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A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out,
contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability:
Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the
choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and
extending our discussion to general field theories. We give the correct stability criterion, using the relative
orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an
exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent
experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal
cones by analyzing respectively all the odd-parity and the l ¼ 0 even-parity modes. Contrary to a claim in
the literature, we prove that this solution does not exhibit any kinetic instability for a given range of
parameters defining the theory.
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I. INTRODUCTION

General relativity (GR) is an effective classical theory of
gravity which is experimentally verified for a wide range of
physical distance and gravitational strength scales. The
former range up to 30 astronomical units or so, while the
latter are performed from weak gravity tabletop experi-
ments to very strong gravity environments of coalescing
black hole binaries, involving recent gravitational wave
detections (see [1] for a review, and for the latter [2,3]). GR
is furthermore a theoretically robust theory, as it is unique
when one imposes standard mathematical and physical
assumptions: essentially the presence of a Levi-Civita
connection for a sufficiently regular four-dimensional
spacetime manifold equipped with a metric mediating
gravitational interactions. These dictate that GR with a
cosmological constant is the unique covariant theory with
second-order field equations [4]. Since no mass term is
associated with the rank-2 tensor mediating gravity, GR has
two massless spin-2 degrees of freedom (d.o.f.). A second
and independent assumption of GR is that all matter fields
universally couple to this metric, in order to satisfy the
weak equivalence principle. These postulates imply that

photons and gravitons propagate on the same causal cones,
i.e., with the same speed.
The presence of dark energy at cosmological distance

scales (but also the yet elusive dark matter) has opened up
in recent years the possibility that GR may be an effective
theory not only at UV scales but also at the deep IR:
cosmological—but also lack of astrophysical—observa-
tions have raised questions concerning the viability of GR
at large distances (see e.g., [5]). Given the aforementioned
uniqueness, if we want to go beyond GR, we have to
introduce novel d.o.f. This is true if we remain within the
realm of Riemannian geometry, keeping the postulated
geometrical structure of spacetime. The simplest of these
d.o.f. is a scalar field, giving scalar-tensor theories of
gravity (see [6–15]), but one can also consider vector(s)
(see e.g., [16–20]), an additional metric field (see [21] for a
review), etc. One should point out that even more general
considerations, such as the presence of nontrivial torsion
(e.g., [22]) or spacetime with extra dimensions (see [23]
and references therein), also lead effectively to the addition
of extra d.o.f.. The prototype example is that of the Dvali-
Gabadadze-Porrati (DGP) five-dimensional1 braneworld
model [25], which upon going to the decoupling limit
[26] reduces to a particular Horndeski scalar-tensor theory
(of the type studied in [27]).*eugeny.babichev@th.u-psud.fr
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1See also [24] for relations between higher dimensional and
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Modified gravity d.o.f.—including gravitons—propagate
in an effective metric which can be different from that of GR.
The notion of causal cones and effective metric will be
essential to our stability arguments, so let us dwell on this
point before entering details in the body of the paper.
Consider some background solution of a modified gravity
theory. Linear perturbations of the background can be found
by expanding the action up to the second order. According
to their effective action, modes obey some second-order
differential equation.2Wewill concentrate on the kinetic part
of the equations of motion (i.e., the principal part of the
differential equation), since this part defines whether
the most dangerous pathologies of the theory are absent.
The kinetic operator is encoded in an effective metric, and in
general it depends on the background solution. Provided that
the equation of motion is hyperbolic, the kinetic operator
(i.e., the effective metric) defines then a causal cone of
propagation associated to the perturbative d.o.f. This causal
cone is inherently different for different helicities—scalar,
vector, or tensor—and its structure determines whether the
modes are healthy or not.
Furthermore, matter is assumed to couple universally to a

single metric in order to pass stringent fifth-force experi-
ments. This introduces the matter causal cone, in addition
to gravity cones, and the physical metric, associated to
geodesic free-fall, which matter couples to. The prototype
example is Brans-Dicke (BD) scalar-tensor theory (see e.g.,
[44]). There, the Jordan frame is the physical frame, whose
associated metric gives geodesic free fall. The more
calculation-friendly Einstein frame is related to the physical
frame via a specific conformal transformation involving the
metric and the scalar d.o.f.. Note that for Horndeski theory
and beyond, modes of different species (in our example
scalar and tensor) mix together and it is in general only for
the most symmetric backgrounds that one manages to
demix them.
The effect of multiple causal cones and mixings is that

species—such as gravitons—can now have subluminal or
superluminal propagation with respect to photons (matter
light cone). However, these multiple possibilities have been
recently constrained by a single observation. The simulta-
neous detection of gravity wave event GW170817 [2] and
light emanating from the same source [45] at 40 Mpc
distance strongly restricts the graviton (spin 2) causal cone
and that of light to be essentially identical, just like in GR.
This restricts the variety of modified gravity theories to a
subclass of theories with gravitons propagating at the speed
of light, i.e., such that cg ¼ 1 in the physical frame [46–52].
On the other hand, in some cases, it is technically easier to

work in a nonphysical frame, where the metric is dis-
formally related to the physical metric. For Horndeski
theory, e.g., one can find a disformal transformation of the
metric that brings it to a unit propagation speed [46]
(cg ¼ 1) theory of EST/DHOST type [38,39]. Note that
this is not possible for any Horndeski theory; e.g., G5

interactions involving the Gauss-Bonnet term are excluded
[46,47].3 In a recent paper [53], considering a vacuum black
hole background, we showed how the right choice of
disformal transformation can ensure that the graviton speed
is the same as that of light. Although we started from a
shift-symmetric G4 Horndeski theory, which is excluded in
the physical frame, there exists a specific disformal trans-
formation [46] upon which the graviton causal cone is
identical to that of light as demanded by observation. The
physical metric is a disformed metric of the Horndeski
action, which mixes scalar and metric perturbations and
brings us to a strictly cg ¼ 1 theory. In this case the initial
Horndeski theory plays the role of the Einstein frame,
whereas the target EST/DHOST theory [38,39] plays the
role of the Jordan frame, in analogy to the familiar BD
theory cited above.
In this paper we will see how, starting from the causal

cone structure of propagating d.o.f., one can infer if the
modes in question are healthy modes—in other words that
they are not modes generating ghost or gradient instabil-
ities. In particular, the sign of the determinant of the
effective metric defines the hyperbolicity condition, which
if satisfied, means that a particular solution is safe from
imaginary speeds of propagation and therefore gradient
instabilities. On the other hand, the local orientation of the
cone tells us about absence/presence of ghost modes. Both
requirements allow the local definition of a causal cone
of propagation which then guarantees a healthy associ-
ated mode.
A complementary way to find the good or sick nature of

propagating modes is often described via the associated
Hamiltonian density of the modes in question. Once the
effective action for the mode is known, one defines the
conjugate momentum and writes down the Hamiltonian
density of the associated field. It is known that if the
Hamiltonian density is bounded from below, then the
ground state is of finite energy and necessarily stable.
The contrary is often assumed to be true: If a Hamiltonian is
unbounded from below, then the system is unstable and
admits ghost or gradient instabilities.
One of the main aims of our paper is to explicitly show

that the above inverse statement is not always true. In other
words, if a Hamiltonian density is unbounded from below,

2We do not consider here Lorentz-breaking theories [28,29]
where equations of motion can be of higher order. Also, in
extensions of Horndeski theory [30–43], one may get Euler-
Lagrange equations of third order, but by manipulating these
equations their order is reduced.

3By excluded, throughout this paper, we refer to the cases
where the extra mode is a dark energy field, giving an effective
acceleration to the universe at late times. If the extra mode, say a
scalar, is not varying at cosmological scales, but only locally, it
may not influence gravitational waves in their 40 Mpc journey to
Earth detectors.
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this does not necessarily signify that the mode in question
generates a ghost or gradient instability. The reasoning is
simple although it goes against standard lore originating
from particle physics or highly symmetric backgrounds
associated to Friedmann-Lemaître-Robertson-Walker
(FLRW) cosmology. The Hamiltonian is not a scalar
quantity and therefore depends on the coordinate system
it is associated with. As such we will explicitly see that
Hamiltonian densities can be unbounded by below but
under a coordinate transformation can be transformed to a
bounded density. The key point will be the coordinate
system on which the Hamiltonian is to be defined in
relation to the effective causal cones.
In fact, we will see that the coordinate system will have

to be of a certain “good” type in order for the Hamiltonian
density to be conclusive. For our purposes, we will restrict
ourselves to configurations where essentially the problem is
mathematically 2-dimensional and involves the definition
of a good timelike and spacelike direction. This includes
the case for planar, cylindrical or spherical symmetry,
for example. A “good” coordinate system will involve
the existence of a common timelike direction for all
causal cones. Second, it will involve the existence of a
common spacelike direction exterior to all causal cones.4

If such a coordinate system exists, then we will show that
the Hamiltonian density is bounded from below and the
system is stable. If such a coordinate system does not
exist, on the contrary, then the Hamiltonian density is
always unbounded from below. The relevant criteria
emerging from the causal cones will inevitably lead to
the knowledge of ghost or gradient instabilities present in
the system.
We will explicitly show all this for a general situation

with two propagating d.o.f. with different causal structures
in Sec. II, and apply it to the known stability criteria of
k-essence. We will see explicitly how stability criteria are
satisfied for well-defined causal cones and how on the
contrary, the unboundedness of Hamiltonian densities can
lead to wrong conclusions if not associated to a “good”
coordinate system. We will then move on, in Sec. III, to
apply our causal cone criteria to investigate the stability of a
specific Horndeski theory admitting a nontrivial back-
ground black-hole solution [54]. The family of strongly
gravitating solutions admit a time-dependent scalar field
which is asymptotically a dark energy field allowing de
Sitter acceleration inherently different from the vacuum
cosmological constant. The mixed combination of space
and time dependence for the scalar, as well as the higher
order nature of the theory, leads to causal scalar and tensor
cones which are quite complex. This is the reason why the

Hamiltonian analysis of [55] gave the wrong conclusion,5

stating the generic instability of such black holes for any
coupling constants of the theory. Although the Hamiltonian
associated with the graviton is unbounded by below in
Schwarzschild coordinates, we will see that it is bounded
by below in an appropriate coordinate system. The graviton
and matter causal cones indeed keep compatible orienta-
tions, and can actually be chosen to exactly coincide at any
spacetime point in order to satisfy the gravity speed
constraint imposed by the GW170817 event. We will
additionally complete this analysis by deriving the scalar
causal cone, and showing that it also has a compatible
orientation with the two previous cones for a certain range
of parameters of the model. We compute this last cone by
studying the l ¼ 0 perturbations. We will conclude in
Sec. IV.

