that are regular at the origin necessarily remain on
the ω ¼ 0 plane. This means that for regular solutions the
electric field must vanish everywhere, so the addition of a
Maxwell field is irrelevant. In particular, the electric field
does not affect the critical exponent. One might think that
the reason behind this result lies in the fact that F2 is
coupled to e−2aΦ in the action (5) and, hence, its contri-
bution would vanish if the dynamical system flows to
Φ → ∞. However, this is not the case. Instead, this
peculiarity is tied to ω ¼ 0 being an attractor for the leaf
in which the critical solution lies, and not so much to the
coupling of the Maxwell field to the dilaton.
To illustrate more clearly what the phase space looks

like, we also included a couple of integral curves going
through fixed points P3�. These are the only curves shown
that are not contained in the uncharged plane, ω ¼ 0.

FIG. 1. Phase space of continuous self-similar (and spherically symmetric) solutions of Einstein-Maxwell-dilaton theory. The shaded
regions indicate the two domains (72) and (73) which can support real solutions. The left and right panels correspond to the choices
κ2 ¼ 0.25 and κ2 ¼ 0.5, respectively. Solutions that are regular at the origin are represented by integral curves that start at point P1. The
critical solution is the one going through the crossing pointC and ending at the fixed point P2þ. In both panels, the fixed point P2− does
not appear because its z-coordinate is outside of the range plotted. Other integral curves are included for illustrative purposes. Solid
(dashed) curves indicate solutions that lie on the positive (negative) leaf of γ.

9Technically, what is formed is an apparent horizon.
10As z → ∞, y approaches a constant value and a Cauchy

horizon forms. It is not hard to show (see [26]) that this surface is
nonsingular except at a point (r ¼ 0 ¼ u), which then corre-
sponds to a naked singularity.
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They quickly approach point P1 and then run along the
curve connecting P1 and C, which is itself an attractor.
In the plots displayed in Fig. 1, a few curves are dis-

tinguished by a dashed linestyle, indicating those solutions
live on the negative leaf of γ [refer to Eq. (65e)]. A jump
from the positive to the negative leaf occurs when an
integral curve bounces off the surface y ¼ 1−ω2

1þκ2
(and

z ≠ 1=2). It is the continuation beyond this bounce in
the upper domain that yields the only qualitative difference
between the two panels. For lower κ2 the critical solution
shown marks the boundary between black hole formation
and naked singularity formation. For larger κ2 (but still less
than unity) all solutions end up in black hole formation
except for the critical solution itself.
We can now briefly analyze what happens in the cases

κ2 ≥ 1, shown in Fig. 2. The left panel shows the phase
space for κ2 ¼ 1, corresponding to the case in which the
dilaton coupling takes the value a ¼ 1 dictated by heterotic
string theory [see Eq. (60)]. Incidentally, it is only for this
specific choice that the fixed point P2þ coincides with the
would-be crossing point C. In this case, this represents the
endpoint of the unique solution with a regular origin, i.e.,
the one that starts at P1. The right panel displays the phase
space for κ2 ¼ 2.5. The only qualitative differences with
respect to the left panel are that the fixed point P2þ is now
in the interior of the lower domain and that the integral
curves spiral in towards it. For 1 < κ2 ≤ 4=3, the fixed
point P2þ acquires purely real (and negative) eigenvalues
and so becomes an attractive point without spiral behavior.

The dot-dashed lines indicate other integral curves of the
autonomous system corresponding to solutions for which
the origin is singular.

V. DISCUSSION AND OUTLOOK

In this work, we presented the first study of continuously
self-similar solutions of the source-free Einstein-Maxwell-
dilaton system. Given the relevance of this model as a
string-inspired alternative theory of gravity compatible with
recent gravitational wave detections, it is worthwhile to
pursue this avenue to attain an understanding of the
theory’s dynamics and implications.
We began by determining the conditions that the dilaton

and Maxwell field must satisfy to be consistent with
continuous self-similarity of the spacetime. Assuming only
the gradient of the scalar field to be timelike, we were able
to obtain the most general form of the homothetic trans-
formations for the matter fields.
Then we examined spherically symmetric CSS solutions

in the purely electric case. It was shown this problem can be
understood in terms of a three-dimensional dynamical
system governed by autonomous equations, which greatly
simplifies the task of mapping the phase space and
determining the critical exponents. The upshot of this
study is that the electric field becomes irrelevant at
criticality and, in particular, it has no direct effect on the
critical exponent. Nevertheless, the coupling between the
gauge field and the scalar introduces some dependence of
the critical exponent on the dilaton coupling constant.

