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Recently new scalarized black hole solutions were constructed in the extended scalar-tensor-Gauss-
Bonnet gravity, where the scalar field is sourced by the curvature of the spacetime via the Gauss-Bonnet
invariant. A natural extension of these results is to consider the case of nonzero black hole charge. In
addition we have explored a large set of coupling functions between the Gauss-Bonnet invariant and the
scalar field, that was not done until now even in the uncharged case, in order to understand better the
behavior of the solutions and the deviations from pure general relativity. The results show that in the case of
nonzero black hole charge two bifurcation points can exist—one at larger masses where the scalarized
solutions bifurcated from the Reissner-Nordström one, and one at smaller masses where the scalar charge
of the solutions decreases again to zero and the branch merges again with the GR one. All of the constructed
scalarized branches do not reach an extremal limit. We have examined the entropy of the black holes with
nontrivial scalar field and it turns out, that similar to the uncharged case, the fundamental branch which
possesses scalar field with no nodes is thermodynamically favorable over the Reissner-Nordström one for
the considered coupling functions, while the rest of the branches possessing scalar field with one or more
zeros have lower entropy compared to the GR case and they are supposed to be unstable.
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I. INTRODUCTION

The investigation of various modified theories of gravity
is motivated by purely theoretical reasons, such as over-
coming certain intrinsic inconsistencies of general relativity
(GR). On the other hand, to explain the recent observational
results dark matter and dark energy were considered and to
have a viable theory of gravity short and large distance
modifications of GR have to be introduced [1,2]. With
the detection of gravitational waves, the modern observa-
tional era provides a new channel for testing gravitational
theories in the strong-field regime, and differentiating
between them [3–7]. Therefore, it is particularly important
to gain intuition about the properties of the compact objects
predicted by different modified theories, and the observa-
tional signatures, which they can introduce.

Some of the simplest and viable modifications of GR are
the scalar-tensor theories [2,8]. The presence of a scalar
field coupled to gravity results to hairy black hole solutions.
Then powerful no-hair theorems were developed con-
straining the possible black hole solutions within them.
One of the first hairy black hole solutions in an asymp-
totically flat spacetime was discussed in [9] but soon it was
realized that the scalar field diverges on the event horizon
and, furthermore, the solution is unstable [10], so there is
no violation of the no-hair theorems.
The easiest way to make the scalar field regular on the

horizon and giving hair to the black hole is to introduce a
scale in the gravity sector of the theory through a
cosmological constant. The resulting black hole solutions
with the presence of the cosmological constant have regular
scalar field on the horizon and all the possible infinities are
hidden behind the horizon.
In the case of a positive cosmological constant with a

minimally coupled or nonminimally coupled scalar field
with a self-interaction potential black hole solutions were
found [11–13], but they were shown to be unstable [14,15].
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In the case of a negative cosmological constant, stable
solutions were found numerically [16,17] and an exact
solution in asymptotically AdS space with hyperbolic
geometry was presented in [18] and generalized later to
include charge [19] while a generalization to nonconformal
solutions was discussed in [20]. Since then a plethora of
hairy black hole solutions were reported of a scalar field
coupled to gravity with various self-interacting potentials
evading the no-hair theorems.
No-hair theorems can also be evaded by considering

black holes interacting with matter fields [21–26]. In such
cases black holes can support a nontrivial scalar field in
their exterior region. A similar process is observed also for
neutron stars, called spontaneous scalarization [27]. For
certain ranges of the neutron star densities a phase
transition is realized, so that nontrivial scalar field con-
figurations occur, which are energetically more favorable
compared to the corresponding GR solutions.
Hairy black holes can also be solutions of gravity

theories in which matter is kinetically coupled to curvature.
These theories belong to general scalar-tensor Horndeski
theories. A gravity model was considered with a scalar field
coupled to the Einstein tensor, and by calculating the
quasinormal spectrum of scalar perturbations, an instability
was found outside the horizon of a Reissner-Nordström
black hole [28]. This effect was investigated in details in
[29]. A gravity model was considered consisting of an
electromagnetic field and a scalar field coupled to the
Einstein tensor with vanishing cosmological constant. It
was shown that the Reissner-Nordström black hole under-
goes a second-order phase transition to a hairy black hole
configuration of generally anisotropic hair at a certain
critical temperature. The properties of the hairy black hole
configuration near the critical temperature were calculated
perturbatively and it was shown that it is energetically
favorable over the corresponding Reissner-Nordström
black hole. This “Einstein hair” is the result of evading
the no-hair theorem thanks to the presence of the derivative
coupling of the scalar field to the Einstein tensor.
Furthermore the properties of this phase transition outside
the horizon of the Reissner-Nordström black hole in
asymptotically flat spacetimes were investigated in [30].
Another way to obtain black hole solutions with non-