II. CAUSAL CONES AND HAMILTONIAN
IN A GENERAL COORDINATE SYSTEM

Standard theories minimally coupling all fields to one
metric tensor gμν possess a single causal cone, defined by
ds2 ≡ gμνdxμdxν ¼ 0, or equivalently by gμνkμkν ¼ 0 for a
wave vector kμ, gμν denoting as usual the inverse of gμν.
This is no longer the case when at least two fields are
coupled to different metric tensors which are not
proportional—even though they are generally related to
each others. For instance, all Galileon models [aside from
the simplest ð∂μφÞ2 Lagrangian for a scalar field φ] and
their generalizations called beyond-Horndeski theories
[8–15,30–41,60], predict that the spin-2 and spin-0 d.o.f.
propagate in different effective metrics, which depend on
the background solution. And these two effective metrics
actually also generically differ from gμν, to which one may
(or may not) choose that matter fields are universally
coupled.
The simplest example is k-essence [61–64], i.e., a

Lagrangian for the scalar field given by a nonlinear
function f of the standard kinetic term, L ¼ − 1

4
fðXÞ,

where X ≡ gμν∂μφ∂νφ. If one writes the scalar field as
φ ¼ φ̄þ χ, where φ̄ denotes the background solution and χ
a small perturbation, one finds that the second-order
expansion of this Lagrangian reads L2 ¼ − 1

2
Sμν∂μχ∂νχ,

where

Sμν ¼ f0ðX̄Þgμν þ 2f00ðX̄Þ∇μφ̄∇νφ̄; ð1Þ

f0 and f00 being the first and second derivatives of function
f with respect to its argument X̄ [62,65–68]. This means

4A causal cone represents an open set whose interior is
bounded by the characteristics of the cone. The complementary
of this set with boundary is an open set which is the exterior of the
cone.

5References [56–58] used similar arguments, and accordingly
obtain too restrictive conditions for stability. Reference [59] also
uses these arguments, but it proves the stability of the odd-parity
modes outside neutron stars, and this is correct.
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that the spin-0 d.o.f. χ propagates in an effective metric6

Sμν, which is not proportional to gμν as soon as f00ðX̄Þ ≠ 0
and the background solution has a nonvanishing gradient
∂μφ̄, and they define thus different causal cones. In this
simple case, one can show that the spin-2 d.o.f. (the
gravitons, perturbations of the metric tensor) do propagate
in the initial metric gμν. To simplify this example even
further, one may actually consider it in flat spacetime, i.e.,
without any graviton, while universally coupling matter to
gμν. Then we still have at least two fields (matter and the

spin-0 d.o.f. χ) which propagate in different metrics,
defining two different causal cones.
The conditions for such a k-essence theory to be

stable and have a well-posed Cauchy problem have been
written several times in the literature [62,65–69], and
we shall rederive them at the end of the present section
from our general analysis. They read7 f0ðX̄Þ > 0 and
2X̄f00ðX̄Þ þ f0ðX̄Þ > 0. When the background scalar gra-
dient ∂μφ̄ is timelike with respect to gμν, the causal cones
can be represented as panels (a), (b), (c), or (d) of Fig. 1,
where the grey cone (with solid lines) is defined by gμν and

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 1. Possible relative orientations of two causal cones, in a coordinate system such that the grey cone with solid lines appears at
�45°. We do not plot the equivalent configurations exchanging left and right, and do not consider the limiting cases where some
characteristics coincide. The first row (a)–(d) are safe cases in which the two metrics can be diagonalized simultaneously by an
appropriate choice of coordinates—corresponding then to panels (b) or (c). Although the kinetic contribution to their Hamiltonian
density is unbounded by below in cases (a) and (d), it is positive in (b) and (c). The second row (e)–(h) are again safe cases, for which the
kinetic contribution to the Hamiltonian density can be proven to be positive in an appropriate coordinate system, actually corresponding
to case (e), but the two metrics cannot be simultaneously diagonalized. [Let us recall that two quadratic forms can always be
simultaneously diagonalized if at least one of them is positive (or negative) definite. Here both of our metrics have hyperbolic signature,
and this is the reason why the nonsimultaneously diagonalizable cases (e)–(h) are possible.] The third row (i)–(l) are unstable cases, for
which the two metrics can be simultaneously diagonalized as in (j) and (k), but they have then opposite signatures in this ðt; xÞ subspace.
Their total Hamiltonian density remains unbounded by below in all coordinate systems.

6We use the notation Sμν for the effective metric in which the
Scalar d.o.f. propagates, while Gμν will be used in Sec. III A to
denote the effective metric in which spin-2 d.o.f. (Gravitons)
propagate.

7We choose the mostly-plus signature convention for the
metric gμν.
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the blue one (with dashed lines) by Sμν. Panel (a) is actually
transformed into (b), and (d) into (c), if one chooses a
coordinate system such that the spatial gradients ∂iφ̄
vanish, the vector ∂μφ̄ pointing then exactly in the time
direction.
Panels (a) and (b) correspond to f00ðX̄Þ < 0, and mean

that the spin-0 d.o.f. χ propagates slower than light (which
is the fastest matter field). Panels (c) and (d) correspond to
f00ðX̄Þ > 0, and describe a superluminal scalar field, but
this does not lead to any causality problem as soon as this
dashed cone remains always a cone, with a nonempty
exterior where one may define Cauchy surfaces to specify
initial data. This has already been discussed in detail in the
literature [65–69]. Paradoxes only occur when one wants to
specify initial data on the t ¼ 0 hypersurface in the
situation of panel (d): This is forbidden because this
hypersurface is not spacelike with respect to the dashed
cone. Note that panels (b) and (c) are actually equivalent if
one exchanges the meaning of the colors. If one chooses a
coordinate system such that the scalar causal cone is at
�45∘ (grey cone with solid lines), then matter propagates
within the dashed blue cone, and the case of a superluminal
scalar perturbation χ now corresponds to panels (a)–(b).
Causality becomes then more obvious than in panel (d).
Independently of the specific form (1) taken by the

effective metric Sμν in the case of k-essence, let us now
consider any possible Sμν in which a field χ propagates, to
discuss all the cases of Fig. 1. To simplify, we shall assume
that the standard metric gμν (to which matter is assumed to
be universally coupled) is flat. If the Lagrangian defining
the dynamics of χ reads as before L2 ¼ − 1

2
Sμν∂μχ∂νχ,

where we focus only on the kinetic term, then the conjugate
momentum is defined as

p≡ ∂L2

∂ _χ ¼ −S00 _χ − S0i∂iχ; ð2Þ

and the contribution of this field χ to the Hamiltonian
density reads

H2 ¼ p_χ − L2

¼ −
1

2S00
ðpþ S0i∂iχÞ2 þ

1

2
Sij∂iχ∂jχ: ð3Þ

Note that its positiveness depends only on S00 and Sij, but
not on the mixed components S0i, although we shall see
that they are actually crucial for the stability analysis.
Stability is indeed a physical (observable) statement,
which should be coordinate independent, whereas the
Hamiltonian density is not a scalar and depends thus on
the coordinate system.
To simplify even further the discussion, let us assume

that Sμν is of the form

0
BBB@

S00 S01 0 0

S01 S11 0 0

0 0 S22 0

0 0 0 S33

1
CCCA; ð4Þ

with S22 ≥ 0 and S33 ≥ 0, and let us focus on the ðt; xÞ
subspace as in Fig. 1. [In the neighborhood of a spherical
body, for instance, it is natural to choose spherical
coordinates where Sθθ ¼ 1=r2 and Sϕϕ ¼ 1=ðr2 sin2 θÞ
or similar in generalized Galileon and beyond-Horndeski
theories, the difficulties being restricted to the ðt; rÞ sub-
space.] In order for this metric to define a cone, with
nonempty interior and exterior, it is necessary that its
determinant be negative:

D≡ S00S11 − ðS01Þ2 < 0: ð5Þ

Note that this hyperbolicity condition does depend on the
off-diagonal component S01, contrary to the sign of
Hamiltonian (3) above. The inverse S−1

μν of matrix (4)
[its exponent −1 being explicitly written in order not to
confuse it with gμλgνρSλρ] reads in the ðt; xÞ subspace

�
S11 −S01

−S01 S00

�
=D: ð6Þ

We can thus conclude that when Sμν indeed defines a cone,
then S−1

00 has the opposite sign of S11, and S−1
11 the opposite

sign of S00.
Let us now consider the various cone orientations of

Fig. 1. In the situation of panel (a), the time axis is outside
the dashed (blue) cone defined by Sμν. This means that
S−1
00 dtdt > 0, and therefore S11 < 0. This implies that the