FIG. 2. Same as in Fig. 1 but for larger values of κ. The left panel shows the phase space for κ2 ¼ 1. For this specific choice, and only
in this case, the fixed point P2þ coincides with the would-be crossing point C. This is the endpoint of the unique solution with a regular
origin, i.e., that starts at P1. The right panel displays the phase space for κ2 ¼ 2.5. The dot-dashed lines indicate other integral curves of
the autonomous system corresponding to solutions without a regular center.
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It is also shown in the Appendices that the inclusion of a
Liouville potential or the consideration of a purely mag-
netic configuration does not spoil the autonomous property
of the differential equations, so the same methods can be
used. Once again, their contribution becomes irrelevant at
criticality.
These results are in accordance with the statement that

universality in critical collapse generally cannot be
extended to mean the critical solution is universal among
classes of matter models [7], in addition to independence
on details of the initial conditions within a given theory.
Our results on the homothetic conditions indicate, as a

natural extension, that it would be interesting to augment
the system with the axion field. This is strongly suggested
by the appearance of terms proportional to Fμν ⋆ Fμν in
Eq. (12), when κ̃ ≠ 0. Recall such terms are sources for the
axion. It is conceivable that there exist homothetic actions
in the Einstein-Maxwell-axion-dilaton system for which
the dilaton and the axion mix. In fact, Refs. [22,31] provide
a clear indication that this is the case.
Another obvious generalization is the consideration of

higher dimensions, which should be straightforward. In
fact, it should be even simpler than in four dimensions,
because only in the latter case can the Hodge dual of the
field strength appear in the homothetic transformation
law (31).
Yet another possible extension of interest, still in the

context of low-energy string theories, is the consideration
of multiple and/or non-Abelian gauge fields.
In this paper, we contemplated source-free solutions of

the EMD equations of motion. We found that regular initial
data implied the vanishing of the electric field throughout
the entire continuous self-similar evolution. Nevertheless,
solutions analogous to the Vaidya spacetime, sourced by
charged null fluids, can be envisaged [49,52], thus allowing
for a nontrivial Maxwell field. Within this arena, continu-
ous self-similar solutions can be constructed analytically
and we expect to report on this in the near future.
Finally, we have made heavy use of continuous self-

similarity. That this kind of symmetry is the one that
emerges at the threshold of black hole formation—instead
of discrete self-similarity—is suggested by the work of
[22], but not proven. Therefore, a pertinent (and more
challenging) problem that remains open concerns relaxing
the assumption of continuous self-similarity to discrete
self-similarity.
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APPENDIX A: HOMOTHETIC RELATIONS

In this Appendix, we collect useful identities concerning
homothetic vector fields (HVFs) in four spacetime dimen-
sions. From the definition

Lξgμν ¼ 2gμν ⇔ ∇μξν þ∇νξμ ¼ 2gμν; ðA1Þ

it follows that

∇μξ
μ ¼ 4 ðin four dimensionsÞ; ∇2ξμ ¼−Rσμξ

σ; ðA2Þ

Lξgμν ¼ −2gμν; Lξgμν ¼ 0: ðA3Þ

This has straightforward implications for the Riemann
tensor and its contractions,

LξRμ
νρσ ¼ 0; LξRμν ¼ 0;

LξR ¼ −2R; LξGμν ¼ 0; ðA4Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor.