trivial scalar hair and without considering any matter
sources is to couple the scalar field directly to second
order algebraic curvature invariants. In this case the scalar
hair is maintained by the interaction with the spacetime
curvature. In particular, the extended scalar-tensor-Gauss-
Bonnet gravity (ESTGB) was studied in this respect, for
which the scalar field is coupled to the Gauss-Bonnet
invariant in four dimensions. Compact objects in different
classes of ESTBG theories were studied extensively in the
literature [31–38].
Recently within the ESTGB gravity theories it was

shown that for certain classes of the coupling function

we have spontaneous scalarization of black holes evading
in this way the no-hair theorems [39–44]. It was found that
below a certain critical mass the Schwarzschild black hole
becomes unstable as a solution in the ESTBG theory
[39,40,45], and new branches of scalarized black holes
develop at certain masses. The scalarized branches form a
discrete family of solutions labeled by the number of nodes,
or zeroes of the scalar field. For each particular branch,
however, the scalar charge is not an independent parameter,
but it is determined by the black hole mass. Hence, these
black holes are characterized by a secondary hair.
Investigation of the linear stability with respect to radial
perturbations showed that the fundamental branch is stable
for certain choices of the coupling function except for very
small masses, while the higher order branches are always
unstable [46]. Such spontaneous scalarization in ESTGB
gravity for neutron stars was also observed in [40,47].
In this work we study the scalarization of black holes in

ESTGB gravity theory when an electromagnetic field is
present. We construct numerically charged black hole
solutions for several scalar field coupling functions.
Scalarization is controlled by the spacetime curvature,
and occurs for small black hole masses. Below a certain
critical mass an instability of the Reissner-Nordström
solution sets in, and scalarized branches bifurcate from
it. The scalarized solutions are thermodynamically more
stable than their GR counterparts since they possess a larger
entropy. Increasing the black hole charge, the bifurcation
point of the scalarized solutions shifts to larger masses. At
the same time, however, the scalarized branches get shorter
and the domain of existence of the scalarized solutions in
the parametric space decreases. An interesting results is that
in the case of nonzero charge a second bifurcation point can
exist at low masses, since the scalarized branches can
merge again with the Reissner-Nordström solution. In
general, the deviation of the scalarized black holes from
GR decreases for larger charges, which is demonstrated by
smaller differences in their horizon area and the entropy,
and lower maximal value of the scalar charge allowed on
the scalarized branches.
We note that our work is not aimed to find hairy black

hole solutions in the Einstein-Maxwell-dilaton-Gauss-
Bonnet theory resulting from an effective string theory
like the solutions discussed in [41,42]. As we will discuss
in details in the following, the presence of the GB invariant
acts as high curvature terms that trigger the instability of
the background Reissner-Nordström black hole. Then the
coupling of the scalar field to these terms scalarizes
the Reissner-Nordström black hole. Also we note that
the electromagnetic field is not coupled to the GB term
because this coupling will not alter its behavior.
Nevertheless the motivation for introducing the Maxwell
field in our work is that another scale is introduced in the
theory expressed with the charge parameter Q and as we
will show in the last section the interplay between the mass
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M and the charge Q gives interesting and novel results
compared to the Schwarzschild case discussed in [39].
The paper is organized as follows. In Sec. II we describe

the particular class of ESTGB theories, which we inves-
tigate, and study the linear stability of the Reissner-
Nordström black hole as a solution in the theories under
consideration. In Sec. III we present the obtained scalarized
black holes and analyze their properties. The paper ends
with Conclusions.

II. GAUSS-BONNET THEORY COUPLED TO A
SCALAR FIELD IN THE PRESENCE OF AN

ELECTROMAGNETIC FIELD

We consider ESTGB theories coupled to an electromag-
netic field with action

S¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R−2∇μφ∇μφþfðφÞλ2R2
GBþFμνFμν�;

ð1Þ

where φ is a neutral scalar field, Fμν is the Maxwell
tensor, and R2

GB ¼ R2 − 4RμνRμν þ RμναβRμναβ is the
Gauss-Bonnet invariant. We assume that the scalar field
coupling function fðφÞ depends only on φ, while λ is the
Gauss-Bonnet coupling constant, which has a dimension of
length. The action leads to the following field equations

Rμν −
1

2
Rgμν þ Γμν ¼ 2∇μφ∇νφ − gμν∇αφ∇αφ

þ 2

�
FμαFα

ν −
1

4
gμνFαβFαβ

�
;

∇α∇αφ ¼ −
λ2

4

dfðφÞ
dφ

R2
GB;

∇μFμν ¼ 0;

∇½μFαβ� ¼ 0; ð2Þ

where ∇μ is the covariant derivative with respect to the
spacetime metric gμν and Γμν is defined by