Hamiltonian density (3) is unbounded by below because of
the contribution of 1

2
Sij∂iχ∂jχ, when ∂1χ is large enough

(and p is chosen to compensate S0i∂iχ). This conclusion
remains the same for all panels of this Figure in which the
time axis is outside the dashed cone, namely (f), (h), (i), (j),
and (k). On the contrary, when the time axis is within the
dashed cone (in all other panels of Fig. 1), this corresponds
to S11 > 0, and the second term of Hamiltonian (3) is thus
positive.
Similarly, in the situation of panel (d), the x axis is within

the dashed cone, therefore S−1
11 dxdx < 0, which implies

S00 > 0. In this case, the Hamiltonian density (3) is
unbounded by below because of the contribution of its
first term −ðpþ S0i∂iχÞ2=ð2S00Þ. This conclusion remains
the same for all panels in which the x axis is inside the
dashed cone, namely (g), (h), (j), (k), and (l). In all other
panels, the x axis is outside the dashed cone, therefore
S00 < 0 and the first term of Hamiltonian (3) is thus
positive.
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Note that panels (h), (j) and (k) have both their time axis
outside the dashed cone and their x axis within it. This
means that the Hamiltonian density (3) is always negative,
while that corresponding to matter (coupled to gμν and
propagating thereby in the solid grey cone) is always
positive. It thus naively seems that any coupling between
matter and χ, or any indirect coupling via another field (for
instance gravity), will lead to deadly instabilities. This is
indeed the case for panels (j) and (k), but not for panel (h).
Indeed, if one chooses another coordinate system such that
the new time t0 lies within the intersection of both cones
(superposition of the grey and blue regions), and the new
spatial direction x0 is outside both cones (white region),
then one gets simultaneously the four conditions g000 < 0,
g011 > 0, S000 < 0, and S011 > 0. Therefore, both the
Hamiltonian density (3) for the spin-0 d.o.f. χ and its
analogue for matter are positive in this coordinate system.
This suffices to prove that no instability can be caused by
the kinetic terms in the situation of panel (h).
Let us recall that when a total Hamiltonian density

(including all interacting fields) is bounded by below, then
the lowest-energy state is necessarily stable. It is indeed
impossible to reach a higher energy state (for any field)
without violating energy conservation. But note that the
converse theorem does not exist, as underlined by the
reasoning above: A Hamiltonian density which is
unbounded by below does not always imply an instability.
In panel (h) of Fig. 1, this Hamiltonian was the sum of the
positive contribution of matter and of the (always) negative
contribution of the spin-0 field χ, but we saw that there exist
other coordinate systems in which both contributions are
simultaneously positive.
To understand this better, let us just consider the

boosts of special relativity in flat spacetime, instead of
the arbitrary coordinate transformations allowed in GR.
Then the metric gμν in which matter propagates always
reads diagð−1; 1; 1; 1Þ, and it defines the solid (grey)
cones of Fig. 1. In the simple cases of panels (b) and
(c), the components of Sμν in the ðt; xÞ subspace read
k2diagð−1=c2s ; 1Þ, where k is a nonvanishing constant and
cs is the velocity corresponding to the characteristics of the
dashed (blue) cone.8 Indeed, the wave equation for the
spin-0 field χ reads Sμν∂μ∂νχ ¼ 0, and it admits as
solutions arbitrary functions of ðx� cstÞ. Panel (b) corre-
sponds to c2s < 1 while panel (c) to c2s > 1. If we now
perform a boost of velocity −v, we find that the compo-
nents of S0μν in the new coordinate system read

k2

c2s ð1 − v2Þ
�
−1þ v2c2s vð1 − c2s Þ
vð1 − c2s Þ c2s − v2

�
: ð7Þ

We thus immediately see that S011 < 0 (with S000 still
negative) when we choose jcsj < jvj < 1 in the case of
panel (b), i.e., that we obtain the situation of panel (a), as
described below Eq. (6). Although we started from the
stable situation of panel (b), in which the total Hamiltonian
density is positive, we thus find that the contribution of the
spin-0 d.o.f. is no longer bounded by below in this boosted
frame corresponding to panel (a). This is the main lesson:
The unboundedness by below of the Hamiltonian density is
a mere coordinate effect in the present situation, and it has
no physical meaning. The model is stable, but one is not
computing the “right” quantity in the boosted frame of
panel (a). [We shall come back to this “right” quantity
below.]
Note that a negative value of S011 in the boosted frame of

panel (a) always comes together with a significant nonzero
value of jS001j ¼ jS010j > ffiffiffiffiffiffiffi

−D
p

, where D is the determi-
nant (5). The reason is that this determinant must remain
negative in all coordinate systems—and actually remains
strictly equal to D when one considers only special-
relativistic boosts as here. These nonzero off-diagonal
components of S0μν are crucial for the existence of an
inverse boost taking us back to the situation of panel (b),
where the total Hamiltonian density is positive. If they were
absent, then the metric diagðS000;S011Þ would be negative
definite, it would not define any causal cone, and the
Cauchy problem would be ill-posed. Note also that the
magnitude of these off-diagonal components of S0μν is
also crucial. For instance, panel (i) of Fig. 1 corresponds
to S000 < 0 and S011 < 0 like panel (a), and it does
satisfy jS001j > ffiffiffiffiffiffiffi

−D
p

, but also the inequality jS001j <
jS000 þ S011j=2 which leads to the situation of panel (j)
when diagonalizing Sμν by an appropriate boost. In this
case (j), the two metrics gμν and Sμν have opposite
signatures in the ðt; xÞ subspace, so that the spin-0 d.o.f.
χ behaves as a ghost in this subspace, and the model is
unstable as soon as χ is somehow coupled to matter
(including indirectly, e.g., via gravity).
Let us now apply a boost to the case of panel (c) of Fig. 1.

If we choose jcsj−1 < jvj < 1, then we find from Eq. (7)
that S000 > 0 (with S011 still positive), i.e., we obtain the
situation of panel (d). Here again, as described above, we
thus find that the contribution of the spin-0 d.o.f. to the
Hamiltonian density is no longer bounded by below in this
boosted frame, whereas is was positive in the initial frame
corresponding to panel (c). [The fact that the first term of
(3), proportional to _χ2, becomes negative is related to the
wrong time-orientation9 of the null vector Nμ with respect

8We set c ¼ 1 for the velocity of light, corresponding to the
solid (grey) cone.

9On the other hand, the possible negative values of
Hamiltonian (3) in the previous case of panel (a) is less obvious,
since the null vectors Nμ (with respect to S0−1

μν ) always remain
future-oriented. In that case, negative values are caused by the
second term of (3) involving the spatial derivative ∂1χ, and they
are thus caused by a specific spatial dependence of the initial data.
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to S0−1
μν in the boosted frame of panel (d): When it points

toward positive values of x0, it seems to go backwards with
respect to time t0. As underlined above, the hypersurface
t0 ¼ 0 cannot be consistently used to specify initial data in
this case, since it is not spacelike with respect to S0−1

μν ,
therefore the sign of Hamiltonian (3) at t0 ¼ 0 does not have
much meaning anyway.] The conclusion is the same as
before: The unbounded by below Hamiltonian in the
boosted frame of panel (d) is a mere coordinate effect,
without any physical meaning, and the model is actually
stable, as proven by the positive total Hamiltonian density
in the frame of panel (c).
It is also instructive to compute the energy of a system in

a boosted frame (still in flat spacetime, to simplify the
discussion). Although it differs from gμν, the effective
metric Sμν is a tensor; see for instance Eq. (1) for the
particular case of k-essence. Therefore, the Lagrangian
L2 ¼ − 1

2
Sμν∂μχ∂νχ is diffeomorphism invariant, and this

implies that four Noether currents are conserved. They read

−Tν
μ ≡ δL2

δð∂νχÞ
∂μχ − δνμL2; ð8Þ

where the index μ specifies which of the four currents is
considered, ν denotes its components, and δνμ is the
Kronecker symbol. [A global minus sign is introduced
in definition (8) so that the mixed component T0

0

denotes the opposite of the energy density, like in general
relativity.] The current conservation reads as usual
∂νTν

μ ¼ 0 ⇔ ∂0T0
μ þ ∂iTi

μ ¼ 0. When integrating this
identity over a large spatial volume V containing the whole
physical system under consideration, the spatial derivatives
become vanishing boundary terms, and one gets the
standard conservation laws for total energy and momen-
tum, ∂tPμ ¼ 0, with Pμ ≡ −∭

V
T0
μd3x. For μ ¼ 0, the

energy density −T0
0 coincides with the on-shell value of

the Hamiltonian density (3). As recalled above, if it is
bounded by below, then the lowest-energy state must be
stable. But it should be underlined that the three compo-
nents of the total momentum Pi are also conserved, and
that the components −T0

i ¼ p∂iχ [with p still given by
Eq. (2)] have no preferred sign, since there is no privileged
spatial direction. When changing coordinates, the total 4-
momentum of the system becomes P0

λ ¼ ð∂xμ=∂x0λÞPμ,
and in particular, the energy gets mixed with the initial
3-momentum, P0

0 ¼ ð∂xμ=∂x00ÞPμ, or simply P0
0 ¼

ðP0 þ vP1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
for a mere boost of velocity v in

the x direction. Of course, gμνPμPν (as well as SμνPμPν) is
a scalar quantity, and it remains thus invariant under
coordinate transformations. However, it is not always
negative, contrary to the standard “minus rest mass
squared” in special relativity, therefore the magnitude of
the spatial components Pi is not always bounded by P0. For
instance, in panels (c) or (d) of Fig. 1, a scalar field

perturbation propagating outside the solid (grey) cone
obviously corresponds to a positive gμνPμPν, i.e., a space-
like Pμ with respect to gμν. It is thus clear that a negative

value of P0
0 ¼ ðP0 þ vP1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is reachable for a large

enough boost velocity jvj < 1. The fact that P0
0 can also

become negative in the case of panel (a) is much less
obvious, but it can be checked that it coincides with the
spatial integral of the on-shell expression of Hamiltonian
(3) with the boosted effective metric (7). In such a case, a
large enough boost velocity jcsj < jvj < 1 generates a
negative S011, and thereby a possibly negative
Hamiltonian (3), when initial data on the t0 ¼ 0 hypersur-
face are chosen with a large spatial gradient ∂x0χ (but a
small ∂t0χ). Up to now, we are merely rephrasing our
previous conclusions with a slightly different viewpoint.
But what is more interesting is to understand why situations
like panels (a) or (d) of Fig. 1 are stable in spite of their
Hamiltonian density (3) which is unbounded by below. The
reason is simply that not only their total energy P0

0 is
conserved, but also their 3-momentum P0

i. And it happens

that the linear combination ðP0
0 − vP0

1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, which is

thus also conserved, is bounded by below, since it obvi-
ously gives the positive expression of P0 in the initial frame
of panels (b) or (c). In other words, stability is not ensured
by the boundedness by below of the Hamiltonian density, in
the present case, but by that of the linear combination
−T 00

