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We study mass bounds of Maxwell fields in Reissner-Nordström black holes and genuine hair in
Einstein-Born-Infeld black holes with various cosmological constants. It shows that the Maxwell field
serves as a good probe to disclose the hair distribution described with the event horizon and the
photonsphere. We find that the Hod’s lower bound obtained in asymptotically flat space also holds in the
asymptotically de Sitter Einstein-Born-Infeld hairy black holes. In contrast, the Hod’s lower bound can be
invaded in the asymptotically anti–de Sitter (AdS) Einstein-Born-Infeld hairy black holes. It implies that
the AdS boundary could make the Born-Infeld hair easier to condense in the near horizon area.
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I. INTRODUCTION

The famous no hair conjecture of Wheeler [1–3] was
motivated by research on uniqueness theorems that
Einstein-Maxwell black holes are described by only three
conserved parameters: mass, electric charge and angular
momentum [4–8]. The belief in the no hair conjecture was
based on a simple physical picture that matter fields outside
black holes would eventually be radiated away to infinity or
be swallowed by the black hole horizon except when those
fields were associated with the three conserved parameters.
In accordance with this logic, stationary black holes indeed
exclude the existence of scalar fields, massive vector fields
and spinor fields in the exterior spacetime of black holes
[9–15].
However, nowadays we are faced with the surprising

discovery of various types of hairy black holes, the first
of which were Einstein-Yang-Mills black holes [16–18].
After that, other static hairy black hole solutions were also
discovered in theories like Einstein-Skyrme, Einstein-non-
Abelian-Proca, Einstein-Yang-Mills-Higgs and Einstein-
Yang-Mills-dilaton and hair formation in nonstatic kerr
black holes was investigated, for references see [19–32]
and reviews [33,34]. The discovery of front hairy black
holes provides a challenge to the validity of the classical no
hair theorem. Now, it is clear that the formation of hair is
due to the fact that self-interaction can bind together the
hair in a region very close to the horizon and another region
relatively distant from the horizon [35]. In accordance with
this physical picture, a no short hair theorem was proposed
as an alternative to the no hair conjecture based on the
fact that the black hole hair of Einstein-Yang-Mills fields
must extend above the photonsphere [35]. Shahar Hod also
proved a no short scalar hair theorem that linearized

massive scalar fields have no short hair behaviors in
nonspherically symmetric nonstatic kerr black holes [36].
Along this line, it is interesting to study the distribution

of hair mass. For the limit case of the linear Maxwell field,
Hod showed that the region above the photonsphere
contains at least half of the total mass of Maxwell fields
and also found that this lower bound holds for various
genuine hairy black holes in Einstein-Yang-Mills, Einstein-
Skyrme, Einstein-non-Abelian-Proca, Einstein-Yang-Mills-
Higgs and Einstein-Yang-Mills-dilaton systems [37]. It was
found that the nonlinear Einstein-Born-Infeld black holes
also satisfy this lower bound that half of the Born-Infeld hair
is above the photonsphere [38]. In fact, it is reasonable to use
Maxwell fields to study density distribution of genuine hair
since the Maxwell field case is a linear limit of the nonlinear
Einstein-Born-Infeld theory. The front studies of hair mass
bounds were carried out in asymptotically flat backgrounds.
As a further step, it is meaningful to extend the discussion in
asymptotically flat black holes to spacetimes with nonzero
cosmological constants.
In the following, we introduce black holes with nonzero

cosmological constants and obtain bounds for linear hair
mass ratio. We also disclose properties of genuine hair in
Einstein-Born-Infeld black holes. We will summarize our
main results at the last section.

II. ANALYTICAL STUDIES OF LINEAR
HAIR MASS BOUNDS

In this paper, we use the Maxwell field as a linear limit
to disclose properties of genuine hair similar to approaches
in [37]. The four-dimensional Einstein-Maxwell black
hole geometries with nonzero cosmological constant Λ
are described by [39–42]

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ*yanpengphy@163.com
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where metric functions fðrÞ ¼ 1 − 2M
r þ Q2

r2 − Λr2 with M
as the Arnowitt-Deser-Misner mass and Q as the charge.
The mass mðrÞ of the Maxwell field above the radius r is

given by

mðrÞ ¼
Z þ∞

r
4πr02ρðr0Þdr0: ð2Þ

For the Maxwell field, one has the energy density ρðrÞ ¼
−Tt

t ¼ Q2

8πr4 [37]. It yields mðrÞ ¼ Q2

2r for the mass function.
It was found that the photonsphere can be conveniently

used to describe spatial distribution of the matter field
[35,37]. According to the approach in [37], the radius rγ of
the null circular geodesic (photonsphere) in the Reissner-
Nordström (RN) black hole is determined by the relation