Equation (A1) also implies

∇νξσ∇σΦ∇νΦ ¼ ð∇ΦÞ2: ðA5Þ

The action of the homothety on the Levi-Civita tensor is

Lξϵμνρσ ¼ 4ϵμνρσ: ðA6Þ

In Sec. III, we make heavy use of expressions involving
commutators of covariant derivatives with the Lie deriva-
tive along the HVF. Concerning this, we note the following
identities for scalar fields:

½∇σ;Lξ�Φ ¼ 0; ðA7Þ

½∇2;Lξ�Φ ¼ 2∇2Φ: ðA8Þ

The general expressions for the commutator of the covar-
iant derivative with a Lie derivative applied to vectors and
antisymmetric tensors are

½∇μ;LX�Aμ ¼ −Aλ∇λ∇μXμ; ðA9Þ

½∇μ;LX�Tμν ¼ −Tλν∇λ∇μXμ ðA10Þ

for Tλν antisymmetric. These simplify in the case of HVFs,
X ¼ ξ:

½∇μ;Lξ�Aμ ¼ 0; ðA11Þ
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½∇μ;Lξ�Tμν ¼ 0: ðA12Þ

APPENDIX B: PROOF OF LξT
ðEMÞ
μν = 0 =LξT

ðdilÞ
μν

Here we show that the left and right sides of Eq. (17)
must vanish independently, if ∇μΦ is timelike. As a bonus,
the identities (18) will also emerge from this analysis. As in
Sec. III B, the cases in which the Maxwell field is null or
non-null have to be dealt with separately.
Non-null electromagnetic field: For this case, the proof

proceeds along the lines of Ref. [32], where more details
can be found.
The idea is to determine the eigenvectors vðiÞμ of the total

stress-energy tensor, together with their associated eigen-
values σðiÞ, and use

−2σðiÞvðiÞμ þ Tμ
νLξv

ðiÞ
ν ¼ Lξ½Tμ

νvðiÞν �
¼ Lξ½σðiÞvðiÞμ �
¼ ðLξσ

ðiÞÞvðiÞμ þ σðiÞLξv
ðiÞ
μ : ðB1Þ

If the eigenvector vðiÞ is not null, then contraction with
vðiÞμ immediately produces a relation for the associated
eigenvalue,

Lξσ
ðiÞ ¼ −2σðiÞ: ðB2Þ

Now, the eigenvalues depend on whether or not
the timelike vector ∇μΦ is an eigenvector of TðEMÞ

μν .
Assuming it is, it can be easily shown that it must be
expressed as

∇μΦ ¼ −kμðnν∇νΦÞ − nμðkν∇νΦÞ≡ vð1Þμ ; ðB3Þ

where the null vectors kμ and nμ were introduced in
Sec. III B. We can also define a spacelike vector

vð2Þμ ≡ −kμðnν∇νΦÞ þ nμðkν∇νΦÞ; ðB4Þ

which is orthogonal to vð1Þ, plus two other linearly
independent spacelike vectors vð3Þ and vð4Þ, orthogonal
to both k and n. The four vectors vðiÞ are all (non-null)
eigenvectors of the total stress-energy tensor, and their
associated eigenvalues are

σð1Þ ¼ −f2e−2aΦ þ ð∇ΦÞ2 − 2V; ðB5aÞ

σð2Þ ¼ −f2e−2aΦ − ð∇ΦÞ2 − 2V; ðB5bÞ

σð3Þ ¼ σð4Þ ¼ þf2e−2aΦ − ð∇ΦÞ2 − 2V: ðB5cÞ

By applying identity (B2) on judiciously chosen linear
combinations of these eigenvalues, we find

LξV ¼ −2V and Lξ½ð∇ΦÞ2� ¼ −2ð∇ΦÞ2: ðB6Þ

Given that the eigenspace to which ∇μΦ ¼ vð1Þμ belongs is
one-dimensional, it follows from (B1) that

Lξ∇μΦ ¼ χ∇μΦ; ðB7Þ

for some scalar χ. When combined with (B6), this implies
that χ must vanish. This completes the proof of identities
(18), from which it immediately follows that

LξT
ðdilÞ
μν ¼ 0 and LξT

ðEMÞ
μν ¼ 0: ðB8Þ

▪
The remaining case to be analyzed occurs when ∇μΦ is

not an eigenvector of TðEMÞ
μν . In this case, the vector v̂ð2Þ ≡

vð2Þ is still an eigenvector of the total stress-energy tensor,
but now ∇μΦ cannot be contained in the span of kμ and nμ.