0 þ vT 00
1. In more general situations involving arbitrary

coordinate transformations, the initial energy P0 which is
bounded by below is again a linear combination of
conserved quantities in the new frame, P0 ¼ ð∂x0μ=∂x0ÞP0

μ.
In conclusion, although the Hamiltonian density is not

bounded by below in the situations corresponding to panels
(a), (d), (f), (g) and (h) of Fig. 1, there exists a choice of
coordinates mapping them to panels (b), (c) or (e), where
the new total Hamiltonian density is bounded by below.
This suffices to guarantee the stability of the lowest-energy
state, as computed in this new coordinate system. The only
generically unstable cases correspond to the third row of
Fig. 1, panels (i) to (l), because their total Hamiltonian
density is never bounded by below in any coordinate
system. They are such that the matrix Sμλgλν is diagonaliz-
able and possesses two negative eigenvalues. Conversely, it
is easy to write the inequalities needed on the components
of the effective metric Sμν to be in the eight safe cases
corresponding to the first two rows, panels (a) to (h): In
addition to the hyperbolicity condition (5), one just needs

S00 < S11 and=or jS00 þ S11j < 2jS01j; ð9Þ

when focusing on the ðt; xÞ subspace in a coordinate system
such that gμν ¼ diagð−1; 1Þ. But these inequalities are less
enlightening than Fig. 1 itself, in which it is immediate to
see whether the two causal cones have both a common
exterior (when one should specify initial data) and a
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common interior. When one chooses new coordinates such
that time lies within the cone intersection, and space is
outside both cones, then the total Hamiltonian density
caused by kinetic terms becomes positive.
The above results can also be formulated in a covariant

way. A given solution is stable if and only if all effective
metrics (here gμν and Sμν, but also Gμν introduced in Sec. III
below) are of hyperbolic mostly plus signature, and it is
possible to find a contravariant vector Uμ and a covariant
vector uμ such that

gμνUμUν < 0; S−1
μνUμUν < 0;…; ð10Þ

gμνuμuν < 0; Sμνuμuν < 0;…; ð11Þ

and

Tν
μUμuν ≥ 0; ð12Þ

where Tν
μ denotes the Noether currents for all fields,10

including Eq. (8) for the scalar field. Equation (10) is
the covariant way of formulating the existence of a
common interior to all causal cones, where a “good” time
direction may be chosen, namely dx0 in the direction ofUμ.
Equation (11) expresses the existence of a spatial hyper-
surface exterior to all causal cones, defined by uμdxμ ¼ 0,
where “good” spatial coordinates may be chosen. Finally,
Eq. (12) states that the Hamiltonian density is positive in
such a “good” coordinate system. Let us underline that Uμ

and uμ are generically not related by lowering or raising the
index with any of the effective metrics. This is the crucial
difference with general relativity (with standard minimally
coupled fields), in which a single metric gμν defines the
causal cone of all d.o.f. In this simpler case of GR, the
above conditions boil down to finding a single timelike
vector Uμ for which the usual weak energy condition
TμνUμUν ≥ 0 is satisfied. In particular, Eqs. (10) and (11)
become then equivalent if one chooses uμ ¼ gμνUν. One
may also extend conditions (10)–(12) by imposing that all
“future-oriented” contravariant and covariant vectors Uμ

and uμ satisfying (10) and (11) respect inequality (12). [By
“future-oriented,”wemean here that these two vectors must
have consistent orientations, i.e., that their scalar product
Uμuμ < 0, otherwise one could change the sign of one of
them without spoiling conditions (10) nor (11) but making
(12) negative.] This would be the full generalization of the
weak energy condition to our more subtle case involving
several causal cones, and our previous discussion shows

that it would indeed be satisfied if the solution is stable.
However, let us underline again that stability is actually
ensured as soon as one pair of vectors Uμ and uμ satisfies
Eqs. (10)–(12).
As an application of the above results, let us rederive

the stability conditions for the effective metric (1) corre-
sponding to k-essence. Let us first choose a locally inertial
frame such that gμν ¼ diagð−1; 1; 1; 1Þ. Then, if ∂μφ̄ is
timelike with respect to gμν, it is always possible to boost
this coordinate system such that ∂iφ̄ ¼ 0. We thus get
Sμν ¼ diagð½−f0 þ 2 _̄φ2f00�; f0; f0; f0Þ. To be in the situation
of panels (b) or (c) of Fig. 1, it is necessary to have S00 < 0

and Sxx > 0, therefore we need −f0 þ 2 _̄φ2f00 < 0 and
f0 > 0. Since X̄ ¼ gμν∂μφ̄∂νφ̄ ¼ − _̄φ2 in this specific coor-
dinate system, the covariant expressions of these conditions
are necessarily f0ðX̄Þ > 0 and 2X̄f00ðX̄Þ þ f0ðX̄Þ > 0, as
mentioned one paragraph below Eq. (1). Note that no
condition is imposed on f00ðX̄Þ alone. The result remains
the same when the background scalar gradient ∂μφ̄ is
spacelike (still with respect to gμν). Then one may choose
the x coordinate in its direction, so that its only non-
vanishing component be φ̄0 ≡ ∂1φ̄. In this coordinate
system, the components of the effective metric read
Sμν ¼ diagð−f0; ½f0 þ 2φ̄02f00�; f0; f0Þ, while X̄ ¼ þφ̄02,
therefore we recover strictly the same covariant inequal-
ities. Finally, when ∂μφ̄ is a null vector (again with respect
to gμν, i.e., X̄ ¼ 0), it is possible to choose a coordinate
system in which ∂μφ̄ ¼ ð _̄φ; _̄φ; 0; 0Þ, and the nonvanishing
components of the effective metric read S00¼−f0þ2 _̄φ2f00,
S11¼f0þ2 _̄φ2f00, S01¼S10¼−2 _̄φ2f00, and S22 ¼ S33 ¼ f0.
We then find that one of the characteristics defined by Sμν

coincides with one of those defined by gμν, corresponding
to a velocity −1 for spin-0 perturbations. This is thus
a limiting case of those plotted in Fig. 1. But when
f0ðX̄Þ > 0, consistently with the same covariant inequal-
ities as above, one finds that the causal cones defined by gμν

and Sμν have both a common interior and a common
exterior, and the background solution is thus stable.

III. STABLE BLACK HOLE SOLUTIONS
IN A SUBCLASS OF (BEYOND)

HORNDESKI THEORIES

Let us now illustrate our findings with a specific
example, stemming from Horndeski theory. Wewill discuss
certain solutions of the following action, which has been
studied quite a lot due to its simple self-tuning properties:

SJ½gμν;φ� ¼
Z ffiffiffiffiffiffi

−g
p

d4x½ζðR − 2ΛbareÞ þ βGμν∂μφ∂νφ

− ηφ2
λ �; ð13Þ

where we use the simplifying notation φλ ≡ ∂λφ, so that
φ2
λ ¼ gμν∂μφ∂νφ (which was also denoted as X in Sec. II).

10Of course, any other conserved tensor constructed from Tν
μ

by adding the divergence of an antisymmetric Belinfante tensor is
also allowed [70,71], and in particular the standard symmetric
energy-momentum tensor ð2= ffiffiffiffiffiffi−gp ÞðδSfield=δgρνÞ defined as in
general relativity (with one of its indices lowered with gμρ), where
Sfield denotes the contribution of a given field to the action.
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ζ is the Planck mass squared divided by 16π, and η, β and
Λbare are some constants. In terms of standard Horndeski
notation, this action corresponds to

G4 ¼ ζ −
β

2
φ2
λ ; G2 ¼ −2ζΛbare − ηφ2

λ : ð14Þ

Static and spherically symmetric black hole solutions of the
above theory were first derived in [72] while they were
extended in [54,73,74] to the case of nonvanishing Λbare. A
new family of solutions, with a linearly time-dependent
scalar field, was proposed in [54]. These solutions enjoy
novel regularity properties thanks to the time dependence
of the scalar. Some solutions have spacetime metrics that
are identical to their GR counterparts (apart from the value
of the cosmological constant). As a result, they are often
referred to as stealth solutions. More importantly, time
dependence of the scalar field qualifies the scalar to be a
dark energy field responsible for late-time acceleration (as
well as self-tuning properties). These solutions were
claimed to be unstable under linear perturbations [55],
and more recently the theory (13) was ruled out observa-
tionally. The aim of the forthcoming section is to show that
the former result is in fact wrong, while the latter crucially
depends on how the metric couples to matter. Put in other
words, if the physical metric to which matter couples
minimally is gμν, then the above theory is ruled out (more
precisely, the scalar field is ruled out as a dark energy
candidate). Indeed, the speed of gravitons in this theory
generically deviates from the speed of light [46,47] in
inconsistency with the simultaneous observation of gravi-
tational and electromagnetic waves from the same source,
GW170817 [2,45]. However, it is easy to map the action
(13) to a beyond Horndeski theory in which gravitational
waves do travel at the speed of light in accordance with
observations. This has been checked in weakly curved
backgrounds [46,47] but also in strongly curved spherically
symmetric backgrounds [53] (and Ref. [20] recently proved
so for vector-tensor theories too). To make therefore the
theory (13) viable, the matter action should be minimally
coupled to g̃μν, the physical metric:

g̃μν ¼ gμν −
β

ζ þ β
2
φ2
λ

∂μφ∂νφ: ð15Þ

Of course, any metric proportional to this g̃μν would also be
allowed, since it would not change the causal cone, even if
the conformal factor depends on φ2

