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The recently proposed definition of complexity for static and spherically symmetric self-gravitating
systems [Herrera, Phys. Rev. D 97, 044010 (2017)] is extended to the fully dynamic situation. In this latter
case we have to consider not only the complexity factor of the structure of the fluid distribution but also the
condition of minimal complexity of the pattern of evolution. As we shall see, these two issues are deeply
intertwined. For the complexity factor of the structure we choose the same as for the static case, whereas for
the simplest pattern of evolution we assume the homologous condition. The dissipative and nondissipative
cases are considered separately. In the latter case the fluid distribution, satisfying the vanishing complexity
factor condition and evolving homologously, corresponds to a homogeneous (in the energy density),
geodesic and shear-free, isotropic (in the pressure) fluid. In the dissipative case the fluid is still geodesic,
but shearing, and there exists (in principle) a large class of solutions. Finally, we discuss the stability of the
vanishing complexity condition.
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I. INTRODUCTION

In a recent paper a new definition of complexity for
spherically symmetric static self-gravitating fluids, in the
context of general relativity, has been introduced [1] (for an
extension of this concept to other theories of gravitation
see [2]).
The new defined variable is sharply different from a

previous definition given in [3–8], which was based on the
work developed by López-Ruiz and collaborators [9,10].
The new concept of complexity, for static spherically

symmetric relativistic fluid distributions, stems from the
basic assumption that one of the less complex systems
corresponds to an homogeneous (in the energy density)
fluid distribution with isotropic pressure. So we assign a
zero value of the complexity factor for such a distribution.
Then, as an obvious candidate to measure the degree of
complexity, emerges a quantity that appears in the orthogo-
nal splitting of the Riemann tensor and that was denoted by
YTF and called the complexity factor.

Themain reason behind such a proposal resides in the fact
that the scalar function YTF contains contributions from the
energy density inhomogeneity and the local pressure
anisotropy, combined in a very specific way, which vanishes
for the homogeneous and locally isotropic fluid distribution.
Also as shown in Appendix A, in the case of a charged fluid,
this scalar also encompasses the effect of the electric charge.
It is worth mentioning that the complexity factor so

defined not only vanishes for the simple configuration
mentioned above but also may vanish when the two terms
appearing in its definition, and containing density inho-
mogeneity and anisotropic pressure, cancel each other.
Thus as in [9], vanishing complexity may correspond to
very different systems.
Once the complexity factor is defined for static fluid

distributions, the obvious question arises: how to define
complexity for dynamical self-gravitating systems? It is the
purpose of this work to answer such a question.
When dealing with time dependent systems we face two

different problems: on the one hand, we have to generalize
the concept of complexity of the structure of the fluid
distribution to time dependent dissipative fluids, and on the
other hand, we also have to evaluate the complexity of the
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patterns of evolution and propose what we consider is the
simplest of them.
As we shall see here, the complexity factor for the

structure of the fluid distribution is the same scalar function
YTF, which now includes the dissipative variables. As for
the simplest pattern of evolution we shall start by consid-
ering two possible modes of evolution: homogeneous
expansion and homologous evolution. For reasons that
will be explained below we shall assume the homologous
condition as the one characterizing the simplest mode of
evolution.
The imposition of the vanishing complexity factor and

the homologous evolution leads to a geodesic fluid. If we
further assume the fluid to be nondissipative (but time
dependent), then it will also be shear-free, endowed with a
homogeneous energy-density and isotropic pressure. Also,
in this case the homogeneous expansion and the homolo-
gous condition imply each other, and there is a unique
solution fulfilling the minimal complexity criteria. In the
most general (dissipative) case the fluid is shearing and
there exist a large family of solutions.
Finally we discuss the stability of the vanishing com-

plexity condition and find the physical factors that could
produce deviations from such a condition.
The paper is organized as follows. In the next section we

present the notation, the general equations, and the vari-
ables required for our discussion. In Sec. III the complexity
factor is defined, whereas in Sec. IV we discuss the
simplest pattern of evolution (homologous and homo-
geneous expansion conditions). The main consequences
derived from the vanishing complexity factor condition and
the homologous evolution are discussed in Secs. V and VI.
The stability of the vanishing complexity factor is tackled
in Sec. VII, and all the obtained results and open issues are
summarized in the last section. Finally, some useful
formulas are given in the appendixes.

II. THE GENERAL SETUP OF THE PROBLEM:
NOTATION, VARIABLES, AND EQUATIONS

We consider a spherically symmetric distribution of
collapsing fluid, which may be bounded by a spherical
surface Σ or not. The fluid is assumed to be locally
anisotropic (principal stresses unequal) and undergoing
dissipation in the form of heat flow (diffusion
approximation).
Choosing comoving coordinates, the general interior

metric can be written as

ds2 ¼ −A2dt2 þ B2dr2 þ R2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where A, B, and R are functions of t and r and are assumed
positive. We number the coordinates x0 ¼ t, x1 ¼ r,
x2 ¼ θ, and x3 ¼ ϕ. Observe that A and B are dimension-
less, whereas R has the same dimension as r.

