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Making use of the SO(3,1) Lorentz algebra, we derive in this paper two series of Gauss-Bonnet-type
identities involving torsion, one being of the Pontryagin type and the other of the Euler type. Two of the six
identities involve only torsional tensorial entities and establish /=ge**# (C*? ,, + C°,,C,*)C;,"C,5, and
=g €, 5(CH 4 C°,, C,P)Ci1N Cp‘sﬂ as purely torsional topological invariants.
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I. INTRODUCTION

Topological considerations have played increasingly
active roles in various branches of physics, such as in
topological condensed matter physics [1-4], and in quan-
tum chaos [5]. In the realm of Einstein’s Riemannian
gravitational theory, there are two well-known topological
invariants in terms of the curvature tensor in four dimen-
sions. They are the Euler invariant and the Pontryagin
invariant. In the advent of the Kibble-Sciama theory of
gravitation [6,7], torsion tensor came into play [8], and
there exists so far one known purely torsional topological
invariant, namely the Nieh-Yan invariant [9—11] discovered
in 1982. This torsional invariant has since been recognized
as the generating functional [12,13] for the canonical
transformation into the Ashtekar variables [14] that led
to the development of loop quantum gravity [15]. It also
appeared in studies in torsional chiral anomaly [10,16-20]
and related investigations [21-23]. In this paper, we shall
derive two more series of topological invariants involving
torsion, one being of the Pontryagin type and the other of
the Euler type, with each series consisting of three
invariants. Two out of these six invariants contain only
torsional tensorial entities.

In the Einstein-Cartan-Kibble-Sciama theory of gravita-
tion [6-8], the vierbein field ¢, and the Lorentz-spin
connection field w®’, are the independent basic field
variables, where the Latin a, b are the anholonomic
Lorentz indices and the Greek y the holonomic coordinate
index. Geometric entities, such as the metric tensor g,,, and

the affine connection I'*, are defined in terms of the basic

v
field variables e“, and w“bﬂ. The metric tensor g, is

defined by

g/,w = ”clheu/,tehw (1)
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with
n =ng = (1,-1,-1,-1), (2)

while the affine connection I'* v 18 to be defined [6] in such
a way that ensures metric compatibility. Defining the
covariant derivatives, denoted with semicolon ; subscripts,
with respect to both local Lorentz transformations and
general coordinate transformations for generic y,* and y¢,
according to

)(al;u E)(al.ﬂ - wba/l)(b}L + Flw){au’ (3)

)(al/;ﬂ E)(ab.u + waby}(bu - Fluy)(a/% (4)

the affine connection is chosen [6] to be
Fllpw = eal(eau.u + wabvebﬂ)7 (5)
where e, is the inverse of e“,. We note that the Lorentz
indices are raised and lowered by 7%’ =1,, while the
coordinate indices are lowered and raised by g, and its
inverse ¢". It then follows from the definition of the affine

connection (5) that

ey =0, (6)
e'1 =0, (7)
and, consequently, with the metric tensor g, defined by (1),

g’w;ﬂ =0, (8)

Guvia = 0. (9)

The affine connection F’IW as defined by (5) is in general
not symmetric,
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giving rise to the torsion tensor C’l,w, which is defined by
¢, =T, —-T,. (10)
Define
_1 ab
wﬂzzaaba} s (11)
where [24]
i
Oabp = B Va 73], (12)

with {7,.75} = 2145- The set of matrices %o, satisfy the
SO(@3,1) Lorentz algebra

i
E [O-ab’ ch] = NacObd — NadCbe + NbaCac — NbcOCad- (13)

The Lorentz curvature R v 18 defined through

_GabRab/w =w,,— Wy, + i[wﬂ’ wv]? (14)

4
and, as a result of the Lorentz algebra (13), is given by

— wcby + wacya) b (15)

ab  _ _.ab ac
R = —w c

Hv Hv v H

which has the property

A — L, A ab
R p;w =€y epr nv

= ‘900'(1—%0_”’1/ - I_%ab.ﬂ - l—%aﬂram/ + Fﬁavraaﬂ)’ (16)
where I'!,,, is defined by (3).