λ . One should then work
with the action

SJ½gμν;φ� þ Sm½g̃μν;Ψ�; ð16Þ

where Sm is some given matter action with matter fields,
collectively denoted as Ψ, universally coupled to the
physical metric g̃μν. In standard nomenclature for BD

gravity, the nonphysical gμν would be called the
“Einstein frame” metric. However, its perturbations do
not describe pure spin-2 d.o.f. in the present case, because
of the kinetic mixing introduced by the Gμνφμφν term of
action (13). We will therefore call gμν the “Horndeski
frame” metric rather than the “Einstein frame” one. On the
other hand, we call g̃μν the “Jordan frame” physical metric.
As in standard BD theory, it is easier to work in the
nonphysical frame because the metric sector is simpler
there. We should keep in mind that our analogy is to be
taken with caution, because the frames of the higher order
theories are related disformally (15), and not conformally
as in BD theory. Indeed, the disformal factor (15) has been
chosen in order to impose a unit speed for the gravitational
waves in the physical (or Jordan) frame, at least in weakly
curved backgrounds. We recently reported [53] that the
black hole solutions found in [54] are again black holes
with respect to the physical frame. This is not a trivial
result, as a disformal transformation may change the nature
of solutions, rendering them even singular upon going from
one frame to the other. We will explicitly work out the
physical disformed metric in the next section. Furthermore,
we study the stability of some solutions of the theory (16).
We do so in the Horndeski frame, as stability properties
carry through upon field redefinitions (15) as long as these
are not singular. A priori, three causal cones must be
considered in our analysis, and must have compatible
orientations for the solutions to be stable: the matter causal
cone associated to g̃μν, and the cones associated to scalar
and gravitational perturbations (with their associated effec-
tive metrics). Quite remarkably, as we will see, the graviton
perturbation cone will end up being identical to the matter
light cone in the physical frame, demonstrating that gravity
waves travel at same speed as light, even in a strongly
curved region of spacetime (close to the event horizon).
This will effectively reduce the number of causal cones
under scrutiny from three to two. We will see in the next
section how to construct these causal cones and effective
metrics in a spherically symmetric background.
Regarding stability, Appleby and Linder examined

action (13) with vanishing Λbare in a cosmological frame-
work [75]. From the study of scalar perturbations, they
found that there always exists either a gradient instability or
a ghost. This pathology can however be cured by the
introduction of a bare cosmological constant Λbare, as we
will see below. The stability of the black hole static
solutions was discussed in [76–78], based on a more
generic theory than (13). The authors employed the
well-established Regge-Wheeler formalism: they decom-
posed the perturbations into odd and even modes, each
mode being decoupled of all others at the linear level.
Stable parameter regions were exhibited for the action (13).
Then, Ogawa et al. tackled the case where the scalar
field acquires time-dependence [55]. They claimed that the
solutions were always unstable, whatever the coupling
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parameters of the theory. However, their argument made use
of the fact that the Hamiltonian is unbounded from below; as
we argued in the former section, this cannot be a satisfactory
criterion to decide on the stability of some solution. We
show in the last paragraph of this section that there indeed
exist stable black hole solutions for given parameters. We
will first derive the effective metrics in which graviton and
scalar perturbations respectively propagate.

A. The effective metrics for graviton
and scalar perturbations

Wewill focus our analysis on perturbation theory around
spherically symmetric Schwarzschild-de Sitter solutions. It
is indeed known that the action (13) allows for a “stealth”
Schwarzschild black hole, as well as Schwarzschild-
de Sitter metrics with a non-trivial scalar profile:

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð17Þ

AðrÞ ¼ BðrÞ ¼ 1 −
2Gm
r

−
Λeff

3
r2; ð18Þ

Λeff ¼ −
η

β
; ð19Þ

φ ¼ q

�
t�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − AðrÞp
AðrÞ dr

�
; ð20Þ

q2 ¼ ηþ βΛbare

ηβ
ζ; ð21Þ

where q parametrizes the linear time-dependence of the
scalar field, and m corresponds to the mass of the black
hole. The constant Λeff plays the role of an effective
cosmological constant, and is a priori independent of
Λbare in Eq. (13), with the velocity integration constant q
playing the role of a tuning integration constant to Λbare via
relation (21). For consistency, the right-hand side of
Eq. (21) should be positive; since ζ is always positive,
we must therefore have

ðηþ βΛbareÞηβ > 0; ð22Þ
for this solution. A second background solution obtained in
the case η ¼ 0 and Λbare ¼ 0 is the stealth Schwarzschild
black hole solution, which reads

ds2 ¼ −AðrÞdt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð23Þ

AðrÞ ¼ BðrÞ ¼ 1 −
2Gm
r

ð24Þ

φ ¼ q

�
t�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − AðrÞp
AðrÞ dr

�
; ð25Þ

and for which q is a free parameter. This solution is
characterized by an asymptotically flat metric, does not
have self-tuning properties and is not a limit of the de Sitter
black hole (17).
Before we proceed to the stability analysis let us

apply the disformal transformation (15) to the above
background solutions and examine the nature of the
physical metric and scalar field background solution
(17). The family of background solutions verifies the
relation φ2

λ ¼ −q2 and this simplifies the disformal trans-
formation and coordinate transformations thereof. To
simplify notation, we can set

F ¼ −
βq2

ζ − β
2
q2

; ð26Þ

and note that the disformed metric acquires off diagonal
terms in the original ðt; rÞ coordinates due to the t and r
scalar field dependence. We then diagonalize the physical
metric using

t̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p �
t ∓

Z
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞp

AðrÞ½AðrÞ − F � dr
�
; ð27Þ

where the minus sign corresponds to the plus one in
Eqs. (20) and (25). Note that, for this coordinate trans-
formation to be well defined, one needs

F < 1: ð28Þ

For the solution (17)–(21), this bound reads

ð3ηþ βΛbareÞðη − βΛbareÞ > 0: ð29Þ

We have to keep in mind this constraint for the upcoming
stability analysis. The background solution (20) in the
physical frame g̃μν then recovers the same form as the
original background, namely:

ds̃2 ¼ −ÃðrÞdt̃2 þ dr2

B̃ðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð30Þ

ÃðrÞ ¼ B̃ðrÞ ¼ 1 −
2Gm̃
r

−
Λ̃eff

3
r2; ð31Þ

φ ¼ q̃

�
t̃ −
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ÃðrÞ
q

ÃðrÞ dr

�
; ð32Þ

q̃ ¼ qffiffiffiffiffiffiffiffiffiffiffiffi
1 − F

p ; m̃ ¼ m
1 − F

;

Λ̃eff ¼
Λeff

1 − F
¼
�
Λeff þ Λbare

3Λeff − Λbare

�
Λeff ; ð33Þ
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in the ðt̃; rÞ coordinate system with respect to the rescaled
parameters of the solution11 Λ̃eff , m̃, q̃. Before studying the
stability, let us remark that the solution in the physical
frame is asymptotically de Sitter only for positive Λ̃eff .
Since this solution is meant to describe our current
Universe, we impose the positivity of Λ̃eff . In terms of
the Lagrangian parameters, this translates as:

ηβðη − βΛbareÞð3ηþ βΛbareÞ < 0; ð34Þ

to be combined with constraints (22) and (29). It is easy to
check that the three conditions together imply that the
solution was also asymptotically de Sitter in the original
Horndeski frame, i.e., that Λeff > 0. The above trans-
formation can be trivially extended to the stealth solution
(23)–(25). We hence recover the announced result that the
physical metrics are again black hole solutions.

Let us now proceed with the perturbative analysis.
Generically, the theory (13) has one scalar d.o.f., and
two polarizations of a massless spin-2 d.o.f. We first want
to obtain the effective metric in which the scalar mode
propagates. To this end, we shall focus on a spherically
symmetric perturbation. If such a dynamical breather mode
exists, it necessarily corresponds to the scalar d.o.f. We
perturb the metric and scalar field according to

gμν ¼ ḡμν þ hμν; ð35Þ

φ ¼ φ̄þ χ; ð36Þ

where a bar denotes the background solution, and hμν and
χ depend only on t and r since we look for a spherically
symmetric perturbation. Using the formalism developed by
Regge and Wheeler [80], hμν can be written in spherical
coordinates as:

hμν ¼

0
BBB@

AðrÞH0ðt; rÞ H1ðt; rÞ 0 0

H1ðt; rÞ H2ðt; rÞ=BðrÞ 0 0

0 0 Kðt; rÞr2 0

0 0 0 Kðt; rÞr2sin2θ

1
CCCA; ð37Þ

where the Hi and K are free functions. Inserting these
perturbations into the action, we isolate the terms which are
quadratic in hμν and χ. This gives the second order
perturbed action, that we can write as

δð2Þs SJ ¼
Z

dtdr 4πr2Lð2Þ
s ; ð38Þ

where the factor 4πr2 corresponds to the trivial angular

integration, and Lð2Þ
s is the Lagrangian density from which

we can extract the causal structure of the perturbations. The
subscript “s” stands for scalar, since we choose to excite
only a spherically symmetric mode. We can simplify the
calculations using the diffeomorphism invariance generated
by an infinitesimal vector ξμ. In the new system of
coordinates x̂μ ¼ xμ þ ξμ, the metric and scalar transform
according to

ĝμν ¼ gμν − 2∇ðμξνÞ; ð39Þ

φ̂ ¼ φ − ∂μφξ
μ: ð40Þ

With a well-chosen ξμ, we can in fact set K and χ to zero.
This completely fixes the gauge. Explicitly,

ξμ ¼
�
1

q

�
χ þ φ0 Kr

2

�
;−

Kr
2

; 0; 0

�
; ð41Þ

a prime standing for a derivative with respect to r. In this

gauge, Lð2Þ
s reads, after numerous integrations by parts and

using the background field equations,

Lð2Þ
s ¼ c1H0

_H2 þ c2H0
0H1 þ c3H0

0H2 þ c4H1
_H2

þ c5H2
0 þ c6H2

2 þ c7H0H2 þ c8H1H2: ð42Þ

Here a dot represents a time derivative, and all ci are
background coefficients with radial (but no time) depend-
ence, the detailed expression of which can be found in
Appendix. This three-field Lagrangian should boil down to
a Lagrangian depending on a single dynamical variable. As
a first step in this direction, it is easy to eliminate H2 since
the associated field equation is algebraic in H2:

H2¼−
1

2c6
ð−c1 _H0−c4 _H1þc3H0

0þc7H0þc8H1Þ: ð43Þ

Inserting back this expression in Lð2Þ
s , we obtain,

11Similarly to Eq. (20), there actually exist two branches for
the scalar field, corresponding to a plus or minus sign in front of
the r integral. In the physical frame, we keep only the minus
branch, so that this solution is mapped to a homogeneous and
expanding one in FLRW coordinates, see [79]. This minus sign
actually also corresponds to a minus sign in the Horndeski frame
of Eq. (20).
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Lð2Þ
s ¼ c̃1 _H