The matter energy-momentum Tαβ of the fluid distribu-
tion has the form

Tαβ ¼ ðμþ P⊥ÞVαVβ þ P⊥gαβ þ ðPr − P⊥Þχαχβ
þ qαVβ þ Vαqβ; ð2Þ

where μ is the energy density, Pr the radial pressure, P⊥ the
tangential pressure, qα the heat flux, Vα the four velocity
of the fluid, and χα a unit four vector along the radial
direction. These quantities satisfy

VαVα¼−1; Vαqα¼0; χαχα¼1; χαVα¼0: ð3Þ

It will be convenient to express the energy momentum
tensor (2) in the equivalent (canonical) form

Tαβ ¼ μVαVβ þ Phαβ þ Παβ þ qðVαχβ þ χαVβÞ ð4Þ

with

P ¼ Pr þ 2P⊥
3

; hαβ ¼ gαβ þ VαVβ;

Παβ ¼ Π
�
χαχβ −

1

3
hαβ

�
; Π ¼ Pr − P⊥:

Since we are considering comoving observers, we have

Vα ¼ A−1δα0; qα ¼ qB−1δα1; χα ¼ B−1δα1; ð5Þ

where q is a function of t and r.
It is worth noticing that we do not explicitly add bulk or

shear viscosity to the system because they can be trivially
absorbed into the radial and tangential pressures, Pr and
P⊥, of the collapsing fluid (in Π). Also we do not explicitly
introduce dissipation in the free streaming approximation
since it can be absorbed in μ; Pr, and q. Finally, let us
mention that the complexity factor can be extended to the
charged case, as shown in Appendix A (a detailed analysis
of the charged static case is given in [11]).
The Einstein equations for (1) and (4) are explicitly

written in Appendix B.
The acceleration aα and the expansion Θ of the fluid are

given by

aα ¼ Vα;βVβ; Θ ¼ Vα
;α; ð6Þ

and its shear σαβ by

σαβ ¼ Vðα;βÞ þ aðαVβÞ −
1

3
Θhαβ: ð7Þ

From (6) with (5) we have for the acceleration and its
scalar a
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a1 ¼
A0

A
; a ¼

ffiffiffiffiffiffiffiffiffiffi
aαaα

p
¼ A0

AB
; ð8Þ

and for the expansion

Θ ¼ 1

A

�
_B
B
þ 2

_R
R

�
; ð9Þ

where the prime stands for r differentiation and the dot
stands for differentiation with respect to t. With (5) we
obtain for the shear (7) its nonzero components

σ11 ¼
2

3
B2σ; σ22 ¼

σ33
sin2θ

¼ −
1

3
R2σ; ð10Þ

and its scalar

σαβσαβ ¼
2

3
σ2; ð11Þ

where

σ ¼ 1

A

�
_B
B
−

_R
R

�
: ð12Þ

Next, the mass function mðt; rÞ introduced by Misner
and Sharp [12] reads

m ¼ R3

2
R23

23 ¼ R
2

��
_R
A

�2

−
�
R0

B

�
2

þ 1

�
: ð13Þ

Introducing the proper time derivative DT given by

DT ¼ 1

A
∂
∂t ; ð14Þ

we can define the velocity U of the collapsing fluid as the
variation of the areal radius with respect to proper time, i.e.,

U ¼ DTR < 0 ðnegative in the case of collapseÞ; ð15Þ

where R defines the areal radius of a spherical surface
inside the fluid distribution (as measured from its area).
Then (13) can be rewritten as

E≡ R0

B
¼

�
1þ U2 −

2m
R

�
1=2

: ð16Þ

Using (16) we can express (B6) as

4πq ¼ E

�
1

3
DRðΘ − σÞ − σ

R

�
; ð17Þ

where DR denotes the proper radial derivative,

DR ¼ 1

R0
∂
∂r : ð18Þ

Using (B2)–(B4) with (14) and (18) we obtain from (13)

DTm ¼ −4πðPrU þ qEÞR2 ð19Þ

and

DRm ¼ 4π

�
μþ q

U
E

�
R2; ð20Þ

which implies

m ¼ 4π

Z
r

0

�
μþ q

U
E

�
R2R0dr; ð21Þ

satisfying the regular condition mðt; 0Þ ¼ 0.
Integrating (21) we find

3m
R3

¼ 4πμ −
4π

R3

Z
r

0

R3

�
DRμ − 3q

U
RE

�
R0dr: ð22Þ

A. The structure scalars

As we shall see below, the complexity factor, as for
the static case, will be represented by a scalar function
belonging to a set of variables denoted as structure scalars,
and which appear in orthogonal splitting of the Riemann
tensor. Such scalar functions were defined in [13]. Here we
shall briefly review the process of their obtention.
Let us first recall that in the spherically symmetric case

the Weyl tensor (Cρ
αβμ) is defined by its “electric” part Eγν,

since its “magnetic” part vanishes,

Eαβ ¼ CαμβνVμVν; ð23Þ

whose nontrivial components are

E11 ¼
2

3
B2E; E22 ¼ −

1

3
R2E; E33 ¼ E22sin2θ;

ð24Þ

where

E ¼ 1

2A2

�
R̈
R
−
B̈
B
−
�
_R
R
−

_B
B

��
_A
A
þ

_R
R

��

þ 1

2B2

�
A00

A
−
R00

R
þ
�
B0

B
þ R0

R

��
R0

R
−
A0

A

��
−

1

2R2
:

ð25Þ
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Observe that the electric part of the Weyl tensor may be
written as

Eαβ ¼ E
�
χαχβ −

1

3
hαβ

�
: ð26Þ

As we mention in the Introduction, the scalar function YTF
appears in a natural way in the orthogonal splitting of the
Riemann tensor (see [13] for details).
Indeed, let us define tensors Yαβ and Xαβ by

Yαβ ¼ RαγβδVγVδ; ð27Þ

Xαβ ¼� R�
αγβδV

γVδ ¼ 1

2
ηαγ

ϵρR�
ϵρβδV

γVδ; ð28Þ

where R�
αβγδ ¼ 1

2
ηϵργδRαβ

ϵρ.
Tensors Yαβ and Xαβ may be expressed in terms of four

scalar functions YT , YTF; XT; XTF (structure scalars) as

Yαβ ¼
1

3
YThαβ þ YTF

�
χαχβ −

1

3
hαβ

�
; ð29Þ

Xαβ ¼
1

3
XThαβ þ XTF

�
χαχβ −

1

3
hαβ

�
: ð30Þ

Then after lengthy but simple calculations, using field
equations [see (23), (24) in [14]] and (25) we obtain

YT ¼ 4πðμþ 3Pr − 2ΠÞ; YTF ¼ E − 4πΠ; ð31Þ

XT ¼ 8πμ; XTF ¼ −E − 4πΠ: ð32Þ

Next, using (B2), (B4), (B5) with (13) and (25) we
obtain

3m
R3

¼ 4πðμ − ΠÞ − E; ð33Þ

which combined with (22) and (31) produces

YTF ¼ −8πΠþ 4π

R3

Z
r

0

R3

�
DRμ − 3q

U
RE

�
R0dr: ð34Þ

It is worth noticing that due to a different signature, the sign
of YTF in the above equation differs from the sign of the
YTF used in [1] for the static case.
Thus the scalar YTF may be expressed through the Weyl

tensor and the anisotropy of pressure or in terms of the
anisotropy of pressure, the density inhomogeneity, and the
dissipative variables.

From the above it also follows that

XTF ¼ −
4π

R3

Z
r

0

R3

�
DRμ − 3q

U
RE

�
R0dr: ð35Þ

Finally, a differential equation for the Weyl tensor and
the energy density inhomogeneity can be written as

ðXTF þ 4πμÞ0 ¼ −XTF
3R0

R
þ 4πqBðΘ − σÞ ð36Þ

[see (37) in [15]].
From the above equation, it follows at once that in the

nondissipative case

XTF ¼ 0 ⇔ μ0 ¼ 0; ð37Þ

whereas in the general dissipative case

XTF ¼ 0 ⇔ μ0 ¼ qBðΘ − σÞ ¼ qB
3 _R
R

: ð38Þ

B. The exterior spacetime and junction conditions

In the case that we consider bounded fluid distributions,
then we still have to satisfy the junction (Darmois)
conditions. Thus, outside Σ we assume we have the
Vaidya spacetime (i.e., we assume all outgoing radiation
is massless), described by

ds2 ¼ −
�
1 −

2MðvÞ
r

�
dv2 − 2drdvþ r2ðdθ2 þ sin2θdϕ2Þ;

ð39Þ

where MðvÞ denotes the total mass, and v is the
retarded time.
Thus the matching of the full nonadiabatic sphere to the

Vaidya spacetime, on the surface r ¼ rΣ ¼ const, requires

mðt; rÞ ¼Σ MðvÞ; ð40Þ

and

2

�
_R0

R
−

_B
B
R0

R
−

_R
R
A0

A

�
¼Σ −

B
A

�
2
R̈
R
−
�
2
_A
A
−

_R
R

�
_R
R

�

þ A
B

��
2
A0

A
þ R0

R

�
R0

R
−
�
B
R

�
2
�
;

ð41Þ

where¼Σ means that both sides of the equation are evaluated
on Σ.
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Comparing (41) with (B3) and (B4) one obtains

q¼Σ Pr: ð42Þ

Thus the matching of (1) and (39) on Σ implies (40)
and (42).