Γμν ¼ −Rð∇μΨν þ∇νΨμÞ − 4∇αΨα

�
Rμν −

1

2
Rgμν

�

þ 4Rμα∇αΨν þ 4Rνα∇αΨμ

− 4gμνRαβ∇αΨβ þ 4Rβ
μαν∇αΨβ ð3Þ

with

Ψμ ¼ λ2
dfðφÞ
dφ

∇μφ: ð4Þ

We are interested in static and spherically symmetric black
hole solutions with scalar and eletromagnetic fields pos-
sessing the same symmetries. Taking into account the

spacetime symmetries we can use the following ansatz
for the metric

ds2 ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð5Þ

while the Maxwell 2-form is

F ¼ −
Q
r2
dt ∧ dr; ð6Þ

whereQ is the electric charge. Then, the field equations (2)
reduce to the form

2

r

�
1þ 2

r
ð1 − 3e−2ΛÞΨr

�
dΛ
dr

þ ðe2Λ − 1Þ
r2

−
4

r2
ð1 − e−2ΛÞ dΨr

dr
−
�
dφ
dr

�
2

− e−2Φ
Q2

r4
¼ 0;

2

r

�
1þ 2

r
ð1 − 3e−2ΛÞΨr

�
dΦ
dr

−
ðe2Λ − 1Þ

r2
−
�
dφ
dr

�
2

þ e−2Φ
Q2

r4
¼ 0; ð7Þ

d2Φ
dr2

þ
�
dΦ
dr

þ 1

r

��
dΦ
dr

−
dΛ
dr

�

þ 4e−2Λ

r

�
3
dΦ
dr

dΛ
dr

−
d2Φ
dr2

−
�
dΦ
dr

�
2
�
Ψr

−
4e−2Λ

r
dΦ
dr

dΨr

dr
þ
�
dφ
dr

�
2

− e−2Φ
Q2

r4
¼ 0; ð8Þ

d2φ
dr2

þ
�
dΦ
dr

−
dΛ
dr

þ 2

r

�
dφ
dr

−
2λ2

r2
dfðφÞ
dϕ

�
ð1 − e−2ΛÞ

�
d2Φ
dr2

þ dΦ
dr

�
dΦ
dr

−
dΛ
dr

��

þ 2e−2Λ
dΦ
dr

dΛ
dr

�
¼ 0; ð9Þ

where

Ψr ¼ λ2
dfðφÞ
dφ

dφ
dr

: ð10Þ

The ESTGB theories can possess different properties
depending on the form of the scalar field coupling function
fðφÞ. In order for the theory to admit the Reissner-
Nordström black hole as a background solution, and further
admit scalarization of the black hole solutions, the coupling
function should satisfy the conditions df

dφ ð0Þ ¼ 0 and

b2 ¼ d2f
dφ2 ð0Þ > 0, where b is a constant, and we assume

that the scalar field vanishes at infinity. The constant b can
be always normalized to unity, as this corresponds to the
freedom to rescale the Gauss-Bonnet parameter λ. We can
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also impose the condition fð0Þ ¼ 0, since the field equa-
tions are invariant under the shift fðφÞ → fðφÞ þ const.
If the scalar field is vanishing φ ¼ 0, then the field

equations admit the Reissner-Nordström black hole as a
solution. Scalarized charged black holes are expected to
appear in the regions of the parametric space where this
solution becomes unstable, forming different branches,
which bifurcate from it. Therefore, we will examine its
linear stability within the ESTGBT theory under consid-
eration. We consider perturbations of the metric and the
scalar field for the Reissner-Nordström solution with mass
M and charge Q

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

fðrÞ ¼ 1 −
2M
r

þQ2

r2
: ð11Þ

The equations for the metric δgμν and electromagnetic
perturbations δAμ decouple from the equation for the scalar
field perturbations δφ, and coincide with those in the
Einstein-Maxwell gravity. Therefore, the stability is deter-
mined from the equation for the scalar perturbations, which
takes the form [39]

□ð0Þδφþ 1

4
λ2R2

GBð0Þδφ ¼ 0; ð12Þ

where □ð0Þ and R2
GBð0Þ are the D’alambert operator and

the Gauss-Bonnet invariant for the Reissner-Nordström
geometry. In a static and spherically symmetric spacetime

we can separate the variables in the standard way δφ ¼
uðrÞ
r e−iωtYlmðθ;ϕÞ by means of the spherical harmonics
Ylmðθ;ϕÞ. We substitute this expression in Eq. (12) and
introduce the tortoise coordinate dr� ¼ dr

fðrÞ, where fðrÞ is
the Reissner-Nordström metric function. Then, the pertur-
bation equation for the scalar field can be reduced to the
Schrödinger-like equation

d2u
dr2�

þ ½ω2 −UðrÞ�u ¼ 0; ð13Þ

with an effective potential

UðrÞ ¼ fðrÞ
�
2M
r3

−
2Q2

r4
þ lðlþ 1Þ

r2

− 2λ2
�
5Q4

r8
−
12MQ2

r7
þ 6M2

r6

��
: ð14Þ

A sufficient condition for the existence of an unstable mode
[48] is that outside of the Reissner-Nordström black hole
horizon the potential should develop a negative well

