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We perform a test of John Moffat’s modified gravity theory (MOG) within the Milky Way, adopting the
well-known “rotation curve”method. We use the dynamics of observed tracers within the disk to determine
the gravitational potential as a function of galactocentric distance and compare that with the potential that is
expected to be generated by the visible component only (stars and gas) under different “flavors” of theMOG
theory, making use of a state-of-the-art setup for both the observed tracers and baryonic morphology. Our
analysis shows that in both the original and the modified version (considering a self-consistent evaluation of
the MilkyWay mass), the theory fails to reproduce the observed rotation curve. We conclude that in none of
its present formulations is the MOG theory able to explain the observed rotation curve of the Milky Way.
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I. INTRODUCTION

A dark component of matter has become one of the
pillars of the current ΛCDMmodel: it is invoked to explain
the mismatch between the observed dynamical mass and
that inferred by observations of the visible component, of
astrophysical objects over a large range of masses and
spatial scales, from galaxy clusters [1–4] to spiral [5–7] and
dwarf galaxies [8], including our own [9], and it provides a
consistent explanation for the power spectrum of the
cosmic microwave background [10] and for the formation
of astrophysical structures [11]. Yet, the very nature of this
“dark matter” is currently unknown, and none of the
proposed candidates (from stable particles in extensions
of the Standard Model, to primordial black holes [12,13])
has been unambiguously detected yet.
An alternative proposal to explain the mismatch

observed in the data relies on a modification of the theory
of gravity. Several proposals, such as MOdified Newtonian
Dynamics (MOND), Tensor-Vector-Scalar theory of grav-
ity (TeVeS), and MOdified Gravity (MOG) [14–16], have
been able to give an explanation for phenomena around
data coming from numerous and diverse sources: motion of
globular and galaxy clusters [17–19] and rotation curves of
spiral and dwarf galaxies [20,21].
While some analysis indicates that TeVeS and MOG

have difficulties explaining the Bullet cluster data [22] or to
reconcile the gas profile and strong-lensing measurements

in well-known cluster systems [23], others claim that MOG
can fit both the Bullet and the Train Wreck merging clusters
[24,25]. It has been pointed out that the detection of a
neutron star merger by the LIGO experiment rules out
MOND-like theories [26]. A recent analysis states that the
former sentence is correct for bimetric theories such as
MOND and TeVeS, but not for MOG [27]. Some of the
above controversies have yet to be resolved, so it is
currently unclear if MOG phenomenology can offer a
solution at all scales.
In this work, we adopt an agnostic approach and only

focus on the prediction of MOG theory on the scale of spiral
galaxies, with a specific one: our own host. In order to test
the predictions of MOG theory within the Milky Way, we
use state-of-the-art compilations of kinematical tracers and
observationally inferred morphologies, adopted in recent
studies of dark matter distribution [9,28,29], and already
used to test MOND phenomenology [30].

II. MOG THEORIES

The theory includes a massive vector field ϕμ and three
scalar fields G, μ, ω, which represent the gravitational
coupling strength, the mass of the vector field and its
coupling strength respectively. The last one is a dimension-
less field commonly taken as 1. The gravitational action can
be expressed as

SG ¼ −
1

16π

Z
1

G
ðRþ 2ΛÞ ffiffiffiffiffiffi

−g
p

d4x: ð1Þ

Also, the massive vector field ϕμ action is*cnegrelli@fcaglp.unlp.edu.ar
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where Bμν ¼ ∂μϕν − ∂νϕμ and Vϕðϕμ;ϕμÞ are the Faraday
tensor and the self interaction potential associated with the
vector field, respectively.
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Here, ∇ν is the covariant derivative with respect to the
metric gμν, VGðGÞ and VμðμÞ are the self-interaction
potentials associated with the scalar fields.
For studying the behavior ofMOG on astrophysical scales

we can use the weak field approximation for the dynamics of
the fields, perturbing them around Minkowski space time for
an arbitrary distribution of nonrelativistic matter. Under this
scheme, the scalar fields remain constant. Following [20] the
acceleration of a test particle as the gradient of the effective

potential ða⃗ ¼ −∇⃗ΦeffÞ can be written as

a⃗ðx⃗Þ ¼ −GN

Z
ρðx⃗0Þðx⃗ − x⃗0Þ
jx⃗ − x⃗0j3

× ½1þ α − αe−μjx⃗−x⃗0jð1þ μjx⃗ − x⃗0jÞ�d3x⃗0: ð4Þ
The parameter α and the vector field mass μ control the
strength and the range of the “fifth force” interaction
respectively, and their estimates made in [31] as functions
of the mass are given by1