Instead, its place is taken by the vector v̂ð1Þμ defined (up to
scale) as being orthogonal to both ∇μΦ and the principal
null directions,

v̂ð1Þμ ∇μΦ ¼ v̂ð1Þμ kμ ¼ v̂ð1Þμ nμ ¼ 0: ðB9Þ

It is easy to check that v̂ð1Þ so defined is an eigenvector of
the total stress-energy tensor. With a little more effort, one
can obtain two more independent eigenvectors, which take
the form

v̂ð�Þ
μ ¼ −kμðnσ∇σΦÞ − nμðkσ∇σΦÞ

þ
�
−
e2aΦ

2f2
ð∇ΦÞ2 − 1

2
� he2aΦ

4f4

�
∇μΦ; ðB10Þ

where

h2 ≡ 4ð∇ΦÞ4 þ 4f4e−4aΦ þ 8e−2aΦb2

and b2 ≡ Eμν∇μΦ∇νΦ: ðB11Þ

The associated eigenvalues are

σ̂ð1Þ ¼ −f2e−2aΦ − ð∇ΦÞ2 − 2V; ðB12aÞ

σ̂ð2Þ ¼ þf2e−2aΦ − ð∇ΦÞ2 − 2V; ðB12bÞ

σ̂ð�Þ ¼ � h
2
− 2V: ðB12cÞ

As before, applying identity (B2) on linear combinations
of these eigenvalues, we again obtain (B6). The rest follows
as in the previous case, since Eqs. (B1) and (B10) allow us
to show that (B7) holds also in this case. ▪
Null electromagnetic field: When the Maxwell field is

null, the procedure above does not work because the total
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stress-energy tensor does not have any real eigenvectors.
Therefore, a different route must be taken.
The electromagnetic part of the stress-energy tensor can

now be written as (refer to Sec. III B),

TðEMÞ
μν ¼ e−2aΦEμν ¼

e−2aΦ

4π
AσAσKμKν; ðB13Þ

from which one computes its Lie derivative by using (35).
Contracting the resulting expression with various combi-
nations of the vectors Kμ, Aμ and Bμ, and using Eq. (17), it
can be shown that

KμLξ∇μΦ ¼ AμLξ∇μΦ ¼ BμLξ∇μΦ ¼ 0: ðB14Þ

In order to derive this, it is necessary that Kμ∇μΦ ≠ 0. This
automatically holds when ∇μΦ is timelike, since Kμ is a
null vector. Given that Lξ∇μΦ is orthogonal to all three
vectors Kμ, Aμ and Bμ, it must be proportional to Kμ,

Lξ∇μΦ ¼ χ̃Kμ: ðB15Þ

We may now plug this expression in the left side of the
following equality:

NμðLξT
ðdilÞ
μν ÞKν ¼ −NμðLξT

ðEMÞ
μν ÞKν ¼ 0; ðB16Þ

from which it follows that

LξV ¼ −2V: ðB17Þ

Now, consider the trace of the stress-energy tensor and
how it transforms under homothety. Applying the Lie
derivative along the homothetic vector gives

Lξ½gμνTðdilÞ
μν � ¼ −2Lξ½ð∇ΦÞ2� − 8LξV: ðB18Þ

On the other hand, since LξðTðdilÞ
μν þ TðEMÞ

μν Þ ∝ LξGμν ¼ 0,
we have

Lξ½gμνTðdilÞ
μν � ¼−2gμνTðdilÞ

μν −gμνLξT
ðEMÞ
μν ¼ 4ð∇ΦÞ2þ16V:

ðB19Þ

Equating these two expressions and using (B17) yields

∇μΦLξ∇μΦ ¼ 0: ðB20Þ

Finally, plugging in Eq. (B15) and recalling that
Kμ∇μΦ ≠ 0, we conclude that χ̃ must vanish. Once again,
this completes the proof of identities (18), and (B8)
immediately follows. ▪