Z þ∞

−∞
Uðr�Þdr� ¼

Z
∞

rH

UðrÞ
fðrÞ dr < 0; ð15Þ

where rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
is the horizon radius of the

Reissner-Nordström black hole. Spherical symmetry
requires that we consider only the zero mode l ¼ 0.
Normalizing the charge and the Gauss-Bonnet coupling
constant to the black hole mass Q̃ ¼ Q=M and λ̃ ¼ λ=M,
the sufficient condition leads to the inequality1

	
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

q 
	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

q 
3

−
6

35
λ̃2
		

2þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

q 
2

− 7


< 0: ð16Þ

A necessary condition for this inequality to be satisfied is

	
2þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

q 
2

− 7 > 0; ð17Þ

which constrains the charge to mass ratio in the

range jQj=M < 1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14þ 4

ffiffiffi
7

pp
≈ 0.9916. Provided that

the inequality (17) is satisfied, the Reissner-Nordström
solution becomes unstable if its charge to mass ratio further
obeys the relation

fðQ̃Þ ¼ 35

6

ð1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

p
Þð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

p
Þ3

ð2þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q̃2

p
Þ2 − 7

< λ̃2: ð18Þ

The qualitative behavior of the function in the left-hand
side of this relation is presented in Fig. 1 showing the lower
limit of the dimensionless Gauss-Bonnet parameter
λ̃ ¼ λ=M, which is sufficient to ensure instability for a
particular charge to mass ratio.

FIG. 1. Behavior of lower limit of the dimensionless Gauss-
Bonnet coupling constant λ̃2 sufficient to ensure instability of the
Reissner-Nordström black hole.

1The normalization used in the equations below is done for
convenience and is different from the one employed in the results
section, where the quantities are normalized to the parameter λ
instead.
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The Gauss-Bonnet coupling λ shows how strong is the
coupling of the scalar field to the spacetime curvature. Then
Fig. 1 shows that a strong attractive gravitational force
acting on the scalar field destabilizes the Reissner-
Nordsröm black hole. An interesting case is if the scalar
field is charged. Then there are two competing forces—the
gravitational attraction and the electromagnetic repulsion.
Then the background Reissner-Nordsröm black hole will
be destabilized and scalar hair will be formed outside its
horizon as the result of the balance of these two forces.
To see such an effect we will study how a charged

massive scalar field coupled to the GB term is super-
radiantly amplified. We will show that the field scattered off
the horizon of the background Reissner-Nordström black
hole will be trapped in a potential well and it will be
superradiant amplified leading to an instability of the
background Reissner-Nordström black hole. Consider a
charged massive scalar field coupled to the GB term as in
the action (1). Then the Klein-Gordon equation reads
�
ð∇ν − iqAνÞð∇ν − iqAνÞ − μ2 þ 1

4
λ2R2

GB

�
ϕ ¼ 0; ð19Þ

where Aν is the gauge potential and in our case the only
nonzero component is At ¼ −Q=r, while μ and q are the
mass and the charge of the scalar field. After the decom-
position of the scalar field as

ϕlmðt; r; θ;ϕÞ ¼ uðrÞe−iωtYlmðθ;ϕÞ; ð20Þ

the radial part of the Klein-Gordon equation is given by

Δ
d
dr

�
Δ
du
dr

�
þUu ¼ 0; ð21Þ

where

Δ ¼ r4fðrÞ; ð22Þ

and the potential is given by

U ¼ r4ðωr2 − qQrÞ2 −Δr2
�
μ2r2 þ lðlþ 1Þ− 1

4
r2λ2R2

GB

�
:

ð23Þ

We are interested in solutions of the radial equation with the
physical boundary conditions of purely ingoing waves at
the black hole horizon and a decaying bounded solution at
spatial infinity. So by doing the transformation

∂
∂r ¼

1

fðrÞ
∂
∂r� ; ð24Þ

where r� is the tortoise radial coordinate we get the
solutions at the horizon and at spatial infinity of a
Schrodinger-like equation as

uðr� → −∞Þ ∼ er
2
Hðωr2−qQrÞr� ; ð25Þ

uðr� → þ∞Þ ∼ e−
ffiffiffiffiffiffiffiffiffiffi
μ2−ω2

p
r� ; ð26Þ

where rH is the horizon of the Reissner-Nordström black
hole. As it can be seen from (25) if