α ¼ M

ð ffiffiffiffiffi
M

p þ EÞ2
�
G∞

GN
− 1

�
; ð5Þ

and

μ ¼ Dffiffiffiffiffi
M

p ; ð6Þ

where μ is in units of kpc−1. Hereafter, the dimension of μ
will not be specified anymore. G∞ ≃ 20GN represents the
effective gravitational constant at infinity, while D and E are
determined using observational data [31].

III. METHODOLOGY AND SETUP

In order to test the most common MOG scenarios
with our Galaxy, we use a comprehensive compilation of
kinematic tracers of the Milky Way and a state-of-the-art
modeling of the baryons, both presented in Ref. [9]. We

improve the analysis over previous ones in the Milky Way
[32] by (a) adopting—separately—two compilations of
tracers of the rotation curve, which have a higher density of
data in the galactocentric distances 2.5 < R < 25 kpc,
whereas the data set adopted in [32] is denser in the
interval 20 < R < 100 kpc and (b) for the rotation curve
expected by the baryonic component, implementing a full
set of three-dimensional observationally inferred baryonic
morphologies including bulge, disk, and gas components,
and solving the integral in Eq. (4) numerically, whereas
[32] employs only an analytical formulation [33].
As observed tracers of the gravitational potential, we

adopt the compilation of halo star data from [34] (hereafter
“Huang”), which extends up to 100 kpc. We also test our
final results against the compilation of tracers galkin first
presented in [9] (and Supplemental Material [51] therein)
and then publicly released in [35], which offers an enhanced
number of diverse types of objects within the disk, in the
innermost regions of the Milky Way. Our conclusions
remain qualitatively unchanged when using the two compi-
lations, based on different types of objects, subject to
different analyses, and in different regions of theMilkyWay.
To model the density field of the baryonic content

(stars and gas) within the Milky Way, we adopt a set of
observationally inferred morphologies, separating the stel-
lar component in bulge and disk, and also accounting for
the interstellar gas. By combining individually a selected
choice of each component (and then varying one at a time)
we obtain a large array of individual morphologies which
bracket the systematic uncertainty on the distribution of the
baryonic mass of our Galaxy.
We follow the technique first presented in [28], sum-

marizing here its most crucial points; we address the reader
to the original publications [9,28,29] for further details.
Bulge and disk density profiles are individually normal-

ized to the MACHOmicrolensing optical depth observation
in the Galactic Center region [36] and to the surface stellar
density measurement [37], respectively. Both observations
carry statistical uncertainties propagating to the normali-
zation of the bulge and disk.
Together with the gas component, a statistical uncer-

tainty is thus associated to the total baryonic density of the
Galaxy. This propagates to the rotational velocity computed
through the gravitational potential, allowing a statistically
meaningful test of the rotation curve obtained for each
single morphology.
We integrate these full three-dimensional density func-

tions of bulge, disk and gas through Eq. (4) in order to
obtain the MOG acceleration at each galactocentric dis-
tance, and its corresponding circular velocity at the Galactic
plane, i.e., z ¼ 0.
The rotation curve for the baryonic component under the

MOG potential is compared to the observed rotation curve,
building a χ2 for the angular velocities wðRÞ ¼ vcðRÞ=R,
adopting the uncertainties on the observed RC, and that for
baryons as described above; for both compilations the data

1This expression is derived for a spherically symmetric point-
like source, which is not the situation at hand. However we
consider this analytical expression as the first guess for α and μ.
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are taken individually, without binning. When the galkin
compilation is adopted, instead of the usual definition of χ2

we use the function described in [9] [Eq. (2) of the
Supplemental Material [51]], which accounts for uncer-
tainties both in angular velocities and galactocentric dis-
tances, and it has been shown to have a χ2 distribution.2