III. THE COMPLEXITY FACTOR

In the present case the definition of a quantity measuring
the complexity of the system poses two additional prob-
lems with respect to the static case considered in [1].
Indeed, on the one hand, we have to deal with the
complexity of the structure of the object, which in the
static case depends only on the energy density inhomoge-
neity and the pressure anisotropy, but in the case under
consideration should also involve dissipative variables. On
the other hand, we have to consider the complexity of the
pattern of evolution of the system.
For a static fluid distribution it was assumed in [1] that

the simplest system is represented by a homogeneous
(in the energy density), locally isotropic fluid (principal
stresses equal). So a zero value of the complexity factor was
assumed for such a distribution. Furthermore, it was shown
that the Tolman mass, which may be interpreted as the
“active” gravitational mass, may be expressed, for an
arbitrary distribution, through its value for the zero com-
plexity case plus two terms depending on the energy
density inhomogeneity and pressure anisotropy, respec-
tively. These latter terms in its turn may be expressed
through a single scalar function, which turned out to be the
scalar function YTF, and accordingly was identified as the
complexity factor.
We shall consider here that YTF still measures the

complexity of the system, in what corresponds to the
structure of the object, and we shall adopt an assumption
about the simplest possible pattern of evolution.
Specifically, we shall assume that the simplest evolution
pattern (one of them at least) is described by the homolo-
gous evolution.

IV. THE HOMOLOGOUS EVOLUTION AND THE
HOMOGENEOUS EXPANSION CONDITION

Once the complexity factor for the structure of the fluid
distribution has been established, it remains to elucidate
what is the simplest pattern of evolution. Based on purely
intuitive thoughts we can identify two patterns of evolution
that might be considered as the simplest ones, and these are
the homologous evolution and the homogeneous expansion
(Θ0 ¼ 0). As we shall see below, both modes of evolution
imply each other in the nondissipative case. In the most
general, dissipative, case, the arguments presented in the
next section lead us to choose the homologous evolution as
the simplest mode.

A. The homologous evolution

First of all, observe that we can write (17) as

DR

�
U
R

�
¼ 4π

E
qþ σ

R
; ð43Þ

which after integration becomes

U ¼ aðtÞRþ R
Z

r

0

�
4π

E
qþ σ

R

�
R0dr; ð44Þ

where a is an integration function, or

U ¼ UΣ

RΣ
R − R

Z
rΣ

r

�
4π

E
qþ σ

R

�
R0dr: ð45Þ

If the integral in the above equations vanishes, we have
from (44) or (45) that U ∼ R, which is characteristic of the
homologous evolution [16]. This may occur if the fluid
is shear-free and nondissipative, or if the two terms in the
integral cancel each other.
This implies that for two concentric shells of areal radii,

say RI and RII, we have in this case

RI

RII
¼ const: ð46Þ

The equation above strongly suggests that the pattern of
evolution associated with the homologous condition is the
simplest (at least one of them) we could find during the
evolution of the fluid distribution.
Thus, if the evolution is homologous, then

U ¼ aðtÞR; aðtÞ≡UΣ

RΣ
; ð47Þ

from which it follows that R is a separable function; i.e., we
can write

R ¼ R1ðtÞR2ðrÞ: ð48Þ

The second term on the right of (45) describes how
the shear and dissipation deviate the evolution from the
homologous regime.
To summarize, the homologous condition (46) implies

(48), and

4π

R0 Bqþ σ

R
¼ 0; ð49Þ

where (16) has been used.

DEFINITION OF COMPLEXITY FOR DYNAMICAL … PHYS. REV. D 98, 104059 (2018)

104059-5



B. The homogeneous expansion

Another pattern of evolution that could be identified as
“simple” is described by a homogeneous expansion, which
because of (17) implies

4πq ¼ −
R0

B

�
1

3
DRðσÞ þ

σ

R

�
: ð50Þ

From the above it follows that if we impose both
conditions [i.e., (49) and (50)], we get DRðσÞ ¼ 0, which
implies because of the regularity conditions in the neigh-
borhood of the center that σ ¼ 0, i.e., that we have no
dissipation.
From (50) it follows at once that if the fluid is shear-free

and the expansion scalar is homogeneous, then the fluid is
necessarily nondissipative. In this case as it follows from
(45), the fluid is also homologous.

V. SOME KINEMATICAL CONSIDERATIONS

As we have seen, the homologous condition (49) reads

4πBq ¼ −
σR0

R
: ð51Þ

Feeding back this last expression into (B6), we obtain

ðΘ − σÞ0 ¼ 0; ð52Þ

whereas using (9) and (12) we get

ðΘ − σÞ0 ¼
�
3

A

_R
R

�0
¼ 0: ð53Þ

Then using (48) it follows at once that

A0 ¼ 0; ð54Þ

implying that the fluid is geodesic, as it follows from (8).
Also, by reparametrizing the coordinate r, we may put,
without loss of generality, A ¼ 1.
On the other hand, the inverse is also true; i.e., the

geodesic condition implies that the fluid is homologous.
Indeed, from the geodesic condition we have A ¼ 1,
implying