ω <
qQ
rH

; ð27Þ

then there is extraction of energy from the Reissner-
Nordström black hole. This is known as the superradiance
condition. However, this condition is independent on the
GB coupling λ and therefore it does not have the
information that the scalar wave is coupled to spacetime
curvature. To have an instability of the background
Reissner-Nordström black hole this energy has to be
trapped in a potential well outside its horizon [49–53].
Note that the well itself must be separated from the
black hole horizon by a potential barrier. As in the case
of the neutral scalar field this potential well is provided
by the coupling of the scalar field to the GB term.
It is convenient to define a new radial function v by

v ¼
ffiffiffiffi
Δ

p
u; ð28Þ

in terms of which the radial equation can be written in the
form of a Schrodinger-like wave equation

d2v
dr2

þ ðω2 − VÞv ¼ 0; ð29Þ

where

ω2 − V ¼ 1

Δ2

�
U þ 1

4

dΔ
dr

−
1

2

d2Δ
dr2

�
: ð30Þ

So we have to analyze the behavior of this effective
potential Vðr;M;Q; μ; q;ω; l; λÞ. The effective potential
is characterized by a set of seven parameters:
fM;Q; μ; q;ω; l; λg.
First we can check that there is a potential barrier at the

black hole horizon

Vðr → rHÞ ¼ ∞: ð31Þ

The analysis of the effective potential is a really hard task
because its form is very complicated. It is convenient to
define a new variable

z ¼ r − rH: ð32Þ

Then if we plot the effective potential we can see that in
the regime of the superradiant condition (27) (specific
values for parameters Q, q, ω) this effective potential
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can take the form of a potential well outside the black
hole as it is shown in Figs. 2 and 3. Observe that as the
GB coupling is increased the potential well is increased
and this will lead to an instability of the background
Reissner-Nordström black hole.
The performed stability analysis in both cases of a

neutral or charged scalar field provides only a sufficient
condition for instability and does not exclude scalarization
occurring at smaller values of the GB coupling. In the next
sections we obtain numerically the scalarized black hole
solutions expected in the region of instability of the
background Reisnner-Nordström black hole solution and
examine their behavior. We carried out the analysis for the
neutral scalar field and we leave the treatment of the
charged case for future work.

III. SCALARIZATION OF THE
REISSNER-NORDSTRÖM BLACK HOLE

We construct charged black hole solutions by integrating
numerically the system of reduced field equations (7)–(9)
using a shooting method. The boundary conditions,
which are imposed, are determined by the requirements
that the solutions are asymptotically flat and regular on the
black hole horizon r ¼ rH. Asymptotic flatness implies the
following asymptotic behavior of the metric functions and
the scalar field at spacetime infinity r → ∞: Φjr→∞ → 0,
Λjr→∞ → 0, φjr→∞ → 0. On the other hand, in the
near-horizon region the metric functions behave as
e2Φjr→rH → 0, e−2Λjr→rH → 0. We require that the scalar
field is regular on the black hole horizon together with its
first and second derivatives. This leads to the condition

�
dφ
dr

�
H
¼ −

1

4Φ1r2Hf1ðφÞðr6H − 4Q2f21ðφÞÞ
½ðQ2 þΦ1r3HÞðr6H − 8Q2f21ðφÞÞ

� r2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r8HðQ2 þΦ1r3HÞ2 − 8Φ1rHf21ðφÞð2Q2 þ 3Φ1r3HÞðr6H − 4Q2f21ðφÞÞ

q
�; ð33Þ

where we use the notations Φ1 ¼ ðde2Φ=drÞr¼rH and
f1 ¼ ðdfðφÞ=dφÞr¼rH . We consider only the plus sign,
since it recovers the Reissner-Nordsröm black hole in the
absence of the scalar field. From this expression we obtain
that nontrivial scalar field configurations are possible only
if the following constraint is satisfied

f21ðφÞ½r6H − 4Q2f21ðφÞ� <
r7HðQ2 þΦ1r3HÞ2

8Φ1ð2Q2 þ 3Φ1r3HÞ
: ð34Þ

The obtained black hole solutions are characterized by
three parameters associated with their mass M, electric

charge Q, and scalar charge D. They are determined by the
Maxwell 2-form (6), and the asymptotic expansions of the
metric functions and the scalar field at infinity2

Φjr→∞ ≈ −
M
r
þOð1=r2Þ; φjr→∞ ≈

D
r
þOð1=r2Þ

ð35Þ
We investigate the scalarization of the Reissner-

Nordström black hole in the ESTGB theory by considering

FIG. 3. The effective potential as a function of the coordinate z
for μ ¼ 1 and for various values of the coupling λ. In the
superradiant regime we set M ¼ 1, Q ¼ 1

2
, q ¼ 1

2
, ω ¼ 0.01 and

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
.