IV. RESULTS

We use the setup built above in order to test the MOG
theory for each single morphology in our catalog. For
the sake of clarity, we first describe results for a single
morphology, denoted a “representative,” composed of the
disk in [39], the E2 bulge in [40], and the gas [41,42]
(number 8 in Table I). We generalize our results to all other
morphologies at the end of this section.
We test the MOG theory in its “standard” formulation,

adopting the couple of parameters (α, μ) indicated by
Moffat as the best possible values to fit spiral galaxies [20]
ðα; μÞSG and the Milky Way [32] ðα; μÞMW. The latter are
obtained through Eqs. (5) and (6) with a Milky Way
baryonic mass of MMW

Mof ¼4×1010M⊙. Parameters ðα; μÞC
are set using the same approach but with a different mass

TABLE I. χ̃2 for all MOG “flavors” (MW, SG, C), parameters obtained as described in text. For all morphologies, gas profiles taken
from [41,42] are added to the quoted disk and bulge (G2 or E2 refers to different configurations in [40]), and MW baryonic mass is
computed self-consistently.

S. No.

Baryonic
morphology
[disk] [bulge]

Newton χ̃2

Huang–galkin
MW χ̃2

Huang–galkin
SG χ̃2

Huang–galkin
C χ̃2

Huang–galkin ðα; μÞC
MMW

C

ð1010 M⊙Þ
1 [40,43] G2 31.83–10.69 4.50–4.25 4.68–4.25 8.59–5.96 (15.79, 2.43 × 10−2) 6.6þ0.6

−0.4
2 [40,43] E2 30.80–9.89 4.11–3.83 4.25–3.83 8.00–5.39 (15.80, 2.41 × 10−2) 6.7þ0.7

−0.6
3 [43,44] 32.90–8.51 3.36–3.10 3.43–3.10 6.85–4.37 (15.83, 2.39 × 10−2) 6.8þ0.7

−0.6
4 [43,45] 29.85–9.45 3.71–3.51 3.79–3.51 7.47–5.03 (15.83, 2.39 × 10−2) 6.8þ0.7

−0.6
5 [43,46] 35.73–11.40 4.93–4.66 5.16–4.66 9.21–6.51 (15.77, 2.44 × 10−2) 6.6� 0.6
6 [43,47] 28.67–13.65 6.17–6.00 6.48–6.00 13.00–8.43 (15.74, 2.47 × 10−2) 6.4þ0.6

−0.5
7 [39,40] G2 33.84–12.69 5.51–5.45 5.74–5.44 9.86–7.37 (15.79, 2.42 × 10−2) 6.6þ0.6

−0.4
8 [39,40] E2 32.65–11.72 5.02–4.90 5.20–4.90 9.14–6.65 (15.80, 2.41 × 10−2) 6.7þ0.7

−0.6
9 [39,44] 30.19–10.04 4.06–3.93 4.17–3.93 7.72–5.23 (15.84, 2.38 × 10−2) 6.9þ0.7

−0.6
10 [39,45] 31.62–11.22 4.54–4.50 4.66–4.50 8.53–6.22 (15.83, 2.39 × 10−2) 6.9þ0.7

−0.6
11 [39,46] 35.10–13.56 6.06–5.98 6.33–5.97 10.64–8.10 (15.77, 2.44 × 10−2) 6.6� 0.6
12 [39,47] 38.46–16.32 7.66–7.74 8.03–7.74 15.79–10.60 (15.73, 2.47 × 10−2) 6.4þ0.6

−0.5
13 [40,48] G2 33.70–12.39 5.43–5.29 5.66–5.28 9.80–7.17 (15.79, 2.42 × 10−2) 6.7þ0.6

−0.4
14 [40,48] E2 32.54–11.45 4.94–4.76 5.15–4.76 9.09–6.47 (15.81, 2.41 × 10−2) 6.7þ0.7

−0.6
15 [44,48] 30.14–9.82 4.02–3.83 4.14–3.83 7.71–5.11 (15.84, 2.38 × 10−2) 6.9þ0.7

−0.6
16 [45,48] 31.50–10.95 4.46–4.37 4.60–4.37 8.49–6.06 (15.84, 2.38 × 10−2) 6.9þ0.7

−0.6
17 [46,48] 34.93–13.23 5.96–5.80 6.24–5.79 10.56–7.86 (15.78, 2.44 × 10−2) 6.6� 0.6
18 [47,48] 38.18–15.89 7.5–7.48 7.87–7.47 15.49–10.27 (15.74, 2.47 × 10−2) 6.4þ0.6