2
0 þ c̃2H0

0
2 þ c̃3H0

0
_H0 þ c̃4 _H

2
1 þ c̃5 _H0H0

1

þ c̃6 _H0
_H1 þ c̃7H0

0H1 þ c̃8 _H0H1

þ c̃9H2
0 þ c̃10H0H1 þ c̃11H2

1; ð44Þ

where the c̃i coefficients are again given in Appendix in
terms of the ci. A trickier step is to trade H1 and H0 for a
single variable, since the associated field equations are
differential equations, not algebraic ones. To this end, we
introduce an auxiliary field πs as a linear combination of
H0, H1 and their first derivatives:

πs ¼ _H0 þ a2H0
0 þ a3 _H1 þ a4H0

1 þ a5H0 þ a6H1; ð45Þ

with some ai coefficients to be determined soon. The idea is
to introduce πs at the level of the action, group all the
derivatives inside πs, and then to solve for the algebraic
equations giving H0 and H1 in terms of πs. Therefore, we
rewrite the Lagrangian as

Lð2Þ
s ¼ a1½−π2s þ 2πsð _H0 þ a2H0

0 þ a3 _H1

þ a4H0
1 þ a5H0 þ a6H1Þ�

þ a7H2
0 þ a8H2

1 þ a9H0H1: ð46Þ

Variation of (46) with respect to πs ensures Eq. (45). Now, a
simple identification with Lagrangian (44) allows us to
determine the ai in terms of the c̃i. Again, these coefficients
are given in Appendix. Variation of (46) with respect to H0

and H1 gives a system of two linear equations, which we
can easily solve to write these two fields in terms of πs and
its derivatives. We do not write down their expression here
because of their consequent length, but the procedure is
straightforward.12 At this point, we have obtained a
Lagrangian density in terms of a single variable πs. We
will examine its kinetic part only, neglecting the potential
associated to this d.o.f. and thereby focusing on the causal
structure. This kinetic part reads

Lð2Þ
s;Kin ¼ −

1

2
ðStt _πs

2 þ 2Str _πsπ
0
s þ Srrπ0s2Þ; ð47Þ

with

Stt ¼ c21c
2
3c

2
4

4c2D
ð−2c24c5 þ c2c1c04 − c2c4c01 − c1c4c02Þ; ð48Þ

Srr ¼ −
c21c

2
3c

2
4

2D
ð−c3c8 þ c2c6Þ; ð49Þ

Str ¼ −
c21c

2
3c

2
4

4D
ð−c4c7 þ c1c8Þ; ð50Þ

D ¼ c26f2ð−c3c8 þ c2c6Þð−c2c4c01 þ c1c2c04 − c1c4c02Þ
þ ½4c3c8c5 þ c2ðc27 − 4c6c5Þ�c24
− 2c2c4c7c1c8 þ c2c21c

2
8g: ð51Þ

Alternatively, we can remark that the scalar mode prop-
agates to linear order in the given black hole background
(17) with an effective two-dimensional metric S−1

μν :

Lð2Þ
s;Kin ¼ −

1

2
Sμν∂μπs∂νπs: ð52Þ

We can read from Eq. (47) the inverse metric:

Sμν ¼
�
Stt Str

Str Srr

�
; ð53Þ

and the metric itself:

S−1
μν ¼ 1

SttSrr − ðStrÞ2
�

Srr −Str

−Str Stt

�
: ð54Þ

From this last object, we can determine the hyperbolicity
condition, the propagation speeds, and all the information
we need for the causal structure of the scalar mode. The
hyperbolicity condition for instance reads

ðStrÞ2 − SttSrr > 0: ð55Þ

The speed of a wave moving towards or away from the
origin is then given by

c�s ¼ Str �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðStrÞ2 − SttSrr

p
Stt : ð56Þ

The hyperbolicity condition ensures that these propagation
speeds are well defined. At any given point, cþs and c−s
generate the scalar causal cone. Finally, one needs to know
where the interior of the cone is located. This can be easily
determined by checking whether a given direction (for
instance the one generated by the vector ∂t) is time or
spacelike with respect to the metric S−1

μν .
A similar analysis must be carried out for the spin-2

mode. It was actually already realized by Ogawa et al. in
[55]. They studied odd-parity perturbations, which cannot
correspond to a scalar d.o.f.—the latter always has even
parity. Hence odd-parity perturbations correspond to one of
the two spin-2 polarizations. We checked the calculations
of Ogawa et al., and we are in full agreement as to the
quadratic Lagrangian derived in their paper. For brevity,
we only reproduce the final result here, applied to the
solution (17)–(21); the gravity perturbations propagate in a

12The case of the stealth Schwarzschild black hole [54] is more
subtle. There, the two equations determining H0 and H1 become
linearly dependent and the procedure cannot be applied. Sec-
tion III D is devoted to this particular case.
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two-dimensional effective metric G−1
μν , which essentially

coincides with the physical metric g̃μν, as given by Eq. (15):

G−1
μν ¼ Λeff

Λbare þ Λeff
g̃μν: ð57Þ

The two metrics are related by a constant conformal factor.
Therefore, they have identical causal structure at any point
of spacetime, provided that the conformal factor is positive.
When this is the case, matter and gravitons propagate
exactly the same way; it is enough to analyze the overlap
conditions of two of the three causal cones, say the matter
and scalar one. On the contrary, if the above conformal
factor is negative, the cone of the graviton is exactly
complementary to the matter one and they have no overlap
nor common exterior. We are therefore led to impose that

ΛeffðΛbare þ ΛeffÞ > 0; ð58Þ

i.e., in terms of the Lagrangian parameters:

ηðη − βΛbareÞ > 0; ð59Þ

The hyperbolicity condition coming from G−1
μν , or equiv-

alently g̃μν, reads:

ðGtrÞ2 − GttGrr > 0; ð60Þ

and the speeds of inwards/outwards moving gravitons are
given by

c�g ¼ Gtr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGtrÞ2 − GttGrr

p
Gtt : ð61Þ

In a nutshell, we have found the effective metrics in which
gravitons and massless scalar propagate and they are given
by Gμν and Sμν respectively. The Schwarzschild-de Sitter
solution is well defined in both Einstein and physical
frames provided Eqs. (22), (29) and (34). Additionally,
under condition (59), gravitons propagate in the exact same
metric as matter. In particular, the speed of gravitational
waves is identical to the speed of light in a strongly curved
background.

B. Homogeneous solutions: A stability window

We will first apply the above analysis to de Sitter
solutions, that is solution (17)–(21) with m ¼ 0. Of course,
in this case, the analysis presented above is not strictly
necessary, but it allows us to cross check our results with
cosmological perturbation theory. In particular, we arrive at
the same conclusion as [75] for the model (13) with
vanishing Λbare: There is no stable homogeneous configu-
ration. However, switching on a nontrivial Λbare, the
hyperbolicity conditions (55) and (60) read respectively:

ð3βΛbare þ ηÞðη − βΛbareÞ < 0; ð62Þ

ð3ηþ βΛbareÞðη − βΛbareÞ > 0: ð63Þ

These two conditions must be supplemented with the fact
that the graviton and scalar cones have a nonempty
intersection and a common exterior. Again, compatibility
with the matter causal cone will follow automatically, since
g̃μν and Gμν are conformally related, with a positive factor
provided Eq. (59). It is enough to check the orientation of
the cones at r ¼ 0, since the solution under analysis is
homogeneous. If the cones have compatible orientations at
r ¼ 0, this will remain true everywhere else. The calcu-
lation is then particularly simple, since Str and Gtr vanish at
r ¼ 0, meaning that the cones are either aligned (and
symmetric around the t axis) or inclined at ninety degrees.
As soon as the hyperbolicity condition (62) for the scalar
and the constraint (59) are satisfied, the t axis is contained
in the cone associated to S−1

μν . We therefore need the
graviton cone to contain also the t axis. This is the case if

ηð3ηþ βΛbareÞ > 0: ð64Þ

Thus, there are in total seven conditions to fulfill for
stability and existence of the solution: Eqs. (22), (29), (34),
(59), (62), (63) and (64). They actually define an nonempty
subspace of the parameter space. The cosmological sol-
ution is stable if and only if

either η > 0; β < 0 and
Λbare

3
< −

η

β
< Λbare; ð65Þ

or η < 0; β > 0 and Λbare < −
η

β
< 3Λbare: ð66Þ

In the following section, we give an example of parameters
that fulfill this criterion. Let us stress that the above
restrictions prevent one from using the theory (13) as a
self-tuning model. Indeed, the above equations tell us that
the effective cosmological constant has to be of same
magnitude as the bare one. Rewriting these conditions in
terms of the observed Λ̃eff , we obtain

either η > 0; β < 0 and Λbare < Λ̃eff ; ð67Þ

or η < 0; β > 0 and Λbare < Λ̃eff <
3

2
Λbare: ð68Þ

Again, this means that self-tuning is impossible in this
specific model, since the observed cosmological constant
must always be larger than the bare one.
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C. Black holes in de Sitter: Example
of a stable configuration

Our analysis is fully relevant when the solution no longer
describes a homogeneous cosmology, but rather a black
hole embedded in such a cosmology. The three conditions
for the background solution to exist and the frame trans-
formation to be well defined, Eqs. (22), (29), (34), do not
depend on the presence of a mass m ≠ 0. Therefore, they
remain identical when a black hole is present. Additionally,
the condition (59) for g̃μν and G−1

μν to have compatible
orientations is unchanged. Provided Eq. (59), photons
coupled to g̃μν and gravitons will travel with the exact
same speed, even in a highly curved background. This is a
very positive feature of the theory (13). Indeed, comparing
the speed of gravitational and electromagnetic waves with
arbitrary accuracy cannot rule out this model.
On the other hand, the expressions of G−1