Θ − σ ¼ 3
_R
R
: ð55Þ

Evaluating this last equation close to the center where
R ∼ r we obtain that ðΘ − σÞ0 ¼ 0 (close to the center).
Taking successive r derivatives of (55) we obtain that close
to the center

∂nðΘ − σÞ
∂rn ¼ 0; ð56Þ

for any n > 0. Then assuming that ðΘ − σÞ0 is of class Cω,
i.e., that it equals its Taylor series expansion around the
center, we can analytically continue the zero value at the
center to the whole configuration, recovering (52), which
implies that the fluid is homologous.
Thus the homologous condition and the geodesic con-

dition imply each other.
In the nondissipative case, the homologous condition not

only implies that the fluid is geodesic but also that it is
shear-free, as it follows at once from (45) or (49). Of
course, in this case (nondissipative), the shear-free con-
dition also implies the homologous condition.
Let us now take a look at the homogeneous expansion

condition in the nondissipative case. This condition implies
because of (50)

σ0

σ
¼ −

3R0

R
; ð57Þ

which after integration produces

σ ¼ fðtÞ
R3

; ð58Þ

where fðtÞ is an arbitrary integration function.
Since at the origin r ¼ 0 we have R ¼ 0, it follows that

we must put f ¼ 0, implying that σ ¼ 0.
On the other hand, we see at once from (B6) that if

σ ¼ 0, then Θ0 ¼ 0.
To summarize, we have that in the nondissipative case

σ ¼ 0 ⇔ U ∼ R ⇔ Θ0 ¼ 0: ð59Þ

Therefore in the nondissipative case the homologous
condition and the homogeneous expansion condition
implies each other. Accordingly in this particular case
(nondissipative) the criterion to define the simplest pattern
of evolution is unique.
An important point to mention here is that as we have

shown in [17], an initially shear-free geodesic fluid remains
shear-free and geodesic during the evolution iff YTF ¼ 0.
Therefore, if we consider a system that starts its evolution
from the rest (σ ¼ 0), it will remain shear-free if the fluid is
geodesic (or equivalently, homologous) and YTF ¼ 0. This
is an additional argument to support our choice of YTF as
the complexity factor.
Let us now turn to the following question: how is the

homogeneous expansion condition related to the shear (in
the general dissipative case)?
If we assume that Θ0 ¼ 0, then Eq. (B6) becomes

σ0 þ 3σR0

R
þ 12πqB ¼ 0; ð60Þ

whose solution is
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σ ¼ −
12π

R
r
0 R

3qBdr̄
R3

: ð61Þ

The above expression is incompatible with the homolo-
gous condition, unless we assume q ¼ σ ¼ 0, as can be
seen very easily by using (51) in (61). This, of course, is
consistent with our previous remarks about the impossibil-
ity of imposing simultaneously the homologous and the
homogeneous expansion conditions, in the presence of
dissipation.

VI. SOME DYNAMICAL CONSIDERATIONS

We have seen that the homologous condition implies that
the fluid is geodesic, even in the general dissipative case.
Then if we impose the homologous condition, Eq. (C5)
becomes

DTU ¼ −
m
R2

− 4πPrR: ð62Þ

The above equation may be written in terms of YTF as

3DTU
R

¼ −4πðμþ 3Pr − 2ΠÞ þ YTF; ð63Þ

where (31) has been used.
Using (B2), (B4), (B5) with (13) and (25) we obtain

3m
R3

¼ 4πðμ − ΠÞ − E: ð64Þ

Next from the field equations we obtain

4πðμþ 3Pr − 2ΠÞ ¼ −
2R̈
R

−
B̈
B
; ð65Þ

and from the definition of U

3DTU
R

¼ 3R̈
R

; ð66Þ

feeding back the two equations above into (63), it follows
that

R̈
R
−
B̈
B
¼ YTF: ð67Þ

Since we are assuming the fluid to be homologous, then
using (47), we can write (63) as

3

�
_aðtÞ þ aðtÞ

_R
R

�
¼ −4πðμþ 3Pr − 2ΠÞ þ YTF: ð68Þ

In the case YTF ¼ 0, the integration of (67) produces

B ¼ R1ðtÞ
�
b1ðrÞ

Z
dt

R1ðtÞ2
þ b2ðrÞ

�
; ð69Þ

where b1ðrÞ and b2ðrÞ are two functions of integration.
It will be convenient to write the above equation as

B ¼ R1ðtÞR0
2ðrÞ

�
b̃1ðrÞ

Z
dt

R1ðtÞ2
þ b̃2ðrÞ

�
; ð70Þ

with b1ðrÞ ¼ b̃1ðrÞR0
2 and b2ðrÞ ¼ b̃2ðrÞR0

2.
Then introducing the variable

Z ¼ b̃1ðrÞ
Z

dt
R1ðtÞ2

þ b̃2ðrÞ; ð71Þ

we may write

B ¼ ZR0: ð72Þ

Let us now consider first the nondissipative case.