2fðrγÞ − rγf0ðrγÞ ¼ 0: ð3Þ

From (3), one obtains the radius rγ independent of the
cosmological constants as

rγ ¼
1

2
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ: ð4Þ

We define rH as the black hole event horizon satisfying
fðrHÞ ¼ 0. An interesting quantity which characterizes the
spatial distribution of the hair is given by the dimensionless

hair mass ratio
mþ

hair
m−

hair
, where

mþ
hair ¼ mðrγÞ ð5Þ

is the mass of the hair above the photonsphere and

m−
hair ¼ mðrHÞ −mðrγÞ ð6Þ

is the mass of the hair contained between the event horizon
and the photonsphere. For the linear hair of Maxwell field
outside the Reissner-Nordström (RN) black hole, Hod

obtained bounds on the ratio
mþ

hair
m−

hair
≥ 1. The ratio can be

expressed as

mþ
hair

m−
hair

¼
Q2

2rγ
Q2

2rH
− Q2

2rγ

¼ 1
rγ
rH
− 1

: ð7Þ

We have mentioned that rγ ¼ 1
2
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ is

independent of the cosmological constant Λ. In order to

study the ratio mþ
hair

m−
hair
, we try to research how the cosmological

constant can affect the event horizon rH. The event horizon
rH can be obtained from the equation 1 − 2M

r þ Q2

r2 − Λr2 ¼
1
r2 ðr2 − 2MrþQ2 − Λr4Þ ¼ 0 or the equation

r2 − 2MrþQ2 − Λr4 ¼ 0: ð8Þ
Case I: Λ > 0.—For the case of Λ > 0 or asymptotically

de Sitter (dS) black hole spacetime, Eq. (8) has three real
positive roots rh, rH and r0, where rh is the Cauchy
horizon, rH is the event horizon and r0 is the cosmological
horizon with rh < rH < r0 [39,40]. For simplicity, we
introduce a function y ¼ r2 − 2MrþQ2 − Λr4. The event
horizon r ¼ rH can be obtained from y ¼ 0. In this work,
we are interested in the case of M ≥ Q. According to the
relation r2H − 2MrH þQ2 ¼ Λr4H > 0, there is rH > M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
or rH < M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. Since y0 ¼

2ðr −MÞ − 4Λr3 < 0 for r ≤ M, at most one root of y ¼
0 is in the range of r ≤ M and there is rH > M. Then we
further have rH > M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
.

Considering the fact rH > M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, the mass

ratio can be expressed with x ¼ Q
M ∈ ½0; 1� as

mþ
hair

m−
hair

¼ 1
rγ
rH
− 1

>
1

1
2
ð3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2−8Q2

p
Þ

Mþ
ffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p − 1

¼ 1
1
2
ð3þ

ffiffiffiffiffiffiffiffiffi
9−8x2

p
Þ

1þ
ffiffiffiffiffiffiffiffi
1−x2

p − 1
:

ð9Þ
According to the fact that

 
1

1
2
ð3þ

ffiffiffiffiffiffiffiffiffi
9−8x2

p
Þ

1þ
ffiffiffiffiffiffiffiffi
1−x2

p − 1

!0

x

¼ −
2x�ð1

2
ð3þ

ffiffiffiffiffiffiffiffiffi
9−8x2

p
Þ

1þ
ffiffiffiffiffiffiffiffi
1−x2

p − 1
�
2

17 − 18x2 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8x2

p
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8x2

p
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ð10Þ

and

17 − 18x2 þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 8x2

p
þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
≥ 17 − 18

þ 3þ 0 ¼ 2 > 0; ð11Þ

we have

 
1

1
2
ð3þ

ffiffiffiffiffiffiffiffiffi
9−8x2

p
Þ

1þ
ffiffiffiffiffiffiffiffi
1−x2

p − 1

!0

x

< 0

for all x ∈ ½0; 1�. So we have

mþ
hair

m−
hair

> 1 ð12Þ

and the lower bound is with x ¼ 1 and Λ → 0.
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From the relation r2H − 2MrH þQ2 − Λr4H ¼ 0, we

arrive at Λ ¼ r2H−2MrHþQ2

r4H
. Then there is dΛ

drH
¼

4ðr2H−2MrHþQ2Þ
r5H

þ 2rH−2M
r4H

> 0 since we have proved rH >

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. So Λ is an increasing function of rH and