APPENDIX C: CSS EQUATIONS WITH
A LIOUVILLE POTENTIAL

Here we briefly consider the effects of including a
Liouville potential VðΦÞ in the CSS equations. Recall that
consistency with the homothetic conditions imposes
LξV¼−2V, or equivalently, VðΦÞ¼Λe2Φ=κ. This will add
some terms to our autonomous system. Continuous self-
similar collapses in Einstein-dilaton gravity with exponen-
tial potentials, but with no gauge fields, were previously
considered in Ref. [53].
We start with an action given by (5), and we solve the full

system of equations of motion (6) under the assumption of
a purely electric Maxwell field, Eq. (52). The resulting
equations differ from those obtained without the Liouville
potential only in the angular part of the Einstein equations
and in the scalar field equation. Proceeding with the same
steps as for the purely electric case, we get the following set
of equations:

_y ¼ ð1 − ω2Þ − yð1þ γ2Þ − 2Λe2ðϕ=κþξÞ; ðC1aÞ

_z ¼ z

�
2 −

1 − ω2

y
þ 2Λ

y
e2ðϕ=κþξÞ

�
; ðC1bÞ

_ω ¼ −ω
�
1þ γ

κ

�
; ðC1cÞ

_ϕ ¼ γ; ðC1dÞ

ð1 − 2zÞ_γ ¼ 2zðκ þ γÞ

−
γκð1 − ω2Þ þ ω2 − 2Λe2ðϕ=κþξÞð1þ κγÞ

κy
;

ðC1eÞ

ðγ þ κÞ2 ¼ ð1þ κ2Þy − 1þ ω2 þ 2Λe2ðϕ=κþξÞ

yð1 − 2zÞ : ðC1fÞ

One can see that when the Liouville potential is included,
ϕ appears explicitly, instead of just _ϕ, so the phase space is
enlarged. More importantly, now the dependence on ξ is
explicit, so in this form the system is no longer autono-
mous. Fortunately, by formally introducing a new field,
ζðξÞ≡ eϕðξÞ=κþξ, we recover an autonomous system, so the
methods used in Sec. IV can be equally applied here.
As before, the equation for _γ is redundant, since it

follows from the rest of equations under the condition that
γ ≠ −κ. However, the phase space is still too large to be
manageable. We can reduce it to a three-dimensional phase
space by considering a vanishing electric field.11 Hence, for

11We could of course set Λ ¼ 0, which would reduce the
system to the purely electric one. However, the goal here is to see
the effects of the Liouville potential.
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ω ¼ 0 we are left with a simpler set of equations (we are
also dropping the equation for _γ):

_y ¼ 1 − yð1þ γ2Þ − 2Λζ2; ðC2aÞ

_z ¼ z
�
2 −

1 − 2Λζ2

y

�
; ðC2bÞ

_ζ ¼ ζ

�
1þ γ

κ

�
; ðC2cÞ

ðγ þ κÞ2 ¼ ð1þ κ2Þy − 1þ 2Λζ2

yð1 − 2zÞ : ðC2dÞ

These equations match those obtained in [53].
The fixed points of this system are easy to find. The

points equivalent to P1 and P2� in the electrically charged
case are also stationary points in the Liouville potential
case, namely ðy; z; ζ; γÞ ¼ ð1; 0; 0; 0Þ and ðy; z; ζ; γÞ ¼
ð1=2; ð1� κÞ−1; 0;�1Þ. Through an analysis identical to
that of Sec. IV B, it can be shown that solutions with regular
origins must obey zðr ¼ 0Þ ¼ γðr ¼ 0Þ ¼ ζðr ¼ 0Þ ¼ 0,
and therefore ‘start’ at the first these points. In addition,
there is one further fixed point at