A. The nondissipative case

If we further assume the fluid to be nondissipative, then
recalling that in this case the homologous conditions imply
the vanishing of the shear, we have because of (12) and (59)

R̈
R
−
B̈
B
¼ 0 ⇒ YTF ¼ 0: ð73Þ

In other words, in this particular case, the homologous
condition already implies the vanishing complexity factor
condition.
Furthermore, since the fluid is shear-free, we have

because of (12) and (69)

b1ðrÞ ¼ 0 ⇒ B ¼ b2ðrÞR1ðtÞ ¼ b̃2ðrÞR1ðtÞR0
2: ð74Þ

Then reparametrizing r as b̃2ðrÞdr ⇒ dr, we may put
without loss of generality B ¼ R1ðtÞR2ðrÞ0, or equivalently
Z ¼ 1. Thus, it appears that all nondissipative configura-
tions evolving homologously and satisfying YTF ¼ 0
belong to what are called “Euclidean stars” [18], charac-
terized by the condition Z ¼ 1 ⇒ B ¼ R0. However, as we
shall see below, among all possible solutions satisfying the
“Euclidean condition,” only one evolves homologously and
satisfies the condition YTF ¼ 0.
Indeed, we may rewrite the field equations (B3), (B4),

and (B5) as

4πq ¼ −
_Z

Z2R
; ð75Þ
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8πðPr − P⊥Þ ¼
_Z _R
ZR

þ 1

Z2R2

�
Z0R
ZR0 þ 1 − Z2

�
: ð76Þ

Since in this case we have Z ¼ 1, then Π ¼
Pr − P⊥ ¼ 0, which implies because of the YTF ¼ 0
condition that μ0 ¼ 0.
But we know that a shear-free, geodesic (nondissipative)

fluid with isotropic pressure is necessarily dust with
homogeneous energy density and vanishing Weyl tensor
(see [13,19]). It goes without saying that this kind of system
represents the simplest possible configuration (Friedman-
Robertson-Walker).
Thus for the nondissipative case, the homologous con-

dition implies YTF ¼ 0 and produces the simplest configu-
ration. This configuration is the only one evolving
homologously and satisfying YTF ¼ 0.
Of course, solutions satisfying YTF ¼ 0 but not

evolving homologously do exist. They only require 8πΠ ¼
4π
R3

R
r
0 R

3μ0dr. In such a case the solutions are shearing, and
neither conformally flat nor geodesic.
Based on all the precedent comments we shall assume

the homologous evolution as the simplest one. It is worth
recalling that in the nondissipative case both conditions
(homologous and homogeneous expansion) imply
each other.

B. The dissipative case

In the dissipative case, we may obtain from (12) and (73)

_σ ¼ −YTF þ
�
_R
R

�2

−
�
_B
B

�2

: ð77Þ

Then, taking the t derivative of (51) and using (77) we
obtain

YTF
R0

R
¼ 4πBq

�
_q
q
þ 2

_B
B
þ

_R
R

�
: ð78Þ

If we assume YTF ¼ 0, then we obtain

q ¼ fðrÞ
B2R

; ð79Þ

implying

_q ¼ −qðΘþ σÞ; ð80Þ

where f is an arbitrary integration function. Solutions of
this kind may be found by using the general methods
presented in [20–23].
Now, in a dissipative process, the stationary state, i.e., the

absence of transient phenomena, might be regarded as an
example of the simplest dissipative regime. Thus, if we

assume the stationary state (neglecting the relaxation time),
then the transport equation (E1) reads

q ¼ −
κT 0

B
: ð81Þ

Combining the above equation with (79) we obtain

T 0 ¼ −
fðrÞ
κBR

: ð82Þ

At this point, however, neither can we support further the
assumption about the vanishing of the relaxation time as an
indicator of minimum complexity about the dissipative
regime nor can we prove that exact solutions of this
kind exist.

VII. STABILITY OF THE VANISHING
COMPLEXITY FACTOR CONDITION

Using the general method developed in [13] we may
write evolution equations for the structure scalars [see
Eq. (102) in that reference]. Thus, with the notation used
here, we obtain for the evolution of XTF Eq. (D1), which
produces

− 4πðμþ PrÞσ −
4π

B

�
q0 −

qR0

R

�

− _YTF − 8π _Π −
3 _RYTF

R
− 16πΠ

_R
R
¼ 0; ð83Þ

where (31), (32), and (C1) have been used.
Our goal in this section consists in looking for the

conditions under which an initial state of the vanishing
complexity factor propagates in time under the homologous
condition.
Let us first consider the nondissipative case. In this

latter case we have at some initial moment (say, t ¼ 0)
YTF ¼ q ¼ σ ¼ Π ¼ 0, and then (83) becomes