−0.5
19 [40,49] G2 32.81–11.45 5.22–4.91 5.18–4.90 8.46–5.96 (15.91, 2.32 × 10−2) 7.2þ0.6

−0.5
20 [40,49] E2 31.79–10.66 4.79–4.48 4.76–4.47 7.86–5.35 (15.92, 2.31 × 10−2) 7.3þ0.7

−0.6
21 [44,49] 33.86–9.26 3.99–3.71 3.99–3.70 6.69–4.35 (15.95, 2.29 × 10−2) 7.5þ0.8

−0.7
22 [45,49] 30.64–10.19 4.21–4.07 4.20–4.06 7.30–5.01 (15.95, 2.29 × 10−2) 7.5þ0.7

−0.6
23 [46,49] 36.51–12.17 5.68–5.33 5.63–5.32 9.11–6.45 (15.89, 2.34 × 10−2) 7.2þ0.7

−0.6
24 [47,49] 29.76–14.42 6.91–6.67 6.83–6.66 12.91–8.34 (15.85, 2.37 × 10−2) 7.0� 0.6
25 [37,40] G2 24.48–4.87 1.94–1.50 1.79–1.51 4.50–2.07 (15.94, 2.30 × 10−2) 7.4þ0.7

−0.6
26 [37,40] E2 24.02–4.64 1.84–1.42 1.68–1.43 4.30–1.97 (15.94, 2.29 × 10−2) 7.4þ0.8

−0.7
27 [37,44] 23.23–4.15 1.70–1.29 1.53–1.29 3.97–1.72 (15.95, 2.29 × 10−2) 7.5þ0.8

−0.7
28 [37,45] 22.9–4.47 1.58–1.26 1.32–1.27 3.82–1.84 (15.98, 2.26 × 10−2) 7.7þ0.8

−0.7
29 [37,46] 24.93–3.89 2.03–1.58 1.90–1.59 4.76–2.20 (15.93, 2.30 × 10−2) 7.4� 0.7
30 [37,47] 25.78–5.88 2.20–1.81 2.08–1.81 5.40–2.62 (15.92, 2.31 × 10−2) 7.3þ0.7

−0.6

2We only include data points at R > Rcut ¼ 2.5 kpc in the
analysis, in order to avoid spurious results due to a departure from
the cylindrical symmetry of the Galactic bulge, e.g., [9,38].
Further tests of the validity of the results against the depar-
ture from circularity and most relevant sources of asymmetry
are performed in the Supplemental Material of [9]. We
adopt ðR0;V0Þ ¼ ð8.35 kpc; 239.89 km=sÞ and ðU;V;WÞ⊙ ¼
ð7.01; 10.13; 4.95Þ km=s. Varying these Galactic parameters
within the currently accepted range of systematic uncertainties
does not modify our conclusions [9,30].
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value MMW
C ¼ð6.7þ0.7−0.6Þ×1010M⊙ that we self-consistently

obtain from our morphological model.
In Table I, row 8, we show the values of reduced χ2 for

each of these three sets of parameters, which falls beyond
the 5σ equivalent χ̃25σ [2.41 for Huang (43 d.o.f.) and 1.14
for galkin (2701 d.o.f.)], thus indicating that for this
morphology, MOG theory with these parameters is ruled
out with a large degree of confidence.
A check by using the most recent data compilation

galkin finds no qualitative change, leaving intact the
above conclusion. The difference in absolute values of χ2

between the two compilations reflects the sensitivity of the
two data sets to different regions of the MW.
Existing work [50] assigns an uncertainty to D ¼