ðy; z; ζ; γÞ ¼
�

1

1 − κ4
; 0;

jκjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Λð1 − κ2Þ

p ;−κ
�
; ðC3Þ

but only for 0 ≤ κ2 < 1 and in the case of a negative Λ.
Since ζ enters all equations only through squared powers,

except for (C2c), the linearization of the system around fixed
points will leave no trace ofΛ, and therefore of the Liouville
potential. This indicates the inclusion of the Liouville
potential also cannot change the critical exponent. In this
respect, the self-similar collapse of a spherically symmetric
scalar field with a Liouville potential is similar to what we
obtained for the case of Einstein-Maxwell-dilaton theory.
There is, however, one qualitative difference. The fixed point
ðy; z; ζ; γÞ ¼ ð1=2; ð1þ κÞ−1; 0; 1Þ, which is the analogue of
P2þ, is no longer a critical point, in the sense that it has two
relevant directions: in addition to the previously existing
mode with eigenvalue λ2 [see Eq. (83)] there is one more
growing mode coming from (C2c).

APPENDIX D: CSS EQUATIONS FOR A PURELY
MAGNETIC MAXWELL FIELD

A purely magnetic Maxwell field yielding a spherically
symmetric configuration12 is given, in the coordinate
system (49), by

F ¼ 2P sin θdθ ∧ dφ: ðD1Þ

P measures the magnetic charge and is necessarily
constant in order to satisfy the Bianchi identity. Such an
electromagnetic field is invariant under the homothetic
vector (50)—i.e., it satisfies LξFμν ¼ 0—so one must have
aκ ¼ 1 in this case.
Following the same steps as for the purely electric field,

the equations of motion reduce to

_y ¼ 1 − yð1þ γ2Þ − P2e−2ðϕ=κþξÞ; ðD2aÞ

_z ¼ z

�
2 −

1

y
þ P2

y
e−2ðϕ=κþξÞ

�
; ðD2bÞ

_ϕ ¼ γ; ðD2cÞ

ðγ þ κÞ2 ¼ ð1þ κ2Þy − 1þ P2e−2ðϕ=κþξÞ

yð1 − 2zÞ : ðD2dÞ

As in the purely electric case, the expression for _γ
follows from the other equations as long as γ ≠ −κ.
The equations depend explicitly on the function ϕðξÞ

(instead of just its derivative), which effectively replaces the
degree of freedom described by ωðξÞ in the purely electric
case. In spite of this, we can obtain an autonomous system
formally identical to the purely electric case (65) simply by
replacing Pe−ðϕðξÞ=κþξÞ → ωðξÞ. The analysis of Sec. IV can
then be immediately adapted to the case of a purely
magnetic Maxwell field.
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[25] C. Charmousis, B. Goutéraux, and J. Soda, Einstein-
Maxwell-dilaton theories with a Liouville potential, Phys.
Rev. D 80, 024028 (2009).

[26] P. R. Brady, Self-similar scalar field collapse: Naked sin-
gularities and critical behavior, Phys. Rev. D 51, 4168
(1995).

[27] D. Christodoulou, Examples of naked singularity formation
in the gravitational collapse of a scalar field, Ann. Math.
140, 607 (1994).

[28] M. E. Cahill and A. H. Taub, Spherically symmetric sim-
ilarity solutions of the Einstein field equations for a perfect
fluid, Commun. Math. Phys. 21, 1 (1971).

[29] I. Smolić, Symmetry inheritance of scalar fields, Classical
Quantum Gravity 32, 145010 (2015).

[30] E.W. Hirschmann and D.M. Eardley, Universal scaling and
echoing in gravitational collapse of a complex scalar field,
Phys. Rev. D 51, 4198 (1995).

[31] D. M. Eardley, E. W. Hirschmann, and J. H. Horne, S duality
at the black hole threshold in gravitational collapse, Phys.
Rev. D 52, R5397 (1995).

[32] J. Wainwright and P. E. A. Yaremovicz, Killing vector fields
and the Einstein-Maxwell field equations with perfect fluid
source, Gen. Relativ. Gravit. 7, 345 (1976).

[33] J. Wainwright and P. E. A. Yaremovicz, Symmetries and the
Einstein-Maxwell field equations. The null field case, Gen.
Relativ. Gravit. 7, 595 (1976).