FIG. 2. The effective potential as a function of the coordinate z
for λ ¼ 5 and for various values of the mass μ. In the superradiant
regime we set M ¼ 1, Q ¼ 1

2
, q ¼ 1

2
, ω ¼ 0.01 and rH ¼ Mþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 −Q2
p

.

2Here we assume a zero cosmological value of the scalar field,
i.e., φ∞ ¼ 0.
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three different scalar field coupling functions. The first
coupling function is given by

fðφÞ ¼ 1

2β
½1 − expð−βφ2Þ�; ð36Þ

where β is a constant. In the following analysis it is denoted
as Case I. The same coupling function with β ¼ 6was used
in the construction of the scalarized Schwarzschild black
holes in the ESTGB gravity in [39] and it was proven in
[46] that the first fundamental branch is stable (except for
very small masses) while the rest of the scalarized branches
are unstable. The motivation for this particular choice (36)
comes also from the fact that the scalarized neutron stars in
the standard scalar-tensor theories were mainly studied for
such coupling function [27].
Further two coupling functions, which lead to sponta-

neous scalarization, are introduced, in order to study the
sensitivity of the process on the particular theory. The
function

fðφÞ ¼ 1

β2

�
1 −

1

coshðβφÞ
�

ð37Þ

is denoted in the results as Case II, while we refer to the
function

fðφÞ ¼ φ2

2ð1þ β2φ2Þ ð38Þ

as Case III. As a matter of fact, the coupling function (38)
in the limit β ¼ 0 is the same (up to a scaling factor) as the
one used in [40].
All of the three coupling functions have the same

expansion up to a leading order when φ → 0 thus the
scalarized solutions would have the same behavior very
close to the bifurcation points and the bifurcation points are
located at the values of the mass for fixedQ. As we will see
below, in all of the considered cases decreasing the
coupling constant β leads to larger deviations from GR
but on the other hand if β is small enough, the scalarized
branches of solutions might become very short or even
completely unstable.
As expected by the analysis of the linear stability, the

Reissner-Nordström black hole becomes unstable in certain
regions of the parameter space. In these regions we obtain
numerically scalarized solutions bifurcating from it at
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FIG. 4. The scalar charge of the black hole as a function of its mass. Figures for all three of the coupling functions are shown (Case I,
Case II and Case III) for β ¼ 6 and β ¼ 12. In each figure the sequences with black hole chargeQ=λ ¼ 0,Q=λ ¼ 0.2 andQ=λ ¼ 0.4 are
shown. All the quantities are normalized to the parameter λ.
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particular masses, and spanning to some other nonzero
mass lower than the bifurcation point. In some of the cases
the black hole scalar charge smoothly decreases to zero at
the end of the branch thus merging again with the Reissner-
Nordström black hole at a second bifurcation points located
at a lower mass or the sequences of solutions is terminated
before D ¼ 0 is reached due to violation of condition (34).
In general, the scalarized uncharged solutions form a

countable family of branches, which are characterized by
the number of nodes of the scalar field. However, all the
branches except for the first one, which possesses scalar
field with no zeroes, are expected to be unstable, as
demonstrated in previous studies [39,46]. The picture in
the charged case is quite similar with an important
difference. The results in [39,46] for Q ¼ 0 show that
the bifurcation points and the additional scalarized
branches appear at smaller and smaller masses with the
increase of the number of nodes of the scalar field. But for
a fixed Q the Reissner-Nordström solution possesses a
minimum mass determined by the extremal limit. Thus it
is natural to expect that the scalarized solutions also have
similar lower mass limit that quickly increases with the
increase of Q which results in a lower number in
bifurcation points. As a matter of fact for most of the

cases presented in the paper only the fundamental sca-
larized branch exists.
The stability of the branches with nontrivial scalar field

is not supposed to change, though, and all the nontrivial
solutions characterized with scalar field that has one or
more zeros are expected to be unstable. Therefore, in our
analysis we will investigate only the fundamental branch.
The location of the bifurcation points depends only on the
value of λ and not on the particular form of the coupling
function, as one can see from the effective potential (14). In
addition the three coupling functions we study belong to
the same class determined by the conditions df

dφ ð0Þ ¼ 0 and
d2f
dφ2 ð0Þ ¼ 1, which guarantees that they behave identically

for small scalar fields and lead to coinciding bifurcation
points of the scalarized branches.
We present the obtained black hole solutions in Fig. 4,