− _YTF − 8π _Π ¼ 0: ð84Þ

It is worth noticing that taking the t derivative of (34) and
evaluating at t ¼ 0, under the conditions above it follows
that ð_μÞ0 ¼ 0.
Next, taking the t derivative of (83), and recalling that if

YTF ¼ 0, the only solution compatible with an initially
shear-free flow is a shear-free flow (see [17] for details),
we obtain

−ŸTF − 8πΠ̈þ 8π _Π _R
R

¼ 0: ð85Þ

On the other hand, taking the second time derivative of
(34) and using (85) it follows that
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2 _R _Π ¼ 1

R2

Z
r

0

ðμ̈Þ0dr: ð86Þ

Continuing with this process and taking the t derivative
of order n (for any n > 0), we see that the system could
depart from the vanishing complexity factor condition only
if it departs from the isotropic pressure and the homo-
geneous energy density conditions. Deviations from these
two conditions are, of course, related as indicated in (86).
In the most general case, when the system is dissipative,

we have at the initial moment

− 4πðμþ PrÞσ −
4π

B

�
q0 −

qR0

R

�

− _YTF − 8π _Π − 16πΠ
_R
R
¼ 0: ð87Þ

Without entering into a detailed discussion about this last
equation, let us just mention the obvious fact that now the
heat flux also affects the stability of the YTF ¼ 0 condition.

VIII. CONCLUSIONS

We have discussed the complexity of dynamical spheri-
cally symmetric relativistic fluid distributions. For doing
that we have considered two different (although related)
aspects of the definition of complexity when dealing with a
dynamical fluid. On the one hand, we have considered the
problem of measuring the complexity of the structure of the
fluid itself, and on the other hand, we have considered
the degree of complexity of the pattern of evolution of the
fluid distribution.
As a measure of complexity of the structure of the fluid

(the complexity factor) we have chosen the scalar function
YTF. The reasons for doing so are the following:
(1) It is the same complexity factor as for the static case,

ensuring thereby that in the limit to the static regime
we recover the correct expression for the complexity
factor.

(2) It encompasses the dissipative variables.
(3) In the nondissipative case, the homologous condi-

tion implies the vanishing of YTF.
Next, we discussed the complexity of the pattern of

evolution. Two possibilities appear as the more obvious
candidates: the homologous condition and the homo-
geneous expansion. We have leaned toward the former
option, for the following reasons:
(1) It implies that the fluid is geodesic, even in the most

general (dissipative) case. It is clear that the geodesic
flow represents one of the simplest patterns of
evolution.

(2) In the nondissipative case it implies that YTF ¼ 0,
meaning that (in this case) the simplest pattern of
evolution already implies the simplest structure of
the fluid distribution.

(3) In the nondissipative case it leads to a unique
solution, which from simple physical analysis ap-
pears as the simplest possible system.

Next, we tackled the problem of the stability of the
vanishing complexity factor condition. In the nondissi-
pative case it appears clearly that such a condition
will propagate in time, as far as the pressure remains
isotropic. In the dissipative case, however, the situation is
much more complicated and dissipative terms may also
deviate the system from the vanishing complexity factor
condition.
Finally, we point out what we believe is the main

unsolved problem (in the spherically symmetric case).
Indeed, in the dissipative case we have found that the
heat flux vector satisfying the vanishing complexity factor
condition is of the form given by Eq. (79). However, in
spite of all the efforts deployed so far, important questions
remain unanswered, namely:
(1) Do physically meaningful dissipative models sat-

isfying (79) exist?
(2) If the answer to the above question is positive, then

is there a unique solution or are there a large number
of them?

(3) What is the physical meaning of such solution(s)?
(4) Is it physically reasonable to neglect transient

effects when considering the simplest dissipative
system, and to assume that the relaxation time
vanishes?

(5) To summarize the questions above: is there a specific
dissipative regime that could be considered as the
simplest one?

Besides the questions above, there is an obvious pending
problem regarding the extension of these results to non-
spherically symmetric fluid distributions.
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APPENDIX A: THE CHARGED CASE

If we assume the fluid to be electrically charged, then
we have for YTF (see [14] for details)

YTF ¼ −8πΠeff þ 4π

R3

Z
r

0

R3

�
μ0eff −

3qBU
R

�
dr; ðA1Þ

with

μeff ¼ μþ s2

8πR4
; ðA2Þ

Peff
r ¼ Pr −

s2

8πR4
; ðA3Þ
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Peff⊥ ¼ P⊥ þ s2

8πR4
; ðA4Þ

and

Peff
r − Peff⊥ ≡ Πeff ¼ Π −

s2

4πR4
; ðA5Þ

where sðrÞ denotes the electric charge interior to radius r
and is given by

sðrÞ ¼ 4π

Z
r

0

ςBR2dr; ðA6Þ

where ς is the charge density.

Thus, YTF has the same form as for the neutral fluid, with
the physical variables μ; Pr; P⊥ replaced by their corre-
sponding “effective variables” (A2)–(A5). As a matter of
fact, all the relevant equations are the same modulo this
replacement (see [11] for a detailed treatment of this case in
the static regime).