II. GAUSS-BONNET-TYPE IDENTITIES

Gauss-Bonnet-type identities in Riemann-Cartan curved
space-time

V=9 R* R, = total derivative, (17)
V=9 €5, sR? , R, , = total derivative, (18)
can be simply derived [25] on the basis of the SO(3,1)

Lorentz algebra and properties of the Dirac matrices. These
identities establish

V=9 RY R o5, (19)

vV _geﬂﬂpeaﬁyﬁRaﬂﬂbRﬂslp (20)

as topological invariants. They are, respectively, the
Pontryagin and Euler topological invariants.

Based on the SO(4,1) de Sitter algebra, another Gauss-
Bonnet-type identity,

V=ge"" " RA8 Ry, = total derivative,  (21)

where indices A and B take on five values (0, 1, 2, 3, 5), can
be derived [9], establishing

V _geﬂMpRABﬂDRABﬂ/) (22)

as a Pontryagin-type topological invariant for the de Sitter
group. It is the difference of the SO(4,1) and SO(3,1)
Pontryagin invariants, namely (21) and (17), that led to the
identity [9]

1
/=0 geﬂwlp ( Ruv i + E Calw Ca/lp)
- 8/4 (_ V _geﬂMpCulp) ’ (23)
establishing
1
V _ge;wip <R;w/1p + 5 Cﬁ;wca/lp> (24)

as a torsional topological invariant [10,11].

We now use the same method, based on the SO(3,1)
algebra and properties of the Dirac matrices, to derive two
more series of topological invariants involving torsion, one
being of the Euler type and the other of the Pontryagin type.
Define w'“?, by

w/ab” = wabﬂ 4 gcﬂab’ (25)
where £ is an arbitrary parameter, and

c

ab _ La,b Ap
W= eje,C7,

which is antisymmetric in a and b. It is convenient to
introduce the group algebraic notations

1 ab
’lUM = Zaabw u
1
Cﬂ Zoabcﬂ
1
w, =w, +&C, = Zaaba}’“b#. (26)

The curvature tensor R'“? w corresponding to the connec-
tion @', is defined by

1 _
Zaamebw/ = R/uw (27)
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where

R, =7, -o,, +iod, o) (28)

On account of the SO(3,1) Lorentz algebra, R’“”W is
explicitly given by

R/ab — w/ab lab
v

lac b rac ./ b
py — Wy — @@y, +w v@c s (29)

which can be expressed in terms of the curvature tensor
R, and the torsion tensor C,*" as

R/abw/ — Rab/w + é(cahm[ + Cluhcll,w)

+ 52(_Cﬂaccych + szaccuch)’ (30)
where C%?,, denotes
Cabﬂy — Cﬂab;y _ Cvab;/n (31)

with ; representing the covariant derivative in accordance
with the definitions (4) and (5), e.g.,

C

ﬂab;y — Cyab,y _ Flﬂycﬂab + a)awc’lcb + wbcycﬂac' (32)

ITII. PONTRYAGIN-TYPE IDENTITIES

We can express the Pontryagin-type invariant for R'* »
in the following form:

\/:“geyu/lpR/aﬁﬂDR;’mp — \/’_‘Ee;wipR/abﬂyR;Mp
= 2./—g€"”pTr[I€’W1§’Ap], (33)

where use has been made of
Tr[6us6ca] = 4(Naclba = Nadlbe)- (34)

With R//w given by (28), we can express (33) in the
form [25]

\/__geﬂylpR/aﬂuszxmp
2
- aﬂ{g /=ge" Tt {wfﬁ,{w}, + éw’vw’ng] }, (35)
where use has been made of the fact that \/=ge** is a

constant. With R'*? w given by (30), we can expand the left-
hand side of (35) as a power series of the parameter &,