μν and S−1
μν

become very complicated with a nonvanishing black hole
mass. It is still possible to prove that the hyperbolicity
conditions for both S−1

μν and G−1
μν are not modified with

respect to the de Sitter case. They are again given by
Eqs. (62), (63). To ensure the compatibility of orientation
between the scalar cone and the graviton one is however
more tricky. We checked numerically that the condition
(64) for these two cones to be compatible in the de Sitter
case leads to compatible cones also when the mass
parameter m is switched on. That is, for parameters in
the range (65) or (66), the scalar cone seems to have a
compatible orientation with the graviton cone even close to
the black hole horizon. This remains true for arbitrary mass
of the black hole (as long as the black hole horizon remains
smaller than the cosmological horizon). Figure 2 provides
an illustrative example of this numerical check, for a given
set of parameters that falls in the range allowed by the
corresponding de Sitter solution. In this case, the cones
have compatible orientations everywhere. Remarkably, the
scalar causal cone entirely opens up when approaching the
black hole horizon, without becoming pathological.
Let us stress here why Ref. [55] would have claimed that

the situation exhibited in Fig. 2 is unstable, in the light of
the discussion of Sec. II. In this paper, the graviton metric
components Gtt and Grr were required to be negative and
positive respectively. It was proven, however, that the
product GttGrr is always positive in the vicinity of a
horizon. Figure 2 shows that, indeed, the t axis “leaves”
the causal cone of the graviton (red cone), close to the event
and cosmological horizon, while the r axis remains in the
exterior of the cone. This makes the quantity GttGrr positive
close to the horizon, and the associated Hamiltonian
unbounded by below. However, our analysis so far clearly
shows that it does not signal an instability in any way.
From Fig. 2, one can additionally draw conclusions on

the case where matter couples to gμν, rather than g̃μν. Of
course, matter was chosen to couple to g̃μν on physical

grounds. However, in a generic scalar-tensor theory where
no relation is assumed between the propagation of gravity
and light, one has to investigate these three different cones.
The time coordinate t0 in Fig. 2 is rescaled with respect to t
in such a way that the causal cone associated with gμν is at
�45°, with a timelike t0 direction (that is, the t0 axis lies
inside the cone of gμν). Even in this more restrictive
situation, the plots of Fig. 2 show that the three cones
would actually be compatible, and the solution would be
stable.

D. A special case: Stealth Schwarzschild black hole

As mentioned above, there exists an exact asymptotically
flat Schwarzschild solution when η and Λbare vanish,
with a nontrivial scalar profile (23)–(25). In this case,
the parameter q is no longer related to the coupling
constants of the action and is in fact a free parameter.
We should also emphasize that solution (23)–(25) is the
unique static and spherically symmetric solution with a
linearly time dependent scalar field and η ¼ Λbare ¼ 0. The
procedure for determining the effective metric of scalar
perturbations, described in Sec. III A, breaks down for this
background. It is not possible to carry on after Eq. (44), and
to express the fieldsH0 andH1 in terms of πs. The reason is
that for the stealth Schwarzschild solution H0 and H1

cannot be simultaneously expressed in terms of the master
variable πs from the Lagrangian introduced in (46).
Therefore, we need to find another way of extracting the
scalar mode from the second-order Lagrangian (42) which
now reads

Lð2Þ
s ¼ c1H0

_H2 þ c2H0
0H1 þ c3H0

0H2 þ c4H1
_H2

þ c6H2
2 þ c7H0H2 þ c8H1H2; ð69Þ

as c5 ¼ 0 for the relevant background. The equation
of motion for H2 following from (42) is algebraic in
terms of H2, so as before we can find H2 in terms of
H0 and H1:

H2¼−
1

2c6
ð−c1 _H0−c4 _H1þc3H0

0þc7H0þc8H1Þ: ð70Þ

Substituting (70) in (69) and rearranging terms, we can
write (69) as

Lð2Þ
s ¼ a1ð _H0 þ a2H0

0 þ a3 _H1 þ a5H0 þ a6H1Þ2
þ a7H2

0 þ a8H2
1 þ a9H0H1; ð71Þ

where the coefficients ai are given in the Appendix. We
now introduce new variables xðt; rÞ and yðt; rÞ grouping
together the time and space derivatives:
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H1 ¼
c1
c4

�
x −

c1
c3

y

�
; H0 ¼

c1
c3

y: ð72Þ

Indeed, the Lagrangian (71) then takes the form

Lð2Þ
s ¼ P2 þAy2 þ Bxyþ Cx2; ð73Þ

where

P ¼ _x − y0 þ ã1xþ ã2y; ð74Þ

and

ã1 ¼
2c2c6 − c3c8

c3c4
;

ã2 ¼
c4c1c03 − c3c4c01 þ c8c21 − c4c7c1

c1c3c4
;

A ¼ c21½c4ðc2c01 þ c1c02 þ 2c4c5Þ − c1c2c04�
2c23c

2
4

;

B ¼ c21c2ðc1c8 − c4c7Þ
c23c

2
4

;

C ¼ c21c2ðc2c6 − c3c8Þ
c23c

2
4

: ð75Þ

Variation of (73) with respect to y yields the constraint

FIG. 2. The scalar and graviton/matter causal cones in Schwarzschild-de Sitter geometry, respectively in dashed blue and plain red.
The parameters of the Lagrangian are chosen so that the associated cosmological solution is stable: η ¼ 1

2
, β ¼ −1, ζ ¼ 1, Λbare ¼ 1 in

Planck units. The radius r varies between the black hole horizon located at r ≃ 9.4 × 10−3 and the cosmological horizon at r ≃ 2.4. For
this set of parameters, the graviton cone always lies inside the scalar cone; as a consequence, they have compatible orientations. In this
plot, the time coordinate t0 has been rescaled with respect to the original one, so that the causal cone associated to the unphysical metric
gμν corresponds to lines at �45°.
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2P0 þ 2Ayþ Bx ¼ 0: ð76Þ

The above constraint (76) contains y00, y0, _x0 and it may be
seen as an equation which determines y in terms of x and its
derivatives. To find y from (76), the use of nonlocal (in
space) operators is in general required. For our purposes,
however, we do not need to know the exact expression of y
in terms of x, since we are only interested in the absence of
ghost and gradient instabilities. This means that we focus
on higher derivative terms, i.e., we neglect ∼x with respect
to ∼_x or ∼x0 as well as ∼y with respect to y0. With this
approximation in mind, Eq. (76) becomes

_x0 − y00 ¼ 0; ð77Þ

which after integration over r and setting to zero the
integration constant yields

_x ¼ y0: ð78Þ

By the same token, Eq. (76) shows that the term P2

in (73) is of lower order in derivatives in comparison
with the last three terms, because from (76) one can see
that P is of lower order compared to x and y. As a
consequence, to the leading order in derivatives, the
Lagrangian (73) is

Lð2Þ
s;Kin ¼ Ay2 þ Bxyþ Cx2; ð79Þ

where the subscript “Kin” stresses that only higher order
terms (kinetic part) are left in the Lagrangian. We then
introduce π̃ as

x ¼ π̃0; ð80Þ

and from (78), we easily obtain

y ¼ _̃π; ð81Þ

where we set to zero the integration constant. Finally,
substituting (80) and (81) in (79), we find the kinetic part of
the Lagrangian for the scalar perturbations:

Lð2Þ
s;Kin ¼ −

1

2
ðS̃tt _̃π2 þ 2S̃tr _̃ππ̃0 þ S̃rrπ̃02Þ; ð82Þ

where

S̃tt ¼ −2A; S̃tr ¼ −B; S̃rr ¼ −2C: ð83Þ

One can obtain the same result for the de Sitter black
hole by following the above method rather than (47).
Indeed, first of all, the hyperbolicity condition for (82)
reads

D≡ S̃ttS̃rr − ðS̃trÞ2 < 0: ð84Þ

The explicit expression for D in terms of ci is given by

D ¼ −
c41c2fc2ðc4c7 − c1c8Þ2 − 2ðc2c6 − c3c8Þ½c4ðc2c01 þ c1c02 þ 2c4c5Þ − c1c2c04�g

c43c
4
4

: ð85Þ

One can also verify that

D ¼ −
c41c2
c43c

4
4c

2
6

D; ð86Þ

where D is defined in (51). In terms ofD, the hyperbolicity
condition found in (55) reads,

c81
16c46D

< 0: ð87Þ

As long as D < 0, i.e., the hyperbolicity condition (84) is
satisfied for π̃, the hyperbolicity condition is also satisfied
for π. Moreover, for D < 0 the variables π̃ and π and the
kinetic matrices for π̃ and π are related as,

Sab ¼ −
c41

4c26D
S̃ab; π ¼ 2c6

c21

ffiffiffiffiffiffiffi
−D

p
π̃: ð88Þ

where indices a and b are either t or r.

The advantage of the Lagrangian (82) obtained here is
that it also allows us to treat the case of stealth
Schwarzschild black hole, for which the method of
Sec. III A fails. Indeed, for the stealth solution it turns
out thatD ¼ D ¼ 0 (in other words,H0 andH1 are linearly
dependent). However, the kinetic matrix S̃ab remains finite,
see (83), while the kinetic matrix Sab diverges, as it can be
seen from (88).
For the Lagrangian (82), the vanishing determinant of the

kinetic matrix means that the equation of motion is para-
bolic (for all r). Per se, this fact does not necessarily mean
that the perturbations are pathological on the considered
background. For instance, in the case of the k-essence
Lagrangian L ¼ G2ðXÞ, for solutions where dG2=dX ¼ 0
with timelike ∇μφ, the perturbations behave as dust, i.e.,
they are governed by a wave equation with c2s ¼ 0. The
determinant of the kinetic matrix in this case is also zero,
since only the tt component of the kinetic matrix is
nonvanishing. For the stealth solution (23)–(25), the kinetic
matrix reads

E. BABICHEV et al. PHYS. REV. D 98, 104050 (2018)

104050-16



S̃ab ∝

 μr
ðμ−rÞ2

ffiffiffiffi
μr

p
μ−rffiffiffiffi

μr
p
μ−r 1

!
; ð89Þ

where we defined μ ¼ 2Gm. Notice that, for r ≫ μ, all the
terms of (89) apart from S̃rr tend to zero. The global factor
of Eq. (89) may have any sign, depending on the param-
eters of the model and the (arbitrary) value of q in (25).
When this global factor is negative, the dynamics of the
perturbations indeed corresponds to dust (i.e., a vanishing
velocity, similarly to the example of k-essence described
above), but the infinitely thin cone of propagation tends
towards the r axis. This, together with the fact that the
graviton cone has a “usual” behavior at r → ∞, makes the
stealth solution pathological. It corresponds to a limit of
panels (i) and (j) of Fig. 1 when the dashed (blue) cone is
infinitely thin. On the other hand, for a positive global
factor in Eq. (89), the scalar dynamics corresponds to the
limit of panels (c) and (d) of Fig. 1 when the dashed (blue)
cone totally opens, i.e., its sound velocity is infinite. In that
case, the scalar field is no longer a propagating d.o.f.