ð6.44� 0.20Þ M1=2
⊙ pc−1 and E¼ð28.4�7.9Þ×103 M1=2

⊙ ,
which propagates to the values of (α, μ) when applying
Eqs. (5) and (6) to the value of the baryonic mass of the
Galaxy with its uncertainties.
We thus obtain the parameter interval α ¼ 15.4� 1.0

and μ ¼ ð2.5� 0.2Þ × 10−2. We scan this interval and find
that for each point in this two-dimensional space, the
reduced χ2 is beyond the 5σ equivalent (we use the Huang
compilation’s χ̃2 as reference in the scan), with the lowest
one being χ̃2BF ¼ 8.60, for the parameter point ðα; μÞBF ¼
ð16.4; 2.7 × 10−2Þ. This bears the conclusion that MOG
theory fails to explain the observed rotation curve of the
Milky Way, for the morphology studied here.
As is appreciable from both Table I, row 8, and Fig. 1 of

the Supplemental Material [51], MOG admittedly performs

better than Newtonian gravity, but fails to describe the
shape of the observed rotation curve.
We now extend our methodology to the entire set of

morphologies contemplated by previous studies. It is
worth recalling here that each possible morphology is
alternative to another one, and it is not possible to infer
from their ensemble any median, mean, or “typical” value.
However, they represent a nearly complete set of all possible
morphologies still considered viable to date, and their spread
can be considered a satisfactory indicator of the systematics
present for the Milky Way, with the conclusion that the
actual physical reality must reasonably lie within them.
Separately and for each of the morphologies, we self-

consistently compute the baryonic mass and identify the
corresponding “corrected” point in the ðα; μÞ by applying
Eqs. (5) and (6). We then produce the rotation curve and its
uncertainties, and we compute the reduced χ2 by using the
Huang data compilation.
The reduced χ2 values for all morphologies are shown in

Table I, for parameters ðα; μÞMW, ðα; μÞSG and ðα; μÞC,
respectively, showing disagreement between the MOG
rotation curve and the observed one at more than 5σ
for all morphologies with the exception of one set.
Morphologies carrying the disk in [37] (“BR disk” here-
after) bear χ2 visibly better than others (while still excluded
at more than a 5σ equivalent when tested against the
galkin compilation) because this disk is heavier than the
others considered, thus carrying the overall normalization
of the obtained rotation curve closer to the observed one in

FIG. 1. Rotation curves for the MOG “flavor”: relevant cases MW, SG, C, and BF, for our “best-fitting” morphology, no. 28.
Uncertainties are shown only for the observational data, with the central value only displayed for “MOG-expected” baryonic rotation
curves, to ease visualization.
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the innermost regions. We select the morphology that
systematically produces the best χ2 (no. 28 in Table I),
and we scan the parameter space around the point defined
by the central value of the mass up to the point defined
by the current uncertainty, as done for the representative
morphology. The baryonic mass for this morphology is
MMW

C ¼ ð7.7þ0.8
−0.7Þ × 1010 M⊙, and the parameter space

scanned is α ∈ ½14.7; 16.6� and μ ∈ ½2.14; 2.52�×
10−2 kpc−1. Within this range, the best-fitting point is
ðα; μÞBF ¼ ð16.6; 2.52 × 10−2 kpc−1Þ, bearing the reduced
χ̃2 ¼ 2.78, which for the degrees of freedom of the Huang
is incompatible at more than 5σ.
In Fig. 1, we show the data together with the rotation

curve for this best-fitting morphology, for all the significant
points (MW, SG, C) in the parameter space, including the
best-fitting point.
None of these curves manages to capture the very

behavior in the central 15 kpc—the entirety of the visible
Milky Way—always producing rotation curves below the
observed ones. We test the points above against the
galkin compilation, which is richer of data in the region
in object, and report the corresponding χ2 values in Table I
and the above paragraph. Better than for any other case,
they indicate an incompatibility at more than 5σ for all the
cases in the object, thus again bearing the conclusion that
MOG theory cannot explain the observed rotation curve of
the Milky Way.3

V. CONCLUSIONS

We have performed a test of MOG theories against
the Milky Way dynamics, improving with respect to the
previous analysis on one hand by using the two most recent
compilations of data for the observed rotation curve, and
on the other by adopting a virtually complete set of
observationally inferred morphologies for the stellar and
gas (baryonic) components.
We have also modified the key parameters of the theory, in

order to match them to the baryonic mass of the Milky Way
as self-consistently obtained within the morphologies we
adopt, individually at each time. Once again, the obtained
rotation curves disagree with the observed one with strong
statistical evidence for the entire set of morphologies.
In light of this analysis, we conclude that modifying the

gravitational potential according to the current version of
MOG theory does not offer a viable solution to the
discrepancy between the observed rotation curve and that
generated by the baryons only, in the Milky Way.
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