% _geﬂﬂpRmﬂﬂvRﬁz/up
= _geﬂylp{RaﬂuDRaﬂip =+ §2Raﬁm/<caﬂlp + Caaﬂcgﬂg>
+ & [4R"‘ﬂm,C,1a"Cpﬂ,,
+ (Caﬁ/w + Caaﬂcaﬂv)(caﬁlp + Cnaﬂcnlpﬂ
+ E4(C,, 4+ C,7C?,,)Cia? Cpp, }- (36)

As a power series in &, and with @y, given by (26), the right-
hand side of (35) is given by

2i
9,{8y/=ge"*Tr { <wy8,1w,, - ?lw,,wlwp)
+ é’(w,,@,lcp + C,,@,{wp + 2iCl,w,1w,,)

+ &(C,0,C, +2iC,C,w,) + §3CDC,1C/,} } (37)

We recall that w, and C, are given in (26). Since the
parameter £ is arbitrary, we equate terms in (36) with
corresponding terms of equal power in & in (37) and obtain
a set of four identities. The identity corresponding to the
zeroth power in ¢ is the original Gauss-Bonnet identity (16)
for the Pontryagin invariant. The other three identities are

/_geﬂvﬂp Raﬂpu(ca sip Caaﬂcgﬂp>
= 0,[4/=ge"*Tr(w,0,C, + C,0,w, + 2iC,w,;w,)],

(38)
\/—_geﬂyiﬂ [4R(lﬁ”y Cﬂa” C/)ﬂ()’
+ (Caﬂm/ + Cyaﬂcylw)(c(lﬂi/) + C(Sfl/}C(s’I/’ )]
_ 8ﬂ[8\/__geﬂyllpTr(CUaj’C/) =+ Zl.CyCﬂw/))]a (39)
\/—gerr (CP w T C,* C%u)Cid Cppy
4i
=9, g\/—_ge”’”l/’Tr(CuCle) ' (40)

IV. EULER-TYPE IDENTITIES

Let us denote by #n,,. the totally antisymmetric
Minkowski tensor, with

Moz = —1. (41)
Because of the relation
Tr[VSGabGCd] = _4i’1abcd’ (42)
where

s = iy%7'r?y’, (43)
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we can express the Euler-type invariant in the form

\/_—gepwlp €apys Rlaﬂﬂy R/V&/Ip
_ /__geﬂwlpnabcdR/aﬂﬂbR/Cdﬂp
= 4i\/—ge" TY[YSRLDR/Ap] ) (44)

where R’ w 18 defined by (28). Substituting (28) into (44),
we obtain [25]

\/__geypipeaﬂyﬁR/aﬁﬂvR/y(sﬂ/)
= 8ﬂ{16i\/_ge””’1/’Tr {yS (w,0,w), + 23-w oW, )] }
(45)
where use has been made of the relation,

s, @] = 0. (46)

We expand both sides of (45) as power series of £. The left-
hand side is

V=9e"¥ €5, sR R,
—ge" € ps{ R\ R ), + 2R, (C7°,,+ C,7°C?,,)
+ 2[R, C7C,0
+(C¥ 4 +CoC%,, ) (CT, +Cp°CT, )]
LEU(CP,, +CPC0,,)CIC,S ). (47)

The right-hand side of (45), as a power series of &, is
given by

9
5 { 16i./—ge"* Tr {7@ (wya,lwg +§lwywﬂwg>
—|—§y5(CD8,1wp+wba,1Cp—|—2iCyC/1C )

2i
+§2y5(Cy0,1C,,+2iCUCﬁw )+§ 75 C C}LC :| } (48)

Equating terms in (47) with corresponding terms of the
same power in ¢ in (48), we obtain four identities.
The identity corresponding to the zeroth power in & is
the original Gauss-Bonnet identity for the Euler invariant
(18). The other three identities are the following:

V _geuznl/) €aﬁ76Raﬁ,uu ( Cyaip + CO_}/(S Cﬂllp )

= 8”{81'./—ge"”f’Tr[y5(C,,8,1wp +@,0,C,
+ ZiCuwlwp)]}’ (49)