[34] C. Gundlach and J. M. Martín-García, Charge scaling and
universality in critical collapse, Phys. Rev. D 54, 7353
(1996).

[35] S. Hod and T. Piran, Critical behavior and universality in
gravitational collapse of a charged scalar field, Phys. Rev. D
55, 3485 (1997).

[36] Y. Oren and T. Piran, On the collapse of charged scalar
fields, Phys. Rev. D 68, 044013 (2003).

[37] A. Borkowska, M. Rogatko, and R. Moderski, Collapse of
charged scalar field in dilaton gravity, Phys. Rev. D 83,
084007 (2011)].

[38] M. D. Roberts, Scalar field counterexamples to the
cosmic censorship hypothesis, Gen. Relativ. Gravit. 21, 907
(1989).

[39] P. R. Brady, Analytic example of critical behaviour in scalar
field collapse, Classical Quantum Gravity 11, 1255 (1994).

[40] H. P. de Oliveira and E. S. Cheb-Terrab, Self-similar col-
lapse of conformally coupled scalar fields, Classical Quan-
tum Gravity 13, 425 (1996).

[41] S. S. Yazadjiev, Self-similar collapse of a scalar field in
dilaton gravity and critical behavior, Int. J. Mod. Phys. A 19,
2495 (2004).

[42] X. Zhang and H. Lü, Critical behavior in a massless scalar
field collapse with self-interaction potential, Phys. Rev. D
91, 044046 (2015).

[43] G.W. Gibbons and K. i. Maeda, Black holes and mem-
branes in higher dimensional theories with dilaton fields,
Nucl. Phys. B298, 741 (1988).

[44] D. Garfinkle, G. T. Horowitz, and A. Strominger, Charged
black holes in string theory, Phys. Rev. D 43, 3140 (1991);
Erratum, Phys. Rev. D 45, 3888(E) (1992).

SELF-SIMILARITY IN EINSTEIN-MAXWELL-DILATON … PHYS. REV. D 98, 104063 (2018)

104063-17

https://doi.org/10.1103/PhysRevLett.72.1782
https://doi.org/10.1103/PhysRevLett.74.5170
https://doi.org/10.1103/PhysRevLett.74.5170
https://doi.org/10.1016/0370-2693(95)01381-4
https://doi.org/10.1016/0370-2693(95)01381-4
https://doi.org/10.1088/0264-9381/17/4/303
https://doi.org/10.1103/PhysRevD.59.104008
https://doi.org/10.1103/PhysRevD.59.104008
https://doi.org/10.1088/0264-9381/19/24/306
https://doi.org/10.1007/BF01205930
https://doi.org/10.1007/BF01223743
https://doi.org/10.1007/BF01223743
https://doi.org/10.1103/PhysRevLett.70.2980
https://doi.org/10.1103/PhysRevLett.116.221103
https://doi.org/10.1103/PhysRevLett.116.221103
https://doi.org/10.1103/PhysRevD.97.064006
https://doi.org/10.1088/0264-9381/16/7/201
https://doi.org/10.1088/0264-9381/30/14/145009
https://doi.org/10.1103/PhysRevD.36.3575
https://doi.org/10.1103/PhysRevD.36.3575
https://doi.org/10.1103/PhysRevD.97.064032
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.119.161101
http://arXiv.org/abs/1807.09081
http://arXiv.org/abs/1807.09081
https://doi.org/10.1088/0264-9381/13/8/017
https://doi.org/10.1088/0264-9381/13/8/017
https://doi.org/10.1088/0264-9381/29/2/025006
https://doi.org/10.1088/0264-9381/29/2/025006
https://doi.org/10.1103/PhysRevD.50.7260
https://doi.org/10.1103/PhysRevD.52.3753.2
https://doi.org/10.1103/PhysRevD.80.024028
https://doi.org/10.1103/PhysRevD.80.024028
https://doi.org/10.1103/PhysRevD.51.4168
https://doi.org/10.1103/PhysRevD.51.4168
https://doi.org/10.2307/2118619
https://doi.org/10.2307/2118619
https://doi.org/10.1007/BF01646482
https://doi.org/10.1088/0264-9381/32/14/145010
https://doi.org/10.1088/0264-9381/32/14/145010
https://doi.org/10.1103/PhysRevD.51.4198
https://doi.org/10.1103/PhysRevD.52.R5397
https://doi.org/10.1103/PhysRevD.52.R5397
https://doi.org/10.1007/BF00771105
https://doi.org/10.1007/BF00763408
https://doi.org/10.1007/BF00763408
https://doi.org/10.1103/PhysRevD.54.7353
https://doi.org/10.1103/PhysRevD.54.7353
https://doi.org/10.1103/PhysRevD.55.3485
https://doi.org/10.1103/PhysRevD.55.3485
https://doi.org/10.1103/PhysRevD.68.044013
https://doi.org/10.1103/PhysRevD.83.084007
https://doi.org/10.1103/PhysRevD.83.084007
https://doi.org/10.1007/BF00769864
https://doi.org/10.1007/BF00769864
https://doi.org/10.1088/0264-9381/11/5/012
https://doi.org/10.1088/0264-9381/13/3/010
https://doi.org/10.1088/0264-9381/13/3/010
https://doi.org/10.1142/S0217751X04017793
https://doi.org/10.1142/S0217751X04017793
https://doi.org/10.1103/PhysRevD.91.044046
https://doi.org/10.1103/PhysRevD.91.044046
https://doi.org/10.1016/0550-3213(88)90006-5
https://doi.org/10.1103/PhysRevD.43.3140
https://doi.org/10.1103/PhysRevD.45.3888