where we show the behavior of the scalar charge as a
function of the black hole mass for several values of the
electric charge. The results presented in this figure and the
one below are normalized to the parameter λ as denoted on
the graphs and similar to previous studies [46,47]. For each
coupling function we study two regimes: strong coupling
with larger deviations from GR represented by the value of
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FIG. 5. The area of the black hole horizon as a function of the mass. The notations are the same as in Fig. 4.
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the coupling constant β ¼ 6, and weak coupling for
β ¼ 12. We see that the scalarized solutions are charac-
terized by small deviations from the scalar-free Reissner-
Nordström black hole near the two bifurcation points—the
one at higher mass at the beginning of the branch and the
one at lower mass at the end of the branch. The second
bifurcation point exists only if condition (34) is fulfilled for
the whole branch, otherwise the branch is terminated at
some nonzero scalar charge that happens in Case I for β ¼
−6 and β ¼ −12 and in Case II for β ¼ −6 in Fig. 4. We
should note that a second bifurcation point at smaller
masses is observed only for nonzero charges as one can see
in the figure, while for Q ¼ 0 the branches are terminated
either because of violation of condition (34) or they reach
the M ¼ 0 limit.
For intermediate masses the scalarized branches can

distinguish considerably from the Reissner-Nordström
black hole, the deviation being measured by the value of
the scalar charge. Increasing the parameter β the maximal
deviation for the scalar-free Reissner-Nordström solution,
or equivalently the maximal absolute value of the scalar
charge, decreases for all of the coupling functions. Such
behavior is consistent with the expected weaker deviation
from GR for larger values of the coupling constant β. It is

also interesting to observe that the three coupling functions
lead to qualitatively similar results and what differs is only
the magnitude of the scalar charge (and thus the deviation
from GR) that is practically controlled by the value of β.
In most cases for a fixed Q the branches become longer

(they terminate at larger mass) as β increases since
condition (34) is fulfilled for a larger range of masses. It
is natural to expect that if β is too small, the branches
become very short because of violation of condition (34)
shortly after the first bifurcation point at larger masses. For
example, in the limit β ¼ 0 and for uncharged black holes
(Q ¼ 0) it was explicitly shown in [46] that in Case III even
the first fundamental branch of solutions is very short and
unstable. The motivation behind using β ¼ 6 as the mini-
mum β for our calculations was the fact that even for
Q ¼ 0, β ¼ 6 is more or less close to the limiting value
below which one can not obtain “nice” branches of
solutions with nontrivial scalar field that reach close to
the M ¼ 0 limit.
The influence of the electric charge on the scalarized

solutions can be recognized by several effects. Charging up
the Schwarzschild black hole leads to shifting the first
bifurcation point of the scalarized solutions to larger
masses as their values increase with the black hole charge.
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FIG. 6. Black hole entropy as a function of its mass. The notations are the same as in Fig. 4.
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At the same time the scalarized branches get shorter and
they never reach the extremal solution because of violation
of condition (34). As a result, the branches span in a smaller
region in the parametric space, corresponding, however, to
higher masses. Increasing the black hole charge, we
observe that the maximum absolute value of the scalar
charge for the scalarized branches decreases.
In Fig. 5 we present the behavior of the horizon area

AH ¼ 4πr2H as a function of the black hole mass. This
quantity can be also viewed as a measurement of the
deviation from the Reissner-Nordström black hole.
Scalarized black holes are smaller than their GR counter-
parts, as the difference is largest for intermediate masses
similar to the scalar charge. As expected, after a compari-
son with Fig. 4 one can conclude that the larger the scalar
change is, the larger the deviation from GR. In order to have
a non-negligible difference, though, the parameter β should
be small enough.
For the same value of the parameter β the different

coupling functions lead to a different degree of deviation of
the scalarized solutions from GR. Case I causes the
strongest deviation followed by Case II and Case III in
decreasing order, resulting in the largest absolute value of
the scalar charge admitted on the scalarized branches, and

the largest discrepancies in the horizon area curves com-
pared to GR. We should note, however, that this is a
residual effect of the particular choices of β that are used
and the particular form of the coupling functions.
Decreasing further β in Case II and Case III would produce
larger differences with the Reissner-Nordström black hole
that are of similar magnitude to Case I.
We further study the entropy of the obtained solutions.

When a Gauss-Bonnet invariant is included in the gravi-
tation action, the entropy is not determined solely by the
horizon area. We apply the approach of Wald and Iver in
[54,55] valid for any theory of gravity with a diffeo-
morphism invariant Langrangian. According to it a Noether
charge is associated to the black hole entropy SH, which
leads to the expression

SH ¼ 2π

Z
H

∂L
∂Rμναβ

ϵμνϵαβ; ð39Þ

where L is the Lagrangian density and ϵαβ is the volume
form on the 2-dimensional cross section H of the
horizon. In our case we obtain the explicit formula
SH ¼ 1