\/—gé‘ﬂyﬁpé‘aﬁyé [4R“ﬂﬂ,,C,17"’C/,§6
+(CP 4y +CC ) (C1, + C°CT, )]
=0,{16i\/— ge"Trlys(C, 0,C,+2iC,C,w,)]}. (50)

V _geﬂyﬂpeaﬂyti((:aﬂ/w + Caﬂgcaﬂu>cimcp§n

8
= 8;4 —g,/—ge’“”l”Tr(ySCUC}Cp) . (51)

V. PURELY TORSIONAL
TOPOLOGICAL INVARIANTS

In addition to the original Gauss-Bonnet identities (17)
and (18) for the Pontryagin and Euler topological invar-
iants, respectively, we have obtained in this paper six
additional identities, which do not exist when torsion
vanishes. Three of them, namely (38), (39) and (40), are
of the Pontryagin type, and the other three, namely (49),
(50) and (51), are of the Euler type. Of the six, two of the
identities, namely (40) and (51), are special in that they
contain only torsion tensorial entities, just like the pre-
viously known torsional identity (23). The right-hand side
of the two identities (40) and (51) can be easily evaluated.
We have the following results for the traces:

€MM/)Tr(Cv C/l Cp) == % €ﬂMﬂ Ct/ab Clbc Cp “, (52)

e Tr(ysC,C,C,) = %6"””Cyabczbc*cp”, (53)
where
“C,e0 = r]cubdcpbd_ (54)
The identities (40) and (51) then become, respectively,
V=g (CP, + CoPC0, ) Cii'Copy
=0, E \/—_gef‘”’l”CWﬂC,wpr}’“} , (55)
and
V=9 €4py5(CP 4+ C €%, ) C1C2,

2
=9, { = /=g C, P CuC, w] (56)

These two identities together with the previously known
identity [9]

1
\/_—ge,M/’ ( uvdp + ce leﬂ) o aﬂ(_ V _ge;w/lp CM/’ )

are the three identities containing only torsional tensorial
entities, establishing

1
/— geﬂuﬂﬁ < Rmxﬂp + 5 Ca;w Ca /1/)> (57)
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— geﬂzxip(ca/iw + C”WCG(I/})C Aa"C/) i (58)
/_geﬂl//lﬂgaﬂﬁ(caﬂ”y + C”,,,,CG“/’)C/”CP‘SU (59)

as the three purely torsional topological invariants. We
remind ourself that C% w18 defined in (31).

We remark that we have applied the same consideration
to the case of the SO(4,1) de Sitter algebra [9] by
combining @', =14, with the SO(3,1) connection
@', defined by (25), to form the SO(4,1) de Sitter
connection ®"#,. No additional identity beyond those
already obtained is found. These identities may be of
use in future investigations involving torsion, such as in

finding torsion contributions to the chiral and conformal
anomalies, or in the construction of topological field
theories. We also remark that the identities (55) and (56)
are equally valid for any third rank tensor having the
same symmetry property as the torsion tensor, namely,
the property of being antisymmetric in two of the
tensor indices. In the Kibble-Sciama theory of gravitation,
torsion tensor is the only basic entity possessing this

property.

ACKNOWLEDGMENTS

The author would like to thank J. Zanelli for his
thoughtful comments.

[1] J.M. Kosterliz and D.J. Thouless, J. Phys. C 6, 1181
(1973).

[2] D.J. Thouless, M. Kohmoto, M. P. Nightingale, and M.
den Nijs, Phys. Rev. Lett. 49, 405 (1982).

[3] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 146802
(2005).

[4] B. A. Nernevig, T. H. Huges, and S. C. Zhang, Science 314,
1757 (2006).

[5]1 Y. Chen and C. Tian, Phys. Rev. Lett. 113, 216802 (2014);
C. Tian, Y. Chen, and J. Wang, Phys. Rev. B 93, 075403
(2016).

[6] T. W.B. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961).