the event horizon rH also increases when we increase the

value of Λ. For rH ¼ rγ or Λ ¼ r2γ−2MrγþQ2

r4γ
> 0 with

rγ ¼ 1
2
ð3M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 8Q2

p
Þ, we have

mþ
hair

m−
hair

¼ 1
rγ
rH
− 1

¼ 1
rH
rH
− 1

¼ þ∞: ð13Þ

In all, the linear hair mass ratio satisfies the Hod’s mass
bound. We further conjecture that asymptotically dS
genuine hairy black holes may also obey the Hod’s hair
mass bound.
Case II: Λ < 0.—For another case of Λ < 0 or

asymptotically AdS charged black hole spacetime,
Eq. (8) has two real positive roots rh and rH, where rh
is the Cauchy horizon and rH is the event horizon [41].
From r2H − 2MrH þQ2 ¼ Λr4H < 0, we have rH < M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The mass ratio satisfies the upper bound

mþ
hair

m−
hair

¼ 1
rγ
rH
− 1

<
1

1
2
ð3Mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2−8Q2

p
Þ

Mþ
ffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p − 1

≤ 2: ð14Þ

The upper bound corresponds to the case of Q → 0
and Λ → 0. The existence of this upper bound is natural
since the negative cosmological constant usually serves
as a potential to confine the matter field around the
horizon. Since we study the case of 0 < rH ≤ rγ < þ∞,

there is
mþ

hair
m−

hair
¼ 1

rγ
rH
−1

> 0. In all, we obtain bounds of the

mass ratio

0 <
mþ

hair

m−
hair

< 2: ð15Þ

Now we show that this lower bound can be approached
as Λ → −∞. After choosing Q ≪ 1, we solve r2 − 2Mr −
Λr4 ¼ 0 to find the horizon rH. Since −2Mr is the leading
term in r2 − 2Mr − Λr4 around r ≈ 0, we have r2 − 2Mr −
Λr4 < 0 for r a little larger than 0. There is also r2 −
2Mr − Λr4 → þ∞ as r → þ∞. In the procedure of
Λ → −∞, we divide the horizon into three cases:
rH → 0, rH → ∞ and rH → C, where C is a nonzero
constant.
In the cases of rH → ∞ and Λ → −∞, we have

r2 − 2Mr → þ∞ ð16Þ

and

r2 − 2Mr − Λr4 → þ∞ ð17Þ

in contradiction with the equation r2 − 2Mr − Λr4 ¼ 0.
In another case of rH → C ≠ 0 and Λ → −∞, we have

r2 − 2Mr − Λr4 → C2 − 2MC − ΛC4 → þ∞ ð18Þ

in contradiction with the equation r2 − 2Mr − Λr4 ¼ 0.
In a word, we have rH → 0 as Λ → −∞ and Q → 0. For

the case of Q ≪ 1 and M fixed, the lower bound can be
approached as

mþ
hair

m−
hair

¼ 1
rγ
rH
− 1

¼ 1
3M
rH

− 1
→ 0 as Λ → −∞: ð19Þ

Here the relation (19) shows that the linear hair of the

Maxwell field can invade the Hod’s lower bound mþ
hair

m−
hair

≥ 1. It

implies that the Hod’s bound may be invaded in the
asymptotically AdS Einstein-Born-Infeld hairy black holes
according to the fact that Born-Infeld field hair can be
reduced to Maxwell field in the linear limit. We will further
check this in the following part.

III. HAIR MASS BOUNDS OF EINSTEIN-BORN-
INFELD BLACK HOLES

We should emphasize that the RN-(A)dS black hole is
not hairy since the Maxwell field is associated with a Gauss
law. In this part, we extend the discussion to Einstein-Born-
Infeld hairy black holes with the Born-Infeld factor
associated with no conserved charge [38,43]. The
Lagrangian density for Born-Infeld theory is in the form

LBI ¼
1

b2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2FμνFμν

2

s !
: ð20Þ

Here b is the Born-Infeld factor parameter. We mention that
in the limit b → 0, this Lagrangian reduces to the Maxwell
case and properties of the RN black holes may also hold in
Born-Infeld hairy black holes at least for very small b.
Now we introduce the line element of Born-Infeld black

holes with nonzero cosmological constant Λ as follows:

ds2 ¼ −fEBIðrÞdt2 þ fðrÞ−1EBIdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð21Þ

where metric functions fEBIðrÞ ¼ 1 − 2M
r − Λr2 þ

2b2r2
3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

q �
þ 4Q2

3r2 F½14 ; 12 ; 54 ;− Q2

b2r4�, where M is

the Arnowitt-Deser-Misner mass, Q is the charge
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and F is the hypergeometric function satisfying