4
AH þ 4πλ2fðφHÞ. The entropy as a function of

the black hole mass is illustrated in Fig. 6. We see that for
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FIG. 7. The temperature of the black hole as a function of its mass. The notations are the same as in Fig. 4.
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all the obtained black holes the entropy of the scalarized
solutions exceeds that of their GR counterpart. Thus, we
can conclude that the scalarized configurations are
thermodynamically more favorable and show better
stability. However, the deviation between the entropy
curves for the scalarized and scalar-free solutions
decreases when the black hole charge is increased, and
for large charges they approach each other. We should
point out again that in the figure only the fundamental
branches of solutions, possessing scalar field with no
nodes, are shown and the conclusions above apply for
them. We have checked that similar to the uncharged
Q ¼ 0 case, the rest of the branches with scalar field
possessing one or mode nodes, have lower entropy and
they are supposed to be unstable.
The temperature as a function of the black hole mass is

plotted in Fig. 7. As one can see for all of the considered
cases the scalarized solutions fail to reach the extremal
T ¼ 0 limit contrary to the Reissner-Nordström solutions.
The reason is either the fact that the branches are
terminated because of violation of condition (34) or
because the scalar charge goes to zero at the end of
the branch and it mergers again with the Reissner-
Nordström solution for small masses and temperatures.
Even though we calculated much larger number of
sequences of scalarized black holes, we did not manage
to obtain extremal solutions with T ¼ 0.

IV. CONCLUSIONS

In this work we have studied scalarized black holes in
ESTGB theory when the nontrivial scalar field is sourced
by the curvature near the black hole horizon. In particular,
we have extended the previous studies on the subject by
considering a nonzero charge of the black hole. We have
considered only the first branch of black holes possessing a
scalar field that has no nodes, since the rest of the branches
which have scalar field with one or more nodes, are
supposed to be unstable.
Adding a black hole charge leads to some interesting

consequences for the scalarized solutions. Naturally, the
branches of black holes with nontrivial scalar field do not
span up to the M ¼ 0 limits unlike the Q ¼ 0 case and at
least for all of the studied cases they never reach the
extremal solution. Instead the branches are either termi-
nated because of violation of the condition for existence of
scalarized solutions (34), or they merge with the Reissner-
Nordsröm solution before the extremal solution is reached.
Thus, the Reissner-Nordsröm solution can posses two
bifurcation points—one at larger masses where the scalar-
ized branch emerges from the GR one, and one at smaller
masses where the scalarized branch merge again with the
GR one. This is different compared to the Q ¼ 0 case
where only the first bifurcation point exists. The numerical
results show, that the first bifurcation point is shifted to
larger masses asQ increases. As expected, the scalar charge

of the scalarized branches tends to zero at the two
bifurcation points and maximum deviations for the
Reissner-Nordsröm black holes is observed for intermedi-
ate values of the mass.
In our studies we have employed several coupling

functions in order to better determine which effects
dependent on the particular choice of the ESTGB theory
and to examine the possible deviations from GR. Such a
comprehensive study of coupling functions was not done
until now even in the Q ¼ 0 case. All of the coupling
functions, though, exhibit the same behavior in the limit
of vanishing scalar field, that was chosen intentionally in
order for the scalarized black hole solutions to exist.
Thus, the bifurcation points are located at the same
values of the mass for a fixed charge. The studies show,
that the deviations from the Reissner-Nordsröm solution
and the conditions for the existence of scalarized sol-
utions (34) are largely dependent on the parameters of the
coupling function and significant differences with GR are
possible for appropriately chosen values of the coupling
parameters.
We have studied the temperature and the entropy of the

black holes as well. Because of the presence of a second
bifurcation point for the considered solutions, it is natural to
expect that the T ¼ 0 limit is not reached and extremal
solutions are not present. We have investigated numerically
a very larger range of parameters none of the constructed
branches reach the extremal limit. In addition, the scalar-
ized solutions are thermodynamically more stable com-
pared to the Reissner-Nordsröm solution since they have
higher entropy. This applies, of course, only to the solutions
with nontrivial scalar field which has no zeros, while the
solutions with one or more zeros (not presented in the
present paper) have lower entropy and therefore they
are supposed to be unstable similar to the uncharged
Q ¼ 0 case.
It would be interesting to study the scalarization of the

charged Gauss-Bonnet black holes in the extended scalar-
tensor theories induced by a charged scalar field. In this
case, except for the gravitational attraction there will also be
an electromagnetic repulsion. As a first approach to this
problem we considered a massive scalar field coupled to the
Gauss-Bonnet invariant, scattered off the horizon of the
Reissner-Nordsröm black hole. We found that a potential
well is formed outside the horizon of the black hole
trapping the scalar field. This results in the superradiant
amplification of the scalar field leading to an instability of
the background black hole. We leave for future work the
backreaction of the charged scalar field to the metric which
will lead to possible new scalarized charged Gauss-Bonnet
black hole solutions.
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