[71 D.W. Sciama, in Recent Developments in General
Relativity (Pergmon+PWN, 1962); Rev. Mod. Phys. 36,
463 (1964); 36, 1103 (1964).

[8] F. W. Hehl, P. von der Heyde, G.D. Kerlick, and J. M.
Nester, Rev. Mod. Phys. 48, 393 (1976); F. W. Hehl and
Yu. N. Obukhov, Lect. Notes Phys. 562, 479 (2001), and
references therein; M. Blagojevic and F. W. Hehl, Gauge
Theories of Gravitation (Imperial College Press, London,
2013).

[9] H.T. Nieh and M. L. Yan, J. Math. Phys. (N.Y.) 23, 373
(1982).

[10] O. Chandia and J. Zanelli, Phys. Rev. D 55, 7580 (1997).

[11] H.T. Nieh, Int. J. Mod. Phys. A 22, 5237 (2007).

[12] S. Mercuri, Phys. Rev. D 73, 084016 (2006); 77, 024036
(2008).

[13] G. Date, P. K. Kaul, and S. Sengupta, Phys. Rev. D 79,
044008 (2009).

[14] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev. D
36, 1587 (1987).

[15] See, e.g., A. Ashtekar and P. Singh, Classical Quantum
Gravity 28, 213001 (2011).

[16] C. Soo, Phys. Rev. D 59, 045006 (1999).

[17] D. Kreimer and E. W. Mielke, Phys. Rev. D 63, 048501
(2001).

[18] O. Chandia and J. Zanelli, Phys. Rev. D 63, 048502 (2001).

[19] K. Peeters and A. Waldron, J. High Energy Phys. 02 (1999)
024.

[20] T. Kimura, J. High Energy Phys. 08 (2007) 048.

[21] G. Calcgni and S. Mercuri, Phys. Rev. D 79, 084004 (2009).

[22] S. Mercuri and V. Taveras, Phys. Rev. 80, 104007 (2009).

[23] S. Mercuri, Phys. Rev. Lett. 103, 081302 (2009).

[24] J.D. Bjorken and S.D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).

[25] H.T. Nieh, J. Math. Phys. (N.Y.) 21, 1439 (1980).

104045-5


https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.113.216802
https://doi.org/10.1103/PhysRevB.93.075403
https://doi.org/10.1103/PhysRevB.93.075403
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/RevModPhys.36.463
https://doi.org/10.1103/RevModPhys.36.463
https://doi.org/10.1103/RevModPhys.36.1103
https://doi.org/10.1103/RevModPhys.48.393
https://doi.org/10.1007/3-540-40988-2
https://doi.org/10.1063/1.525379
https://doi.org/10.1063/1.525379
https://doi.org/10.1103/PhysRevD.55.7580
https://doi.org/10.1142/S0217751X07038414
https://doi.org/10.1103/PhysRevD.73.084016
https://doi.org/10.1103/PhysRevD.77.024036
https://doi.org/10.1103/PhysRevD.77.024036
https://doi.org/10.1103/PhysRevD.79.044008
https://doi.org/10.1103/PhysRevD.79.044008
https://doi.org/10.1103/PhysRevLett.57.2244
https://doi.org/10.1103/PhysRevD.36.1587
https://doi.org/10.1103/PhysRevD.36.1587
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1088/0264-9381/28/21/213001
https://doi.org/10.1103/PhysRevD.59.045006
https://doi.org/10.1103/PhysRevD.63.048501
https://doi.org/10.1103/PhysRevD.63.048501
https://doi.org/10.1103/PhysRevD.63.048502
https://doi.org/10.1088/1126-6708/1999/02/024
https://doi.org/10.1088/1126-6708/1999/02/024
https://doi.org/10.1088/1126-6708/2007/08/048
https://doi.org/10.1103/PhysRevD.79.084004
https://doi.org/10.1103/PhysRevD.80.104007
https://doi.org/10.1103/PhysRevLett.103.081302
https://doi.org/10.1063/1.524570