ð1rF½14 ;12 ;54;− Q2

b2r4�Þ0r¼− 1ffiffiffiffiffiffiffiffiffi
r4þQ2

b2

q [44–46]. Around x ¼ 0,

the hypergeometric function can be expanded as

F½a;b;c;x�¼1þabx
c það1þaÞbð1þbÞx2

2cð1þcÞ þo½x3� [see Eq. (15.7.1)
of [47] ]. So we have F½1

4
; 1
2
; 5
4
;− Q2

b2r4� → 1 and

fEBIðrÞ → 1 − 2M
r þ Q2

r2 − Λr2 as r → ∞. The photon-

sphere radius rγ is determined by the relation
2fEBIðrγÞ − rγf0EBIðrγÞ ¼ 0 [37,38] and the black hole
event horizon rH can be numerically obtained from
fðrHÞ ¼ 0 [39–41].
The energy density of the Born-Infeld hair is give by

ρðrÞ ¼ −Tt
t ¼ −

�
2b2r3
3

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

q �
þ 4Q2

3r F
h
1
4
; 1
2
; 5
4
;− Q2

b2r4

i�0
8πr2

:

The mass mEBIðrÞ of the Born-Infeld hair above the radius r is given by

mEBIðrÞ ¼
Z þ∞

r
4πr02ρðr0Þdr0 ¼ 1

2

 
2b2r3

3

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4

s !
þ 4Q2

3r
F

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�!
: ð22Þ

The hair mass ratio is

mþ
EBI

m−
EBI

¼ mEBIðrγÞ
mEBIðrHÞ −mEBIðrγÞ

¼ 1

b2r3H

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4
H

q �
þ2Q2

rH
F

h
1
4
;1
2
;5
4
;− Q2

b2r4
H

i
b2r3γ

�
1−

ffiffiffiffiffiffiffiffiffiffi
1þ Q2

b2r4γ

q �
þ2Q2

rγ
F

h
1
4
;1
2
;5
4
;− Q2

b2r4γ

i − 1

: ð23Þ

In the following, we calculate the hair mass ratio in the
Einstein-Born-Infeld genuine hairy black holes. In the case
of asymptotically flat space with Λ ¼ 0, we find that the
Hod’s hair mass ratio bound holds for various b and other
parameters fixed. For example, in the case M ¼ 1.5,
Q ¼ 1, Λ ¼ 0 and various b from 0.001 to 1000, we find

that mþ
EBI

m−
EBI

decreases as a function of b and the ratio

approaches the limit value 1.895 for large b. We show
part of the numerical data in Table I and it can be easily
seen from the table that the mass ratio is above the Hod’s
lower bound. Since the mass ratio with b ¼ 2 almost
reaches the lowest value, we fix b ¼ 2 to check the
Hod’s bound in the following.
We also find that the Hod’s bound holds with different

values of M. In Table II, we show that the ratio is above the

Hod’s lower bound in the case ofQ ¼ 1, b ¼ 2, Λ ¼ 0 and
various M. According to Table II, the ratio increases as a

function of M and the smallest ratio mþ
EBI

m−
EBI

≈ 1.218 is obtained

in the case of M ≈ 1.0, which corresponds to the extremal
black hole solution with M ¼ Q.
We also show cases of M ¼ 1.5, b ¼ 2, Λ ¼ 0 and

variousQ in Table III. Here the ratio decreases with respect
to the charge Q and in the case of the extremal black hole

solution with Q ≈ 1.5, the smallest ratio is mþ
EBI

m−
EBI

≈ 1.147

above the Hod’s lower bound. We further numerically
check for the parameters in a larger range and find that the

Hod’s bound
mþ

hair
m−

hair
≥ 1 [37] holds in the asymptotically flat

Einstein-Born-Infeld hairy black hole in accordance with
results in [38].

TABLE I. The hair mass ratio mþ
EBI

m−
EBI

with M ¼ 1.5, Q ¼ 1, Λ ¼ 0 and various b.

b 0.1 0.3 0.5 0.7 0.9 1.0 2.0 4.0 6.0

mþ
EBI

m−
EBI

2.288 1.952 1.916 1.905 1.901 1.890 1.895 1.895 1.895

TABLE II. The hair mass ratio mþ
EBI

m−
EBI

with Q ¼ 1, b ¼ 2, Λ ¼ 0 and various M.