IV. CONCLUSIONS

In this paper, we have studied stability criteria for
solutions in modified gravity theories. We then applied
these criteria to establish the stability of certain hairy black
holes whose hair is supplied by a dark energy scalar field
[54,79,81,82].
Throughout this study, we focused on scalar-tensor

theories, but the tools we have developed, as well as the
stability criteria concerning Hamiltonian densities, are
generically applicable in modified gravity theories. The
starting ingredient for the applicability of our tools are
multiple gravitational modes, a clear characteristic of
theories going beyond GR. In order to treat the problem
consistently, we have formulated the notion of causal
cones, each of which is associated to a healthy propagating
d.o.f. Indeed, the local existence of well-defined causal
cones permits us to determine the healthy propagation of
modes about an effective background solution. We saw
that, unlike standard lore, the Hamiltonian densities asso-
ciated to each of the modes do not suffice to exhibit an
instability. The failure of the Hamiltonian criterion, in more
complex background metrics, is due to the fact that it is not
a scalar quantity. Each Hamiltonian density, associated to a
propagating mode, depends on the particular coordinate
system one is using. So although a Hamiltonian density
which is bounded from below signals that the mode is
stable, the converse is not true. Namely, a Hamiltonian
density found to be unbounded from below in some
coordinate system is inconclusive on instability. One
may find a coordinate transformation rendering the
Hamiltonian bounded from below as we saw explicitly
in Sec. II.

Standard lore is recovered only for a class of “good”
coordinate systems that are defined with respect to all the
causal cones present in the system: scalar, graviton, matter,
etc. Namely, these “good” coordinate systems exhibit a
timelike coordinate common to all causal cones and
spacelike coordinates for all causal cone exteriors. If such
a coordinate system exists, then the Hamiltonian is indeed
bounded from below and the modes are well behaved,
propagating in a timelike direction with a hyperbolic
operator. If not, then indeed the Hamiltonian for at least
one of the modes is always unbounded from below, and the
said mode presents a gradient or ghost instability.
The subtlety arises due to the complexity of the back-

ground solution. Indeed, the key point for our examples
here is that the background scalar is space and time
dependent. Then the causal cones can tilt and open up
as we approach the horizon (event or cosmological). As a
result, the original time (space) coordinate of the back-
ground metric may “leave” the interior (exterior) of a causal
cone associated to some mode. This can lead to a mis-
interpretation of the Hamiltonian density associated to the
initial coordinates, which leave the causal cone of the mode
in question. We should emphasize that the failing
Hamiltonian stability criterion is not due to the mixing
of modes, as illustrated by the simple k-essence example of
Sec. II. We may also consider the case of a theory including
a G3 Horndeski term (the DGP term) where the mixing and
demixing of modes has been completely resolved [27] for
an arbitrary background.13 In such a model were found self-
accelerating vacua for the so-called kinetic gravity braiding
(KGB) model [83] (see also [84]). In a standard FLRW
coordinate system, where the dark energy scalar depends
purely on cosmological time, such KGB self-accelerating
solutions generically give (depending on the coupling
constants of the theory) a stable vacuum, with an associated
Hamiltonian which is bounded from below. When one
considers the precise same stable vacua in a spherical
coordinate system, where the metric is static but the scalar
field now depends both on space and time, the same
Hamiltonian density can be found to be unbounded from
below. This, as we emphasized, is an artifact of a bad use of
a coordinate system (here spherical) whereas the FLRW
coordinates are indeed “good” (satisfying the causal cone
criteria, its cosmological time remaining notably within the
causal cones). This example demonstrates that misinter-
pretations related to Hamiltonians are not due to mixing of
modes but, crucially, to the background depending (or not)
on multiple coordinates. It is for this reason that we do not
encounter problems with the Hamiltonian in FLRW sys-
tems e.g., or with static black holes (with a static scalar
field). One therefore expects our analysis to be relevant for
backgrounds (in modified gravity) with lesser symmetry,
e.g., stationary backgrounds involving rotating black holes.

13This result is not known for G4 theories for example.
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For stationary backgrounds e.g., the θ and r dependent
background effective metrics may again tilt and open up as
we approach horizons. Also clearly our analysis could be
used invector-tensor theorieswhere similar blackholes to the
one studied here have been found [85–87]. In any case, let us
emphasize that there always exist “bad” coordinates inwhich
the Hamiltonian density of a stable solution appears
unbounded by below. It suffices that its time direction be
outside at least one of its causal cones, or that one of its spatial
directions be inside one of them. For instance, a mere
exchange of t and x creates such a spurious pathology,
whereas the physics is obviously unchanged.As usual inGR,
one should never trust coordinate-dependent quantities.
We also underlined that when there exists a good

coordinate system in which the total Hamiltonian density
is bounded by below, then it may also be computed in other
coordinate systems, but it no longer corresponds to the
mere Hamiltonian. It becomes a linear combination of the
energy and momentum densities, whose spatial integrals
over the whole system are all conserved. In other words, the
stability of the solution is still guaranteed by the bounded-
ness by below of a conserved quantity, but this is no longer
the mere energy which plays this role. The conditions for
the existence of such a good coordinate system, i.e., for
stability, are written in a covariant form in Eqs. (10)–(12).
Using the above tools, we have corrected a misinter-

pretation [55–58] in the literature about the said instability of
a class of hairy black holes. It is true, as stated in [55], that the
Hamiltonian for the graviton is always unbounded by below
in Schwarzschild’s coordinates when approaching a hori-
zon. However, at the same time, the graviton causal cone
remains compatible (andmay even coincide) with thematter
causal cone under some conditions on the parameters
defining the model. In other words, there exists coordinate
systems where the Hamiltonian for the graviton is bounded
by below.We completed this stability analysis by computing
the scalar causal cone, thanks to the study of l ¼ 0
perturbations. Again, we found that there exists a domain
of parameters where the three causal cones share a common
time and a common spacelike hypersurface. Hence, the class
of hairy black holes studied here, that is quite generically
encountered in Horndeski and beyond Horndeski theories
[79,82], is free of ghost and gradient instability pathologies
for a given range of parameters of the model. This is an
important result considering the absence of stable hairy
black holes in gravitational physics (see e.g., [88–91] for two
celebrated cases). We have demonstrated this result for a
particular Horndeski theory but the result will be similar for
other cases and we even expect some cases will allow for
self-tuning properties [53]. These are among some of the
subjects to be treated in future studies.
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APPENDIX: MONOPOLE PERTURBATION

The aim of this Appendix is to display the explicit
expressions of the various coefficients used in our analysis
of Sec. III A. Those entering Eq. (42) and later read

c1 ¼ −
βq
r
φ0

ffiffiffiffi
B
A

r
; ðA1Þ

c2 ¼ 2Bc1; ðA2Þ

c3 ¼ −
1

2r

ffiffiffiffi
B
A

r
ð−2ζAþ βq2 − 3βABφ02Þ; ðA3Þ

c4 ¼
2

A
c3; ðA4Þ

c5 ¼
q2

4r2
1ffiffiffiffiffiffiffi
AB

p ½2βð1 − B − rB0Þ þ ηr2�; ðA5Þ

c6 ¼ −
1

4Ar2

ffiffiffiffi
B
A

r �
1

2
Aφ02½ð2β − 12βBþ ηr2ÞA− 12βBrA0�

þ rA0ðβq2 − 2ζAÞ− 2ζA2 − βq2A

�
; ðA6Þ

c7 ¼
q2

4Ar2
1ffiffiffiffiffiffiffi
AB

p ½2βBrA0 þ Að2β − 2βBþ ηr2Þ�; ðA7Þ

c8 ¼
q

2Ar2
φ0

ffiffiffiffi
B
A

r
½−6βBrA0 þ Að2β − 6βBþ ηr2Þ�: ðA8Þ

The coefficients entering Eq. (44) and later read

c̃1 ¼ −
c21
4c6

; c̃2 ¼ −
c23
4c6

; ðA9Þ

c̃3 ¼
c1c3
2c6

; c̃4 ¼ −
c24
4c6

; ðA10Þ

c̃5 ¼
c4c3
2c6

; c̃6 ¼ −
c1c4
2c6

; ðA11Þ

c̃7 ¼
2c2c6 − c8c3

2c6
; c̃8 ¼

c8c1 − c4c7
2c6

; ðA12Þ

c̃9 ¼ −
c6ðc7c03 þ c3c07 − c27 þ 4c5c6Þ − c7c3c06

4c26
; ðA13Þ
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c̃10 ¼ −
c7c8
2c6

; c̃11 ¼ −
c28
4c6

: ðA14Þ

Finally, the coefficients entering Eq. (71) read

a1 ¼ c̃1; a2 ¼
c̃3
2c̃1

; ðA15Þ

a3 ¼
c̃6
2c̃1

; a4 ¼ 0; ðA16Þ

a5 ¼
2c̃1c̃7 − c̃8c̃3

c̃6c̃3
; a6 ¼

c̃7
c̃3

; ðA17Þ

a7¼ c̃9−a1a25þða1a2a5Þ0; a8¼ c̃11−a1a26; ðA18Þ

a9 ¼ c̃10 − 2a1a6a5: ðA19Þ
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