[45] R. Kallosh, A. D. Linde, T. Ortin, A. W. Peet, and A. Van
Proeyen, Supersymmetry as a cosmic censor, Phys. Rev. D
46, 5278 (1992).

[46] D. Rasheed, The rotating dyonic black holes of Kaluza-
Klein theory, Nucl. Phys. B454, 379 (1995).

[47] K. C. K. Chan, J. H. Horne, and R. B. Mann, Charged
dilaton black holes with unusual asymptotics, Nucl. Phys.
B447, 441 (1995).

[48] R. Güven and E. Yörük, Stringy Robinson-Trautman
solutions, Phys. Rev. D 54, 6413 (1996).

[49] P. Aniceto and J. V. Rocha, Dynamical black holes in low-
energy string theory, J. High Energy Phys. 05 (2017) 035.

[50] H. Lü and X. Zhang, Exact collapse solutions in D ¼ 4;
N ¼ 4 gauged supergravity and their generalizations,
J. High Energy Phys. 07 (2014) 099.

[51] V. Faraoni, The correspondence between a scalar field
and an effective perfect fluid, Phys. Rev. D 85, 024040
(2012).

[52] P. Aniceto, P. Pani, and J. V. Rocha, Radiating black holes in
Einstein-Maxwell-dilaton theory and cosmic censorship
violation, J. High Energy Phys. 05 (2016) 115.

[53] X. Zhang and X. An, Examples of naked singularity
formation in higher-dimensional Einstein-vacuum space-
times, Ann. Henri Poincare 19, 619 (2018).

JORGE V. ROCHA and MARIJA TOMAŠEVIĆ PHYS. REV. D 98, 104063 (2018)

104063-18

https://doi.org/10.1103/PhysRevD.46.5278
https://doi.org/10.1103/PhysRevD.46.5278
https://doi.org/10.1016/0550-3213(95)00396-A
https://doi.org/10.1016/0550-3213(95)00205-7
https://doi.org/10.1016/0550-3213(95)00205-7
https://doi.org/10.1103/PhysRevD.54.6413
https://doi.org/10.1007/JHEP05(2017)035
https://doi.org/10.1007/JHEP07(2014)099
https://doi.org/10.1103/PhysRevD.85.024040
https://doi.org/10.1103/PhysRevD.85.024040
https://doi.org/10.1007/JHEP05(2016)115
https://doi.org/10.1007/s00023-017-0631-9