M 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

mþ
EBI

m−
EBI

1.218 1.668 1.780 1.837 1.872 1.895 1.913 1.926 1.936 1.934 1.950
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Now we will further show that the Hod’s bound also
holds in the asymptotically dS Einstein-Born-Infeld hairy
black holes. The data in Table IV represents the mass ratio
mþ

EBI
m−

EBI
with respect to the positive cosmological constantsΛ in

the case of M ¼ 1.5, Q ¼ 1 and b ¼ 2. We see that the
mass ratio increases as we choose a larger cosmological
constant with other parameters fixed and the smallest ratio
can be obtained in the case of Λ ¼ 0 or flat space. Since
the Hod’s lower bound holds in the asymptotically flat
Einstein-Born-Infeld hairy black holes, we can conclude
that the Hod’s lower bound also holds in the asymptotically
dS Einstein-Born-Infeld hairy black holes.
However, we find that the Hod’s lower bound mþ

hair
m−

hair
≥ 1

can be invaded in the AdS background. With M ¼ 1.5,
Q ¼ 1, b ¼ 2 and different values of Λ, we find that the
hair mass ratio is below the Hod’s lower bound for very
negative cosmological constants as can be seen in Table V.
We have further checked for the whole four-dimensional

parameter space in a very large range and the properties are
qualitatively the same as cases in Tables I–V. In summary,
we show that the Hod’s bound holds in Einstein-Born-
Infeld hairy black holes with non-negative cosmological
constants. In contrast, the Hod’s bound can be invaded in
the asymptotically AdS Einstein-Born-Infeld hairy black
holes. Our results imply that the more negative cosmo-
logical constant makes the Born-Infeld hair more easier to
condense in the near horizon region. Moreover, we con-
jecture that the Hod’s bound may be also invaded in other
AdS hairy black holes. For AdS black holes, a potential
well in the near horizon region forms due to the AdS
boundary [48], which provides the confinement of the
scalar field and may make the scalar hair easier to condense
in the near horizon well [49]. Another possible method to

confine the scalar hair in the near horizon region is enclosing
the black hole in a scalar reflecting box [50–54]. We also
mention that Skyrme hairs with cosmological constants have
been studied [55–57]. We plan to examine effects of
cosmological constants on scalar hair and Skyrme hair
distributions in the next work. Moreover, there is no scalar
hair theorem in regular neutral reflecting stars [58,59] and
static scalar fields can condense around charged reflecting
stars [60–68]. So it is also very interesting to extend the
discussion to the reflecting star background.

IV. CONCLUSIONS

We studied mass distribution of linear hair in RN black
holes and genuine hair in Einstein-Born-Infeld theory with
various cosmological constants. We used the event horizon
and the photonsphere to divide the hair into two parts and
obtained lower bounds for the mass ratio. We found that the
Hod’s lower bound obtained in asymptotically flat gravity
also holds in the asymptotically dS Einstein-Born-Infeld
hairy black holes. In contrast, the Hod’s lower bound can be
invaded in the asymptotically AdS Einstein-Born-Infeld
hairy black holes. Our results showed that the more negative
cosmological constants make the Born-Infeld hair easier to
condense in the near horizon area. We further conjectured
that effects of cosmological constants on hair distribution
may be qualitatively the same in other hairy black holes.
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TABLE IV. The hair mass ratio mþ
EBI

m−
EBI

with M ¼ 1.5, Q ¼ 1, b ¼ 2 and various positive Λ.

Λ 0 0.001 0.005 0.010 0.015 0.016 0.017 0.018 0.019 0.020

mþ
EBI

m−
EBI

1.895 1.942 2.169 2.633 3.724 4.190 4.907 6.241 10.422 117.500

TABLE V. The hair mass ratio mþ
EBI

m−
EBI

with M ¼ 1.5, Q ¼ 1, b ¼ 2 and various negative Λ.

Λ 0 −0.02 −0.04 −0.06 −0.08 −0.10
mþ

EBI
m−

EBI

1.895 1.381 1.153 1.015 0.921 0.851

TABLE III. The hair mass ratio mþ
EBI

m−
EBI

with M ¼ 1.5, b ¼ 2, Λ ¼ 0 and various Q.

Q 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

mþ
EBI

m−
EBI

1.999 1.993 1.980 1.958 1.922 1.861 1.736 1.147
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