APPENDIX B: EINSTEIN EQUATIONS

Einstein’s field equations for the interior spacetime (1)
are given by

Gαβ ¼ 8πTαβ; ðB1Þ

and its nonzero components with (1), (2), and (5) become

8πT00 ¼ 8πμA2 ¼
�
2
_B
B
þ

_R
R

�
_R
R
−
�
A
B

�
2
�
2
R00

R
þ
�
R0

R

�
2

− 2
B0

B
R0

R
−
�
B
R

�
2
�
; ðB2Þ

8πT01 ¼ −8πqAB ¼ −2
�
_R0

R
−

_B
B
R0

R
−

_R
R
A0

A

�
; ðB3Þ

8πT11 ¼ 8πPrB2 ¼ −
�
B
A

�
2
�
2
R̈
R
−
�
2
_A
A
−

_R
R

�
_R
R

�
þ
�
2
A0

A
þ R0

R

�
R0

R
−
�
B
R

�
2

; ðB4Þ

8πT22 ¼
8π

sin2θ
T33 ¼ 8πP⊥R2 ¼ −

�
R
A

�
2
�
B̈
B
þ R̈
R
−

_A
A

�
_B
B
þ

_R
R

�
þ

_B
B

_R
R

�
þ
�
R
B

�
2
�
A00

A
þ R00

R
−
A0

A
B0

B
þ
�
A0

A
−
B0

B

�
R0

R

�
:

ðB5Þ

Component (B3) can be rewritten with (9) and (11) as

4πqB ¼ 1

3
ðΘ − σÞ0 − σ

R0

R
: ðB6Þ

APPENDIX C: DYNAMICAL EQUATIONS

The nontrivial components of the Bianchi identities, Tαβ
;β ¼ 0, from (B1) yield

Tαβ
;β Vα ¼ −

1

A

�
_μþ ðμþ PrÞ

_B
B
þ 2ðμþ P⊥Þ

_R
R

�
−
1

B

�
q0 þ 2q

ðARÞ0
AR

�
¼ 0; ðC1Þ

Tαβ
;β χα ¼

1

A

�
_qþ 2q

�
_B
B
þ

_R
R

��
þ 1

B

�
P0
r þ ðμþ PrÞ

A0

A
þ 2ðPr − P⊥Þ

R0

R

�
¼ 0; ðC2Þ

or, by using (8), (9), (14), (18), and (16), they become, respectively,

DTμþ
1

3
ð3μþ Pr þ 2P⊥ÞΘþ 2

3
ðPr − P⊥Þσ þ EDRqþ 2q

�
aþ E

R

�
¼ 0; ðC3Þ
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DTqþ 2

3
qð2Θþ σÞ þ EDRPr þ ðμþ PrÞaþ 2ðPr − P⊥Þ

E
R
¼ 0: ðC4Þ

This last equation may be further transformed as follows, the accelerationDTU of an infalling particle can be obtained by
using (8), (B4), (13), and (16), producing

DTU ¼ −
m
R2

− 4πPrRþ Ea; ðC5Þ

and then, substituting a from (C5) into (C4), we obtain

ðμþ PrÞDTU ¼ −ðμþ PrÞ
�
m
R2

þ 4πPrR

�
− E2

�
DRPr þ 2ðPr − P⊥Þ

1

R

�
− E

�
DTqþ 2q

�
2
U
R
þ σ

��
: ðC6Þ

In terms of YTF we may write (C6) as

ðμþ PrÞDTU ¼ −ðμþ PrÞ4πR
�
μ

3
þ Pr −

1

3R3

Z
r

0

R3

�
μ0 −

3qBU
R

�
dr

�

− E2

�
DRPr −

YTF

4πR
þ 1

R4

Z
r

0

R3

�
μ0 −

3qBU
R

�
dr

�
− E

�
DTqþ 2q

�
2
U
R
þ σ

��
: ðC7Þ

APPENDIX D: EVOLUTION OF
STRUCTURE SCALARS

From the Bianchi identities evolution equations for the
structure scalars can be derived (see (102) in [13], or (58) in
[15]). Specifically, for XTF one obtains

ð4πμþ XTF
_Þ þ 1

3
ð2XTF þ YT þ XT − YTFÞðΘ − σÞA

þ 12πq
AR0

BR
¼ 0: ðD1Þ

APPENDIX E: THE TRANSPORT EQUATION

Assuming a causal dissipative theory (e.g., the Israel-
Stewart theory [24,25]) the transport equation for the heat
flux reads

τhαβVγqβ;γ þ qα ¼ −κhαβðT;β þ TaβÞ −
1

2
κT2

�
τVβ

κT2

�
;β

qα;

ðE1Þ

where κ denotes the thermal conductivity and T and τ
denote temperature and relaxation time, respectively.
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